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Abstract: Artificial intelligence (AI), including machine learning (ML) and deep learning (DL), has 

become an essential tool in modern agriculture, revolutionizing traditional practices and offering 

sustainable solutions to critical challenges, such as climate change, population growth, and resource 

scarcity. Through advanced algorithms and predictive models, ML and DL enhance precise genomic 

selection (GS), trait characterization, and the acceleration of crop breeding processes. These 

technologies facilitate the identification and optimization of key traits, including increased yield, 

improved quality, pest resistance, and tolerance to extreme climatic conditions. Additionally, ML-

driven tools support gene-editing technologies, such as CRISPR-Cas9, contributing to the 

development of resilient and adaptable crops. By leveraging big data analytics and omic technologies, 

they provide valuable insights into linking genetic and phenotypic data, fostering the development 

of sustainable agricultural practices. This research explores the transformative potential of AI, 

particularly ML and DL, in Solanaceous crops by developing advanced breeding strategies to address 

challenges posed by climate change and rapid population growth. Furthermore, this study highlights 

the significant role of these technologies in creating novel crop varieties that are resilient to 

environmental stressors, while exhibiting superior agronomic and quality traits. AI and its 

applications, such as ML and DL, contribute to the genetic improvement of Solanaceous crops, 

strengthening agricultural resilience, ensuring food security, and promoting environmental 

sustainability 

Keywords: artificial intelligence; machine learning; big data; deep learning; plant breeding; 

Solanaceae; tomato; potato; eggplant; pepper  

 

1. Introduction 

Artificial intelligence (AI) and specifically machine learning (ML) and its subset Deep Learning 

(DL) have become key components of modern technological advancement, with transformative 

applications across diverse fields. Agriculture, has increasingly embraced these technologies to 

address challenges such as food security, environmental sustainability, and resource optimization. 

AI and ML are extremely impactful in various sectors of agriculture, such as precision farming and 

field management [1], enabling farmers to make informed decisions about irrigation, fertilization, 

pest control, and harvesting [2]. AI and ML are playing a crucial role in optimizing field monitoring, 

through the analysis of soil quality and health, which is fundamental for agricultural productivity 

[3]. Moreover, AI-driven tools have revolutionized supply chain management in agriculture, 

enhancing inventory tracking, demand forecasting, and logistics [4]. By leveraging AI's capability to 

simulate human intelligence and ML's capacity to analyze and learn from vast datasets, agricultural 

systems are now better equipped to enhance efficiency and resilience [5]. 
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ML algorithms process massively produced datasets allowing farmers to address specific needs 

of their crops, while minimizing waste and resource inefficiency. These vast datasets are also called 

“Big Data” and they consist of 5Vs key attributes (Volume, Velocity, Variety, Veracity, and Value). 

The utilization of Big Data analysis in agriculture, through AI and ML, enables the processing of 

large-scale, diverse, and real-time datasets to make precise predictions, manage resources efficiently, 

and support data-driven decision-making, ultimately optimizing crop selection and improving 

overall productivity [6] (Figure 1). 

 

Figure 1. The five key attributes of Big Data (Volume, Velocity, Variety, Veracity, and Value). Each component 

describes a critical aspect of its nature and challenges. 

A transformative use of AI and AI enabled learning methods like ML and DL in agriculture lies 

in the field of crop genetics and breeding. Crop breeding has been historically a time-intensive 

process, requiring years of research and experimentation to develop improved varieties. AI 

technologies like ML, DL, robotics, and computer vision can analyze vast amounts of data and 

identify patterns useful for selecting superior plant varieties with desired characteristics [7]. ML has 

dramatically accelerated this process by enabling the analysis of complex genetic, phenotypic, and 

environmental datasets encompassing crucial quantitative and qualitative characteristics [8]. ML also 

plays a role in addressing both biotic and abiotic plant stressors [9,10]. In this context ML algorithms 

predict disease outbreaks and identify resistant crop varieties through genetic screening and 

selection, helping breeders to develop more resilient crops [11]. These advancements are crucial for 

breeding resilient crops ensuring sustainability, particularly in the face of climate change.  

