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Abstract: Currently, most studies on slope stability either neglect or consider only one of the two 

critical factors—rainfall conditions and crack state—that influence the stability of newly failed slopes. 

To address this limitation, the eleven parameters, such as the slope height, internal friction angle, 

cohesion, rainfall conditions, and crack state were selected as evaluation indexes. GeoStudio software 

was also used to simulate the slope safety factor under various parameters, and 363 sets of data were 

obtained. The XGBoost-PSO-SVR (eXtreme Gradient Boosting-Particle Swarm Optimization-Support 

Vector Regression) model was employed to train the simulation results and construct a predictive 

model. Compared with the single-machine methods of XGBoost and PSO-SVR, the MSE of XGBoost-

PSO-SVR is reduced by 71.9% and 57.8%, respectively. Furthermore, when compared to four single-

machine models—Decision Tree (DT), Naive Bayes (NB), Random Forest (RF), and K-Nearest 

Neighbors (KNN)—the XGBoost-PSO-SVR model demonstrated superior training performance. The 

predicted safety factor for a newly failed slope in Yongchun County, Fujian Province, during 

November 4-7, 2016, was 0.9658, which closely aligns with the actual conditions. A new way for the 

stability prediction of newly failed slope could be provided by this study under various factors, such 

as rainfall conditions and crack state. 

Keywords: eXtreme Gradient Boosting; Particle Swarm Optimization Support Vector Regression; 

newly failed slope; red clay; safety factor 

 

1. Introduction 

Among various geological disasters, landslides are characterized by their wide distribution, high 

frequency of occurrence, and significant damage. Extensive research has been conducted on slope 

stability analysis, yielding substantial results. However, most studies focus on slopes before sliding 

occurs. Even though a few scholars have explored the stability of already failed slopes, their research 

primarily focus on ancient landslides. Such as Yang et al., Hu et al., Zhu et al. and Frink et al. studied 

the stability of ancient landslides by field survey and monitoring, satellite remote sensing, optical 

remote sensing dynamic monitoring, drone aerial survey and numerical simulation [1-8]. While these 

studies have contributed to understanding ancient landslide revival, the shear strength of the sliding 

zone in newly failed slopes has not been restored, and surface cracks remain unblocked. 

Consequently, findings from ancient landslide studies cannot be directly applied to newly failed 

slopes. The stability of the newly failed slope at Xintang Gao Kanzi was analyzed by using the transfer 

coefficient method [9]. However, only the weight of the slope and the weight under a once-in-50-

years heavy rain scenario were considered. The parameters considered were also limited to the 

natural unit weight, internal friction angle, and cohesion of both the slope and the sliding zone. The 

hydraulic coupling numerical simulation was used to simulate its stability by Wang et al [10]. But 

only three kinds of rainfall conditions, such as light rain, moderate rain and heavy rainstorm were 

considered, without considering the influence of crack state. It is suggested that abundant loose 
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material sources and dominant joint structures could provide fundamental conditions for the 

transition from shallow to deep sliding of the slope [11]. However, only natural conditions and heavy 

rainfall scenarios were considered, which was insufficient. The reverse analysis method and cloud 

model method were used to evaluate the stability of a newly failed slope [12]. But the influence degree 

of crack length, width, depth and position on the stability of the slope was not considered.  

Although the aforementioned analytical methods have their merits, scholars have rarely 

considered both rainfall conditions and crack states simultaneously, despite their interaction and 

mutual constraints [13-18]. At present, machine learning has been widely used to predict in various 

research fields. Models such as Decision Tree (DT) [19], K-Nearest Neighbors (KNN) [20], Naive 

Bayes (NB) [21], Random Forest (RF) [22], eXtreme Gradient Boosting (XGBoost) [23], and Support 

Vector Regression (SVR) [24] each have their advantages and disadvantages. For example, the 

XGBoost model has the advantages of non-linear data processing, low computational load, faster 

operation speed, and better prevention of overfitting [25-26]. However, it has the disadvantages of 

easy overfitting and sensitivity to outliers. The SVR model can effectively solve practical issues such 

as small sample sizes, nonlinearity, high dimensionality, and local minima, demonstrating excellent 

generalization performance [27-28]. However, it suffers from slow training and difficult parameter 

selection. It was believed that combining multiple single machine learning models can yield a 

predictive model with superior performance [29-31]. 

