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Abstract: Artificial intelligence (Al), including machine learning (ML) and deep learning (DL), has
become an essential tool in modern agriculture, revolutionizing traditional practices and offering
sustainable solutions to critical challenges, such as climate change, population growth, and resource
scarcity. Through advanced algorithms and predictive models, ML and DL enhance precise genomic
selection (GS), trait characterization, and the acceleration of crop breeding processes. These
technologies facilitate the identification and optimization of key traits, including increased yield,
improved quality, pest resistance, and tolerance to extreme climatic conditions. Additionally, ML-
driven tools support gene-editing technologies, such as CRISPR-Cas9, contributing to the
development of resilient and adaptable crops. By leveraging big data analytics and omic technologies,
they provide valuable insights into linking genetic and phenotypic data, fostering the development
of sustainable agricultural practices. This research explores the transformative potential of Al,
particularly ML and DL, in Solanaceous crops by developing advanced breeding strategies to address
challenges posed by climate change and rapid population growth. Furthermore, this study highlights
the significant role of these technologies in creating novel crop varieties that are resilient to
environmental stressors, while exhibiting superior agronomic and quality traits. Al and its
applications, such as ML and DL, contribute to the genetic improvement of Solanaceous crops,
strengthening agricultural resilience, ensuring food security, and promoting environmental
sustainability

Keywords: artificial intelligence; machine learning; big data; deep learning; plant breeding;
Solanaceae; tomato; potato; eggplant; pepper

1. Introduction

Artificial intelligence (AI) and specifically machine learning (ML) and its subset Deep Learning
(DL) have become key components of modern technological advancement, with transformative
applications across diverse fields. Agriculture, has increasingly embraced these technologies to
address challenges such as food security, environmental sustainability, and resource optimization.
Al and ML are extremely impactful in various sectors of agriculture, such as precision farming and
field management [1], enabling farmers to make informed decisions about irrigation, fertilization,
pest control, and harvesting [2]. Al and ML are playing a crucial role in optimizing field monitoring,
through the analysis of soil quality and health, which is fundamental for agricultural productivity
[3]. Moreover, Al-driven tools have revolutionized supply chain management in agriculture,
enhancing inventory tracking, demand forecasting, and logistics [4]. By leveraging Al's capability to
simulate human intelligence and ML's capacity to analyze and learn from vast datasets, agricultural
systems are now better equipped to enhance efficiency and resilience [5].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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ML algorithms process massively produced datasets allowing farmers to address specific needs
of their crops, while minimizing waste and resource inefficiency. These vast datasets are also called
“Big Data” and they consist of 5Vs key attributes (Volume, Velocity, Variety, Veracity, and Value).
The utilization of Big Data analysis in agriculture, through Al and ML, enables the processing of
large-scale, diverse, and real-time datasets to make precise predictions, manage resources efficiently,
and support data-driven decision-making, ultimately optimizing crop selection and improving
overall productivity [6] (Figure 1).
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Figure 1. The five key attributes of Big Data (Volume, Velocity, Variety, Veracity, and Value). Each component

describes a critical aspect of its nature and challenges.

A transformative use of Al and Al enabled learning methods like ML and DL in agriculture lies
in the field of crop genetics and breeding. Crop breeding has been historically a time-intensive
process, requiring years of research and experimentation to develop improved varieties. Al
technologies like ML, DL, robotics, and computer vision can analyze vast amounts of data and
identify patterns useful for selecting superior plant varieties with desired characteristics [7]. ML has
dramatically accelerated this process by enabling the analysis of complex genetic, phenotypic, and
environmental datasets encompassing crucial quantitative and qualitative characteristics [8]. ML also
plays a role in addressing both biotic and abiotic plant stressors [9,10]. In this context ML algorithms
predict disease outbreaks and identify resistant crop varieties through genetic screening and
selection, helping breeders to develop more resilient crops [11]. These advancements are crucial for
breeding resilient crops ensuring sustainability, particularly in the face of climate change.

ML models like random forests (RFs), support vector machines (SVMs), and gradient boosting
algorithms (GBAs) allow breeders to identify plants with desirable traits —such as high yield, pest
resistance, and drought tolerance —much faster and with greater accuracy than traditional methods
[12]. RF is a commonly used supervised ML algorithm for both classification and regression. It
combines multiple decision trees to improve accuracy and robustness and can effectively handle
high-dimensional data, making it suitable for genomic data analysis [13]. Moreover, SVMs, which
also belong to supervised ML models, are used for classification and regression (support vector
regression) problems. They are powerful classifiers that work by finding the hyperplane that best
separates different classes in the feature space. SVMs can be particularly useful in classifying plant
varieties based on genetic markers, such as grapevine [14]. GBAs are a type of ML technique used
for regression and classification tasks. They build an ensemble of weak learners, typically decision
trees, in a sequential manner. Each new model is trained to correct the errors made by the previous
models, aiming to minimize the overall prediction error using gradient descent [15].
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Deep Learning (DL), an advanced and specialized subset of Machine Learning (ML), has made
a significant impact on the field of plant breeding by enabling the processing of high-dimensional
and complex data. It is important to emphasize that DL is built upon the core principles of ML but
distinguishes itself through its ability to automatically extract features from raw data and model
intricate patterns, particularly when working with large datasets. For example, convolutional neural
networks (CNNSs), a class of DL models particularly well-suited for tasks involving spatial data, such
as images or sequences, can analyze plant images to identify subtle phenotypic traits that might
escape human observation, such as disease symptoms or growth anomalies [16].

