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Abstract: Currently, most studies on slope stability either neglect or consider only one of the two
critical factors —rainfall conditions and crack state —that influence the stability of newly failed slopes.
To address this limitation, the eleven parameters, such as the slope height, internal friction angle,
cohesion, rainfall conditions, and crack state were selected as evaluation indexes. GeoStudio software
was also used to simulate the slope safety factor under various parameters, and 363 sets of data were
obtained. The XGBoost-PSO-SVR (eXtreme Gradient Boosting-Particle Swarm Optimization-Support
Vector Regression) model was employed to train the simulation results and construct a predictive
model. Compared with the single-machine methods of XGBoost and PSO-SVR, the MSE of XGBoost-
PSO-SVR is reduced by 71.9% and 57.8%, respectively. Furthermore, when compared to four single-
machine models—Decision Tree (DT), Naive Bayes (NB), Random Forest (RF), and K-Nearest
Neighbors (KNN)—the XGBoost-PSO-SVR model demonstrated superior training performance. The
predicted safety factor for a newly failed slope in Yongchun County, Fujian Province, during
November 4-7, 2016, was 0.9658, which closely aligns with the actual conditions. A new way for the
stability prediction of newly failed slope could be provided by this study under various factors, such
as rainfall conditions and crack state.

Keywords: eXtreme Gradient Boosting; Particle Swarm Optimization Support Vector Regression;
newly failed slope; red clay; safety factor

1. Introduction

Among various geological disasters, landslides are characterized by their wide distribution, high
frequency of occurrence, and significant damage. Extensive research has been conducted on slope
stability analysis, yielding substantial results. However, most studies focus on slopes before sliding
occurs. Even though a few scholars have explored the stability of already failed slopes, their research
primarily focus on ancient landslides. Such as Yang et al., Hu et al., Zhu et al. and Frink et al. studied
the stability of ancient landslides by field survey and monitoring, satellite remote sensing, optical
remote sensing dynamic monitoring, drone aerial survey and numerical simulation [1-8]. While these
studies have contributed to understanding ancient landslide revival, the shear strength of the sliding
zone in newly failed slopes has not been restored, and surface cracks remain unblocked.
Consequently, findings from ancient landslide studies cannot be directly applied to newly failed
slopes. The stability of the newly failed slope at Xintang Gao Kanzi was analyzed by using the transfer
coefficient method [9]. However, only the weight of the slope and the weight under a once-in-50-
years heavy rain scenario were considered. The parameters considered were also limited to the
natural unit weight, internal friction angle, and cohesion of both the slope and the sliding zone. The
hydraulic coupling numerical simulation was used to simulate its stability by Wang et al [10]. But
only three kinds of rainfall conditions, such as light rain, moderate rain and heavy rainstorm were
considered, without considering the influence of crack state. It is suggested that abundant loose
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material sources and dominant joint structures could provide fundamental conditions for the
transition from shallow to deep sliding of the slope [11]. However, only natural conditions and heavy
rainfall scenarios were considered, which was insufficient. The reverse analysis method and cloud
model method were used to evaluate the stability of a newly failed slope [12]. But the influence degree
of crack length, width, depth and position on the stability of the slope was not considered.

Although the aforementioned analytical methods have their merits, scholars have rarely
considered both rainfall conditions and crack states simultaneously, despite their interaction and
mutual constraints [13-18]. At present, machine learning has been widely used to predict in various
research fields. Models such as Decision Tree (DT) [19], K-Nearest Neighbors (KNN) [20], Naive
Bayes (NB) [21], Random Forest (RF) [22], eXtreme Gradient Boosting (XGBoost) [23], and Support
Vector Regression (SVR) [24] each have their advantages and disadvantages. For example, the
XGBoost model has the advantages of non-linear data processing, low computational load, faster
operation speed, and better prevention of overfitting [25-26]. However, it has the disadvantages of
easy overfitting and sensitivity to outliers. The SVR model can effectively solve practical issues such
as small sample sizes, nonlinearity, high dimensionality, and local minima, demonstrating excellent
generalization performance [27-28]. However, it suffers from slow training and difficult parameter
selection. It was believed that combining multiple single machine learning models can yield a
predictive model with superior performance [29-31].

