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Article 
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14996012072 (R.N.) 

Abstract: This study investigates the potential of macrophytes as bio-stimulants in agricultural 
applications through a two-stage experimental approach. In the first stage, a screening experiment 
evaluated 12 macrophyte species using ethanolic and potassium chloride extracts at two doses (1 and 
5 kg fresh biomass/ha) applied to bioindicator species Cucumis sativus (C3) and Urochloa decumbens 
(C4). Controlled greenhouse conditions and randomized block designs ensured reliability. Dry 
biomass was measured 21 days after treatment (DAT), revealing varied macrophyte effects. Ethanolic 
extracts of Typha domingensis and Egeria densa demonstrated significant biomass increases, 
particularly for U. decumbens, while potassium chloride extracts often reduced biomass. E. densa was 
selected for further analysis due to its promising results and ease of selective harvesting. In the second 
stage, a dose-response experiment assessed the impact of E. densa ethanolic extracts on Phaseolus 
vulgaris at six doses (0.25 to 4 kg fresh biomass/ha). Optimal results were observed at 1–2 kg/ha, 
yielding 15% increases in plant height and dry biomass. Higher doses showed diminishing returns. 
These findings highlight the potential of E. densa as a sustainable bio-stimulant and a solution for 
macrophyte overabundance in Brazilian reservoirs, supporting agricultural and environmental 
objectives. 

Keywords: aquatic plants; Egeria densa; agriculture; sustainability 
 

1. Introduction 

Aquatic plants in the watersheds of Brazilian rivers have become an increasing environmental 
challenge, particularly invasive species [1]. In recent years, the proliferation of these macrophytes has 
been attributed to an excess of nutrients, such as nitrogen and phosphorus, which drive uncontrolled 
growth. This overgrowth obstructs water flow, hampers navigation, and negatively impacts 
hydroelectric plants [2,3]. Moreover, the decomposition of aquatic plants reduces dissolved oxygen 
levels, threatening the survival of aquatic organisms and diminishing local biodiversity [4]. 

The phenomenon of eutrophication exacerbates these impacts, as elevated nutrient levels 
promote aquatic vegetation growth, including microalgae capable of producing toxic substances such 
as microcystin. This toxin compromises water quality, posing risks to both ecosystems and human 
health. To preserve aquatic ecosystems and ensure the supply of potable water, efficient nutrient 
management and invasive plant control are essential [5–8]. 

While macrophytes are often viewed as a problem, they can represent an opportunity if their 
characteristics are harnessed. Mechanical removal of these plants, for instance, not only contributes 
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to restoring aquatic ecosystems but can also yield renewable resources. Research suggests that these 
plants can be used to produce biomass, biofuels, fertilizers, and other sustainable products, 
transforming an environmental challenge into a valuable resource [9]. 

Nevertheless, controlling aquatic plants faces challenges, particularly with the prohibition of 
pesticides in Brazilian rivers and reservoirs. The primary technique adopted is mechanical removal, 
which, while effective, has limitations such as high costs and difficulties in keeping pace with plant 
growth [10]. This imbalance calls for alternative solutions to optimize management and reduce 
environmental impacts. 

A promising sustainable alternative is the use of aquatic plants for bio-stimulant production. 
The bio-stimulant market has been growing, leveraging substances and microorganisms to enhance 
the performance of agricultural and forestry crops. Macrophytes, in particular, may contain 
promising bioactive compounds that can be utilized to develop bio-stimulants. Integrating these 
plants into the agricultural market not only mitigates environmental impacts but also contributes to 
proper species management [11–13]. 

Bio-stimulants play an essential role in sustainable agriculture by boosting productivity without 
relying on chemical inputs. These compounds influence various physiological functions of plants, 
such as germination, rooting, growth, and resistance to abiotic stresses. Commonly used components 
include humic acids, seaweed extracts, and microorganisms, which improve soil structure, nutrient 
availability, and plant health [14,15]. 

The extraction technique of bioactive compounds is crucial to ensuring the final product’s 
efficacy. Various extraction methods exist, including organic solvents, aqueous solutions, and 
supercritical fluid extraction. Solvent extraction, using substances like ethanol and acetone is effective 
for obtaining both lipophilic and hydrophilic compounds. Aqueous extraction, which uses water as 
a solvent, is simple and ideal for hydrosoluble compounds. Supercritical fluid extraction, employing 
carbon dioxide (CO₂), is highly selective and efficient, enabling the extraction of diverse compounds 
without leaving residues [16–18]. 

