Pre prints.org

Article Not peer-reviewed version

Think Inside the JSON: Reinforcement
Strategy for Strict LLM Schema
Adherence

Bhavik Agarwal , Ishan Joshi, Viktoria Rojkova *
Posted Date: 20 February 2025
doi: 10.20944/preprints202502.1390v2

Keywords: Large Language Models (LLMs); Schema Adherence; LLM Reasoning; DeepSeek R1;
Reinforcement Learning (RL); 1.5B-parameter Model; Structured Reasoning; Synthetic Reasoning Dataset;
Custom Reward Functions; Group Relative Policy Optimization (GRPO); Supervised Fine-Tuning (SFT);
Schema Consistency; GPU Training (H100, A100); ThinkJSON; Distilled Models (Qwen-1.5B, Qwen-7B);
Gemini 2.0 Flash (70B); Resource-Efficient Framework; Schema-Constrained Text Generation

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4245313
https://sciprofiles.com/profile/4245399

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Think Inside the JSON: Reinforcement Strategy for
Strict LLM Schema Adherence

Bhavik Agarwal *, Ishan Joshi and Viktoria Rojkova

Master Control Al Research
* Correspondence: bagarwa4@jhu.edu

Abstract: In this paper, we address the challenge of enforcing strict schema adherence in large language
model (LLM) generation by leveraging LLM reasoning capabilities. Building on the DeepSeek R1
reinforcement learning framework, our approach trains structured reasoning skills of a 1.5B parameter
model through a novel pipeline that combines synthetic reasoning data set construction with custom
reward functions under Group Relative Policy Optimization (GRPO). Specifically, we first perform R1
reinforcement learning on a 20K sample unstructured to structured data set, mirroring the original
DeepSeek R1 methods, to establish core reasoning abilities. Subsequently, we performed supervised
fine-tuning on a separate 10K reasoning sample dataset, focusing on refining schema adherence for
downstream tasks. Despite the relatively modest training scope, requiring approximately 20 hours on
an 8xH100 GPU cluster for GRPO training and 3 hours on 1xA100 for SFT, our model demonstrates
robust performance in enforcing schema consistency. We compare our ThinkJSON approach against
the original DeepSeek R1 (671B), distilled versions of DeepSeek R1 (Qwen-1.5B and Qwen-7B) and
Gemini 2.0 Flash (70B), showcasing its effectiveness in real-world applications. Our results underscore
the practical utility of a resource-efficient framework for schema-constrained text generation.

Dataset: Hugging Face Model; R1-Reasoning-Unstructured-To-Structured Dataset; JSON-Unstructured-
Structured Dataset

Dataset License: License under which the data set is made available (CC0, CC-BY, CC-BY-SA, CC-BY-
NC, etc.)

Keywords: large language models (LLMs); schema adherence; LLM reasoning; DeepSeek R1; rein-
forcement learning (RL); 1.5B-parameter model; structured reasoning; synthetic reasoning dataset;
custom reward functions; group relative policy optimization (GRPO); supervised fine-tuning (SFT);
schema consistency; GPU training (H100; A100); ThinkJSON; distilled models (Qwen-1.5B; Qwen-7B);
Gemini 2.0 Flash (70B); resource-efficient framework; schema-constrained text generation

1. Introduction

In the highly regulated domain of bio-manufacturing quality, there is a growing need to convert
legacy production records into structured digital formats for compliance and analysis. Biomanufactur-
ing has historically been "steeped in a paper culture’, and even incremental moves toward electronic
batch records are significant steps in industry digitalization [1]. A key prerequisite of this digital
migration is schema adherence: Al systems, such as large language models (LLMs) used to transcribe
or summarize production logs, must output data that fit a predefined schema exactly. Any deviation
(missing fields, incorrect format) could violate data integrity standards and render the generated
records unusable for regulatory compliance [2]. This introduces a critical challenge: While modern
LLM:s are extraordinarily powerful in free-form text generation, ensuring that they produce strictly
structured, schema-valid outputs is not trivial.