The study selected 11 parameters commonly used for red clay slope evaluation, including slope
height, slope angle, cohesion, internal friction angle, rainfall conditions, and crack status. The safety
factor of the slope under different parameter values was simulated and analyzed using GeoStudio
software. Subsequently, an adaptive weighted XGBoost-PSO-SVR hybrid model was trained with the
simulation results to establish a prediction model. The model's effectiveness of this model was
verified by comparing its prediction results with those of single machine learning models like
XGBoost, PSO-SVR, and DT. Finally, the model's accuracy was further validated through a case study
of a recently failed slope in Yongchun County, Fujian Province. This study provided a new approach
for the stability prediction of recently failed slopes under comprehensive consideration of various
factors, such as rainfall conditions and crack status.

2. Materials and Methods

2.1Acquisition of Research Data

To obtain the safety factor of recently failed red clay slopes under rainfall conditions, a finite
element model was established using GeoStudio software for numerical simulation. The slope soil
assumed to be a single layer of red clay. Since recently failed slopes have numerous and scattered
cracks, it would be a huge task to represent all the cracks in the model. Therefore, the cracks were
simplified into three main types: the main crack in the slip zone, the crack at the top of the slope, and
the crack on the slope surface, respectively. The length and width of the main crack in the slip zone
could be equivalently processed using Equation 1 and 2. The length of the cracks at the top and
surface of slope was calculated as half of the main crack length, and their width could be equivalently
processed using Equation 3.
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Where Lu is the equivalent length of the main crack; li is the length of each crack in the slip zone;
xi is the horizontal distance of each crack from the center of the slip zone; Du is the equivalent width
of the main crack; di is the width of each crack. Du is the equivalent width of the cracks at the top of
the slope or on the surface of slope; Si is the area of each crack at the top of the slope; S is the total
area of the top of the slope; L is the length of the top of the slope.

Since the study focused on recently failed slopes, a slip zone was assumed to exist. Therefore,
the most dangerous slip surface of the single-layer homogeneous soil in the model was set as the slip
zone. However, whether the final slip surface passed through this slip zone was determined by the
numerical simulation of GeoStudio software, without forcing the slip surface to pass through the slip
zone in this simulation. Taking a model with slope height of 10 meters and slope angle of 45° as an
example, the final model was shown in Figure 1. In the figure, N1 represented the red clay layer base;
N2 was the recently failed red clay layer; Hlwas the slip zone; L1 was the main crack in the slip zone;
L2 was the crack at the top of the slope; L3 was the crack on the surface of slope; W1 was the
groundwater level. The constitutive model of this model was selected as the Mohr-Coulomb model.
Since the rainfall intensity in this simulation was relatively high, for the good infiltration channel
cracks and slip zone soil, the rainfall intensity was set as a flow boundary. But for the red clay layer
without cracks, the rainfall boundary condition was set as a zero-pressure water head boundary. The
seepage in this model was transient seepage, and the influence of groundwater was not considered.
Therefore, the groundwater level was set as close to the bottom of the slope as possible, as shown in

the position of W1 in Figure 1.
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Figure 1. Schematic diagram of numerical model.

The parameters selected for simulation included slope height (H), slope angle (), cohesion (c),
internal friction angle (¢), unit weight (), rainfall intensity (I:), rainfall duration (7Tr), main crack
width (Dm), main crack depth (Lm), crack area ratio at the top of the slope (St), and crack area ratio on
the surface of slope (5¢). According to the Engineering Geology Manual, the minimum unit weight of
red clay is 16.5 kN/m?, and the maximum is 18.5 kN/m?3. The benchmark values for the three groups
were selected as 17.0 kN/m?, 17.5 kN/m?, and 18.0 kN/m?® using the equal division method. The
grouping benchmark values for internal friction angle and unit weight were selected in the same way.
The meteorological department defines rainfall less than 10 mm in 24 hours as light rain, between 10
mm and 25 mm as moderate rain, and between 25 mm and 50 mm as heavy rain. Therefore, 10 mm,
25 mm, and 50 mm were selected as the benchmark values for each group. For parameters such as
slope height, slope angle, and rainfall duration, the benchmark values were selected based on the
common classification standards used by scholars. The final benchmark values for each group of
parameters were shown in Table 1. The safety factor of the slope was then calculated for different
combinations of conditions in each group, with each parameter varying by +5%, £10%, £15%, +20%,
and +25% of its group benchmark value. For example, the combinations of conditions for Group II
were shown in Table 2.