The extracted compounds can be applied in various ways, including foliar applications, soil 
applications, or irrigation. Foliar application ensures rapid absorption by plants, while soil 
application provides a more gradual effect, fostering root growth. Irrigation with bio-stimulants, on 
the other hand, allows for continuous and efficient compound distribution. Thus, this study aims to 
investigate macrophytes with potential for bio-stimulant production, evaluating their bioactive 
properties and optimal extraction techniques. Utilizing these plants in bio-stimulant development 
offers an innovative and ecological solution, contributing both to environmental preservation and 
sustainability in agriculture. 

2. Results and Discussion 

2.1. Screening Study 

There was no effect of experimental run among all experiments, therefore, all data were analyzed 
pooled. Furthermore, there was no interaction between extraction solution and dose, thus the results 
are presented separately for each extraction solution. The impact of macrophyte ethanolic extract 
doses on C. sativus and U. decumbens is summarized in Tables 1 and 2, respectively. 

In the case of C. sativus, a significant effect was observed with the Typha domingensis ethanolic 
extract, where a 12% increase in dry biomass was recorded at a dose of 5 kg of fresh biomass ha⁻¹. In 
contrast, no significant differences were detected between treated and untreated plants for all other 
macrophyte extracts and doses. 

Macrophyte ethanolic extracts presented more pronounced effects on U. decumbens. For E. densa, 
a dose of 1kg ha⁻¹ resulted in a 10% increase in dry biomass, while a dose of 5 kg ha⁻¹ led to a smaller 
increase of 4.5%, compared to the untreated control. In contrast, extracts from Ludwigia peploides 
exhibited a dose-dependent response, with a 10% inhibition in dry biomass observed at 1 kg ha⁻¹, but 
a 22% increase at 5 kg ha⁻¹. Similarly, Eichhornia crassipes extracts stimulated plant growth at both 
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doses, producing approximately a 10% increase in dry biomass. Lastly, the application of 
Alternanthera sessilis extract at 1 kg ha⁻¹ resulted in a 12% increase in biomass, whereas a higher dose 
of 5 kg ha⁻¹ caused a 5% reduction in biomass. 

Table 1. Effect of ethanolic macrophytes extracts in two doses (1 and 5 kg fresh biomass ha-1) in the C. sativus 
dry biomass production. 

Treatment 
Dosea 

F-test 1 kg 5 kg 
% of untreated 

Egeria densa 94.0 103.8 0.543ns 
Ludwigia peploides 108.5 85.8 2.884ns 

Polygonum hydropiperoides 94.3 92.2 0.528ns 
Polygonum lapathifolium 105.8 97.1 0.549ns 

Eichhornia crassipes 92.7 105.2 0.963ns 
Hydrilla verticillata 95.8 95.0 0.355ns 

Alternanthera sessilis 90.3 95.5 0.387ns 
Commelina diffusa 96.5 102.1 0.206ns 

Brachiaria subquadripara 96.2 97.4 0.111ns 
Paspalum repens 95.5 95.3 0.217ns 
Enydra anagallis 98.6 90.6 0.769ns 

Typha domingensis 93.4 112.1 2.816* 
a-kg of macrophyte fresh biomass per hectare; *- Significant difference with LSD test at 5% probability; ns- non-
significant with LSD test at 5% probability. 

Table 2. Effect of ethanolic macrophytes extracts in two doses (1 and 5 kg fresh biomass ha-1) in the U. decumbens 
dry biomass production. 

Treatment 
Dosea 

F-test 1 kg 5 kg 
  

Egeria densa 110.7  104.5 2.498* 
Ludwigia peploides 90.5 122.1 3.158* 

Polygonum hydropiperoides 107.8 110.4 1.457ns 
Polygonum lapathifolium 101.3 100.8 0.119ns 

Eichhornia crassipes 108.5 111.1 3.081* 
Hydrilla verticillata 109.4 106.4 1.996ns 

Alternanthera sessilis 111.7 95.8 3.153* 
Commelina diffusa 105.2 111.0 0.838ns 

Brachiaria subquadripara 106.7 106.3 1.539ns 
Paspalum repens 98.0 111.9 0.681ns 
Enydra anagallis 106.6 105.5 0.563ns 

Typha domingensis 98.6 97.7 0.036ns 
a-kg of macrophyte fresh biomass per hectare; *- Significant difference with LSD test at 5% probability; ns- non-
significant with LSD test at 5% probability. 