ML models like random forests (RFs), support vector machines (SVMs), and gradient boosting 

algorithms (GBAs) allow breeders to identify plants with desirable traits—such as high yield, pest 

resistance, and drought tolerance—much faster and with greater accuracy than traditional methods 

[12]. RF is a commonly used supervised ML algorithm for both classification and regression. It 

combines multiple decision trees to improve accuracy and robustness and can effectively handle 

high-dimensional data, making it suitable for genomic data analysis [13]. Moreover, SVMs, which 

also belong to supervised ML models, are used for classification and regression (support vector 

regression) problems. They are powerful classifiers that work by finding the hyperplane that best 

separates different classes in the feature space. SVMs can be particularly useful in classifying plant 

varieties based on genetic markers, such as grapevine [14]. GBAs are a type of ML technique used 

for regression and classification tasks. They build an ensemble of weak learners, typically decision 

trees, in a sequential manner. Each new model is trained to correct the errors made by the previous 

models, aiming to minimize the overall prediction error using gradient descent [15]. 
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Deep Learning (DL), an advanced and specialized subset of Machine Learning (ML), has made 

a significant impact on the field of plant breeding by enabling the processing of high-dimensional 

and complex data. It is important to emphasize that DL is built upon the core principles of ML but 

distinguishes itself through its ability to automatically extract features from raw data and model 

intricate patterns, particularly when working with large datasets. For example, convolutional neural 

networks (CNNs), a class of DL models particularly well-suited for tasks involving spatial data, such 

as images or sequences, can analyze plant images to identify subtle phenotypic traits that might 

escape human observation, such as disease symptoms or growth anomalies [16].  

The integration of ML techniques into plant phenotyping enables rapid and accurate analysis of 

multiple traits, which are influenced by environmental factors [17,18]. Recurrent neural networks 

(RNNs) designed to process sequential data, are used to study temporal patterns, such as changes in 

plant growth over time under varying environmental conditions [19]. Artificial neural networks 

(ANNs) which are computational models inspired by the structure and function of biological neural 

networks in animal and human brains, are used for prediction and identification of different species 

by analysing accurately and effectively complex morphological traits [20]. These tools provide 

breeders with detailed insights that inform the selection and development of superior crop varieties.  

The emergence of big data and omic technologies has significantly enhanced the capabilities of 

ML in plant genetics and breeding. The power of big data analytics lies in its ability to integrate these 

extensive and varied datasets, creating a comprehensive framework for understanding plant biology. 

ML algorithms are particularly adept at linking omics data with phenotypic traits, enabling 

researchers to discover previously obscured relationships and patterns. With the exponential growth 

of genomic data and advances in AI algorithms, breeders can now leverage ML and DL techniques 

to revolutionise crop improvement [21]. 

In particular, genomic selection (GS) is a type of marker-assisted selection that uses dense 

molecular markers such as single nucleotide polymorphisms (SNPs) from the entire genome 

simultaneously in a linear regression model to predict the breeding potential of plants [22,23]. GS 

using AI enabled learning techniques, has been used to analyze big genomic data for superior 

genotypes identification and prediction of breeding values, optimizing the genotype selection 

process [24]. The key principle of GS is to build an accurate prediction model based on a training 

population consisting of individuals with both genotypic and phenotypic data [25]. ML models have 

proven invaluable in enhancing the efficiency of GS. By analyzing complex patterns within large 

datasets ML and DL algorithms forecast accurately phenotypic outcomes, enhancing the efficiency of 

plant breeding programs helping breeders make more strategic decisions [26].  

ML and DL have also been implemented for prediction of genotypes-by-environment 

interactions, enhancing breeders’ choices for well adaptive traits under diverse environments [27,28]. 

Moreover, reinforcement learning, one of the three basic ML paradigms, where the model is exposed 

to an environment and receives feedback in the form of rewards or penalties based on its actions [29], 

has been applied in simulated environments to optimize breeding strategies streamlining the GS 

process by efficiently allocating resources across different breeding generations [30]. 

In parallel, ML extends to gene editing technologies like CRISPR-Cas9, which have 

revolutionized modern biology by allowing precise modifications of plant genomes [31]. ML models 

support this process by analyzing genomic datasets to identify target regions for editing, enabling 

the introduction of traits such as salinity tolerance, improved nutrient profiles, and pest resistance 

[32,33]. By combining CRISPR-Cas9 with ML, researchers can develop crops that are better adapted 

to changing environmental conditions, ensuring long-term agricultural sustainability. 

Members of the Solanaceae family are among the world’s most important agricultural species. 

These crops are not only economically significant but also essential for global diets and nutrition. 

Several crops of this family e.g tomato (Solanum lycopersicum), potato (Solanum tuberosum), eggplant 

(Solanum melongena), tobacco (Nicotiana tabacum) and pepper (Capsicum annuum), have been subjected 

to intensive breeding for improved agricultural traits that lead to higher yields, resistance to biotic 

and abiotic stresses, longer shelf-life, as well as better taste and superior nutritional quality [34]. 
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However, long-term breeding objectives could be negated by alterations to the economic or physical 

environment [35]. 

AI stands as a transformative force, revolutionising Solanaceae crop breeding efforts with its 

array of groundbreaking technologies. The integration of ML applications in Solanaceaous crop 

breeding, highlights their transformative potential in accelerating trait prediction, disease detection 

and stress resilience, enabling breeders to efficiently analyze complex datasets, uncover genetic 

insights, and develop high-quality, resilient cultivars tailored to meet the challenges of modern 

agriculture in the perspective of climate change challenges (Figure 2). ML applications in Solanaceae 

research are being used to analyze large datasets, either focusing on specific traits individually or 

combining various types of data to predict cross-breeding and estimate different plants’ performance 

under diverse conditions, analyzing numerous data and genotype-phenotype interactions [36,37].  