The study selected 11 parameters commonly used for red clay slope evaluation, including slope 

height, slope angle, cohesion, internal friction angle, rainfall conditions, and crack status. The safety 

factor of the slope under different parameter values was simulated and analyzed using GeoStudio 

software. Subsequently, an adaptive weighted XGBoost-PSO-SVR hybrid model was trained with the 

simulation results to establish a prediction model. The model's effectiveness of this model was 

verified by comparing its prediction results with those of single machine learning models like 

XGBoost, PSO-SVR, and DT. Finally, the model's accuracy was further validated through a case study 

of a recently failed slope in Yongchun County, Fujian Province. This study provided a new approach 

for the stability prediction of recently failed slopes under comprehensive consideration of various 

factors, such as rainfall conditions and crack status. 

2. Materials and Methods 

2.1Acquisition of Research Data 

To obtain the safety factor of recently failed red clay slopes under rainfall conditions, a finite 

element model was established using GeoStudio software for numerical simulation. The slope soil 

assumed to be a single layer of red clay. Since recently failed slopes have numerous and scattered 

cracks, it would be a huge task to represent all the cracks in the model. Therefore, the cracks were 

simplified into three main types: the main crack in the slip zone, the crack at the top of the slope, and 

the crack on the slope surface, respectively. The length and width of the main crack in the slip zone 

could be equivalently processed using Equation 1 and 2. The length of the cracks at the top and 

surface of slope was calculated as half of the main crack length, and their width could be equivalently 

processed using Equation 3. 
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Where Lm is the equivalent length of the main crack; li is the length of each crack in the slip zone; 

xi is the horizontal distance of each crack from the center of the slip zone; Dm is the equivalent width 

of the main crack; di is the width of each crack. Dn is the equivalent width of the cracks at the top of 

the slope or on the surface of slope; Si is the area of each crack at the top of the slope; S is the total 

area of the top of the slope; L is the length of the top of the slope. 

Since the study focused on recently failed slopes, a slip zone was assumed to exist. Therefore, 

the most dangerous slip surface of the single-layer homogeneous soil in the model was set as the slip 

zone. However, whether the final slip surface passed through this slip zone was determined by the 

numerical simulation of GeoStudio software, without forcing the slip surface to pass through the slip 

zone in this simulation. Taking a model with slope height of 10 meters and slope angle of 45° as an 

example, the final model was shown in Figure 1. In the figure, N1 represented the red clay layer base; 

N2 was the recently failed red clay layer; H1was the slip zone; L1 was the main crack in the slip zone; 

L2 was the crack at the top of the slope; L3 was the crack on the surface of slope; W1 was the 

groundwater level. The constitutive model of this model was selected as the Mohr-Coulomb model. 

Since the rainfall intensity in this simulation was relatively high, for the good infiltration channel 

cracks and slip zone soil, the rainfall intensity was set as a flow boundary. But for the red clay layer 

without cracks, the rainfall boundary condition was set as a zero-pressure water head boundary. The 

seepage in this model was transient seepage, and the influence of groundwater was not considered. 

Therefore, the groundwater level was set as close to the bottom of the slope as possible, as shown in 

the position of W1 in Figure 1. 

 

Figure 1. Schematic diagram of numerical model. 

The parameters selected for simulation included slope height (H), slope angle (β), cohesion (c), 

internal friction angle (φ), unit weight (γ), rainfall intensity (Ir), rainfall duration (Tr), main crack 

width (Dm), main crack depth (Lm), crack area ratio at the top of the slope (St), and crack area ratio on 

the surface of slope (Sf). According to the Engineering Geology Manual, the minimum unit weight of 

red clay is 16.5 kN/m³, and the maximum is 18.5 kN/m³. The benchmark values for the three groups 

were selected as 17.0 kN/m³, 17.5 kN/m³, and 18.0 kN/m³ using the equal division method. The 

grouping benchmark values for internal friction angle and unit weight were selected in the same way. 

The meteorological department defines rainfall less than 10 mm in 24 hours as light rain, between 10 

mm and 25 mm as moderate rain, and between 25 mm and 50 mm as heavy rain. Therefore, 10 mm, 

25 mm, and 50 mm were selected as the benchmark values for each group. For parameters such as 

slope height, slope angle, and rainfall duration, the benchmark values were selected based on the 

common classification standards used by scholars. The final benchmark values for each group of 

parameters were shown in Table 1. The safety factor of the slope was then calculated for different 

combinations of conditions in each group, with each parameter varying by ±5%, ±10%, ±15%, ±20%, 

and ±25% of its group benchmark value. For example, the combinations of conditions for Group II 

were shown in Table 2. 