The integration of ML techniques into plant phenotyping enables rapid and accurate analysis of
multiple traits, which are influenced by environmental factors [17,18]. Recurrent neural networks
(RNNs) designed to process sequential data, are used to study temporal patterns, such as changes in
plant growth over time under varying environmental conditions [19]. Artificial neural networks
(ANNSs) which are computational models inspired by the structure and function of biological neural
networks in animal and human brains, are used for prediction and identification of different species
by analysing accurately and effectively complex morphological traits [20]. These tools provide
breeders with detailed insights that inform the selection and development of superior crop varieties.

The emergence of big data and omic technologies has significantly enhanced the capabilities of
ML in plant genetics and breeding. The power of big data analytics lies in its ability to integrate these
extensive and varied datasets, creating a comprehensive framework for understanding plant biology.
ML algorithms are particularly adept at linking omics data with phenotypic traits, enabling
researchers to discover previously obscured relationships and patterns. With the exponential growth
of genomic data and advances in Al algorithms, breeders can now leverage ML and DL techniques
to revolutionise crop improvement [21].

In particular, genomic selection (GS) is a type of marker-assisted selection that uses dense
molecular markers such as single nucleotide polymorphisms (SNPs) from the entire genome
simultaneously in a linear regression model to predict the breeding potential of plants [22,23]. GS
using Al enabled learning techniques, has been used to analyze big genomic data for superior
genotypes identification and prediction of breeding values, optimizing the genotype selection
process [24]. The key principle of GS is to build an accurate prediction model based on a training
population consisting of individuals with both genotypic and phenotypic data [25]. ML models have
proven invaluable in enhancing the efficiency of GS. By analyzing complex patterns within large
datasets ML and DL algorithms forecast accurately phenotypic outcomes, enhancing the efficiency of
plant breeding programs helping breeders make more strategic decisions [26].

ML and DL have also been implemented for prediction of genotypes-by-environment
interactions, enhancing breeders’ choices for well adaptive traits under diverse environments [27,28].
Moreover, reinforcement learning, one of the three basic ML paradigms, where the model is exposed
to an environment and receives feedback in the form of rewards or penalties based on its actions [29],
has been applied in simulated environments to optimize breeding strategies streamlining the GS
process by efficiently allocating resources across different breeding generations [30].

In parallel, ML extends to gene editing technologies like CRISPR-Cas9, which have
revolutionized modern biology by allowing precise modifications of plant genomes [31]. ML models
support this process by analyzing genomic datasets to identify target regions for editing, enabling
the introduction of traits such as salinity tolerance, improved nutrient profiles, and pest resistance
[32,33]. By combining CRISPR-Cas9 with ML, researchers can develop crops that are better adapted
to changing environmental conditions, ensuring long-term agricultural sustainability.

Members of the Solanaceae family are among the world’s most important agricultural species.
These crops are not only economically significant but also essential for global diets and nutrition.
Several crops of this family e.g tomato (Solanum lycopersicum), potato (Solanum tuberosum), eggplant
(Solanum melongena), tobacco (Nicotiana tabacum) and pepper (Capsicum annuum), have been subjected
to intensive breeding for improved agricultural traits that lead to higher yields, resistance to biotic
and abiotic stresses, longer shelf-life, as well as better taste and superior nutritional quality [34].
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However, long-term breeding objectives could be negated by alterations to the economic or physical
environment [35].

Al stands as a transformative force, revolutionising Solanaceae crop breeding efforts with its
array of groundbreaking technologies. The integration of ML applications in Solanaceaous crop
breeding, highlights their transformative potential in accelerating trait prediction, disease detection
and stress resilience, enabling breeders to efficiently analyze complex datasets, uncover genetic
insights, and develop high-quality, resilient cultivars tailored to meet the challenges of modern
agriculture in the perspective of climate change challenges (Figure 2). ML applications in Solanaceae
research are being used to analyze large datasets, either focusing on specific traits individually or
combining various types of data to predict cross-breeding and estimate different plants” performance
under diverse conditions, analyzing numerous data and genotype-phenotype interactions [36,37].

The purpose of this study is to investigate the transformative applications of Al and specifically
ML and DL in breeding Solanaceous crops, focusing on major representatives of this family, such as
tomatoes, potatoes, peppers, and eggplants and to highlight the beneficial effects of AI methods to
enhance important agricultural traits, and to promote innovations supporting global food security
and environmental sustainability.

SURESIS Random Genomic- Algorithms enhancing GS efficacy e.g.
M:f:m:w —— Forecasts — Environomic —  Genomic Estimated breeding Values
(s (RFs) Prediction (iGEP) (GEVs)
Machine i )\
Learning . (, \) - %(
(ML) tools g o £ ’
\ Artificial C wti L Recurrent Graph
Deep Neutral N culn\.-:); :,vnak Neutral Neural
learning e %N; O™ =™ Networks Networks
(ANNS) () (RNNs) (GNNs)

Biotic stress ~— —————
resistance

Genetic diversity and
phenotype classification

Abiotic stress High-throughput

tolerance Genetic stability phenotyping
and Yield Nutritional G G Fruit quality
G x E assessment value q

Figure 2. ML applications in Solanaceous crops to enhance breeding strategies for important selection targets.
2. Applications of Machine Learning in Solanaceaous Crop Breeding
2.1. Tomato

2.1.1. ML Applications for Productivity Monitoring and Yield Prediction

Advancements in Al Augmented Reality (AR), and remote sensing technologies are
revolutionizing tomato yield prediction, enabling more precise, data-driven decision-making for
breeders and farmers. An innovative development in tomato yield estimation is the ARIA
(Augmented Reality and Artificial Intelligence) mobile app, designed to detect, count, and classify
tomatoes by capturing images through markerless AR technology. This app gives insights into the
quality and maturity of preharvest tomatoes and provides reliable yield estimations in breeding
programs [38]. Darra et al. [39], introduced satellite imagery ML model “Sentinel-2 imaginary”, which
provides satellite-based data with high-resolution spatial and temporal analysis, capturing key crop
characteristics [39]. A collaborative study conducted in 2020, applied autonomous and remote-
control techniques to remotely operating greenhouse models for cherry tomatoes production.
Researchers employed a dynamic virtual greenhouse model that integrates KASPRO (KAS
PROcesmodel, which is Dutch for "Greenhouse Process Model" (KAS = greenhouse, PROcesmodel =
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process model)) (for climate modeling) and INTKAM (INTelligent Knowledge-based Adaptive
Model) (for crop modeling) to enhance yield, quality, and net profit while reducing resource usage
and costs [40].