LLMs by default generate text probabilistically, with no built-in guarantee of conforming to a
given format [3]. This unpredictability poses risks when structured output is required for machine

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://huggingface.co/MasterControlAIML/DeepSeek-R1-Qwen2.5-1.5b-SFT-R1-JSON-Unstructured-To-Structured
https://huggingface.co/datasets/MasterControlAIML/R1-Reasoning-Unstructured-To-Structured
https://huggingface.co/datasets/MasterControlAIML/JSON-Unstructured-Structured
https://huggingface.co/datasets/MasterControlAIML/JSON-Unstructured-Structured
https://doi.org/10.20944/preprints202502.1390.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

20f13

consumption or auditing. Empirical studies have found that even state-of-the-art models can fail to
consistently follow format instructions — success rates in producing correct JSON, for example, can vary
widely from 0% to 100% depending on the task complexity and model used [4]. Such inconsistency
is problematic in any setting, but in regulated bio-manufacturing, an output that does not exactly
match the schema (e.g., a misformatted timestamp or an extra delimiter) might lead to compliance
issues or require costly manual correction. Developers report that substantial effort is spent on prompt
tuning and post-processing to coerce LLMs into the desired format [5]. From a user perspective,
unreliable formatting undermines trust — constraints help prevent nonsense or hallucinated fields,
thereby ensuring the output remains credible and useful [5]. In short, structured output generation is
both a technical and a governance challenge: the model must be reliable in content as well as form.

2. Relevant Work

Researchers and practitioners are exploring several approaches to address these challenges and
enforce schema adherence in LLM outputs. Key strategies include:

2.1. Supervised Fine-Tuning

An LLM can be fine-tuned on domain-specific data with the required output schema, so it learns
to produce the correct structure. Fine-tuning on curated input—output pairs (e.g., historical records
mapped to structured entries) can significantly improve format fidelity [6]. However, this approach is
resource-intensive — training large models on specialized data is complex and costly, often requiring
techniques like low-rank adaptation to be feasible [6]. Fine-tuning also risks making the model too
domain-specific or rigid outside the training distribution.

2.2. Reinforcement Learning with Human Feedback (RLHF)

RLHF has proven effective in aligning LLMs with human instructions and preferences [7]. By
training a model with feedback signals that reward correct adherence to the desired format, one can en-
courage structured outputs. Notably, the instruction-following abilities of models like ChatGPT/GPT-4
are largely attributed to such alignment techniques [7], enabling them to obey fine-grained formatting
requests (e.g. “output as JSON”). In regulated settings, RLHF could incorporate compliance-specific
criteria into the reward model. The downside is that RLHF requires extensive high-quality feedback
data and careful reward design; even then, smaller open-source models often still lag behind in format
obedience despite alignment efforts [7].

2.3. Constraint-Based Decoding

Rather than relying on the model to choose the right format, constraint-based methods force
compliance by integrating schema rules into the generation process. Techniques like grammar- or
regex-guided decoding intercept the model’s token output, only allowing continuations that keep
the output valid according to a formal schema [3,8]. This guarantees 100% schema adherence by
construction. Recent frameworks implement fast, non-invasive constrained decoding that can guide
LLMs to produce, for example, JSON that matches a given schema exactly [6]. Industry adoption of
these ideas is rising; for instance, OpenAl’s API now accepts developer-provided JSON schemas and
assures that the model’s response will conform to them [3]. The trade-off here is potential complexity
in setup and slight inference latency overhead, as well as the challenge of designing schemas that
are neither over- nor under-constraining. Nonetheless, when correctness is paramount, constrained
decoding is a powerful approach.

2.4. Prompt Engineering

The most accessible technique is to craft the input prompt in a way that strongly cues the desired
structure. This can involve giving the model explicit formatting instructions, examples of correctly
formatted output, or even “layout hints” in the prompt. A well-designed prompt can often induce
a model to produce a nearly perfect structured output [6]. Prompt engineering requires no model

https://doi.org/10.20944/preprints202502.1390.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

30f13

training and can be iteratively refined. However, it demands significant manual effort and expertise,
and even then does not guarantee consistency [6]. Models may still err on edge cases or as the prompt
complexity grows, and maintaining long, complex prompts (especially across different models or
updates) can be cumbersome. In practice, prompt-based solutions might be combined with lightweight
validation or post-processing in high-stakes applications.