The purpose of this study is to investigate the transformative applications of AI and specifically 

ML and DL in breeding Solanaceous crops, focusing on major representatives of this family, such as 

tomatoes, potatoes, peppers, and eggplants and to highlight the beneficial effects of AI methods to 

enhance important agricultural traits, and to promote innovations supporting global food security 

and environmental sustainability. 

 

Figure 2. ML applications in Solanaceous crops to enhance breeding strategies for important selection targets. 

2. Applications of Machine Learning in Solanaceaous Crop Breeding  

2.1. Tomato 

2.1.1. ML Applications for Productivity Monitoring and Yield Prediction 

Advancements in AI, Augmented Reality (AR), and remote sensing technologies are 

revolutionizing tomato yield prediction, enabling more precise, data-driven decision-making for 

breeders and farmers. An innovative development in tomato yield estimation is the ARIA 

(Augmented Reality and Artificial Intelligence) mobile app, designed to detect, count, and classify 

tomatoes by capturing images through markerless AR technology. This app gives insights into the 

quality and maturity of preharvest tomatoes and provides reliable yield estimations in breeding 

programs [38]. Darra et al. [39], introduced satellite imagery ML model “Sentinel-2 imaginary”, which 

provides satellite-based data with high-resolution spatial and temporal analysis, capturing key crop 

characteristics [39]. A collaborative study conducted in 2020, applied autonomous and remote-

control techniques to remotely operating greenhouse models for cherry tomatoes production. 

Researchers employed a dynamic virtual greenhouse model that integrates KASPRO (KAS 

PROcesmodel, which is Dutch for "Greenhouse Process Model" (KAS = greenhouse, PROcesmodel = 
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process model)) (for climate modeling) and INTKAM (INTelligent Knowledge-based Adaptive 

Model) (for crop modeling) to enhance yield, quality, and net profit while reducing resource usage 

and costs [40].  

Moreover, researchers utilized ANNs to predict tomato yields in greenhouse production. By 

conducting a sensitivity analysis they determined which input variables significantly impact 

prediction accuracy and showed that combining ANNs with sensitivity analysis can effectively 

enhance decision-making in greenhouse cultivation [41]. Furthermore, ANNs and multiple linear 

regression (MLR) models have been utilized for identification of the most sensitive traits affecting 

fruit yield in segregating generations of tomato during breeding programs [42].  

2.1.2. ML Applications for Quality Traits and Seed Selection 

Multiple prediction models have been developed in tomato to estimate critical quality traits, 

important to be incorporated in genotypes during breeding processes, such as aspartate content, fruit 

weight, firmness, ripeness, elasticity, soluble solids, pH, acidity, sugar, and carotene levels [43–47]. 

In addition, AI algorithms have been used to analyze fruit color in order to classify ripeness stages, 

achieving high accuracy in the process automatically [48]. Vazquez et al. [49], demonstrated a ML-

based system which automatically classifies tomato fruits according to their shape, improving the 

efficiency of phenotypic characterization, highlighting its significance for tomato breeding and 

genetics. The researchers used ML algorithms to train a model for recognition and classification of 

different tomato fruit shapes. They also used image analysis techniques to extract shape-related 

information and they created a database containing all these features which served as the training 

and testing base for the model. The applications of this computational tool, could enhance the 

knowledge regarding the relationship between fruit shape and related genes, thus facilitating 

breeding programs, cultivar description and varietal registration and at the same time increase the 

classification accuracy for consumer-preferred fruit shape characteristics [49]. 

Yeon et al. [50], utilized two tomato germplasm collections (TGC1 with 162 accessions and TGC2 

with 191 accessions) employing a 51K Axiom™ SNP array, and they estimated the GEVs of five 

quality characteristics (fruit weight, fruit width, fruit height, pericarp thickness, and total soluble 

solids (TSS) content). The researchers implemented parametric models (RR-BLUP, Bayes A, Bayesian 

LASSO) and non-parametric models (RKHS, SVM, RF) evaluating prediction accuracy across various 

cross-validation methods of GS models and marker sets. They concluded that the selection of the 

appropriate GS model can unravel preferable fruit traits in tomato breeding programs, potentially 

accelerating the development of elite cultivars [50].  

