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Abstract: The  values  of  a measured, derived  or  estimated  variable  often differ  from  the  “true”, 

“undistorted”  values  of  a  desired  dimension.  Output  values  of  non‐calibrated  measuring 

instruments, misspecification of analysis models or  too  inflexible activation  functions can  lead  to 

inappropriate decisions in all situations. Therefore, a highly flexible mathematical function for the 

isotonic transformation of a variable X of the value space [0‐1] to a variable Y of the same value space 

[0‐1] is presented here. With four or six parameters, almost all conceivable function curves can be 

represented. This allows  restrictions of other  functions, e.g.,  linearity or constant curvature,  to be 

overcome. 
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Introduction 

The values of a measured, derived or estimated quantity often differ from the “true”, “unbiased” 

values of a desired dimension. This is the case, for example, with non‐ or poorly calibrated measuring 

instruments or test methods, not only in chemistry, physics, biology or technology. According to ISO 

11095,  calibration  is  understood  as  a  procedure  by which  the  systematic  differences  between  a 

“measurement system” and a “reference system” are determined or equalised [4]. Similarly, a risk 

model that has been created using a logistic function or machine learning, for example, can be mis‐

calibrated even if it is considered established. This means that the predicted risks do not accurately 

capture the event rates in a target population. 

However, mis‐calibrated  values  can  lead  to  unfavorable  wrong  decisions.  In  banking,  for 

example,  the granting of  loans  is  linked  to  internal bank  rating procedures with  the allocation of 

borrowers to rating classes. As part of the calibration process, it must be ensured that the assignment 

is made in such a way that the historically observed default rates of the borrowers in a rating class 

correspond to the probability of default in this class [1]. 

In medicine, sufficiently accurate quantification of a disease marker is essential for diagnosis or 

accurate monitoring  of  disease  burden.  Inadequate  determination  of  a  disease  risk  can  lead  to 

erroneous decisions regarding disease screening. Thes same applies to a misinterpretation of a score 

in the interval 0 to 1 as probability [2]. It has been shown that polygenic risk scores (PRS) should be 

calibrated on a country‐specific basis to determine individual breast cancer risk [3]. 

A related problem is the specification of a problem‐adequate activation function of a node in an 

artificial neural network. This calculates the output of the node on the basis of its individual inputs 

and,  if  necessary,  weights.  Simple  activation  functions  include  the  smooth  version,  the  ReLU 

(Rectified Linear Unit) and  the GELU  (Gaussian Error Linear Units), as well as  the sigmoid,  tanh 

(hyperbolic  tangent)  and  softmax  functions,  as  used  in  some  speech  recognition  models  [5,6]. 

However,  one  can  find  countless  activation  functions  in  the  relevant  specialist  literature  [7]. 

Depending on the intended use, this could also be used as a calibration or rescaling function. 

Many of the conventional calibration functions are a special case of a general, polynomial power 

transformation: 
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𝑌 ൌ 𝑎 ൅ 𝑏ଵ𝑋௖భ ൅ 𝑏ଶ𝑋ଶ௖మ ൅ 𝑏ଷ𝑋ଷ௖య ൅ ⋯  (1) 

If necessary, X can also be replaced by a rank‐preserving transformation, e.g., .  ln ሺ𝑋ሻ  or  𝑒௑  [8]. 
For many practical applications, fitting a simple, linear calibration function  𝑌 ൌ 𝑎 ൅ 𝑏ଵ𝑋  (i.e.,  𝑐ଵ ൌ 1 
and  𝑏ଶ,𝑏ଷ, … ൌ 0)  is sufficient  to equalise distortions between  the “measurement system” and  the 

“reference  system”. The determination  of  the  parameters  𝑎   and  𝑏ଵ   is  simple  [8]. However,  if  a 

(measurement)  parameter  X  of  the  value  space  [0‐1]  has  to  be monotonically  transformed  to  a 

(reference) parameter Y of the same value space [0‐1], equation [1] is unsuitable. Equation [1] does 

not guarantee that Y will only have values between 0 and 1. Equation [1] also does not allow X values 

close to 0 to be assigned a  𝑌 ൌ 0  or X values close to 1 to be assigned a  𝑌 ൌ 1. 

Definition of a Function for Monotonic Transformation 

The following four building blocks are required to define a highly flexible mathematical function 

for the monotonic transformation of a variable X of the value space [0‐1] to a variable Y of the same 

value space [0‐1]: 

I. In order to guarantee only values from the value range [0‐1] for Y, the property of the sigmoid function, 

or its inverse, the logit function, can be utilised. These functions allow a continuous variable x to be 

mapped in an interval [0,1] and vice versa. 

logit‐funktion:      𝑥ᇱ ൌ 𝑙𝑛 ቀ
௫

ଵି௫
ቁ  sigmoid‐funktion      𝑥 ൌ ௘ೣ

ᇲ

ଵା௘ೣᇲ
  (2a,b) 

where x can take values in the range [0‐1] and x’ values in the range [‐∞ to+∞]. 