2.5. Hybrid Constraint-Based Decoding and Prompt Engineering

By embedding knowledge of the schema at the prompt level and using a specialized procedure to
keep the generation on track (via tagging, iterative re-checks, or extra control tokens), hybrid systems
achieve schema adherence more reliably than a vanilla LLM approach [9]. This structured, schema-
first method is key to guaranteeing the outputs are valid, parseable, and aligned with downstream
consumption requirements. Schema acts as a blueprint for how the final text must be organized
while controllable generation mechanism conditions the model’s decoding process on these schema
constraints. Instead of free-form text generation, the model is guided to fill in required slots, adhere to
the correct format, and avoid extraneous or malformed outputs [9].

Each of these approaches comes with effectiveness trade-offs, especially under the stringent
demands of regulated industries. Fine-tuning and RLHF can deeply instill format compliance into a
model but at high development cost and with less transparency. Prompt engineering is more flexible
and avoid retraining, but it relies on the base model’s capacity to follow instructions. Constraint-based
decoding offers hard guarantees on structure, appealing for compliance, though it requires integrating
external constraint logic with the model’s output stream. The choice often depends on the specific
use case and constraints — for instance, biomanufacturers must consider not only technical accuracy
but also validation, auditing, and data governance. Ensuring that LLM-generated records are both
accurate in content and precise in format is vital to meet quality and regulatory standards. Recent
work underlines that reliable structured generation remains an open challenge, calling for continued
research into methods that can robustly align LLM outputs with predefined schemas [4].

3. Method

Although the strategies outlined above—ranging from prompt engineering to constraint-based
decoding—can improve structured output, they often require specialized tooling or large-scale fine-
tuning. In regulated domains such as bio-manufacturing, these approaches must also be cost-effective
and robust. In this section, we describe a reasoning-driven methodology that leverages synthetic
data construction and iterative LLM reasoning to ensure schema adherence with minimal overhead.
Specifically, we demonstrate how to:

* Build RL reasoning dataset
Create synthetic unstructured and structured data [10],[11] in tandem using controlled
prompts and Qwen 14B/32B [12],

Reverse-engineer how unstructured text can map onto an empty JSON schema by engaging a
distilled DeepSeek R1 Qwen 32B [13] to explain—step by step—how each schema field is
populated.

https://doi.org/10.20944/preprints202502.1390.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

40f13

Synthetic JSON Data Creation
(Qwen 14B/32B)

I N

Initial Dataset Assembly
(Synthetic Triplets -
Unstructured Text, Blank
Schema Rules and Structured
JSON)

I I

RL Training of R1-Zero Model Schema Mapping for JSON
(Qwen 2.5 1.5B + GRPO with Fields via Reasoning
custom rewards) (DeepSeek R1 Qwen 32B)

!

RL Training

Reinforcement Learning

SFT on R1 Zero with Qwen
32B Reasonings (Enhanced
reasoning dataset)

Custom Rewards Integration

SFT Enhancement

Enhancing with Reasoning

Final R1 Model

Outcome: Improved R1 Model

Figure 1. "Think inside the JSON" pipeline.

* Train reasoning model with RL and SFT.
Develop custom reward mechanisms that directly evaluate how well the outputs adhere to a
predefined schema while balancing fluency, completeness, and correctness.

Train R1-Zero reasoning model from Qwen 2.5 1.5B base model using RL [14],[15] and synthetic
unstructured-structured pair dataset, integrate custom rewards into GRPO [14] without

https://doi.org/10.20944/preprints202502.1390.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

50f13

altering the core policy optimization loop. The combined reward drives the training so that
the model produces outputs that score highly on all relevant criteria.

Fine tune R1-Zero model into R1 with supervised fine-tuning using reasoning dataset.

3.1. Generating Structured and Unstructured Data

We begin by prompting a language model (Qwen 14B and 32B) to produce diverse, fully populated
JSON schemas (including nested and complex fields). These filled schemas emulate real-world
documentation (e.g., QA checklists, batch records) while showcasing variations in schema hardness
and domain.