Table 1. Numerical simulation grouping of each parameter. 
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Group H /m 
β 

/(︒) 

c  

/kPa 

φ 

/(︒) 

γ 

/(kN·m-3) 

Tr  

/d 

Ir  

/(mm·d-1) 

Dm 

/m 

Lm  

/m 

St  

/% 

Sf  

/% 

Ⅰ 5 22.5 79.5 17.25 17.0 1 10 0.05 1 5 5 

Ⅱ 10 45 65 16.50 17.5 2 25 0.10 2 10 10 

Ⅲ 15 67.5 50.5 15.75 18.0 3 50 0.15 3 15 15 

Table 2. Combination working conditions of various parameters in group Ⅱ. 

Combination 
H  

/m 

β 

/(︒) 

c 

/kPa 

φ 

/(︒) 

γ 

/(kN·m-3) 

Tr  

/d 

Ir  

/(mm·d-

1) 

Dm  

/m 

Lm  

/m 

St  

/% 

Sf  

/% 

1 7.5 45 65 16.50 17.5 2 25 0.10 2 10 10 

2 8.0 45 65 16.50 17.5 2 25 0.10 2 10 10 

3 8.5 45 65 16.50 17.5 2 25 0.10 2 10 10 

4 9.0 45 65 16.50 17.5 2 25 0.10 2 10 10 

5 9.5 45 65 16.50 17.5 2 25 0.10 2 10 10 

6 10.0 45 65 16.50 17.5 2 25 0.10 2 10 10 

7 10.5 45 65 16.50 17.5 2 25 0.10 2 10 10 

8 11.0 45 65 16.50 17.5 2 25 0.10 2 10 10 

9 11.5 45 65 16.50 17.5 2 25 0.10 2 10 10 

10 12.0 45 65 16.50 17.5 2 25 0.10 2 10 10 

11 12.5 45 65 16.50 17.5 2 25 0.10 2 10 10 

12 10.0 56.25 65 16.50 17.5 2 25 0.10 2 10 10 

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ 

120 10.0 45 65 16.50 17.5 2 25 0.10 2 10 12 

121 10.0 45 65 16.50 17.5 2 25 0.10 2 10 12.5 

The density, cohesion, and internal friction angle of the cracks in this numerical simulation were 

all set to zero. The density of the slip zone soil was taken to be consistent with the density of the red 

clay being simulated. The cohesion and internal friction angle of the slip zone soil were referenced 

from the research results of Tang [32] and Ren [33], and were set at 19.5 kPa and 10.73°, respectively. 

The slope model was set as unsaturated, and the sample material was selected from the built-in clay 

material of GeoStudio software. The saturated and residual water content of the soil were both set at 

45% and 10%, respectively. The permeability coefficients of red clay, slip zone soil, and cracks were 

taken as 5×10⁻¹⁰ m/s, 5×10⁻⁶ m/s, and 1 m/s, respectively. The relationship curves of matric suction 

with volumetric water content and water X-conductivity of the slip zone soil were shown in Figures 

2 and 3, respectively. 
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Figure 2. Relationship curve between matric suction and volumetric water content of sliding soil. 

 

Figure 3. Relationship curve between matric suction and water X-conductivity of sliding soil. 

According to the above simulation scheme and parameter values, numerical simulations were 

conducted using GeoStudio software. Since the safety factor of the slope dynamically changes during 

rainfall, the safety factor obtained in this simulation was the one at the last moment of the rainfall 

duration. A total of 363 sets of simulation results were obtained, and a part of the results from Group 

II were shown in Table 3. 

Table 3. Numerical simulation results of each combination working condition in Group II. 

Combination Safety factor 
Combinatio

n 

Safety 

factor 
Combination Safety factor 

1 3.120  12 2.783  23 2.461  

2 2.993  13 2.726  24 2.495  

3 2.843  14 2.688  25 2.528  

4 2.847  15 2.654  26 2.562  

5 2.803  16 2.641  27 2.595  

6 2.629  17 2.629  28 2.629  

7 2.459  18 2.612  29 2.662  

8 2.341  19 2.602  30 2.695  
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9 2.030  20 2.594  31 2.728  

10 1.867  21 2.586  32 2.761  

11 1.724  22 2.579  33 2.793  

2.2. XGBoost  

XGBoost is an algorithm based on decision trees, with decision trees being its fundamental 

components. During the decision tree process, subsequent trees are trained based on the residuals of 

the previous tree. Through continuous iterative optimization, the residuals are minimized, ultimately 

enhancing the overall model's prediction accuracy. The objective function of the XGBoost model 

consists of a loss function and a regularization term, calculated according to Equation 4 [34]. 