II. For a variable X with values in the range [0‐1], a scale‐transformed variable X’‘ can also be generated with 

a value range [0‐1] by simply exponentiating  𝑥′′ ൌ 𝑥ௗ 

III. Finally, a variable X with values in the value range  ሾ𝑢 െ 𝑜ሿ  can be proportionally transformed into a 

variable X’‘‘ in the value range  ሾ𝑢′′′′ െ 𝑜′′′′ሿ  using the following equation: 

𝑥ᇱᇱᇱ ൌ ௢ᇲᇲᇲି௨ᇲᇲᇲ

௢ି௨
ሺ𝑥 െ 𝑢ሻ ൅ 𝑢ᇱᇱᇱ  (3) 

If the target variable 𝑋′′′  is to have a value range of [0‐1], but the output variable X is to have a 
flexibly defined value range  ሾ𝑢 െ 𝑜ሿ, the above equation is reduced to: 

𝑥ሾ଴ିଵሿ
ᇱᇱᇱ ൌ ௫ି௨

௢ି௨
  (3a) 

whereas: for  𝑥 ൑ൌ 𝑢  ist  𝑥ሾ଴ିଵሿ
ᇱᇱᇱ ൌ 0  and for  𝑥 ൒ൌ 𝑢  ist  𝑥ሾ଴ିଵሿ

ᇱᇱᇱ ൌ 1. 

Conversely, if the output variable X is to have a value range of [0‐1], but the target variable 𝑋′′′ 
is to have a flexibly defined value range  ሾ𝑢′′′′ െ 𝑜′′′′ሿ, the above equation is reduced to: 

𝑥ሾ଴ିଵሿ
ᇱᇱᇱ ൌ 𝑥ሺ𝑜ᇱᇱᇱ െ 𝑢ᇱᇱᇱሻ ൅ 𝑢ᇱᇱᇱ  (3b) 

These four building blocks are now applied step by step to obtain a calibration function  𝑌 ൌ
𝐶ሺ𝑋ሻ: 

Step I) Transferring X (value range  ሾ𝑢 െ 𝑜ሿ) to the value range [0,1]:  𝑥ሾ଴ିଵሿ
ᇱ ൌ

௫ି௨

௢ି௨
  with u and o 

boundary parameters 

Step II)  Rescaling of  𝑥ሾ଴ିଵሿ
ᇱ :    𝑥ሾ଴ିଵሿ

ᇱᇱ ൌ ሺ𝑥ሾ଴ିଵሿ
ᇱ ሻௗ ൌ ሺ௫ି௨

௢ି௨
ሻ௖  with  c  a  scaling 

parameter 

Step III)  Transferring  𝑥ሾ଴ିଵሿ
ᇱᇱ   (value range [0‐1]) to a continuous variable: 

𝑥ᇱᇱᇱ ൌ lnቆ
𝑥ሾ଴ିଵሿ
ᇱᇱ

1 െ 𝑥ሾ଴ିଵሿ
ᇱᇱ ቇ ൌ lnቌ

ሺ𝑥 െ 𝑢
𝑜 െ 𝑢ሻ

௖

1 െ ሺ𝑥 െ 𝑢
𝑜 െ 𝑢ሻ

௖
ቍ 

Step V)  Considering a linear relationship between the calibrated output Y of (value range 

[0‐1]) and the continuous input variable  𝑥ᇱᇱᇱ, according to logistics regression: 

ln ൬
௒ሾబషభሿ
ᇲ

ଵି௒ሾబషభሿ
ᇲ ൰ ൌ a ൅ b𝑥ᇱᇱᇱ.   

with a as shift parameter and b as slope parameter 

Step VI)  Inverting this linear relationship according to the sigmoid function: 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 February 2025 doi:10.20944/preprints202502.2310.v1

https://doi.org/10.20944/preprints202502.2310.v1


  3  of  6 

 

𝑌ሾ଴ିଵሿ
ᇱ ൌ

𝑒ୟାୠ௫
ᇲᇲᇲ

1 ൅ 𝑒ୟାୠ௫ᇲᇲᇲ
ൌ

𝑒ୟ𝑒ୠ௫
ᇲᇲᇲ

𝑒ୟሺ 1
𝑒ୟ ൅ 𝑒ୠ௫ᇲᇲᇲሻ

ൌ
𝑒
ୠ ୪୬ቌ

ሺ
௫ି௨
௢ି௨ሻ

೎

ଵିሺ
௫ି௨
௢ି௨ሻ

೎
ቍ

𝑒ିୟ ൅ 𝑒
ୠ ୪୬ቌ

ሺ
௫ି௨
௢ି௨ሻ

೎

ଵିሺ
௫ି௨
௢ି௨ሻ

೎
ቍ

 