AI genomic prediction (GP) models, which enable precise selection based on traits such as fruit 

morphology, color, and yield have also been used to forecast key visual and size traits in tomatoes, 

proving that GS has effectively accelerated the breeding process [51]. GP models have also been 

applied for morphometric and colormetric traits in tomato fruits, intergrating gemomic data with ML 

tools, like genomic best linear unbiased prediction (GBLUP), Bayesian models, and ML approaches 

such as RFs and SVMs, to identify key genetic markers associated with fruit shape, size, and color 

enchancing dissision making and tomato breeding prosseses [36]. An innovative hybrid tomato AI 

breeding program has also been proposed to accelerate time to market by combining Seed-X’s 

advanced computer vision and AI technology with TomaTech’s. The researchers reported that this 

combination significantly increased the likelihood of desirable market characteristics and enhanced 

prediction capabilities in the breeding process. Furthermore, under the perspective of breeding for 

fruit quality, Khan and Adem in 2023, utilized the AI model “Connoisseur” which leverages the 

consumers’ sensory scores for various tomato varieties, coupled with their chemical composition for 

identifying either these compounds are positively or negatively related to flavor [52].  

ML algorithms like SVMs, RFs and Neutral Networks have also been implemented to classify 

and discriminate tomato seeds cultivars. Images of tomato seeds from various cultivars were 

captured using a consistent imaging setup and seed morphology-related traits were extracted. The 

ML models, after they tested for their accuracy and precision, applied to distinguish tomato seeds 
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which belong to different cultivars based on their physical and morphological traits. The researchers 

demonstrate that the findings of the present study highlight the potential of integrating ML with seed 

imaging to modernize agricultural practices and facilitates the identification and tracking of 

promising cultivars in breeding experiments, emphasizing that this approach can be extended to 

other crops apart from tomato [53]. 

2.1.3. ML Applications for Breeding Against Environmental Stressors 

ANNs have been employed to monitor tomato yield under environmental stresses like salinity, 

moisture deficiency, and diseases. Recent studies have integrated ML models, such as RFs and 

decision trees (DT), to develop predictive frameworks for managing irrigation and improving tomato 

production. These models have effectively captured the interactions between environmental and 

plant variables, supporting their application in crop management and breeding programs under 

limited water availability. Similarly, Zhang et al. in their study in 2023 [54], highlighted the potential 

of AI in breeding stress-tolerant tomato cultivars under various abiotic stressors including drought, 

salinity, cold and heat stress. They emphasized the use of machine-learning algorithms to identify 

genetic markers, DL models to analyze multi-omic and environmental data, and AI-driven tools for 

phenotype prediction. Additionally, advanced decision-support systems were proposed to assist 

breeders in selecting and optimizing genotypes for stress-prone environments. These approaches 

demonstrate AI's transformative role in precision breeding and crop management [54]. Moreover a 

study by Chowdhury et.al, focused on identifying drought-responsive genes in tomato utilizing 

various ML tools to analyse gene expression data. Researchers applied SVMs and RFs along with 

statistical analysis tools like Principal Component Analysis (PCA), to unravel critical drought-related 

genes and pathways, enhancing our understanding of drought tolerance and providing targets for 

genetic improvement in tomatoes [55]. Additionally, the applications of ML in plant metabolomics, 

to elucidate the biochemical effects of a non-microbial biostimulant on tomato plants under salt stress 

conditions, has also been studied by Chele et al. [56]. The research focused on how ML techniques 

can analyze complex metabolomic data to understand and enhance salt stress tolerance in tomatoes, 

highlighting the potential of integrating ML and metabolomics to improve crop resilience to 

environmental stressors. 

In a study conducted by Bupi et al. [57] an integrated ML framework was developed to assess 

the severity of Tomato Yellow Leaf Curl Virus (TYLCV) infections. By leveraging advanced 

algorithms to identify patterns and predict infection severity, the framework incorporates tools for 

data preprocessing, feature selection, and model optimization. The researchers suggest that this ML 

framework can effectively and timely contribute to managing TYLCV in agricultural systems. 

Additionally, they highlight its potential applications in precision agriculture and its role in 

developing resistant cultivars for utilization in breeding programs. Moreover, Oliveira Dias et al. [58], 

employed RFs models to predict late blight severity in tomato plants caused by Phytophthora infestans. 

They utilized multispectral images captured by unmanned aerial vehicles (UAVs) to calculate 

vegetation indices, which served as input features for the models, integrating remote sensing 

applications. Two methodologies were tested: the first utilized images from the final day of 

evaluation, while the second incorporated images from four different evaluation days. The 

researchers emphasize the effectiveness and potential of integrating remote sensing and ML for 

phenotyping in real-world conditions. They highlight its applications in breeding programs aimed at 

developing late blight-resistant tomato varieties, as well as its utility for informed decision-making 

in crop management and accelerating the selection of superior cultivars. Gadade and Kirange [59], 

explored the use of classical ML techniques like SVMs, for identifying tomato leaf disease progress 

across different developmental plant stages. Although this study focuses on disease identification, it 