Moreover, researchers utilized ANNs to predict tomato yields in greenhouse production. By
conducting a sensitivity analysis they determined which input variables significantly impact
prediction accuracy and showed that combining ANNs with sensitivity analysis can effectively
enhance decision-making in greenhouse cultivation [41]. Furthermore, ANNs and multiple linear
regression (MLR) models have been utilized for identification of the most sensitive traits affecting
fruit yield in segregating generations of tomato during breeding programs [42].

2.1.2. ML Applications for Quality Traits and Seed Selection

Multiple prediction models have been developed in tomato to estimate critical quality traits,
important to be incorporated in genotypes during breeding processes, such as aspartate content, fruit
weight, firmness, ripeness, elasticity, soluble solids, pH, acidity, sugar, and carotene levels [43—47].
In addition, AI algorithms have been used to analyze fruit color in order to classify ripeness stages,
achieving high accuracy in the process automatically [48]. Vazquez et al. [49], demonstrated a ML-
based system which automatically classifies tomato fruits according to their shape, improving the
efficiency of phenotypic characterization, highlighting its significance for tomato breeding and
genetics. The researchers used ML algorithms to train a model for recognition and classification of
different tomato fruit shapes. They also used image analysis techniques to extract shape-related
information and they created a database containing all these features which served as the training
and testing base for the model. The applications of this computational tool, could enhance the
knowledge regarding the relationship between fruit shape and related genes, thus facilitating
breeding programs, cultivar description and varietal registration and at the same time increase the
classification accuracy for consumer-preferred fruit shape characteristics [49].

Yeon et al. [50], utilized two tomato germplasm collections (TGC1 with 162 accessions and TGC2
with 191 accessions) employing a 51K Axiom™ SNP array, and they estimated the GEVs of five
quality characteristics (fruit weight, fruit width, fruit height, pericarp thickness, and total soluble
solids (TSS) content). The researchers implemented parametric models (RR-BLUP, Bayes A, Bayesian
LASSO) and non-parametric models (RKHS, SVM, RF) evaluating prediction accuracy across various
cross-validation methods of GS models and marker sets. They concluded that the selection of the
appropriate GS model can unravel preferable fruit traits in tomato breeding programs, potentially
accelerating the development of elite cultivars [50].

Al genomic prediction (GP) models, which enable precise selection based on traits such as fruit
morphology, color, and yield have also been used to forecast key visual and size traits in tomatoes,
proving that GS has effectively accelerated the breeding process [51]. GP models have also been
applied for morphometric and colormetric traits in tomato fruits, intergrating gemomic data with ML
tools, like genomic best linear unbiased prediction (GBLUP), Bayesian models, and ML approaches
such as RFs and SVMs, to identify key genetic markers associated with fruit shape, size, and color
enchancing dissision making and tomato breeding prosseses [36]. An innovative hybrid tomato Al
breeding program has also been proposed to accelerate time to market by combining Seed-X's
advanced computer vision and Al technology with TomaTech’s. The researchers reported that this
combination significantly increased the likelihood of desirable market characteristics and enhanced
prediction capabilities in the breeding process. Furthermore, under the perspective of breeding for
fruit quality, Khan and Adem in 2023, utilized the AI model “Connoisseur” which leverages the
consumers’ sensory scores for various tomato varieties, coupled with their chemical composition for
identifying either these compounds are positively or negatively related to flavor [52].

ML algorithms like SVMs, RFs and Neutral Networks have also been implemented to classify
and discriminate tomato seeds cultivars. Images of tomato seeds from various cultivars were
captured using a consistent imaging setup and seed morphology-related traits were extracted. The
ML models, after they tested for their accuracy and precision, applied to distinguish tomato seeds
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which belong to different cultivars based on their physical and morphological traits. The researchers
demonstrate that the findings of the present study highlight the potential of integrating ML with seed
imaging to modernize agricultural practices and facilitates the identification and tracking of
promising cultivars in breeding experiments, emphasizing that this approach can be extended to
other crops apart from tomato [53].