The effects of macrophyte potassium chloride (KCl) extract doses on C. sativus and U. decumbens 
are summarized in Tables 3 and 4, respectively. Similar to the ethanolic extracts, the KCl extracts had 
more pronounced effects on U. decumbens compared to C. sativus. For C. sativus, only L. peploides 
exhibited a significant effect, leading to a 16% increase in dry biomass at a dose of 5 kg ha⁻¹. In 
contrast, the KCl extracts significantly impacted U. decumbens, particularly with extracts from E. 
densa, L. peploides, Polygonum hydropiperoides, E. crassipes, and T. domingensis. Overall, these extracts 
tended to reduce biomass rather than stimulate growth. For instance, E. densa caused a 12% decrease 
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in biomass at 1 kg ha⁻¹. Similarly, L. peploides and P. hydropiperoides resulted in biomass reductions of 
8% and 10% at doses of 1 kg ha⁻¹ and 5 kg ha⁻¹, respectively. Among the extracts, only E. crassipes and 
T. domingensis showed a stimulatory effect, each increasing biomass by 8% at 1 kg ha⁻¹. However, this 
positive response was reversed at higher doses, with both species exhibiting approximately a 10% 
biomass reduction at 5 kg ha⁻¹. 

Table 3. Effect of potassium chloride macrophytes extracts in two doses (1 and 5 kg fresh biomass ha-1) in the 
C. sativus dry biomass production. 

Treatment 
Dosea 

F-test 1 kg 5 kg 
% of untreated 

Egeria densa 102.2 96.4 0.188ns 
Ludwigia peploides 96.6  116.0 2.209* 

Polygonum hydropiperoides 110.4 93.5 1.001ns 
Polygonum lapathifolium 108.3 103.4 0.220ns 

Eichhornia crassipes 102.5 97.5 0.136ns 
Hydrilla verticillata 98.4 99.1 0.045ns 

Alternanthera sessilis 92.6 101.1 0.553ns 
Commelina diffusa 100.8 98.3 0.061ns 

Brachiaria subquadripara 105.8 101.5 0.112ns 
Paspalum repens 95.3 93.2 0.338ns 
Enydra anagallis 108.4 111.6 0.494ns 

Typha domingensis 86.2 103.2 1.476ns 
a-kg of macrophyte fresh biomass per hectare; *- Significant difference with LSD test at 5% probability; ns- non-
significant with LSD test at 5% probability. 

Table 4. Effect of potassium chloride macrophytes extracts in two doses (1 and 5 kg fresh biomass ha-1) in the 
U. decumbens dry biomass production. 

Treatment 
Dosea 

F-test 1 kg 5 kg 
  

Egeria densa 88.8 98.1 1.925* 
Ludwigia peploides 92.4 89.7 2.414* 

Polygonum hydropiperoides 86.2 88.9 2.139* 
Polygonum lapathifolium 99.5 92.5 1.663ns 

Eichhornia crassipes 107.2 86.9 2.363* 
Hydrilla verticillata 96.4 93.9 0.469ns 

Alternanthera sessilis 90.9 110.2 1.844ns 
Commelina diffusa 105.8 95.3 1.114ns 

Brachiaria subquadripara 91.4 90.3 0.848ns 
Paspalum repens 96.3 105.1 0.674ns 
Enydra anagallis 94.5 103.9 0.246ns 

Typha domingensis 108.3 90.4 4.54* 
a-kg of macrophyte fresh biomass per hectare; *- Significant difference with LSD test at 5% probability; ns- non-
significant with LSD test at 5% probability. 

The aim of the study is to find a solution for the macrophytes accumulation within Brazilian 
reservoirs, enabling the use of these macrophytes as plant stimulants in agricultural crops. Thereafter, 
the macrophytes used in this investigation are troublesome macrophytes, i.e., with high density 
population spread worldwide [19,20]. Nevertheless, the majority species from this study are found 
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in the water surface (floating or emerging macrophytes), and few are submerged macrophytes: E. 
densa and Hydrilla verticillata [21]. 