( )
1 1

,
n k

i i k

i k

O l y y f


= =

 
= +  

 
                                 （4） 

where O is the objective function; yi is the measured value of the i target; 
iy



is the predicted value of 

the i target; l(yi, 
iy

 )  is the difference between yi and 
iy



; n is the number of samples; Ω(fk) is the 

complexity of the tree model for the k sample feature parameter fk; k is the number of sample feature 

parameters. 

The objective function was approximated by performing a second-order Taylor expansion on it, 

thus transforming Equation 4 into Equation 5. 

( ) ( )(t) 1 2

1

, ( ) 0.5 ( )
n

t

i i i t i i t i t

i

O l y y g f x h f x f C−

=

  + + + +
        （5） 

where gi and hi are the first and second derivatives of ( )1, t

i il y y − , respectively. 

Since the goal of the model was to minimize the objective function, the constant term was 

temporarily disregarded. After removing the constant term ( )1, t

i il y y − and C from Equation 5 and 

summing the objective function in the form of leaf nodes, Equation 6 was obtained [35]. 

(t) 2

1

0.5( )
T

j i i j

j i I i I

O w g h w T 
=  

 
= + + + 

 
                         （6） 

where I is the set of samples on each leaf; wj is the output score of each tree leaf node; T is the number 

of leaf nodes of the split tree; λ and γ are weight factors, controlling the weights of the corresponding 

parts. 

2.3. SVR 

SVR is a small-sample creative machine learning method based on statistical learning theory, 

aiming to minimize the model's structural risk. When dealing with nonlinear problems, this learning 

method maps the original data x to a high-dimensional feature space to obtain φ(ｘ ), thereby 

transforming it into a linear problem for solution. It has strong generalization performance and is 

effective for regression problems. Suppose there exists a training set {(xi,yi)|i=1,2,3, ∙∙∙,n}, where xi is 

the input vector, yi is the output target, and n is the number of samples. The input vector and output 

target can be described by Equation 7 [36]. 

( ) ( )Tf x w x b= +                                （7） 

where f(x)is the predicted value; wT is the weight vector; φ(x) is the mapping of the input variable x 

in the high-dimensional feature space; b is the threshold. 

After a series of transformations and the introduction of the Lagrange function and kernel 

function, the objective function and kernel function of SVR were shown in Equations 8 and 9 [37]. 

( )*

1

( ) ( , )
n

i i i j

i

f x K x x b 
=

= − +                           （8） 
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( )
2

2 2

22
( , ) exp exp

2

i j

i j i j

x x
K x x g x x



 −
= − = − −  

 
             （9） 

where αi and αi* are Lagrange multipliers; K(xi,xj) is the kernel function; ∥xi−xj∥2 is the squared 

Euclidean distance between two feature vectors; σ is the width of the kernel function; g is the 

parameter of the kernel function. 

C is the penalty coefficient of SVR, mainly used to control the error range of the model to avoid 

underfitting or overfitting; g is the kernel parameter, mainly used to control the distribution of data 

in the new feature space, determining the number of support vectors, and thereby affecting the speed 

of training and prediction. Therefore, determining the optimal parameters is a crucial part of the SVR 

algorithm [38]. 

2.4. PSO Algorithm 

The PSO algorithm, proposed by Kennedy [39] and Eberhart [40], is a search algorithm inspired 

by the foraging behavior of birds. It is characterized by its high efficiency and fast search speed. The 

algorithm mainly iteratively calculates the initial position and velocity of a group of random particles 

to find the optimal solution [41]. Before the algorithm runs, a group of particles with vector dimension 

n is initialized. The position of a particle can be denoted as a point in an n-dimensional search space, 

with its coordinates represented as xi=(xi,1,xi,2,∙∙∙,xi,D), which is also considered a solution in the n-

dimensional optimization space. Its flight velocity is denoted as vi=(vi,1,vi,2,∙∙∙,vi,D); the historical 