Step VII)  Rescaling of  𝑌ሾ଴ିଵሿ
ᇱ :  𝑌ሾ଴ିଵሿ

ᇱ ൌ 𝑌ሾ଴ିଵሿ
ௗ
 with d a scaling parameter 

This ultimately results in the desired calibration function: 

𝑌ሾ଴ିଵሿ ൌ 𝑌ሾ଴ିଵሿ
ᇱ ଵ/ௗ ൌ

⎝

⎜
⎛ ௘

ౘౢ౤ቌ
ሺ
ೣషೠ
೚షೠሻ

೎

భషሺೣషೠ೚షೠሻ
೎
ቍ

௘ష౗ା௘
ౘ ౢ౤ቌ

ሺ
ೣషೠ
೚షೠሻ

೎

భషሺೣషೠ೚షೠሻ
೎
ቍ

⎠

⎟
⎞

ଵ/ௗ

 (4) 

with  𝑌ሾ଴ିଵሿ ൌ 0 if 𝑥 ൑ൌ 𝑢  and  𝑌ሾ଴ିଵሿ ൌ 1 if 𝑥 ൒ൌ 𝑢. 
Step VII)  Rescaling of  𝑌ሾ଴ିଵሿ

ᇱ   to  𝑌ሾ௨ᇲି௢ᇲሿ
ᇱ  

One  more  step  can  be  taken  to  relax  the  transformation  form  the  basic  requirement  of 

𝑌ሺ𝑥 ൌ 0ሻ ൌ 0   and  𝑌ሺ𝑥 ൌ 1ሻ ൌ 1 ,  to  𝑌ሺ𝑥 ൌ 0ሻ ൌ 𝑢ᇱ   and  𝑌ሺ𝑥 ൌ 1ሻ ൌ 𝑜ᇱ .  This  step  is  optional  and 
should only be used if necessary. Applying equation 3b results in: 

𝑌ሾ௨ᇲି௢ᇲሿ ൌ

⎝

⎜
⎛ ௘

ౘౢ౤ቌ
ሺ
ೣషೠ
೚షೠሻ

೎

భషሺೣషೠ೚షೠሻ
೎
ቍ

௘ష౗ା௘
ౘ ౢ౤ቌ

ሺ
ೣషೠ
೚షೠሻ

೎

భషሺೣషೠ೚షೠሻ
೎
ቍ

⎠

⎟
⎞

ଵ/ௗ

ሺ𝑜ᇱ െ 𝑢ᇱሻ ൅ 𝑢ᇱ  (5) 

This  flexible,  limited, double‐sigmoid  transmission  function  (FLDSf, equation 5)  looks  rather 

complicated, but follows a stringent logic and enables a highly flexible univariate transformation. 

However, the parameters a, b, c, d, u and o are subject to the following necessary or 

sensible restrictions: 

Table 1. Parameters: Types and restrictions. 

parameter  necessary  useful range  type 

a  unbeschränkt  ‐2≤a≤+2  shift parameter   

b  b≥0 †  0≤b≤6  slope parameter 

c  c>0  0<c≤5  scaling parameter 

d  d>0  0<d≤5  scaling parameter 

u,o  u<o  u≤0.25; o≥0.75  boundary parameters 

† so that  𝑌ሾ଴ିଵሿ  increases monotonically with. 

Examples of Semi‐Flexible Functions 

The FLDS function defined above is highly flexible in the form of the “translation” from x to y. 

The  choice of  suitable parameters  is decisive  for  the  form. Some examples are  listed here  (Error! 

Reference source not found.), whereby the boundary parameters are always fixed to u=0 and o=1. 

“linear course”: To obtain a linear curve (y=x), a=0 and b=1 must be selected and c=d must be set. 

“concave course”: A concave curve is obtained if the parameter a is increased starting from the 

linear curve (e.g., a=2). 

“convex course”: A concave curve is obtained if, starting from the linear curve, the parameter a 

is reduced below zero (e.g., a=‐2). 

“S‐shaped course”: An S‐shaped curve is obtained if the parameter b is increased from the linear 

curve (e.g., b=3). The S‐shape can be modified with the parameters a, c and d. 