Table 1. Numerical simulation grouping of each parameter.
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Group H /m B c Q@ )4 Tr Ir Dm Lm S St
/(°) [/kPa /() /(kN'm?3) /d /(mm-d") m /m /% /%

I 5 225 795 1725 17.0 1 10 005 1 5 5
I 10 45 65 16.50 17.5 2 25 010 2 10 10
I 15 675 505 1575 18.0 3 50 015 3 15 15

Table 2. Combination working conditions of various parameters in group 1I.
Ir

Combination P ‘ ¢ v f /(mm-d- Do Lo o
fm /(7)) /kPa /(°) /(kN'm?3) /d y /m /m /% [%

1 7.5 45 65 16.50 17.5 2 25 010 2 10 10

2 8.0 45 65 16.50 17.5 2 25 010 2 10 10

3 8.5 45 65 16.50 17.5 2 25 010 2 10 10

4 9.0 45 65 16.50 17.5 2 25 010 2 10 10

5 9.5 45 65 16.50 17.5 2 25 010 2 10 10

6 10.0 45 65 16.50 17.5 2 25 010 2 10 10

7 105 45 65 16.50 17.5 2 25 010 2 10 10

8 11.0 45 65 16.50 17.5 2 25 010 2 10 10

9 11.5 45 65 16.50 17.5 2 25 010 2 10 10

10 120 45 65 16.50 17.5 2 25 010 2 10 10

11 125 45 65 16.50 17.5 2 25 010 2 10 10

12 10.0 5625 65 16.50 17.5 2 25 010 2 10 10

120 10.0 45 65 16.50 17.5 2 25 010 2 10 12
121 10.0 45 65 16.50 17.5 2 25 010 2 10 125

The density, cohesion, and internal friction angle of the cracks in this numerical simulation were
all set to zero. The density of the slip zone soil was taken to be consistent with the density of the red
clay being simulated. The cohesion and internal friction angle of the slip zone soil were referenced
from the research results of Tang [32] and Ren [33], and were set at 19.5 kPa and 10.73°, respectively.
The slope model was set as unsaturated, and the sample material was selected from the built-in clay
material of GeoStudio software. The saturated and residual water content of the soil were both set at
45% and 10%, respectively. The permeability coefficients of red clay, slip zone soil, and cracks were
taken as 5x1071° m/s, 5x10° m/s, and 1 m/s, respectively. The relationship curves of matric suction
with volumetric water content and water X-conductivity of the slip zone soil were shown in Figures
2 and 3, respectively.
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Figure 2. Relationship curve between matric suction and volumetric water content of sliding soil.
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Figure 3. Relationship curve between matric suction and water X-conductivity of sliding soil.

According to the above simulation scheme and parameter values, numerical simulations were
conducted using GeoStudio software. Since the safety factor of the slope dynamically changes during
rainfall, the safety factor obtained in this simulation was the one at the last moment of the rainfall
duration. A total of 363 sets of simulation results were obtained, and a part of the results from Group
IT were shown in Table 3.

Table 3. Numerical simulation results of each combination working condition in Group II.

o Combinatio Safety o
Combination  Safety factor Combination Safety factor
n factor

1 3.120 12 2.783 23 2.461
2 2.993 13 2.726 24 2.495
3 2.843 14 2.688 25 2.528
4 2.847 15 2.654 26 2.562
5 2.803 16 2.641 27 2.595
6 2.629 17 2.629 28 2.629
7 2.459 18 2.612 29 2.662
8 2.341 19 2.602 30 2.695
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9 2.030 20 2.594 31 2.728
10 1.867 21 2.586 32 2.761
11 1.724 22 2.579 33 2.793

2.2. XGBoost

XGBoost is an algorithm based on decision trees, with decision trees being its fundamental
components. During the decision tree process, subsequent trees are trained based on the residuals of
the previous tree. Through continuous iterative optimization, the residuals are minimized, ultimately
enhancing the overall model's prediction accuracy. The objective function of the XGBoost model
consists of a loss function and a regularization term, calculated according to Equation 4 [34].

n

O:Z|(yi,§i)+g§)(fk) (4)

i=1
where O is the objective function; yi is the measured value of the i target; );i is the predicted value of

the i target; I(yi, y ) is the difference between yi and 32 ; n is the number of samples; Q(f) is the

complexity of the tree model for the k sample feature parameter fi; k is the number of sample feature
parameters.