You are an expert in building a hierarchical JSON schema and object for the domain {DOM
Your task is to create:

1. A multi-level JSON Schema describing:
- ROOT (level 0),
— SECTION (level 1),
SUBSECTION (level 2),
$DETAIL_{N}$ (level 3+).
Each level may contain tables (2D data layouts) and checkbox elements (MCQs, confirm
with nested components reflecting complex structures.

2. A JSON Object that strictly matches this schema, including:
- \"id\" and \"title\"
- \"level\" and \"$level {type}$\"
— An array of \"component\" objects (paragraphs, tables, or checkboxes)
— A recursive \"children\" array
— Special \"properties\" (e.g., \"variables\", \"content\") for data, logs, metrics,

Formatting Requirements:

- Escape all quotes (\"), replace newlines with \\n

- No trailing commas, single quotes, or extra data

— Enclose the final output with no extra explanations:

In parallel, we generate corresponding blank schemas—retaining structural outlines but omitting
values. This gives us a “before and after” pair for each schema: an empty template and a filled instance.
Such pairs are crucial for teaching LLMs how unstructured text should be systematically transformed
into the exact JSON schema. We then produce unstructured text reflecting the same content as the filled
schema—but presented in varying layouts (e.g., sequential paragraphs, parallel sections, combined
strategies) and table formats (ASCII art, XML/HTML-like snippets, simulated PDF extraction, etc.).
These multi-format “narratives” mimic the real challenge of reading and interpreting inconsistent
legacy documents.

You are an expert in generating hierarchical text documents from JSON Object data point
s+ Taskx+: Convert the JSON Object into an unstructured, paragraph-based document.
++Given Datax*: x+Domain*%; =*xJSON Schema=xx; *+]JSON Objectx**

++*OUTPUT FORMAT=+ (enclosed strictly within <text >):

<text>

[Insert formatted hierarchical text from JSON object here]
</text>

https://doi.org/10.20944/preprints202502.1390.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

6 of 13

++Layout References xx:

- Layout options for components/levels: \n{RANDOM LAYOUT}
- Table styles: \n{RANDOM_TABLE_STYLE}

— Checkbox styles: ““‘[], YES, NO, N/A, etc.”’’

*% RULES # = :

Map every JSON level, component, and attribute to the correct layout/style.
Surround JSON data points with additional words/sentences to obscure parsing.
Include all data (title , variables, metadata, content); no extra sections.

End each data point with a brief, unrelated remark.

. Add filler paragraphs (definitions, domain info, etc.) not directly tied to the JSON

Ol = W N =

In doing so, we create a synthetic corpus that covers a broad range of domain contexts, from general
manufacturing logs to specialized quality assurance frameworks. Each piece of unstructured text is
logically equivalent to a filled JSON schema, yet differs in structure, style, and formatting.

3.2. Reasoning Dataset: Reverse-Engineering from Text to Schema

We employ Distilled DeepSeekR1 Qwen 32B with the following prompt:

You are an Al assistant tasked with extracting structured data from a piece of text.

Inputs:

1. Text (source of information)

2. Blank Schema (unfilled JSON schema)
3. Filled Schema (final populated JSON)

Goals:

1. Compare Text + Blank Schema to the Filled Schema.

2. Explain step by step (chain-of-thought) how the text populates the blank schema.
3. Output only the reasoning steps (thought process).

4. Cross—verify that this reasoning exactly produces the Filled Schema.

Format your final response as:
Chain of Thought Explanation:

"o

The LLM is instructed to output only its chain-of-thought reasoning, explicitly describing the mapping
from text to schema. Such self-explaining prompts push the model to maintain strict schema fidelity
while revealing the logic behind each structural decision. Because the prompt demands an explicit
reasoning path, the LLM self-checks how each field is filled, minimizing random or malformed output.
The chain-of-thought not only ensures correctness but also documents how the text was interpreted
which is vital for regulated environments. By varying the domain (e.g., different types of QA reports)
and text layout styles, we create a dataset that fosters LLM resilience to formatting quirks.