offers tools and methods that are highly beneficial for breeding programs by streamlining the disease 

evaluation process, providing accurate solutions for disease resistance screening and supporting the 

developments of tomato cultivars with enhanced disease resistance. Furthermore, Tan et. al. [60], 

tried to compare classical ML techniques (SVMs, k-Nearest Neighbors (k-NN), and RFs) and DL 
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methods CNNs and pre-trained models) for classifying tomato leaf diseases. The results indicated 

that DL models outperformed classical ML in terms of classification accuracy and robustness and 

eliminated the need for manual feature extraction by learning features directly from the data. This 

study can contribute in tomato breeding, by highlighting that DL methods can provide a tool to 

enhance disease resistance screening and improve breeding efficiency [60].  

Finally, Johansen et al., conducted field and unmanned aerial vehicles (UAVs) phenotyping 

experiment of 199 accessions of a wild tomato species (Solanum pimpinellifolium) for biomass and yield 

prediction under normal and saline conditions on UAV imagery based on shape characters. The 

researchers demonstrated the feasibility of biomass and yield predictions (two indicators of salt 

tolerance) up to eight weeks prior to harvesting [61], facilitating the identification of salt-tolerant 

accessions. Their tolerance traits could then be introgressed into commercial cultivars. 

2.1.4. ML Applications for Multiple Trait Combinations and GP 

Researchers have applied AI based learning tools focusing on breeding for multiple traits 

simultaneously. ML algorithms have been utilized to interpret genomic data to improve the efficiency 

of predictions for complex quantitative traits, such as yield and disease resistance, further advancing 

breeding efficiency by merging genomics with AI-driven computational tools [36,62]. Yamamoto et 

al. [63], discussed a simulation-based breeding strategy that integrates whole-genome prediction to 

improve complex characteristics like yield and flavor by leveraging genomic information. The main 

aspects studied were the integration of breeding stimulation and GP, the construction of phenotype 

prediction models, and the simulation for yield improvement and flavor-related traits. Recent 

research introduces the term Integrated Genomic-Environomic Prediction (iGEP), extending the 

traditional GP approach. It combines multi-omics data, big data technologies, and AI, particularly 

using machine and DL to increase the precision and credibility of phenotypic prediction. Although 

these studies' primary emphasis is on crops like rice, wheat, and maize the researchers highlight that 

the same methodologies and techniques can be applied to tomatoes successfully [64,65]. ANNs and 

MLR models have also been employed to investigate tomato callus formation, anther culture and the 

factors that influence these phenomena. Analysing the effects of multiple parameters such as plant 

genotype, concentration of plant growth regulators, cold temperature duration and flower length 

through ANNs and MLRs researchers can investigate the callus induction percentage and the 

numbers of regenerated calli [42]. Rearchers have also reviewed the potential of GP in tomato 

breeding, emphasizing that its implementation requires the optimization of varius factors, including 

field trial management, agronomic practices, seed production, phenotyping, and sequencing. 

Furthermore they highlight that a careful evaluation of parameters such as inbreeding levels, marker 

metrics, and the number of individuals to assess is essential. The researchers conclude that 

integrating GP into breeding programs like the single seed descent scheme and backcrossing can 

reduce the number of generations and streamline the selection process in tomato breeding. 

Additionally they emphasize that genotyping platforms can facilitate the identification of desirable 

and undesirable genotypes, thereby enhancing introgression of favourable traits [51,66]. 

2.2. Eggplant  

2.2.1. ML Applications for Selecting Superior Plants Based on Yield Prediction 

Various studies have explored AI-based methods to enhance yield estimation and agricultural 

management in eggplants. ML models using spectral vegetation indices derived from remote sensing 

data have significantly improved eggplant yield predictions. SVIs are mathematical combinations of 

reflectance values from different wavelengths captured by remote sensing devices. They are widely 

used to quantify vegetation characteristics such as health, biomass, chlorophyll content and water 

status [67]. Taşan et al. [68], demonstrated the accuracy of five distinct machine learning models—

ANN, kNN, SVR, RF, and AB—were examined for their capacity to forecast eggplant yield at field 

scale, with varying input combinations, highlighting data-driven approaches to optimize precision 
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agriculture [68]. Additionally, a study by Islam et al. [69], applied predictive algorithms, including 

regression and boosting techniques, for precise eggplant yield prediction of 130 locally collected 

eggplant genotypes. The study's overall findings demonstrated that combining vegetation index and 

crop data can significantly improve eggplant production modeling using ANN-based remote 

sensing, even though the data collected over three growing seasons is insufficient to make definitive 

judgments. These two studies underscore AI's utility in aiding breeders with selection of superior 

genotypes. 