The responses of the two bioindicator species, C. sativus and U. decumbens, varied depending on 
the macrophyte species. Overall, U. decumbens proved to be a more sensitive bioindicator for these 
macrophytes tested, exhibiting stronger responses compared to C. sativus. While there were no 
significant differences between the extract solutions, the responses of both bioindicators to the 
macrophytes also differed. Notably, potassium chloride extracts from several macrophytes tended to 
reduce biomass production, in contrast to ethanolic extracts, which showed an opposing effect. 

Among the macrophytes evaluated in this study, E. densa stands out as one of the most 
commonly found species in Brazilian reservoirs. Its unique characteristics make it particularly 
suitable for harvesting: as a fully submerged plant, it allows for selective harvesting of a single species 
rather than a mixture of macrophytes. In contrast, surface-dwelling macrophytes are typically found 
as part of a mixed community, complicating species-specific collection. Therefore, E. densa was 
selected for the following in-depth study to determine its potential as bio-stimulant. Nevertheless, L. 
peploides emerged as another macrophyte with promising results, indicating its potential use as a crop 
bio-stimulant. However, its low occurrence during collection and frequent mixing with other species 
led the study to prioritize the investigation of E. densa over L. peploides. 

Considering E. densa as one of the most promising candidates, a physicochemical parameters of 
Egeria densa extracts were performed to compare ethanolic and KCl extracts (Table 5). Ethanolic 
extract has a higher pH (7.05) compared to the KCl extract (6.24), indicating a more neutral nature, 
whereas the KCl extract is slightly more acidic. Furthermore, asparagine is the most abundant amino 
acid in both extracts but is significantly higher in the ethanolic extract (416.05 ppm) than in the KCl 
extract (8.04 ppm). Other amino acids such as leucine, valine, and phenylalanine are more evenly 
distributed between the extracts. Nevertheless, the ethanolic extract contains higher amino acid 
concentrations, which might be useful for bioactive compound studies and may corroborate with the 
results found in this screening study. Both extracts have relatively low total lipid content (0.0091 
g/100mL for ethanol, 0.0072 g/100mL for KCl), and total sugars are slightly lower in the KCl extract 
(0.039%) than in the ethanolic extract (0.042%). 

Table 5. Physicochemical parameters of Egeria densa Extracts in KCl and Ethanol. 

Physicochemical Parameters Ethanolic extract  Potassium chloride extract 
Electrical Conductivity (µS/cm) 483.95 152.5 

pH 7.05 6.24 
Amino Acids and Hormones  ppm 

Alanine 14.64 0.38749 
Arginine 0.8647 Traces 

Asparagine 416.0518 8.04312 
Aspartic Acid / Aspartate 28.8956 0.76951 

Cystine Traces Traces 
Glutamic Acid 13.0079 0.28459 

Glutamine 0.8755 0.36196 
Glycine 1.06235 Traces 

Histidine 3.5874 Traces 
Isoleucine 6.5893 5.14921 

L-Cysteine Hydrochloride Traces Traces 
Leucine 6.677 6.1101 
Lysine 0.9612 0.29927 

Methionine 0.060984 0.23751 
Phenylalanine 7.9042 5.94068 

Proline 4.7299 0.9596 
Serine 9.2875 0.19159 

Threonine 11.3148 0.24195 
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Tryptophan 2.7106 2.24222 
Tyrosine 1.303 1.84277 

Valine 8.5757 6.50149 
trans-Hydroxy L-Proline Traces Traces 

Indole-3-Acetic Acid (IAA) Traces 0.004247 
trans-Zeatin Traces Traces 

trans-Zeatin Riboside Traces Traces 
Gibberellin Traces Traces 

Total Lipids (g/100mL) 0.0091 0.0072 
Total Sugars (%) 0.042 0.039 

Macro and Micronutrients  mg L-1 
Nitrogen 330.8 386.8 

Phosphorus 41.33 106.65 
Potassium 750 27400 
Calcium 19.8 28.4 

Magnesium 25.6 52 
Sulfur 46.3 86.9 
Iron 51 77.3 

Copper 0.03 0.04 
Zinc 0.7 0.9 

Manganese 106 133 
Boron 0.6 1 

Lead (g/L) 2.1 2.4 

In addition to the physicochemical parameters of Egeria densa extracts in KCl and Ethanol, an 
analysis in QTOF was conducted to assess the potential of each extract in positive and negative 
ionization (Table 6). The KCl extraction resulted in more detected substances, higher signal 
intensities, and larger chromatographic areas, indicating it may be more efficient at extracting a 
broader range of compounds (Figure 1). In addition, the higher m/z and lower RT in KCl extracts 
suggest that it favors the extraction of more polar and potentially heavier compounds compared to 
ethanol. However, ethanol extraction may preferentially extract less polar compounds, which could 
account for the higher average RT, including hydrophobic amino acids or lipophilic substances. A 
more detailed study should be conducted in the future for metabolomic analysis to identify which 
compounds are most responsible for plant biomass improvement. 