optimal coordinates of the i particle are Pi=(Pi,1,Pi,2,∙∙∙,Pi,D); and the optimal coordinates experienced 

by each particle are Pg=(Pg,1,Pg,2,∙∙∙,Pg,D). During the flight process, the particle swarm can iteratively 

calculate, as shown in Equations 10 and 11 [42]. 
1

1 1 2 2( ) (g )k k k k

id id best id best idv v c r p x c r x+ = + − + −                    （10） 

1 1,    1, 2, , ; 1,2,k k k

id id idx x v i m d D+ += + = =                     （11） 

where m is the size of the particle swarm; D is the dimension of the particle swarm; vkid is the velocity; 

xkid is the position; k is the iteration number; c1 and c2 are acceleration factors, controlling the state of 

particles maintaining pbest and gbest; r1 and r2 are random numbers between [0,1]. ω is the inertia 

weight, used to control the influence of the original speed on the new speed. When ω is large, the 

algorithm has strong global search capability, and vice versa, it has strong local search capability, 

which can be expressed by Equation 12. 

( )max min

max

max

k

k

 
 

−
= −                           （12） 

where k is the current iteration step; kmax is the maximum iteration step; ωmax and ωmin are the 

maximum and minimum values of ω, respectively. 

2.5. Adaptive Weighting Combination Model 

The adaptive weighting combination model is an improvement based on the residual weighting 

method. Its main approach is to assign weights to the current sample model based on the average 

weight of the previous m samples [19]. The optimal m needs to be determined through trial 

calculations, which can be done using Equations 13 to 15. 

1

( ) , 2
n

j

i j i

j

y i y i

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 
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 
                              （13） 
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where iy


 is the predicted value of the i sample of the combination model; 
j

iy


 is the predicted 

value of the i sample of the j model; ωj(i) is the residual weighting combination model weight of the 

j model for the i sample; ( )j i  is the sum of squared prediction errors of the j model for the k sample; 

( )j i  is the adaptive weighting combination model weight. 

3. Results and Discussion 

3.1. Comparison of Prediction Results of PSO-SVR, XGBoost, and XGBoost-PSO-SVR 

The 363 simulation results were input into the PSO-SVR and XGBoost models for training. Both 

models had 290 training samples and 73 testing samples. The kernel functions of SVR mainly include 

linear kernel, polynomial kernel, Gaussian kernel, and Sigmoid kernel. The Gaussian kernel was 

chosen for SVR due to its ability to handle complex non-linear problems. The PSO algorithm was 

used to optimize the penalty coefficient C and parameter g with 5-fold cross-validation. According to 

the experience of scholars, the particle swarm size N in the PSO algorithm was set to 50, the inertia 

weight ω to 1.2, and the learning factors c1 and c2 to 2, with the maximum iteration number Gkset to 

60. The parameter settings for the XGBoost model were shown in Table 4. Based on the above 

parameter settings, the prediction results for PSO-SVR and XGBoost were obtained. The adaptive 

weighting combination model was then used to combine these two results, yielding the prediction 

results for XGBoost-PSO-SVR. The results were shown in Figures 4 to 6. 

Table 4. Parameter values of XGBoost model. 

Parameter Value Parameter Value 

eta 0.2 subsample 0.8 

min_child_weight 1 colsample_bytree 0.8 

max_depth 5 colsample_bylevel 1 

gamma 0 alpha 1 

max_delta_step 0 scale_pos_weight 1 

 

  

Figure 4. Comparison between predicted values by XGBoost model and actual values. 
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Figure 5. Comparison between predicted values by PSO-SVR model and actual values. 

  

Figure 6. Comparison between predicted values by XGBoost-PSO-SVR model and actual values. 

From Figure 4, it could be intuitively seen that when trained using the XGBoost method, two 

samples had significant deviations between predicted and actual values, while the predicted values 

of other samples were quite close to the actual values. The mean squared error (MSE) of the test set 

for this method was 0.0056979, with a corresponding R2 of 0.98378, indicating that the model trained 

using the XGBoost method could explain 98.4% of the variance in the dependent variable. This 

demonstrated that the training effect of this model was good. From Figure 5, it could be seen that 

when trained using the PSO-SVR method, three samples had significant deviations between 

predicted and actual values. The corresponding MSE and R2 were 0.0037367 and 0.98515, 

respectively, indicating that this method reduced the MSE by 34.4% compared to the XGBoost 

method, resulting in better training performance. From Figure 6, it can be seen that when using the 