2.1.3. ML Applications for Breeding Against Environmental Stressors

ANNSs have been employed to monitor tomato yield under environmental stresses like salinity,
moisture deficiency, and diseases. Recent studies have integrated ML models, such as RFs and
decision trees (DT), to develop predictive frameworks for managing irrigation and improving tomato
production. These models have effectively captured the interactions between environmental and
plant variables, supporting their application in crop management and breeding programs under
limited water availability. Similarly, Zhang et al. in their study in 2023 [54], highlighted the potential
of Al in breeding stress-tolerant tomato cultivars under various abiotic stressors including drought,
salinity, cold and heat stress. They emphasized the use of machine-learning algorithms to identify
genetic markers, DL models to analyze multi-omic and environmental data, and Al-driven tools for
phenotype prediction. Additionally, advanced decision-support systems were proposed to assist
breeders in selecting and optimizing genotypes for stress-prone environments. These approaches
demonstrate Al's transformative role in precision breeding and crop management [54]. Moreover a
study by Chowdhury et.al, focused on identifying drought-responsive genes in tomato utilizing
various ML tools to analyse gene expression data. Researchers applied SVMs and RFs along with
statistical analysis tools like Principal Component Analysis (PCA), to unravel critical drought-related
genes and pathways, enhancing our understanding of drought tolerance and providing targets for
genetic improvement in tomatoes [55]. Additionally, the applications of ML in plant metabolomics,
to elucidate the biochemical effects of a non-microbial biostimulant on tomato plants under salt stress
conditions, has also been studied by Chele et al. [56]. The research focused on how ML techniques
can analyze complex metabolomic data to understand and enhance salt stress tolerance in tomatoes,
highlighting the potential of integrating ML and metabolomics to improve crop resilience to
environmental stressors.

In a study conducted by Bupi et al. [57] an integrated ML framework was developed to assess
the severity of Tomato Yellow Leaf Curl Virus (TYLCV) infections. By leveraging advanced
algorithms to identify patterns and predict infection severity, the framework incorporates tools for
data preprocessing, feature selection, and model optimization. The researchers suggest that this ML
framework can effectively and timely contribute to managing TYLCV in agricultural systems.
Additionally, they highlight its potential applications in precision agriculture and its role in
developing resistant cultivars for utilization in breeding programs. Moreover, Oliveira Dias et al. [58],
employed RFs models to predict late blight severity in tomato plants caused by Phytophthora infestans.
They utilized multispectral images captured by unmanned aerial vehicles (UAVs) to calculate
vegetation indices, which served as input features for the models, integrating remote sensing
applications. Two methodologies were tested: the first utilized images from the final day of
evaluation, while the second incorporated images from four different evaluation days. The
researchers emphasize the effectiveness and potential of integrating remote sensing and ML for
phenotyping in real-world conditions. They highlight its applications in breeding programs aimed at
developing late blight-resistant tomato varieties, as well as its utility for informed decision-making
in crop management and accelerating the selection of superior cultivars. Gadade and Kirange [59],
explored the use of classical ML techniques like SVMs, for identifying tomato leaf disease progress
across different developmental plant stages. Although this study focuses on disease identification, it
offers tools and methods that are highly beneficial for breeding programs by streamlining the disease
evaluation process, providing accurate solutions for disease resistance screening and supporting the
developments of tomato cultivars with enhanced disease resistance. Furthermore, Tan et. al. [60],
tried to compare classical ML techniques (SVMs, k-Nearest Neighbors (k-NN), and RFs) and DL
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methods CNNs and pre-trained models) for classifying tomato leaf diseases. The results indicated
that DL models outperformed classical ML in terms of classification accuracy and robustness and
eliminated the need for manual feature extraction by learning features directly from the data. This
study can contribute in tomato breeding, by highlighting that DL methods can provide a tool to
enhance disease resistance screening and improve breeding efficiency [60].

Finally, Johansen et al., conducted field and unmanned aerial vehicles (UAVs) phenotyping
experiment of 199 accessions of a wild tomato species (Solanum pimpinellifolium) for biomass and yield
prediction under normal and saline conditions on UAV imagery based on shape characters. The
researchers demonstrated the feasibility of biomass and yield predictions (two indicators of salt
tolerance) up to eight weeks prior to harvesting [61], facilitating the identification of salt-tolerant
accessions. Their tolerance traits could then be introgressed into commercial cultivars.

2.1.4. ML Applications for Multiple Trait Combinations and GP

Researchers have applied Al based learning tools focusing on breeding for multiple traits
simultaneously. ML algorithms have been utilized to interpret genomic data to improve the efficiency
of predictions for complex quantitative traits, such as yield and disease resistance, further advancing
breeding efficiency by merging genomics with Al-driven computational tools [36,62]. Yamamoto et
al. [63], discussed a simulation-based breeding strategy that integrates whole-genome prediction to
improve complex characteristics like yield and flavor by leveraging genomic information. The main
aspects studied were the integration of breeding stimulation and GP, the construction of phenotype
prediction models, and the simulation for yield improvement and flavor-related traits. Recent
research introduces the term Integrated Genomic-Environomic Prediction (iGEP), extending the
traditional GP approach. It combines multi-omics data, big data technologies, and Al, particularly
using machine and DL to increase the precision and credibility of phenotypic prediction. Although
these studies' primary emphasis is on crops like rice, wheat, and maize the researchers highlight that
the same methodologies and techniques can be applied to tomatoes successfully [64,65]. ANNs and
MLR models have also been employed to investigate tomato callus formation, anther culture and the
factors that influence these phenomena. Analysing the effects of multiple parameters such as plant
genotype, concentration of plant growth regulators, cold temperature duration and flower length
through ANNs and MLRs researchers can investigate the callus induction percentage and the
numbers of regenerated calli [42]. Rearchers have also reviewed the potential of GP in tomato
breeding, emphasizing that its implementation requires the optimization of varius factors, including
field trial management, agronomic practices, seed production, phenotyping, and sequencing.
Furthermore they highlight that a careful evaluation of parameters such as inbreeding levels, marker
metrics, and the number of individuals to assess is essential. The researchers conclude that
integrating GP into breeding programs like the single seed descent scheme and backcrossing can
reduce the number of generations and streamline the selection process in tomato breeding.
Additionally they emphasize that genotyping platforms can facilitate the identification of desirable
and undesirable genotypes, thereby enhancing introgression of favourable traits [51,66].