Table 6. Positive + Negative ionization of E. densa extracts using ethanol and KCl with number of substances, 
average sound/noise (S/N), total chromatographic area (x106), average m/z (mass-to-charge ratio), and average 
retention time (RT). 

Evaluations Extraction Average STD1 

Number of substances 

Ethanol 

2358 24.417 
Average S/N 476.475 20.305 

Total chromatographic area (x106) 75.146 4.843 
Average m/z2 661.919 3.849 
Average RT3 39.038 0.351 

Number of substances 

KCL 

3588 87.929 
Average S/N 579.382 5.514 

Total chromatographic area (x106) 78.491 1.958 
Average m/z 802.694 1.758 
Average RT 23.640 0.220 

1- Standard deviation; 2- mass to charge ratio; 3- retention time. 
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Figure 1. Percentage of compounds analyzed in QTOF for ethanolic and KCl extracts. Percentage means 
compounds for each extract was subtracted from blank compounds for the graphical analysis. 

2.2. Dose-Response Curve with Egeria densa Ethanolic Extracts in Common-Bean 

The preliminary results using E. densa extracts demonstrated promising outcomes. Specifically, 
ethanolic extracts showed a notable increase in efficacy at a concentration of 1 kg ha⁻¹, despite a 
reduction in effectiveness at 5 kg ha⁻¹. These findings highlight the need for a more comprehensive 
investigation, including a dose-response analysis of E. densa ethanolic extract, to fully explore its 
potential as a plant stimulant and to establish the optimal application dose. 

Since no significant differences were observed between the two experimental runs, the data were 
combined for analysis. The dose-response effect on plant height did not fit the Mitscherlich model, 
thus the data is presented in bar plot (Figure 2). Consistent with findings from the preliminary study, 
treatments with E. densa fresh biomass at 1 and 2 kg ha⁻¹ resulted in the greatest increases in plant 
height, approximately 15% higher than the untreated control. The 0.5 kg ha⁻¹ treatment yielded a 
moderate increase of 10%, while no significant differences were observed with the 0.25 and 4 kg ha⁻¹ 
treatments compared to the control. 
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Figure 2. Dose-response curve of E. densa ethanolic extracts in common-bean height. 

A similar pattern was evident for dry biomass production (Figure 3). The dose-response curve 
indicated increased biomass production at intermediate doses. However, while the highest dose (4 
kg ha⁻¹) still resulted in greater biomass production than the control, the curve showed a decline, 
suggesting the presence of an upper dose threshold beyond which biomass production diminishes. 

 

Figure 3. Dose-response curve of E. densa ethanolic extracts in common-bean dry biomass production. 

Research on utilizing macrophytes is relatively limited, with few studies exploring their 
potential as green manure [22] or biofertilizers [23]. However, no studies have specifically examined 
the macrophytes tested in this study in the context of extraction using ethanol or KCl, highlighting a 
gap and an opportunity for further research. In contrast, algae extracts have long been established in 
the agricultural market, consistently demonstrating significant improvements in crop yield and even 
crop protection [15]. 
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Leveraging macrophytes like Egeria densa presents an excellent opportunity for growers, not 
only because it may enhance crop production but also as a potential solution for managing invasive 
populations of this species in reservoirs. Removing E. densa from water bodies could benefit the 
ecosystem by reducing nutrient levels and mitigating factors contributing to eutrophication. 
Additionally, harvesting portions of the plant would allow it to regrow over time, maintaining its 
utility, highlighting the significant role of E. densa in removing nitrogen from water, which is critical 
for ecosystem health [24]. 

Among aquatic plants with potential for bio-stimulants are seaweeds such as Ascophyllum 
nodosum and Ecklonia maxima. The former, rich in plant hormones, minerals, and amino acids, is 
highly valued in the market [25,26]. Meanwhile, E. maxima, known for its resilience to adverse 
environmental conditions, contains compounds like polyphenols and fucoidans, which have 
antioxidant properties and other benefits for plant growth [27–29]. Similar to algae, it is required a 
study for the understanding of E. densa and other aquatics plants benefit properties that provide crop 
stimulation. 