3.3. GRPO Training on a Small Foundation Model

Once we finalize the reasoning dataset, we proceed to train a small foundation model—mirroring
the minimalistic DeepSeek R1 Zero approach—using GRPO [13]. We employ a 1.5B-parameter base
model "to develop reasoning capabilities without any supervised data, focusing on their self-evolution
through a pure reinforcement learning process" [13]. By leveraging a group-based advantage calcu-
lation and carefully designed reward signals (e.g., schema compliance, correctness), we efficiently
instill structured reasoning capabilities within a resource-constrained pipeline. By incorporating
multiple reward functions [16] into the GRPO framework, we can simultaneously encourage format
correctness (via r_format) and content/domain correctness (via r_equation). The combined reward
drives training so that the model produces outputs that score highly on all relevant criteria. The entire

https://doi.org/10.20944/preprints202502.1390.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

7 of 13

process remains computationally light (e.g., 20 hours on an 8xH100 cluster), demonstrating that strict
schema adherence can be achieved even with compact, low-overhead foundation models.

3.3.1. JSON-Based Reward

This reward algorithm balances two aspects: (1) schema faithfulness via the key-value matching
fraction, and (2) structural completeness via JSON length similarity. A high final reward indicates that
the predicted JSON object closely matches the ground truth both in field contents and overall size.

3.3.2. Format Verification Reward

The format check enforces correct usage of specialized tags, crucial for downstream tasks that
rely on clearly separated reasoning (<think> block) and final answers (<answer> block). The binary
reward (0 or 1) simplifies reinforcement signals, focusing exclusively on structural correctness rather
than content fidelity. The optional logging step enables sampling a small fraction of completions for
qualitative inspection, aiding diagnostic or future training data curation.

https://doi.org/10.20944/preprints202502.1390.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

8of 13
Algorithm 1 JSON-Based Reward Computation.
1: Given:
A list of completions C = {cy, ..., ¢, } from the model.
A list of ground-truth JSON objects G = {g1,...,8n}-
Each g; is a valid JSON string.
2: procedure COMPUTEREWARD(C, G)
3 R+ @ > Initialize rewards list
4 for each pair (¢;, ;) in (C,G) do
5: ¢} "<think>" || ¢; > Insert <think> prefix
6 ans < substring(c}, ‘‘<answer>”’,‘‘</answer>"’)
7 if ans is empty then
8 ri =0
9: append r; to R; continue
10: end if
> Parse as JSON
11: parse ans into answer_json; parse g; into gt_json
12: if either parse fails then
13: ri <0
14: append r; to R; continue
15: end if
> Compute field overlap
16: Ky < keys(answer_json)
17: K¢ + keys(gt_json)
18: total_fields < |KCq U Kg]
19: matching_fields < Yxe (k,nk,) 1/answer_json[k] = gt_json[k]]
20: if total_fields > 0 then
21: key_match_score < %W
22: else
23 key_match_score <— 0
24: end if
> Compare JSON lengths
25: l; < length(answer_json) or 1
26: g < length(gt_json) or 1
. min(4g,¢
27: length_ratio < ﬁ&z,é’))

> Calculate final reward
key_match_score+length_ratio

28: ¥ <

29: clamp r; to [0, 1]? round to 1 decimal place
30: if r; > 0.6 then

31: log c! with 60% probability

32: end if

33: appendr; to R

34: end for

35: return R
36: end procedure

https://doi.org/10.20944/preprints202502.1390.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

90f13

Algorithm 2 Format Verification Reward.

1: Goal: Assign a reward of 0 or 1 depending on whether a generated completion follows an expected structure
using <think>...</think> and <answer>...</answer>.

2: Inputs:
A list of completions C = {cy, ..., ¢, } (model-generated).
A list of ground-truth objects G = {g1,...,8n} (not directly used here, but included for extensibility).
A small probability p (e.g., 0.1) for selectively logging completions.

3: Output: A list of scalar rewards R = {r1,...,r,}, withr; € {0,1}.
4: Initialize an empty rewards list: R < [].
5: for each pair (¢;, ;) in (C,G) do
6: Synthesize prompt format: ¢} < "<think>" || ¢; > Prepend “<think>"
7 Probabilistic logging: Draw x ~ U[0,1].
8 if x < p then
9: Log c; to file for future analysis.
10: end if
11: Format check via regex:
Define R = "~<think>([~<]*(7:<(?7!/?think>) [~<]*)*)</think>\n<answer>([\\s\\S]*?)</answer>$"
Match R against c/.
12: if match fails (no correct grouping) then
13: ri <0
14: else
15: ri+1
16: end if
17 Appendr; to R.
18: end for
19: return R

Algorithm 3 GRPO with Multiple Reward Functions.