2.2. Eggplant

2.2.1. ML Applications for Selecting Superior Plants Based on Yield Prediction

Various studies have explored Al-based methods to enhance yield estimation and agricultural
management in eggplants. ML models using spectral vegetation indices derived from remote sensing
data have significantly improved eggplant yield predictions. SVIs are mathematical combinations of
reflectance values from different wavelengths captured by remote sensing devices. They are widely
used to quantify vegetation characteristics such as health, biomass, chlorophyll content and water
status [67]. Tasan et al. [68], demonstrated the accuracy of five distinct machine learning models—
ANN, kNN, SVR, RF, and AB—were examined for their capacity to forecast eggplant yield at field
scale, with varying input combinations, highlighting data-driven approaches to optimize precision
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agriculture [68]. Additionally, a study by Islam et al. [69], applied predictive algorithms, including
regression and boosting techniques, for precise eggplant yield prediction of 130 locally collected
eggplant genotypes. The study's overall findings demonstrated that combining vegetation index and
crop data can significantly improve eggplant production modeling using ANN-based remote
sensing, even though the data collected over three growing seasons is insufficient to make definitive
judgments. These two studies underscore Al's utility in aiding breeders with selection of superior
genotypes.

2.2.2. ML Applications for Growth Parameters and Seed Quality

Other studies have leveraged Al for crop quality enhancement. Garcia-Fortea et al. [70],
introduced MicroScan, a DL-based tool to identify the ideal stage for pollen induction in
androgenesis. As a result, a more efficient method for producing doubled haploid lines provides a
valuable tool for research in plant genetics and breeding, facilitating the production of doubled
haploid lines [70]. Additionally, Sun et al. [71], used multispectral imaging and ML to classify
eggplant seeds with greater accuracy, benefiting seed quality assessment through improved
classification models. Furthermore, research conducted by Nomura et al. in 2023 [72], focused on
developing a hybrid Al model for canopy photosynthesis rate estimation in eggplants, combining
different data-driven techniques. The model combines ML methods and traditional modeling
techniques to create an accurate and trustworthy system for predicting canopy photosynthesis rates
under various environmental conditions and their impact on fruit quality, while researchers
demonstrate that it can be applied effectively for greenhouse management optimizations in eggplants
[72].

2.2.3. ML Applications for Breeding Against Environmental Stressors

Kaniyassery et al. [73], developed an Al-based disease detection system for eggplant, focusing
on leaf spot and fruit rot diseases. The research addressed two primary aspects: the impact of
meteorological variables on disease incidence and the Al-based classification of diseases using
techniques such as image recognition and pattern analysis. The study utilized the YOLOv8 (You Only
Look Once v8) model, a state-of-the-art DL algorithm for object detection, to accurately identify and
classify disease symptoms from images. The researchers concluded that combining weather-based
disease modeling with Al-driven classification offers a comprehensive approach to managing plant
diseases, enhancing productivity and decision-making processes in eggplant breeding programs [73].
In another recent study, Lajom et al. [74], employed a SVM model integrated with near-infrared
spectroscopy (NIRS) to detect eggplant fruit and shoot borer (EFSB) (Leucinodes orbonalis) infestations
accurately at early stages. The results demonstrated a high degree of accuracy in identifying EFSB,
marking a significant advancement in the integration of modern technology to agricultural pest
management. This approach provides a valuable tool for eggplant farmers and breeders aiding in the
selection of resistant genotypes and improving pest control strategies.. Additionally, Zhang et. al,
[54] detected Verticillium wilt in eggplant leaves, combined VGG16, which is a convolutional neural
network (CNN) architecture enhanced with a triplet attention mechanism. That trained VGG16-
triplet attention model achieved a precision of 86.73% on the test set, demonstrating its effectiveness
in detecting the disease and contributing to eggplant breeding efforts by addressing disease
management and resistance traits in breeding programs [54].

2.2.4. ML Applications for Breeding Multiple Traits

Cemek et al. [75], addressed water management challenges by applying Al techniques to predict
crop evapotranspiration (ET) for eggplants. Models like ANNs and SVMs provided reliable ET
estimates based on environmental and crop data, supporting efficient water usage in irrigation.
ANNSs have also been utilized in studies aiming to model the relationship between integrated
nutrient management practices and eggplant yield and quality. The study of Thingujam et al. [76],
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incorporates numerous nutrient management strategies combining organic and inorganic nutrient
sources aiming to assess their impact on the growth, yield, and quality of eggplants. Overall, the
ANNs models application can effectively be utilized as an optimal nutrient management guide to
making decisions for better eggplant fruit quality and yields, while using nutrient availability
effectively and sustainably.

DL techniques have also been proposed to address challenges in horticultural crops including
eggplants. More specifically, AlexNet, a pioneering deep convolutional neural network (CNN)
architecture, particularly based on image recognition and computer vision tasks, and VGG-16, which
is a convolutional neural network (CNN) architecture, widely used in computer vision tasks, are
introduced by a review article from Yang et al. 2021. Researchers propose AlexNet and VGG-16 for
five eggplant diseases classification using smartphones revealing promising results.

The aforementioned advancements underscore Al's potential in improving agricultural
practices, particularly in yield prediction, water management, and crop quality breeding for
eggplants.