Furthermore, E. densa is relatively easier to harvest compared to other macrophytes, as it 
typically remains submerged in dense clusters and is often found as a single-species stand, 
streamlining collection efforts. Future research should focus on evaluating the effects of E. densa 
extracts on various crops, with particular emphasis on comparing their impact on C3 and C4 species. 
Additionally, further studies are needed to elucidate the mechanisms through which E. densa 
positively influences crops such as common bean and U. decumbens. Their interpretation, as well as 
the experimental conclusions that can be drawn. 

3. Materials and Methods 

The experiments were conducted in two distinct stages. The first experiment aimed to perform 
an initial screening to select macrophytes with potential bio-stimulant properties and determine the 
most efficient extraction phase for obtaining plant extracts. The second experiment involved creating 
a dose-response curve using the most promising macrophyte selected from the first experiment. All 
experiments were repeated twice (experimental runs) and conducted in a controlled greenhouse 
environment (25C ±2). 

3.1. Initial Screening 

The experiments were designed using a randomized block design, using 12 macrophytes species 
in two extract solutions and two doses, with five replicates. The experimental units consisted of 1.7-
liter pots filled with Carolina Soil® substrate, composed of sphagnum peat moss, vermiculite, and 
carbonized rice husks, with a pH of 5.7 (±0.5). The initial screening utilized two crop species, Cucumis 
sativus and Urochloa decumbens, as bioindicators to assess the effects of macrophytes. These species 
were chosen for their sensitivity to exogenous applications and because they represent different 
photosynthetic pathways, C3 and C4 plants, respectively. 

Macrophytes were collected from two distinct reservoirs (Nova Avanhandava and Bariri 
Reservoirs, Tietê River in São Paulo, Brazil) and cleaned with running water, followed by root 
removal. All 12 species used in this experiment comprehend troublesome aquatic plants that present 
high population density and are problematic for water quality or energy production (Table 7). 

Table 7. Identification of species represented by treatment, species, and fresh matter doses used in the 
treatments. 

Identification Treatment Dose (kg of fresh biomass/ha) 
T1 Untreated control ----- 
T2 Egeria densa 1 and 5 
T3 Ludwigia peploides 1 and 5 
T4 Polygonum hydropiperoides 1 and 5 
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Identification Treatment Dose (kg of fresh biomass/ha) 
T5 Polygonum lapathifolium 1 and 5 
T6 Eichhornia crassipes 1 and 5 
T7 Hydrilla verticillata 1 and 5 
T8 Alternanthera sessilis 1 and 5 
T9 Commelina diffusa 1 and 5 

T10 Brachiaria subquadripara 1 and 5 
T11 Paspalum repens 1 and 5 
T12 Enydra anagallis 1 and 5 
T13 Typha domingensis 1 and 5 

The two extraction solutions were 92.8% ethanol and a 16% KCl as extractants, that is, 
macrophytes extracts were produced with ethanolic and potassium chloride extracts. For this 
screening study, two doses were analyzed to determine preliminary impacts, using 1 and 5 kg of 
fresh biomass per hectare. For extract preparation, the collected samples were homogenized followed 
by separation of 100 g of fresh material. The plants were ground with 200 ml of the extractant solution 
and then filtered to remove solid particles. The final extract volume was adjusted to 300 ml by adding 
more extractant solution. This procedure was performed for both extractant solutions (Figure 4). 

 

Figure 4. Macrophytes extract processing and preparation: extract after processing with the extractant solution 
(A); extract after filtration (B); application mixture ready to treatment (C). 

Applications on C. sativus were carried out at the V3 phenological stage, while for U. decumbens 
when the plants reached three tillers. The applications were conducted using a stationary automated 
sprayer installed in a controlled environment. The system was equipped with speed, pressure, and 
flow control features. The sprayer was fitted with four XR 11002 nozzles. The speed was maintained 
at 1 m s⁻¹ with a pressure of 2 bar, resulting in an application volume of 200 L ha⁻¹. 