Notation and Setup
Define a combined reward:

Reomb(c) = f(ri(c), ralc), ..., rx(c)),

where f can be a weighted sum, mean, or any aggregator, 7ty be the current policy (a language model
parameterized by 0), {rk}IIf:1 be K reward functions (e.8., "format "equation)

Group-Based Relative Advantage
Let G = {ci,...,cm} be a group of M outputs sampled from 7.
For each ¢;, compute a combined reward R; = Reomp (¢;)-
Define the relative (rank-based) advantage:
1
A (rel) (c;) =] ;1(121. > R]-),
J7F1

which is the fraction of samples in G that have lower reward than c;.

GRPO Update
Update 6 to favor completions with higher relative advantage.
The GRPO loss for group G is:

Lerro(0) = — Y AU (c;) logmg(c;) + Reg(6),
cieG

where Reg(0) includes regularization terms (e.g., entropy bonus, KL-divergence).

https://doi.org/10.20944/preprints202502.1390.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

10 of 13

train/completion_length) X 3o train/reward (U S trai... /equation_reward_func [-] X I3 % train/r... format_reward_func -] X 3

0 100 200 300 40¢ 450 X 0 100 200 300 40C 450 X 0 100 200 300 40450 X 0 100 200 300 40C 450 X
iz a3 3

Run + Smoothed Value Step Run + Smoothed Value Step Run Smoothed Value Step Run © Smoothed Value Step
runs/Feb01_20- 1259725 125.9725 2 runs/Feb01_20- 0.0728 00728 2 runs/Feb01_20- 0.0007 00007 2 runs/Feb01_20- 0.0722 00722 2
29- 29- 29- 20-

28_7bf1f721fedf 28_7bf1f721fedf 28_7bf1{721fedf 28_7bf1f721fedf

7 7 % 7

Figure 2. GRPO Training Metrics.

3.4. Supervised Fine-Tuning

While reinforcement learning confers advanced reasoning capacities, but supervised fine-tuning
provides the final task- and schema-specific “polish” that ensures outputs are both logically grounded
and robustly aligned with real-world standards. [13]. Reinforcement learning (RL) optimizes a policy
for broad correctness or format adherence but can overlook rare or domain-specific intricacies (e.g.,
specialized field naming conventions, unusual data types). SFT exposes the model to explicit examples
that emphasize precisely how to handle real-world edge cases, ensuring no field or condition is left
under-represented. Although RL fosters adaptability, the learned policy may still exhibit variability in
ambiguous contexts or unrepresented task scenarios [13]. SFT, by contrast, anchors the final policy
to concrete labeled examples, reducing output drift. By overlaying a final SFT stage, Think][SON
tightly aligns its already-developed reasoning to the strict output requirements (e.g., correct JSON
keys, mandatory fields), producing outputs suitable for audit or compliance. For SFT (and SFT+LoRA)
we used the Unsloth training framework on an A100 GPU, completing the process in about 3 hours.

Role:

You are an expert data extractor mapping hierarchical text to a given JSON Schema.
DATA INPUT: Text; Blank JSON Schema

TASK REQUIREMENT:
1. Map all relevant text to the JSON Schema.
2. Output in two sections:

— <think >: Reasoning

— <answer>: Filled JSON

STRICT RULES:

1. Provide both <think> and <answer>.

- If minimal reasoning, say: \"Direct mapping from text to schema.\"

Map text exactly to the JSON Schema (no omission/alteration).

Preserve hierarchy (ROOT \to SECTION \to SUBSECTION \to DETAIL_N)
Correctly set attributes (id, idc, idx, level_type, component_type, etc.).
JSON Format:

- Escape quotes as \"

g &~ W N

— Replace newlines with \\n
- No trailing commas
— Only double quotes
6. Explain key decisions in <think>.