2.3. Potato

2.3.1. ML Applications for Productivity Monitoring and Yield Prediction

ML has emerged as a pivotal tool in agriculture; specifically in potato (Solanum tuberosum L.)
research, by providing robust solutions to complex challenges in yield forecasting, quality
monitoring, disease detection, and overall crop management. ML has facilitated significant
advancements for yield prediction, which could have potential implications in plant breding, as
evidenced by numerous studies that integrate satellite imagery, climatic data, and agronomic
parameters. Salvador et al. [78], employed a combination of meteorological data, field observations,
and satellite imagery with five ML algorithms —RF, support vector machine linear (svmL), support
vector machine polynomial (svmP), support vector machine radial (svmR), and general linear model
(GLM)—across six time frames to assess yield prediction models in Mexico. The SVM-polynomial
model, when trained with the first five months of data post-sowing, was the most effective for
predicting yield during the summer cycle, while the RF model performed best in the winter cycle
with only three months of data [78]. The proposed methodology can predict potato yield prior to
harvest, making it highly valuable for developing food security strategies

Similarly, Gomez et al. [79], in Spain developed predictive models using Sentinel satellite
imagery to support precision agriculture. By testing nine ML algorithms in their initial study —
ranging from generalized linear models (GLM) to k-nearest neighbors (KNN) and model-averaged
neural networks (avNNet) —they were able to identify the models best suited for potato yield
forecasting. In a subsequent study, Gémez et al. [79] focused on SVM-radial and RF algorithms and
introduced the Potato Productivity Index (PPI), a novel metric for yield prediction. Their findings
validated the effectiveness of the PPI index, underscoring the potential of ML and remote sensing
data to refine yield estimations in regional potato production [79,80]. Additionally, Kurek et al. [81],
conducted research in Poland, utilizing agronomic, climatic, soil, and satellite data across five
growing seasons on 114 commercial potato fields. By applying ML techniques such as linear
regression, ridge, Lasso, Elastic Net, XGBoost, RF, multilayer perceptron (MLP), stochastic gradient
descent (SGD), and support vector regression (SVR), they developed three predictive models: non-
satellite, satellite, and hybrid, the latter achieving the lowest mean absolute percentage error (MAPE)
[81]. El-Kenawy et al. [82] assessed several predictive models —such as K-nearest neighbors (KNN),
gradient boosting, XGBoost, multilayer perceptron (MLP), graph neural networks (GNNs), gated
recurrent units (GRUs), and long short-term memory networks (LSTMs)—using metrics like mean
squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) to predict
potato yield. Their results indicate that, GNNs and LSTMs offer superior accuracy and effectively
capture complex spatial and temporal patterns [82].
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Li et al. [83], combined cultivar-specific data with UAV (unmanned aerial vehicle) remote
sensing to improve yield predictions in Minnesota. Using RF regression and SVR, they found that
early-season UAV spectral data—particularly at the tuber initiation stage in late June—correlated
strongly with marketable yield. Their results revealed that combining high-resolution UAV imagery
with cultivar data significantly outperformed yield prediction models that lacked cultivar-specific
information, highlighting the potential of early detection for yield optimization [83].

Coulibali et al. [84], studied gradients in the elemental composition of a potato leaf tissue (i.e. its
ionome) that are linked to crop potential and therefore have applications in plant breeding. Because
the ionome is a function of genetics and environmental conditions, practitioners aim at fine-tuning
fertilization to obtain an optimal ionome based on the needs of potato cultivars. Their objective was
to assess the validity of cultivar grouping and predict potato tuber yields using foliar ionomes. Their
dataset comprised 3382 observations in Québec (Canada) from 1970 to 2017. The first mature leaves
from top were sampled at the beginning of flowering for total N, P, K, Ca, and Mg analysis. They also
used the preprocessed ionomes to assess their effects on tuber yield classes (high- and low-yields) on
a cultivar basis using k-nearest neighbors, RF and SVMs classification algorithms. Their ML models
returned an average accuracy of 70%, a fair diagnostic potential to detect in-season nutrient
imbalance of potato cultivars [84].

Yu et al. [85] on the other hand highlighted the importance of accurately estimating potato Leaf
Area Index (LAI) for optimizing yield prediction and management practices. Using UAV-based
remote sensing, their study combined data from RGB images, LiDAR, and hyperspectral imaging
(HSI). Four ML models —SVR, Random Forest Regression (RFR), Histogram-based Gradient Boosting
Regression Tree (HGBR), and Partial Least-Squares Regression (PLSR)— analyzed features from
these data sources, with HSI showing the highest predictive accuracy due to its rich spectral
information. Combining all features across sensors achieved the highest R? (0.782), with RF
Regression excelling in feature integration. This approach not only advances LAI estimation but also
has potential applications in breeding programs and precision agriculture [85].

2.3.2. ML Applications for Variey Identification and Potato Tuber Quality

Rahman et al. [86]. explored the use of DL models for potato breed recognition, employing five
state-of-the-art convolutional neural network models, namely: VGG16, ResNet50, MobileNet,
Inception-v3, and another custom CNN model. These models were trained on images of various
potato breeds to differentiate them based on visual traits such as size, shape, color, texture, and skin
pattern. Performance evaluation revealed that the customized CNN model achieved the highest
accuracy at 94.84%, demonstrating its superiority for this task [86]. Similarly, Azizi et al. [87],
proposed a method for identifying and differentiating 10 potato varieties by integrating machine
vision and ANNSs. Non-linear ANNs achieved a perfect classification accuracy of 100%. The findings
underscore the efficacy of combining machine vision with neural networks for precise potato variety
identification [87].

2.3.3. ML Applications for Breeding Against Environmental Stressors

Potato crops are highly susceptible to fungal diseases like early blight (Alternaria solani) and late
blight (Phytophthora infestans), leading to significant yield losses. ML, through image analysis [88],
monitoring of stress factors and optimizing nutrient management [88], has improved disease
detection. A plethora of ML tools like SVMs, RFs, ANN and CNNs, have been implemented in
various studies for efficient detection of plant diseases [89-96] enhancing genotype selection in
breeding programs. ML applications in disease detection also extend to viral infections, underscoring
the critical role of ML in advancing virus detection and supporting healthier crop management
practices [43,98,99].