To assess the effects of macrophytes on the bioindicators, dry biomass was evaluated 21 days 
after treatment (DAT). This process followed harvesting the plants, drying them in a temperature-
controlled oven at 60 °C for 15 days, and weighing them using an analytical balance with a precision 
of 0.1 milligrams. Based on the results from the screening study, an in-depth analysis was conducted 
using the most promising macrophyte to determine the best dose and its effectiveness on a third crop. 
For that, a dose-response curve was used in the second experiment. 

A B C 
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Extracts of E. densa in ethanol and KCl were analyzed using LC-MS coupled with QTOF 
(Shimadzu LCMS-9030, Japan) for compound identification and polarization assessment. This 
analysis aimed to compare the differences between ethanolic and KCl extractions, focusing on the 
quantity and types of compounds extracted. 

3.2. Dose-Response Curve with Egeria densa 

After the screening analysis, the treatment with E. densa was chosen to follow with in-depth 
experiments. Thus, this experiment was conducted using a dose-response curve with E. densa extract 
to determine the ideal dose and its effect on common-bean (Phaseolus vulgaris L.) (Table 8). 
Experimental units and treatment application were performed as described at 2.1. Nevertheless, 
treatments were carried out at the V3 phenological stage. 

Table 8. Identification of treatments, species, doses (kg of fresh matter), and extraction methods used in the 
applications. 

Identification Treatment 
Dose  

(kg of fresh matter/ha) 
Extraction 

T1 Untreated control ----- ----- 
T2 Egeria densa 0.25 92.8% Ethanol 
T3 Egeria densa 0.5 92.8% Ethanol 
T4 Egeria densa 1 92.8% Ethanol 
T5 Egeria densa 2 92.8% Ethanol 
T6 Egeria densa 4 92.8% Ethanol 

Height evaluations were conducted at 21 DAT. Measurements were taken from the base of the 
stem at the substrate level to the tip of the longest mature leaf. At the end of the experiment, at 21 
DAT, the plants were harvested, dried in a temperature-controlled oven (60 °C) for 15 days, and 
weighed on an analytical balance with a precision of 0.1 milligrams. 

3.3. Data Analysis 

For the screening study, dry biomass data for macrophytes in two doses and two extracts 
solution were subjected to ANOVA to test the interaction between macrophytes doses and extract 
solutions. Treatment means were separated using LSD test at 0.05 level of confidence with package. 
The results for each bioindicator and each macrophyte were analyzed separately. If the difference 
between experimental runs were not significant, data were analyzed combined. All analysis were 
performed using R statistical language [30] with packages agricolae and ggplot. 

Dose-response analysis was performed with package drc [31] correlating E. densa dose with 
common-bean height and dry biomass production. When dose-response curve was not fit, data was 
subjected to ANOVA and means separated using LSD test at 0.05 level of confidence. Data for 
common-bean height was transformed in percentage of the untreated control and dry biomass was 
transformed in biomass gain in comparison to the untreated, with untreated as 0% gain over 21 DAT. 
Data was fit to non-linear Mitscherlich regression models, as Y=a [1−10(−c(X+b))] [32]. The parameters 
a, b, and c correspond to the equation’s coefficients, where parameter a is the maximum asymptote 
of the curve and represents the maximum quantities of dry biomass gain (%). The lateral shift of the 
curve corresponds to parameter b, and its concavity to parameter c. The value of Y indicates the total 
dry biomass gain (%), and X represents the E. densa doses (kg of fresh biomass ha-1). 

4. Conclusions 

The study highlights E. densa ethanolic extract as a promising candidate for agricultural bio-
stimulants, demonstrating growth-promoting effects at optimal doses, especially on P. vulgaris and 
U. decumbens. This approach also addresses the ecological challenges posed by invasive macrophyte 
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populations. The study’s focus on species such as Egeria densa, which is problematic in many regions, 
aligns with global efforts to manage invasive species while promoting sustainable agricultural 
practices. Ethanolic extracts of E. densa resulted in greater amino acids extraction, which may lead to 
improved plant biomass production. Ethanolic E. densa extract dose-response showed the extract 
great potential to be used as crop stimulant, specially in doses with 2 kg of fresh biomass ha-1. 

Future studies are recommended on uncovering the biochemical mechanisms underlying the 
stimulatory effects of E. densa extracts on plants and assessing the long-term environmental impacts 
and scalability of harvesting E. densa for agricultural applications. Additionally, L. peploides has 
shown potential as a promising candidate for further investigation among the other macrophytes 
tested. 

5. Patents 
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