The objective function was approximated by performing a second-order Taylor expansion on it,
thus transforming Equation 4 into Equation 5.

n

09 ~ Z[I (v, ¥i™)+ 9, f,(%) +0.5h ftz(xi)]+Q( f)+C (5)

i=L
where gi and /i are the first and second derivatives of | ( Yi, yit_l) , respectively.

Since the goal of the model was to minimize the objective function, the constant term was

temporarily disregarded. After removing the constant term | (yi, yit_l) and C from Equation 5 and

summing the objective function in the form of leaf nodes, Equation 6 was obtained [35].

0 = i{wjz}gi +050 h +}t)wﬂ+ al (6)

j=1 iel iel
where [ is the set of samples on each leaf; wj is the output score of each tree leaf node; T is the number
of leaf nodes of the split tree; A and y are weight factors, controlling the weights of the corresponding

parts.

2.3.SVR

SVR is a small-sample creative machine learning method based on statistical learning theory,
aiming to minimize the model's structural risk. When dealing with nonlinear problems, this learning
method maps the original data x to a high-dimensional feature space to obtain @( x), thereby
transforming it into a linear problem for solution. It has strong generalization performance and is
effective for regression problems. Suppose there exists a training set {(xiyi)1i=1,2,3, --,n}, where xi is
the input vector, yi is the output target, and n is the number of samples. The input vector and output
target can be described by Equation 7 [36].

f(xX)=w'p(X)+b )
where f(x)is the predicted value; wT is the weight vector; ¢(x) is the mapping of the input variable x
in the high-dimensional feature space; b is the threshold.

After a series of transformations and the introduction of the Lagrange function and kernel
function, the objective function and kernel function of SVR were shown in Equations 8 and 9 [37].

f(x):i(ai-a;*)K(xi,xj)m ®)
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where ai and ai* are Lagrange multipliers; K(x;x)) is the kernel function; llxi—xjll> is the squared
Euclidean distance between two feature vectors; o is the width of the kernel function; g is the
parameter of the kernel function.

C is the penalty coefficient of SVR, mainly used to control the error range of the model to avoid
underfitting or overfitting; g is the kernel parameter, mainly used to control the distribution of data
in the new feature space, determining the number of support vectors, and thereby affecting the speed
of training and prediction. Therefore, determining the optimal parameters is a crucial part of the SVR
algorithm [38].

2.4. PSO Algorithm

The PSO algorithm, proposed by Kennedy [39] and Eberhart [40], is a search algorithm inspired
by the foraging behavior of birds. It is characterized by its high efficiency and fast search speed. The
algorithm mainly iteratively calculates the initial position and velocity of a group of random particles
to find the optimal solution [41]. Before the algorithm runs, a group of particles with vector dimension
n is initialized. The position of a particle can be denoted as a point in an n-dimensional search space,
with its coordinates represented as x=(xi1,xi2,xip), which is also considered a solution in the n-
dimensional optimization space. Its flight velocity is denoted as v=(vi1,vizvip); the historical
optimal coordinates of the i particle are P=(Pi1,Piz,+,Pip); and the optimal coordinates experienced
by each particle are Py=(Pg1,Pg2,+,Pgp). During the flight process, the particle swarm can iteratively
calculate, as shown in Equations 10 and 11 [42].