2.2.2. ML Applications for Growth Parameters and Seed Quality 

Other studies have leveraged AI for crop quality enhancement. García-Fortea et al. [70], 

introduced MicroScan, a DL-based tool to identify the ideal stage for pollen induction in 

androgenesis. As a result, a more efficient method for producing doubled haploid lines provides a 

valuable tool for research in plant genetics and breeding, facilitating the production of doubled 

haploid lines [70]. Additionally, Sun et al. [71], used multispectral imaging and ML to classify 

eggplant seeds with greater accuracy, benefiting seed quality assessment through improved 

classification models. Furthermore, research conducted by Nomura et al. in 2023 [72], focused on 

developing a hybrid AI model for canopy photosynthesis rate estimation in eggplants, combining 

different data-driven techniques. The model combines ML methods and traditional modeling 

techniques to create an accurate and trustworthy system for predicting canopy photosynthesis rates 

under various environmental conditions and their impact on fruit quality, while researchers 

demonstrate that it can be applied effectively for greenhouse management optimizations in eggplants 

[72].  

2.2.3. ML Applications for Breeding Against Environmental Stressors 

Kaniyassery et al. [73], developed an AI-based disease detection system for eggplant, focusing 

on leaf spot and fruit rot diseases. The research addressed two primary aspects: the impact of 

meteorological variables on disease incidence and the AI-based classification of diseases using 

techniques such as image recognition and pattern analysis. The study utilized the YOLOv8 (You Only 

Look Once v8) model, a state-of-the-art DL algorithm for object detection, to accurately identify and 

classify disease symptoms from images. The researchers concluded that combining weather-based 

disease modeling with AI-driven classification offers a comprehensive approach to managing plant 

diseases, enhancing productivity and decision-making processes in eggplant breeding programs [73]. 

In another recent study, Lajom et al. [74], employed a SVM model integrated with near-infrared 

spectroscopy (NIRS) to detect eggplant fruit and shoot borer (EFSB) (Leucinodes orbonalis) infestations 

accurately at early stages. The results demonstrated a high degree of accuracy in identifying EFSB, 

marking a significant advancement in the integration of modern technology to agricultural pest 

management. This approach provides a valuable tool for eggplant farmers and breeders aiding in the 

selection of resistant genotypes and improving pest control strategies.. Additionally, Zhang et. al, 

[54] detected Verticillium wilt in eggplant leaves, combined VGG16, which is a convolutional neural 

network (CNN) architecture enhanced with a triplet attention mechanism. That trained VGG16-

triplet attention model achieved a precision of 86.73% on the test set, demonstrating its effectiveness 

in detecting the disease and contributing to eggplant breeding efforts by addressing disease 

management and resistance traits in breeding programs [54].  

2.2.4. ML Applications for Breeding Multiple Traits 

Cemek et al. [75], addressed water management challenges by applying AI techniques to predict 

crop evapotranspiration (ET) for eggplants. Models like ANNs and SVMs provided reliable ET 

estimates based on environmental and crop data, supporting efficient water usage in irrigation. 

ANNs have also been utilized in studies aiming to model the relationship between integrated 

nutrient management practices and eggplant yield and quality. The study of Thingujam et al. [76], 
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incorporates numerous nutrient management strategies combining organic and inorganic nutrient 

sources aiming to assess their impact on the growth, yield, and quality of eggplants. Overall, the 

ANNs models application can effectively be utilized as an optimal nutrient management guide to 

making decisions for better eggplant fruit quality and yields, while using nutrient availability 

effectively and sustainably.  

DL techniques have also been proposed to address challenges in horticultural crops including 

eggplants. More specifically, AlexNet, a pioneering deep convolutional neural network (CNN) 

architecture, particularly based on image recognition and computer vision tasks, and VGG-16, which 

is a convolutional neural network (CNN) architecture, widely used in computer vision tasks, are 

introduced by a review article from Yang et al. 2021. Researchers propose AlexNet and VGG-16 for 

five eggplant diseases classification using smartphones revealing promising results. 

The aforementioned advancements underscore AI’s potential in improving agricultural 

practices, particularly in yield prediction, water management, and crop quality breeding for 

eggplants. 

2.3. Potato 

2.3.1. ML Applications for Productivity Monitoring and Yield Prediction 

ML has emerged as a pivotal tool in agriculture; specifically in potato (Solanum tuberosum L.) 

research, by providing robust solutions to complex challenges in yield forecasting, quality 

monitoring, disease detection, and overall crop management. ML has facilitated significant 

advancements for yield prediction, which could have potential implications in plant breding, as 

evidenced by numerous studies that integrate satellite imagery, climatic data, and agronomic 

parameters. Salvador et al. [78], employed a combination of meteorological data, field observations, 

and satellite imagery with five ML algorithms—RF, support vector machine linear (svmL), support 

vector machine polynomial (svmP), support vector machine radial (svmR), and general linear model 