IMPORTANT:
If <think> or <answer> is missing, response is incomplete.\"), axis=1)

https://doi.org/10.20944/preprints202502.1390.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

110f13

train/loss train/learning_rate train/grad_norm
— Jcontent/drive/MyDrive/outputs/v3 — Jcontent/drive/MyDrive/outputs/v3 — Jcontent/drive/MyDrivefoutputs/v3

train/global_step train/epoch
— Jcontent/drive/MyDrive/outputs/v3 — Jcontent/drive/MyDrive/outputs/v3

6000
5000 08
4000 06
3000
2000

1000

Figure 3. SFT Training Metrics.

4. Evaluation

We evaluated five models: Think]JSON, Original DeepSeek R1 (671B), Distilled DeepSeek R1 (Qwen-1.5B /
Qwen-7B) and Gemini 2.0 Flash (70B) which specializes on structured output generation [17], on a structured data
extraction benchmark involving 6.5K rows. Each row was processed to produce or omit a valid JSON object, and
we measured metrics including:

* Rows With No Output: Number of rows for which the model produced no structured output.

* Rows With Valid JSON: Number of rows resulting in syntactically valid JSON objects.

e Mean Match Percentage: Average proportion of fields correctly mapped.

e Mean Noise Percentage: Average proportion of extraneous or malformed tokens within the extracted JSON.

100.00% = ThinkISON DSR1 mGemini2Flash mDistDSR1Qwen7 m DistDSR1Qwenl.5
80.00%
60.00%
! 40.00%
20.00% I I I I I I I
0.00% - o I

MeanMatch ValidJSON MeanNoise NoOutput

Figure 4. Performance Comparison.

As illustrated, ThinkJSON yields strong results, with a 62.41% mean match (highest of all five models) and
the lowest 0.27% mean noise, indicating minimal extraneous output. The Original DeepSeek R1 also achieves
relatively high valid-JSON coverage but shows a lower mean match (41.43%) and higher noise (11.14%). The two
distilled variants of DeepSeek R1—Qwen 1.5B and Qwen 7B—exhibit weaker performance overall, with high

https://doi.org/10.20944/preprints202502.1390.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

12 of 13

rates of no extracted JSON or large amounts of noise. Meanwhile, Gemini 2.0 Flash achieves a midrange mean
match of 42.88% but suffers from significant noise at 10.86%. These findings underscore the effectiveness of our
structured reasoning approach in producing concise, schema-valid outputs.

5. Discussion and Future Direction

Our experimental findings confirm that the reasoning-driven, schema-constrained generation pipeline is
both broadly applicable—capable of handling diverse reasoning tasks beyond purely mathematical or scientific
domains—and budget-conscious, as it requires comparatively moderate GPU resources and a modest dataset of
reasoning examples. This balanced approach addresses a critical need in bio-manufacturing compliance , where
Al systems must deliver not only correct structure but also reliable, domain-specific reasoning to meet regulatory
standards [18,19].

The hallmark of our framework is integrating compliance considerations at the core of the generation process.
Rather than relying on prompt-based or post-hoc solutions, our pipeline combines schema adherence objectives
with iterative reasoning loops, thus reducing the need for manual oversight. This focus on strict output validation
resonates with bio-manufacturing’s regulatory requirements—where precise field mappings and hierarchical
consistency are crucial for electronic batch records and industry audits.

While we have employed a 1.5B-parameter foundation model, our method is readily scalable to bigger
backbones (e.g., 7B parameters). Larger models could potentially yield richer context interpretation and more
robust handling of rare or domain-specific phenomena. In future work, we plan to explore how increased capacity
further expands the set of reasoning scenarios the model can tackle while maintaining resource efficiency—a
pivotal benefit in industrial adoption.

Overall, this reinforcement + fine-tuning pipeline for structured text generation offers a flexible, compliance-
aware approach that applies universal reasoning principles—spanning regulated bio-manufacturing tasks and
broader domains—without incurring prohibitive computational overhead. This synergy of versatility and cost-
effectiveness positions our method as a significant step forward in delivering reliable, schema-adherent Al-driven
solutions.