K+l k k k
Vig- = @Vig +C,1y (Pyest = Xig )+ Coly (Tt = Xig) (10)
Xil:j+l:Xil:j +Vilfi+l1 i:1,2,"‘,m;d :1’2’...D (11)

where m is the size of the particle swarm; D is the dimension of the particle swarm; vk is the velocity;
xkia is the position; k is the iteration number; c1 and c2 are acceleration factors, controlling the state of
particles maintaining prest and gres; 1 and 72 are random numbers between [0,1]. w is the inertia
weight, used to control the influence of the original speed on the new speed. When w is large, the
algorithm has strong global search capability, and vice versa, it has strong local search capability,
which can be expressed by Equation 12.
O = Dy — M (12)
max
where k is the current iteration step; kmax is the maximum iteration step; wmax and wmin are the

maximum and minimum values of w, respectively.

2.5. Adaptive Weighting Combination Model

The adaptive weighting combination model is an improvement based on the residual weighting
method. Its main approach is to assign weights to the current sample model based on the average
weight of the previous m samples [19]. The optimal m needs to be determined through trial
calculations, which can be done using Equations 13 to 15.

);i :Z|:a)j () yij:|,i >2 (13)
i1
1
o, (i) =% (14)

=e10)

N 1 .
@\ (i) ==> a,(j—k) (15)
mic
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where Y, is the predicted value of the i sample of the combination model; yij is the predicted

value of the i sample of the j model; wj(i) is the residual weighting combination model weight of the
jmodel for the i sample; &j (i) is the sum of squared prediction errors of the j model for the k sample;

(0; (i) is the adaptive weighting combination model weight.

3. Results and Discussion
3.1. Comparison of Prediction Results of PSO-SVR, XGBoost, and XGBoost-PSO-SVR

The 363 simulation results were input into the PSO-SVR and XGBoost models for training. Both
models had 290 training samples and 73 testing samples. The kernel functions of SVR mainly include
linear kernel, polynomial kernel, Gaussian kernel, and Sigmoid kernel. The Gaussian kernel was
chosen for SVR due to its ability to handle complex non-linear problems. The PSO algorithm was
used to optimize the penalty coefficient C and parameter g with 5-fold cross-validation. According to
the experience of scholars, the particle swarm size N in the PSO algorithm was set to 50, the inertia
weight w to 1.2, and the learning factors c1 and c2 to 2, with the maximum iteration number Gkset to
60. The parameter settings for the XGBoost model were shown in Table 4. Based on the above
parameter settings, the prediction results for PSO-SVR and XGBoost were obtained. The adaptive
weighting combination model was then used to combine these two results, yielding the prediction
results for XGBoost-PSO-SVR. The results were shown in Figures 4 to 6.

Table 4. Parameter values of XGBoost model.

Parameter Value Parameter Value
eta 0.2 subsample 0.8
min_child_weight 1 colsample_bytree 0.8
max_depth 5 colsample_bylevel 1
gamma 0 alpha 1
max_delta_step 0 scale_pos_weight 1

MSE = 0.0056979 R = 0.98378  *+Actual values
©Predicted values

gl
g
& 6|,
>
<
] 4t

2 |8

0 10 20 30 40 50 60 70 80

Sample number
Figure 4. Comparison between predicted values by XGBoost model and actual values.

5 +Actual values
MSE =0.0037367 R =0.98515 #Predicted values
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Figure 5. Comparison between predicted values by PSO-SVR model and actual values.

8- +Actual values
MSE = 0.0016001 R?=0.9919  ®Predicted valucs

Safety factor
- w (=} ~

=

S}
T

Ul

10 20 30 40 50 60 70 80
Sample number

<

Figure 6. Comparison between predicted values by XGBoost-PSO-SVR model and actual values.