Sugiura et al. [98], developed an image classification method to detect virus-infected plants in
potato seed production fields in Japan, aiming to improve the roguing process during selection
programs. In this study, RGB images were captured using an unmanned aerial vehicle (UAV) from 5
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to 10 meters above the ground. A convolutional neural network (CNN) achieved 96% accuracy in
training and 84% in validation, demonstrating the potential of UAV-based image classification for
effective virus detection in potato fields. This method is particularly important for plant breeding, as
it enables the efficient identification of virus-infected plants, ensuring the production of virus-free
seed tubers and contributing to the overall health and productivity of potato crops [98].

ML has also been applied to monitor stress factors and optimize nutrient management in potato
crops. Gold et al. [89], analyzed physiological responses in potato cultivars with varied resistance to
late blight by examining their spectral reflectance following exposure to Phytophthora infestans. Using
ML algorithms, including RF and partial least squares discriminant analysis (PLS-DA), they showed
that specific genotypic traits significantly influence disease response, providing insights into the
complex host-pathogen interactions and helping identify cultivars with natural disease resistance.
These findings highlight the potential of ML to improve understanding of crop resilience and
facilitate the selection of stress-resistant varieties [89].

Boguszewska-Mankowska et al. [100], investigated drought tolerance variability among 50
potato cultivars by analyzing morphological traits under different water regimes over 11 consecutive
years. The study focused on tuber yield, plant tolerance indices, and Climatic Water Balance to assess
stability in drought conditions. To enhance the classification of drought tolerance groups, several ML
algorithms, including Quadratic Discriminant Analysis, RF, Extra Trees, AdaBoost, and extreme
gradient boosting, were evaluated. Extreme gradient boosting emerged as the most effective
classifier, achieving an accuracy of 96.7% [100].

Lapajne et al. [101], explored the use of hyperspectral imaging and attention-based DL models
to detect drought stress in potato plants. Their study involved two potato cultivars exposed to water-
deficient conditions and used dual-sensor hyperspectral imaging (Visible and Near-Infrared/VNIR
and Short-Wave Infrared/ SWIR) to identify critical wavelengths related to drought stress.

These applications can be utilized in plant breeding by improving detection of the effects of
environmental stressors in breeding programs, allowing for more efficient selection of plants with
desirable traits, thus enhancing breeding outcomes and crop sustainability.

2.4. Pepper

2.4.1. ML Applications for Yield Prediction and Favourable Agronomic Traits

Lozada et al. [102], implemented ridge regression and DL-based models to estimate genomic
breeding values for yield and agronomic traits in 204 Capsicum genotypes evaluated across multi-
environment trials in New Mexico, USA. Their study aimed to assess the accuracy of GP for traits
related to yield, morphology, and phenology, examine the impact of marker subsets on prediction
accuracy, and evaluate selection responses for various strategies. Using six models they highlighted
the promise of genome-wide selection for chile pepper breeding. The study underscored the
importance of large training datasets to enhance the accuracy of DL models [102].

2.4.2. ML Applications for Variety Identification, Chemical Clasification, Seed Selection and
Fruit Quality

Sabanci et al. [103], explored the use of computer vision and Al to classify pepper seeds from
different cultivars, which is crucial for breeding programs. In this study, images of seeds from green,
orange, red, and yellow pepper cultivars were captured using a flatbed scanner. The following
approaches were proposed for classification: the first involved training CNN models (ResNet18 and
ResNet50), achieving accuracies of 98.05% and 97.07%, respectively. The second approach involved
fusing features from pre-trained CNN models and applying feature selection before classifying with
a SVM. The CNN-SVM-Cubic model achieved up to 99.02% accuracy offerings high precision and
efficiency in plant breeding [103]. Moreover, Kurtulmus et al. [104], developed a classification method
to discriminate pepper seed varieties using neural networks and computer vision. The multilayer
perceptron model with 30 neurons in the hidden layer, trained using resilient back propagation,
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achieved an accuracy of 84.94% in classifying eight pepper seed varieties [104]. Additionally, Tu et
al. [105], focused on improving the selection of high-quality pepper seeds by automating the
recognition of seed features. The study identified several physical traits, such as color, size, and
weight, as key indicators of seed vigor. The best predictive model, based on a multilayer perceptron
(MLP) neural network using 15 physical traits, achieved a high stability rate of 99.4%. The model
significantly improved germination rates and selection efficiency, reaching up to 79.4% germination
and 90% selection rate. This automated approach shows potential for reducing costs and labor in seed
selection, making it an effective tool for quality control in pepper breeding programs [105].

Ramirez-Meraz et al. [106], applied 1H NMR-based metabolomics combined with ML,
specifically RF, to study the metabolic fingerprinting of ten experimental races of Capsicum annuum
cv. Jalapeno. Their analysis classified and evaluated these races based on differential metabolite
profiles, commercial traits, and multivariate data analysis. The study revealed variations in
carbohydrate, amino acid, nucleotide, and organic acid contents among the races. RF identified
length, width, weight, and yield as key variables for accurately distinguishing between the races,
highlighting critical traits for commercial and breeding applications.