XGBoost-PSO-SVR combined algorithm, only one sample had a significant deviation between 

predicted and actual values, and the fit of the predicted values to the actual values was higher than 

the above two methods. The corresponding MSE and R2 were 0.0016001 and 0.9919, respectively. It 

representing a 71.9% reduction in MSE and a 0.83% increase in the accuracy of the dependent variable 

explanation compared to the XGBoost method; and a 57.8% reduction in MSE and a 0.69% increase 

in the accuracy of the dependent variable explanation compared to the PSO-SVR method. Therefore, 

the XGBoost-PSO-SVR combined algorithm could further reduce the model's MSE and improve 

accuracy, resulting in the best fit. In MATLAB software, the tic and toc functions were used to 

calculate the start and end times of the algorithm, respectively, to determine the algorithm's execution 

time. The calculated execution times for PSO-SVR, XGBoost, and XGBoost-PSO-SVR were 8.14 s, 6.21 

s, and 13.32 s, respectively. It can be seen that XGBoost has the fastest computation time, while 

XGBoost-PSO-SVR has the slowest. Since the XGBoost-PSO-SVR algorithm includes the running time 

of the XGBoost algorithm, the optimization time of the PSO algorithm, and the prediction time of 

SVR, its running time was longer than that of the individual XGBoost or PSO-SVR algorithms. 

However, since the data volume analyzed in this case was relatively small and the running times 

were all relatively short, they were within an acceptable range. If the data volume to be analyzed is 

larger, the appropriate algorithm should be selected by considering factors such as accuracy and 

running time. 

3.2. Comparison of Prediction Results of XGBoost-PSO-SVR with Other Machine Learning Models 

To further verify the prediction accuracy of the XGBoost-PSO-SVR combination model, four 

single machine learning models, namely DT, KNN, NB, and RF, were used to predict the safety factor. 

The comparison of the predicted safety factor values with the actual values obtained from these four 

machine learning models was shown in Figure 7. The MSE and R2 of the safety factor prediction 

results of the XGBoost-PSO-SVR combination model and the four single machine learning models 

were shown in Table 5. 
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(a) DT; (b) KNN; (c) NB; (d) RF 

Figure 7. Comparison between predicted values by four single-machine learning models and true values. 

Table 5. Comparisons of safety factors prediction indicators by various models. 

Machine learning model MSE R2 

DT 0.0096 0.9771 

KNN 0.0198 0.9603 

NB 0.0062 0.9741 

RF 0.0113 0.9685 

XGBoost-PSO-SVR 0.0016 0.9919 

From Figure 7 and Table 5, it could be seen that the XGBoost-PSO-SVR model had the smallest 

MSE, followed by the DT model, and the KNN model had the largest; the XGBoost-PSO-SVR model 

had the largest R2, followed by the DT model, and the KNN model had the smallest. Therefore, the 

training effects of the five models, from highest to lowest, were: XGBoost-PSO-SVR, DT, NB, RF, and 

KNN. Considering the characteristics of each machine learning model, the main reasons were as 

follows: The DT model usually assumed independence between attributes during construction, but 

in reality, the factors affecting the slope safety factor were intercoupled; the performance of the KNN 

model was easily affected when the number of samples of different categories varies greatly, and the 

samples in this case include parameters from three different groups; the NB model also assumed 

independence between attributes; the RF model might be affected by the majority class samples, 

leading to a decrease in the prediction performance of the model for minority class samples, which 

might occur when the model randomly assigned training and testing samples. SVR was good at 

handling high-dimensional data and could effectively solve nonlinear classification problems 

through kernel trick techniques, and the sample dimension in this case was 11, which was suitable 

for this model. Meanwhile, XGBoost constructed a strong learner by integrating multiple decision 

trees, and this integration method allowed XGBoost to significantly improve prediction accuracy. 

Therefore, the training effect of the XGBoost-PSO-SVR model on this sample was the best. 

4. Justification 

Taking a recently failed slope in Lengshuicun, Yongchun County in China, as reported in [12], 

the XGBoost-PSO-SVR model established in this paper was used for comparison. Since the opening 
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width at the rear edge of the slide mass of this slope was approximately 0.3 to 1 m, the main crack 

width was taken as 1.0 m. Also, since the rear edge of the slope body has already moved down as a 

whole by about 2 to 2.5 m, the main crack depth was taken as 2.5 m. Since there was rainfall from 

November 4 to 7, 2016, with a total rainfall of 126.1 mm, the rainfall duration was taken as 4 days, 

and the rainfall intensity was taken as 31.525 mm/day. According to the field investigation, as shown 

in Figures 8 and 9, the crack area ratio at the top of the slope was estimated to be 20%, and the crack 

area ratio on the surface of slope was taken as 10%. The values of the other parameters were shown 

in Table 6. 