References

1. Labant, M. Smart Biomanufacturing: From Piecemeal to All of a Piece. https:/ /www.genengnews.com/topics/
bioprocessing 2025.

2. etall, M.L. “We Need Structured Output”: Towards User-centered Constraints on Large Language Model
Output. https://Ixieyang.github.io/assets/files/pubs/llm-constraints-2024/llm-constraints-2024.pdf 2024.

3. et all, S.G. Generating Structured Outputs from Language Models: Benchmark and Studies.
https:/farxiv.org/html/2501.10868 2025.

4. etall, C.S. StructuredRAG: JSON Response Formatting with Large Language Models. https://arxiv.org/abs/
2408.11061 2024.

5. Souza, T. Taming LLMs 2024.

6. etall, D.L. Large Language Model-Driven Structured Output: A Comprehensive Benchmark and Spatial
Data Generation Framework. https://www.mdpi.com/2220-9964/13/11/405 2024.

7. etall, ZW. Verifiable Format Control for Large Language Model Generations. https://arxiv.org/html/2502.04498
2025.

8. etall, YD. XGRAMMAR: FLEXIBLE AND EFFICIENT STRUCTURED GENERATION ENGINE FOR
LARGE LANGUAGE MODELS. https://arxiv.org/pdf/2411.15100 2024.

9. Brandon T. Willard, R.L. Efficient Guided Generation for Large Language Models. https://arxiv.org/pdf/2307.09702
2023.

10. etall, A.M. Self-Refine: Iterative Refinement with Self-Feedback. https://arxiv.org/abs/2303.17651 2023.

11. etall, YW. Self-Instruct: Aligning Language Models with Self-Generated Instructions. https://arxiv.org/abs/
2212.10560 2022.

12. Team, Q. Qwen. Qwen2.5: A Party of Foundation Models. https://qwenlm.github.io/blog/quwen2.5 2024.

13. DeepSeek-Al. Deepeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning.
https://arxiv.org/pdf/2501.12948 2025.

14. at all, ZS. Pushing the Limits of Mathematical Reasoning in Open Language Models.
https://arxiv.org/pdf/arXiv:2402.03300 2024.

15. et all, PW. Math-Shepherd: A Labelfree Step-by-Step Verifier for LLMs in Mathematical Reasoning.
https://arxiv.org/pdf/2312.08935 2023.

https://doi.org/10.20944/preprints202502.1390.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2025 d0i:10.20944/preprints202502.1390.v2

16.

17.

18.

19.

13 of 13

etall, C.D. Reinforcement Learning Can Be More Efficient with Multiple Rewards. https://proceedings.mlr.press/v202/
dann23a.html 2023.

team, G.A. Generate Structured Output with the Gemini APL. https://ai.google.dev/gemini-api/docs/structured-
output?lang=python 2025.

et all, N.E. Al Maturity Model for GxP Application: A Foundation for AI Validation.
https://ispe.org/pharmaceutical-engineering/march-april-2022/ai-maturity-model-gxp-application-foundation-ai

2022.

etal.,, V.A. An Overview on Pharmaceutical Regulatory Affairs Using Artificial Intelligence. https://www.
ijpsjournal.com/article/ An+Quverview+on+Pharmaceutical+Regulatory+Affairs+Using+Artificial+Intelligence+

2025.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

https://www.ijpsjournal.com/article/An+Overview+on+Pharmaceutical+Regulatory+Affairs+Using+Artificial+Intelligence+
https://www.ijpsjournal.com/article/An+Overview+on+Pharmaceutical+Regulatory+Affairs+Using+Artificial+Intelligence+
https://doi.org/10.20944/preprints202502.1390.v2

	Introduction
	Relevant Work
	Supervised Fine-Tuning
	Reinforcement Learning with Human Feedback (RLHF)
	Constraint-Based Decoding
	Prompt Engineering
	Hybrid Constraint-Based Decoding and Prompt Engineering

	Method
	Generating Structured and Unstructured Data
	Reasoning Dataset: Reverse-Engineering from Text to Schema
	GRPO Training on a Small Foundation Model
	JSON-Based Reward
	Format Verification Reward

	Supervised Fine-Tuning

	Evaluation
	Discussion and Future Direction
	References