2.4.3. ML Applications for Breeding Against Environmental Stressors

Al can facilitate and improve selection efficiancy for resilient genotypes against environmental
stressors. Dissanayake et al. [107], developed an effective method for detecting diseases and nutrient
deficiencies in bell peppers, focusing on the rapid spread of powdery mildew and magnesium
deficiency. The study integrated CNNs to enhance detection accuracy, achieving a 93% success rate
in distinguishing the health status of bell pepper leaves, with 97% accuracy in identifying magnesium
deficiency and powdery mildew. The approach also demonstrated 98% accuracy in assessing the
progression of powdery mildew and 96% in magnesium deficiency [107]. Haque et al. [108],
highlighted the importance of detecting pepper diseases quickly and accurately to prevent significant
losses in pepper production. The study utilized several pre-trained DL models, including VGG-19,
Xception, NasNet Mobile, MobileNet-V2, ResNet-152-V2, and Inception-ResNet-V2, to extract deep
features from pepper plant images for disease identification. The customized CNN models achieved
high accuracy, with VGG-19 and ResNet-152-V2 reaching an impressive 96.26% accuracy.
Additionally, Xception outperformed Inception-ResNet-V2, MobileNet-V2, and NasNet-Mobile,
achieving a 93.46% accuracy. These results suggest that DL models can be effectively used for early
disease detection in pepper crops, helping farmers minimize losses by enabling rapid identification
and treatment of diseases and for breeding programs to ensure disease resistance in pepper cultivars
[108].

Fumia et al. [109], conducted a comparative study of genomic and phenomic selection
methodologies to identify heat-tolerant genotypes within a core collection of 300 Capsicum annuum
accessions, representing 84.1% of the species' diversity. Initially, anomaly analysis via k-means
clustering was utilized to identify individuals exhibiting anomalous behavior under heat stress
compared to optimal conditions, based on phenotypic data. This analysis informed the training of a
RF, ML model capable of classifying heat-tolerant genotypes with near-perfect accuracy using only
data from trials under optimal conditions. Subsequently, a genomic-based predictive analysis was
performed, leveraging genomic data to predict component traits and generate a weighted rank-sum
selection index (WRSSI) to identify heat-tolerant lines. Finally, the selected lines were compared
across three selection methodologies: (1) breeder's intuition, (2) phenomics-based anomaly analysis,
and (3) genomics-based predictive modeling and selection index. The study concluded that
integrating classical and multispectral phenotyping techniques enhances selection efficiency and
outcomes [109].

Moreover, Islam et al. [69], developed a method for classifying early-stage stress symptoms in
pepper seedlings using image processing and a SVM. The study investigated the effects of different
environmental factors (temperature, light intensity, and day-night cycles) on stress symptoms. Using
RGB camera images, the researchers extracted 18 color features, nine texture features, and one
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morphological feature. The SVM model, validated with cross-validation, achieved an accuracy of
85%. This system provides a way for real-time stress monitoring, enabling growers to optimize
environmental conditions for improved seedling growth. This approach could also assist in
accelerating the identification of stress-resistant traits, aiding in the development of improved
cultivars with enhanced resilience to environmental stresses.

Atas et al. [110], explored the use of hyperspectral imaging for detecting aflatoxin contamination
in chili peppers, offering a rapid, non-destructive alternative to traditional chemical methods. The
study utilized both UV and Halogen excitations, extracting features from individual spectral bands
and their differences. ML classifiers, including multi-layer perceptrons (MLPs) and linear
discriminant analysis (LDA), were applied, achieving robust classification performance with fewer
spectral bands. This method could be useful in breeding programs for selecting aflatoxin-resistant
cultivars, enhancing food safety and quality.

3. Conclusions

The history and evolution of ML provides a robust framework for understanding its
contemporary applications in plant breeding. As methodologies continue to evolve, Al ML and DL
applications could become a cornerstone for addressing critical matters in agriculture and food
security in the future. ML and DL techniques can revolutionize plant breeding by speeding up
decision-making and improving precision through the creation of advanced predictive models that
quickly respond to economic and environmental challenges. The combination of the innovative Al
tools, ML models and Big Data Science with traditional breeding methods can optimize Solanaceae
crop breeding, and enhance efficiency by accelerating the pace and precision of breeding efforts
creating new advanced varieties with superior agronomic traits [42].

The capacity of ML algorithms to uncover hidden data relationships makes them essential
partners in developing sophisticated breeding strategies that integrate multiple parameters,
supporting the creation of crops that are not only highly productive but also resilient and sustainable
across diverse agricultural environments.Therefore Al advancements aim to help breeders to utilize
the new technologies and their transformative impact on agriculture, to develop cultivars well-
adapted to various cultivation systems. It also aims to enhance their effort to make decisions rapidly
and precisely, as the new trend of cultivation cropping systems demands [11,46,65].

The present study underscores the transformative potential of Al and more specifically ML and
DL, in driving advancements in the genetic improvement of tomatoes, potatoes, peppers, and
eggplants. By harnessing advanced algorithms, big data analytics, multiomics and gene-editing
technologies, these innovations not only accelerate breeding cycles but also enable precise selection
of traits such as yield, pest resistance, and climate adaptability, creating thus opportunities for
personalized breeding strategies on Solanaceous crops, tailored to the specific needs of different
regions and agricultural conditions. The adoption of these emerging technologies enables plant
breeders to develop resilient and high-yielding Solanaceous crops capable of addressing all critical
challenges such as food security, climate change, and resource scarcity ensuring that innovations
effectively address the diverse agricultural needs worldwide.

The future of ML and DL in plant genetic improvement appears exceptionally promising as new
technologies continue to evolve. Multimodal Al systems capable of analyzing and integrating diverse
data types — such as genetic information, plant images, and environmental parameters — are set to
revolutionize crop management by providing breeders with a more holistic approach to decision-
making. Automated ML (AutoML) will further facilitate the use of ML by researchers without prior
experience in data analysis, allowing for faster development of models that can be integrated into
genetic breeding programs. Additionally, the convergence of quantum computing and ML holds the
potential to significantly enhance data processing speeds and analytical capabilities, unlocking
unprecedented opportunities for innovation in plant breeding.
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