 

Figure 8. Downward platforms at rear of a newly failed slope. 

 

Figure 9. A tensile crack at rear edge of the slope. 

Table 6. Parameter values for evaluating slope stability. 

Parameter Value Parameter Value 

H /m 38 Ir /(mm·d-1) 31.525 

β/(︒) 32.2 Dm /m 0.65 

c /kPa 25 Lm /m 2.5 

φ/(︒) 24 St /% 20 

γ/(kN·m-3) 18.8 Sf /% 10 

Tr /d 4 - - 

The parameters listed in Table 6 were input into the XGBoost-PSO-SVR model for prediction, 

and the results were shown in Figure 10. 

 

Figure 10. The predicted results by XGBoost-PSO-SVR model. 

From Figure 10, it could be seen that the model predicted the 74th sample for this slope, with a 

value of 0.966. According to the Technical Code for Building Slope Engineering of Chia (GB50330-
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2013), the stability state of this slope was unstable. According to the reference [12], the soil at the front 

edge of the slope moved forward by about 0.5 m from November 4 to 7, verifying the accuracy of the 

XGBoost-PSO-SVR model. The safety factors obtained by using XGBoost, PSO-SVR, DT, KNN, NB, 

and RF for this slope were shown in Table 7. 

Table 7. Comparisons of safety factors predicted by various models. 

Machine learning model Predicted value Stability state Simulation results Deviation 

XGBoost-PSO-SVR 0.966 Unstable 

0.988 

0.022 

XGBoost 1.005 Under stable 0.017 

PSO-SVR 0.958 Unstable 0.030 

DT 1.009 Under stable 0.021 

KNN 0.955 Unstable 0.033 

NB 1.024 Under stable 0.036 

RF 1.017 Under stable 0.029 

The numerical analysis of this slope using GeoStudio software yielded a safety factor of 0.988. 

From Table 7, it could be seen that the deviation between the predicted value obtained by XGBoost-

PSO-SVR and the numerical analysis value was 0.022. Although this deviation was larger than that 

of XGBoost and DT, the prediction values of XGBoost and DT were both greater than 1. According to 

the Technical Code for Building Slope Engineering of Chia, the stability state of this slope should be 

judged as under stable, which did not match the actual situation of the slope sliding again. Therefore, 

in general, compared with other methods, the prediction of XGBoost-PSO-SVR was closer to the 

actual situation. 

5. Conclusions 

(1) By comparing the MSE and R2 indicators of the models, the XGBoost-PSO-SVR combined 

algorithm reduced the mean squared error by 71.9% and 57.8% compared to the single XGBoost and 

PSO-SVR methods, respectively, and increased the accuracy of the dependent variable explanation 

by 0.83% and 0.69%, respectively. This model had significant advantages in training accuracy and 

fitting effect. Moreover, compared with the four single models DT, NB, RF, and KNN, the XGBoost-

PSO-SVR combined algorithm also achieved the best training effect. 

(2) Using the XGBoost-PSO-SVR combined algorithm to predict the stability of a recently failed 

slope in Lengshuicun, Yongchun County, from November 4 to 7, 2016, the predicted safety factor was 

0.966, indicating that the slope was in an unstable state. This prediction result was consistent with 

the actual situation. 

(3) Due to the limitation of workload, this study simplified the cracks on the slope in the 

numerical simulation, considering only the main crack in the slip zone, the crack at the top of the 

slope, and the crack on the surface of slope. At the same time, the influence of groundwater and the 

spatial variability of slope parameters were not considered, which may cause some differences from 

the actual situation. Future research will focus on more reasonably considering the impact of the 

above factors on the stability of recently failed slopes. 
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The following abbreviations are used in this manuscript: 

XGBoost eXtreme Gradient Boosting 

PSO Particle Swarm Optimization 

SVR Support Vector Regression 

DT Decision Tree 

NB Naive Bayes 

RF Random Forest 

KNN K-Nearest Neighbors 

MSE Mean Squared Error 
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