(GLM)—across six time frames to assess yield prediction models in Mexico. The SVM-polynomial 

model, when trained with the first five months of data post-sowing, was the most effective for 

predicting yield during the summer cycle, while the RF model performed best in the winter cycle 

with only three months of data [78]. The proposed methodology can predict potato yield prior to 

harvest, making it highly valuable for developing food security strategies 

Similarly, Gómez et al. [79], in Spain developed predictive models using Sentinel satellite 

imagery to support precision agriculture. By testing nine ML algorithms in their initial study—

ranging from generalized linear models (GLM) to k-nearest neighbors (KNN) and model-averaged 

neural networks (avNNet)—they were able to identify the models best suited for potato yield 

forecasting. In a subsequent study, Gómez et al. [79] focused on SVM-radial and RF algorithms and 

introduced the Potato Productivity Index (PPI), a novel metric for yield prediction. Their findings 

validated the effectiveness of the PPI index, underscoring the potential of ML and remote sensing 

data to refine yield estimations in regional potato production [79,80]. Additionally, Kurek et al. [81], 

conducted research in Poland, utilizing agronomic, climatic, soil, and satellite data across five 

growing seasons on 114 commercial potato fields. By applying ML techniques such as linear 

regression, ridge, Lasso, Elastic Net, XGBoost, RF, multilayer perceptron (MLP), stochastic gradient 

descent (SGD), and support vector regression (SVR), they developed three predictive models: non-

satellite, satellite, and hybrid, the latter achieving the lowest mean absolute percentage error (MAPE) 

[81]. El-Kenawy et al. [82] assessed several predictive models—such as K-nearest neighbors (KNN), 

gradient boosting, XGBoost, multilayer perceptron (MLP), graph neural networks (GNNs), gated 

recurrent units (GRUs), and long short-term memory networks (LSTMs)—using metrics like mean 

squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) to predict 

potato yield. Their results indicate that, GNNs and LSTMs offer superior accuracy and effectively 

capture complex spatial and temporal patterns [82]. 
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Li et al. [83], combined cultivar-specific data with UAV (unmanned aerial vehicle) remote 

sensing to improve yield predictions in Minnesota. Using RF regression and SVR, they found that 

early-season UAV spectral data—particularly at the tuber initiation stage in late June—correlated 

strongly with marketable yield. Their results revealed that combining high-resolution UAV imagery 

with cultivar data significantly outperformed yield prediction models that lacked cultivar-specific 

information, highlighting the potential of early detection for yield optimization [83]. 

Coulibali et al. [84], studied gradients in the elemental composition of a potato leaf tissue (i.e. its 

ionome) that are linked to crop potential and therefore have applications in plant breeding. Because 

the ionome is a function of genetics and environmental conditions, practitioners aim at fine-tuning 

fertilization to obtain an optimal ionome based on the needs of potato cultivars. Their objective was 

to assess the validity of cultivar grouping and predict potato tuber yields using foliar ionomes. Their 

dataset comprised 3382 observations in Québec (Canada) from 1970 to 2017. The first mature leaves 

from top were sampled at the beginning of flowering for total N, P, K, Ca, and Mg analysis. They also 

used the preprocessed ionomes to assess their effects on tuber yield classes (high- and low-yields) on 

a cultivar basis using k-nearest neighbors, RF and SVMs classification algorithms. Their ML models 

returned an average accuracy of 70%, a fair diagnostic potential to detect in-season nutrient 

imbalance of potato cultivars [84]. 

Yu et al. [85] on the other hand highlighted the importance of accurately estimating potato Leaf 

Area Index (LAI) for optimizing yield prediction and management practices. Using UAV-based 

remote sensing, their study combined data from RGB images, LiDAR, and hyperspectral imaging 

(HSI). Four ML models—SVR, Random Forest Regression (RFR), Histogram-based Gradient Boosting 

Regression Tree (HGBR), and Partial Least-Squares Regression (PLSR)— analyzed features from 

these data sources, with HSI showing the highest predictive accuracy due to its rich spectral 

information. Combining all features across sensors achieved the highest R² (0.782), with RF 

Regression excelling in feature integration. This approach not only advances LAI estimation but also 

has potential applications in breeding programs and precision agriculture [85]. 

2.3.2. ML Applications for Variey Identification and Potato Tuber Quality 

Rahman et al. [86]. explored the use of DL models for potato breed recognition, employing five 

state-of-the-art convolutional neural network models, namely: VGG16, ResNet50, MobileNet, 

Inception-v3, and another custom CNN model. These models were trained on images of various 

potato breeds to differentiate them based on visual traits such as size, shape, color, texture, and skin 

pattern. Performance evaluation revealed that the customized CNN model achieved the highest 

accuracy at 94.84%, demonstrating its superiority for this task [86]. Similarly, Azizi et al. [87], 

proposed a method for identifying and differentiating 10 potato varieties by integrating machine 

vision and ANNs. Non-linear ANNs achieved a perfect classification accuracy of 100%. The findings 

underscore the efficacy of combining machine vision with neural networks for precise potato variety 

identification [87].  