From Figure 4, it could be intuitively seen that when trained using the XGBoost method, two
samples had significant deviations between predicted and actual values, while the predicted values
of other samples were quite close to the actual values. The mean squared error (MSE) of the test set
for this method was 0.0056979, with a corresponding R? of 0.98378, indicating that the model trained
using the XGBoost method could explain 98.4% of the variance in the dependent variable. This
demonstrated that the training effect of this model was good. From Figure 5, it could be seen that
when trained using the PSO-SVR method, three samples had significant deviations between
predicted and actual values. The corresponding MSE and R? were 0.0037367 and 0.98515,
respectively, indicating that this method reduced the MSE by 34.4% compared to the XGBoost
method, resulting in better training performance. From Figure 6, it can be seen that when using the
XGBoost-PSO-SVR combined algorithm, only one sample had a significant deviation between
predicted and actual values, and the fit of the predicted values to the actual values was higher than
the above two methods. The corresponding MSE and R? were 0.0016001 and 0.9919, respectively. It
representing a 71.9% reduction in MSE and a 0.83% increase in the accuracy of the dependent variable
explanation compared to the XGBoost method; and a 57.8% reduction in MSE and a 0.69% increase
in the accuracy of the dependent variable explanation compared to the PSO-SVR method. Therefore,
the XGBoost-PSO-SVR combined algorithm could further reduce the model's MSE and improve
accuracy, resulting in the best fit. In MATLAB software, the tic and toc functions were used to
calculate the start and end times of the algorithm, respectively, to determine the algorithm's execution
time. The calculated execution times for PSO-SVR, XGBoost, and XGBoost-PSO-SVR were 8.14 s, 6.21
s, and 13.32 s, respectively. It can be seen that XGBoost has the fastest computation time, while
XGBoost-PSO-SVR has the slowest. Since the XGBoost-PSO-SVR algorithm includes the running time
of the XGBoost algorithm, the optimization time of the PSO algorithm, and the prediction time of
SVR, its running time was longer than that of the individual XGBoost or PSO-SVR algorithms.
However, since the data volume analyzed in this case was relatively small and the running times
were all relatively short, they were within an acceptable range. If the data volume to be analyzed is
larger, the appropriate algorithm should be selected by considering factors such as accuracy and
running time.

3.2. Comparison of Prediction Results of XGBoost-PSO-SVR with Other Machine Learning Models

To further verify the prediction accuracy of the XGBoost-PSO-SVR combination model, four
single machine learning models, namely DT, KNN, NB, and RF, were used to predict the safety factor.
The comparison of the predicted safety factor values with the actual values obtained from these four
machine learning models was shown in Figure 7. The MSE and R? of the safety factor prediction
results of the XGBoost-PSO-SVR combination model and the four single machine learning models
were shown in Table 5.
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Figure 7. Comparison between predicted values by four single-machine learning models and true values.

Table 5. Comparisons of safety factors prediction indicators by various models.

Machine learning model MSE R?
DT 0.0096 0.9771
KNN 0.0198 0.9603
NB 0.0062 0.9741
RF 0.0113 0.9685
XGBoost-PSO-SVR 0.0016 0.9919

From Figure 7 and Table 5, it could be seen that the XGBoost-PSO-SVR model had the smallest
MSE, followed by the DT model, and the KNN model had the largest; the XGBoost-PSO-SVR model
had the largest R? followed by the DT model, and the KNN model had the smallest. Therefore, the
training effects of the five models, from highest to lowest, were: XGBoost-PSO-SVR, DT, NB, RF, and
KNN. Considering the characteristics of each machine learning model, the main reasons were as
follows: The DT model usually assumed independence between attributes during construction, but
in reality, the factors affecting the slope safety factor were intercoupled; the performance of the KNN
model was easily affected when the number of samples of different categories varies greatly, and the
samples in this case include parameters from three different groups; the NB model also assumed
independence between attributes; the RF model might be affected by the majority class samples,
leading to a decrease in the prediction performance of the model for minority class samples, which
might occur when the model randomly assigned training and testing samples. SVR was good at
handling high-dimensional data and could effectively solve nonlinear classification problems
through kernel trick techniques, and the sample dimension in this case was 11, which was suitable
for this model. Meanwhile, XGBoost constructed a strong learner by integrating multiple decision
trees, and this integration method allowed XGBoost to significantly improve prediction accuracy.
Therefore, the training effect of the XGBoost-PSO-SVR model on this sample was the best.

4. Justification

Taking a recently failed slope in Lengshuicun, Yongchun County in China, as reported in [12],
the XGBoost-PSO-SVR model established in this paper was used for comparison. Since the opening
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width at the rear edge of the slide mass of this slope was approximately 0.3 to 1 m, the main crack
width was taken as 1.0 m. Also, since the rear edge of the slope body has already moved down as a
whole by about 2 to 2.5 m, the main crack depth was taken as 2.5 m. Since there was rainfall from
November 4 to 7, 2016, with a total rainfall of 126.1 mm, the rainfall duration was taken as 4 days,
and the rainfall intensity was taken as 31.525 mm/day. According to the field investigation, as shown
in Figures 8 and 9, the crack area ratio at the top of the slope was estimated to be 20%, and the crack
area ratio on the surface of slope was taken as 10%. The values of the other parameters were shown

in Table 6.