“rapidly increasing course”: To obtain a rapidly rising curve, a high value (b=5 and d=3.6) can 

be selected for b and d and a lower value (e.g., c=0.57) for c. The higher the parameter value for a, the 

steeper the rise. 
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Figure 1. Examples of function curves. All Figures have been compiles with the use of www.desmos.com. 

The  function  can  be  visualized  remotely  online  using  the  following  link: 

https://www.desmos.com/calculator/ib3yikhfoq?lang=de. 

Discussion 

The function presented here looks complicated at first glance, but follows a stringent logic and 

enables  an  extremely  flexible,  univariate  transformation.  It  was  developed  to  derive  genotype 

probabilities (naturally restricted to the value space [0‐1]) from genotype doses (scaled in the value 

space  [0‐1])  determined  in  a  biological  experiment. However,  the  function  is  universal  and  can 

therefore also be used for other purposes. It could conceivably be used to calibrate risk scores or as 

an activation function in neural networks. The function parameters can be completely or partially set 

or restricted in order to limit the space or the form of possible function progressions. However, they 

can also be estimated from data using all known methods (maximum likelihood, minimum loss, grid 

search, etc.). 

Alternatively to the FLDSf, one may apply spline functions or eEmax models. [8,9] Splines are 

flexible polynomial functions that run piecewise between predefined nodes. They have a reputation 

for  being  able  to map  any  curve  in  a  purely  data‐oriented way,  i.e., without  assumptions  (e.g., 

linearity). However, this is only true to a limited extent. The complexity of spline functions depends 
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heavily on the number of nodes and the type of degree of the piecewise polynomials. Sigmoid eEmax 

functions have been  shown  to be  effective  in modeling  a wider  range of  concentration‐response 

behavior in pharmacokinetics, including non‐sigmoidal patterns. It is considered a robust and flexible 

method for analyzing drug concentration and effect. However, it is not possible to create an S‐shaped 

curve with  the  eEmax  function.  In  summary,  it  can  be  said  that  the  two  alternative  functions 

discussed require fewer parameters than FLDSf, but they also offer a smaller selection of function 

curves. 

Conclusion 

The FLDSf function presented here offers a highly flexible way of translating an input variable 

X from the value range [0‐1] into an output variable y in the same value range [0‐1]. All or some of 

the parameters a, b, c, d, u and o can be estimated based on the data. 
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Appendix 

The eEmax model (function) is defined as follows [9]: 

𝐸 ൌ
𝐸௠௔௫𝐶௡

൫𝐶ఈ௡ఔ ൅ 𝐶௡ఔ൯
ଵ ఔൗ
 

C  denotes the drug concentration (input value x)’ 

𝐸   denotes the drug response (output value y) 

𝐸௠௔௫  denotes the maximum response (effect)   

𝐶ఈ   denotes concentration at which α% of  𝐸௠௔௫  can be achieved, which  𝛼 𝜖ሾ0,100ሿ 
n  denotes the Hill coefficient for curve steepness  and 

𝜈  denotes a shape parameter with a positive value  𝜈 ൐ 0 

References 

1. Amendinger B, Beekmann DrF, Bochniak DrM, et al. Modellrisiko und Validierung von Risikomodellen. 

Bank‐Verlag GmbH; 2013 (Accessed January 31, 2025). 

2. Lai KK‐Y, Cook L, Krantz EM, et al. Calibration curves for real‐time PCR. Clin Chem. 2005;51(7):1132–1136. 

3. Yiangou K, Mavaddat N, Dennis J, et al. Differences in polygenic score distributions in European ancestry 

populations: implications for breast cancer risk prediction. 2024;2024.02.12.24302043. 

4. ISO 11095. 1996; 

5. Hinton G, Deng L, Yu D, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The 

Shared Views of Four Research Groups. IEEE Signal Processing Magazine. 2012;29(6):82–97. 

6. Dubey SR, Singh SK, Chaudhuri BB. Activation functions in deep learning: A comprehensive survey and 

benchmark. Neurocomputing. 2022;503:92–108. 

7. Kunc V, Kléma J. Three Decades of Activations: A Comprehensive Survey of 400 Activation Functions for 

Neural Networks. 2024; 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 February 2025 doi:10.20944/preprints202502.2310.v1

https://doi.org/10.20944/preprints202502.2310.v1


  6  of  6 

 

8. Harrell  FE. Regression modeling  strategies with  applications  to  linear models,  logistic  regression,  and 

survival analysis. New York Berlin Heidelberg: Springer Verlag; 2001. 

9. Byun JH. Formulation and Validation of an Extended Sigmoid Emax Model in Pharmacodynamics. Pharm 

Res. 2024;41(9):1787–1795. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 February 2025 doi:10.20944/preprints202502.2310.v1

https://doi.org/10.20944/preprints202502.2310.v1