Figure 8. Downward platforms at rear of a newly failed slope.

Figure 9. A tensile crack at rear edge of the slope.

Table 6. Parameter values for evaluating slope stability.

Parameter Value Parameter Value
H/m 38 I+ /(mm-d-1) 31.525
BIC ") 322 Dm /m 0.65
¢ /kPa 25 Lm /m 2.5
o/ ") 24 St /% 20

¥/(kN-m-3) 18.8 St /% 10
T: /d 4 - -

The parameters listed in Table 6 were input into the XGBoost-PSO-SVR model for prediction,

and the results were shown in Figure 10.

8 -
+Actual values
© Predicted values

Safety factor

0 10 20 30 40 50 60 70 80
Sample number

Figure 10. The predicted results by XGBoost-PSO-SVR model.

From Figure 10, it could be seen that the model predicted the 74th sample for this slope, with a
value of 0.966. According to the Technical Code for Building Slope Engineering of Chia (GB50330-
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2013), the stability state of this slope was unstable. According to the reference [12], the soil at the front
edge of the slope moved forward by about 0.5 m from November 4 to 7, verifying the accuracy of the
XGBoost-PSO-SVR model. The safety factors obtained by using XGBoost, PSO-SVR, DT, KNN, NB,
and RF for this slope were shown in Table 7.

Table 7. Comparisons of safety factors predicted by various models.

Machine learning model  Predicted value Stability state ~ Simulation results ~ Deviation

XGBoost-PSO-SVR 0.966 Unstable 0.022
XGBoost 1.005 Under stable 0.017
PSO-SVR 0.958 Unstable 0.030

DT 1.009 Under stable 0.988 0.021
KNN 0.955 Unstable 0.033
NB 1.024 Under stable 0.036
RF 1.017 Under stable 0.029

The numerical analysis of this slope using GeoStudio software yielded a safety factor of 0.988.
From Table 7, it could be seen that the deviation between the predicted value obtained by XGBoost-
PSO-SVR and the numerical analysis value was 0.022. Although this deviation was larger than that
of XGBoost and DT, the prediction values of XGBoost and DT were both greater than 1. According to
the Technical Code for Building Slope Engineering of Chia, the stability state of this slope should be
judged as under stable, which did not match the actual situation of the slope sliding again. Therefore,
in general, compared with other methods, the prediction of XGBoost-PSO-SVR was closer to the
actual situation.

5. Conclusions

(1) By comparing the MSE and R2 indicators of the models, the XGBoost-PSO-SVR combined
algorithm reduced the mean squared error by 71.9% and 57.8% compared to the single XGBoost and
PSO-SVR methods, respectively, and increased the accuracy of the dependent variable explanation
by 0.83% and 0.69%, respectively. This model had significant advantages in training accuracy and
fitting effect. Moreover, compared with the four single models DT, NB, RF, and KNN, the XGBoost-
PSO-SVR combined algorithm also achieved the best training effect.

(2) Using the XGBoost-PSO-SVR combined algorithm to predict the stability of a recently failed
slope in Lengshuicun, Yongchun County, from November 4 to 7, 2016, the predicted safety factor was
0.966, indicating that the slope was in an unstable state. This prediction result was consistent with
the actual situation.

(3) Due to the limitation of workload, this study simplified the cracks on the slope in the
numerical simulation, considering only the main crack in the slip zone, the crack at the top of the
slope, and the crack on the surface of slope. At the same time, the influence of groundwater and the
spatial variability of slope parameters were not considered, which may cause some differences from
the actual situation. Future research will focus on more reasonably considering the impact of the
above factors on the stability of recently failed slopes.
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The following abbreviations are used in this manuscript:

XGBoost  eXtreme Gradient Boosting

PSO Particle Swarm Optimization

SVR Support Vector Regression

DT Decision Tree

NB Naive Bayes

RF Random Forest

KNN K-Nearest Neighbors

MSE Mean Squared Error
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