2.3.3. ML Applications for Breeding Against Environmental Stressors  

Potato crops are highly susceptible to fungal diseases like early blight (Alternaria solani) and late 

blight (Phytophthora infestans), leading to significant yield losses. ML, through image analysis [88], 

monitoring of stress factors and optimizing nutrient management [88], has improved disease 

detection. A plethora of ML tools like SVMs, RFs, ANN and CNNs, have been implemented in 

various studies for efficient detection of plant diseases [89–96] enhancing genotype selection in 

breeding programs. ML applications in disease detection also extend to viral infections, underscoring 

the critical role of ML in advancing virus detection and supporting healthier crop management 

practices [43,98,99].  

Sugiura et al. [98], developed an image classification method to detect virus-infected plants in 

potato seed production fields in Japan, aiming to improve the roguing process during selection 

programs. In this study, RGB images were captured using an unmanned aerial vehicle (UAV) from 5 
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to 10 meters above the ground. A convolutional neural network (CNN) achieved 96% accuracy in 

training and 84% in validation, demonstrating the potential of UAV-based image classification for 

effective virus detection in potato fields. This method is particularly important for plant breeding, as 

it enables the efficient identification of virus-infected plants, ensuring the production of virus-free 

seed tubers and contributing to the overall health and productivity of potato crops [98]. 

ML has also been applied to monitor stress factors and optimize nutrient management in potato 

crops. Gold et al. [89], analyzed physiological responses in potato cultivars with varied resistance to 

late blight by examining their spectral reflectance following exposure to Phytophthora infestans. Using 

ML algorithms, including RF and partial least squares discriminant analysis (PLS-DA), they showed 

that specific genotypic traits significantly influence disease response, providing insights into the 

complex host-pathogen interactions and helping identify cultivars with natural disease resistance. 

These findings highlight the potential of ML to improve understanding of crop resilience and 

facilitate the selection of stress-resistant varieties [89]. 

Boguszewska-Mańkowska et al. [100], investigated drought tolerance variability among 50 

potato cultivars by analyzing morphological traits under different water regimes over 11 consecutive 

years. The study focused on tuber yield, plant tolerance indices, and Climatic Water Balance to assess 

stability in drought conditions. To enhance the classification of drought tolerance groups, several ML 

algorithms, including Quadratic Discriminant Analysis, RF, Extra Trees, AdaBoost, and extreme 

gradient boosting, were evaluated. Extreme gradient boosting emerged as the most effective 

classifier, achieving an accuracy of 96.7% [100]. 

Lapajne et al. [101], explored the use of hyperspectral imaging and attention-based DL models 

to detect drought stress in potato plants. Their study involved two potato cultivars exposed to water-

deficient conditions and used dual-sensor hyperspectral imaging (Visible and Near-Infrared/VNIR 

and Short-Wave Infrared/ SWIR) to identify critical wavelengths related to drought stress. 

These applications can be utilized in plant breeding by improving detection of the effects of 

environmental stressors in breeding programs, allowing for more efficient selection of plants with 

desirable traits, thus enhancing breeding outcomes and crop sustainability. 

2.4. Pepper  

2.4.1. ML Applications for Yield Prediction and Favourable Agronomic Traits 

Lozada et al. [102], implemented ridge regression and DL-based models to estimate genomic 

breeding values for yield and agronomic traits in 204 Capsicum genotypes evaluated across multi-

environment trials in New Mexico, USA. Their study aimed to assess the accuracy of GP for traits 

related to yield, morphology, and phenology, examine the impact of marker subsets on prediction 

accuracy, and evaluate selection responses for various strategies. Using six models they highlighted 

the promise of genome-wide selection for chile pepper breeding. The study underscored the 

importance of large training datasets to enhance the accuracy of DL models [102]. 

2.4.2. ML Applications for Variety Identification, Chemical Clasification, Seed Selection and  

Fruit Quality 

Sabanci et al. [103], explored the use of computer vision and AI to classify pepper seeds from 

different cultivars, which is crucial for breeding programs. In this study, images of seeds from green, 

orange, red, and yellow pepper cultivars were captured using a flatbed scanner. The following 

approaches were proposed for classification: the first involved training CNN models (ResNet18 and 

ResNet50), achieving accuracies of 98.05% and 97.07%, respectively. The second approach involved 

fusing features from pre-trained CNN models and applying feature selection before classifying with 

a SVM. The CNN-SVM-Cubic model achieved up to 99.02% accuracy offerings high precision and 

efficiency in plant breeding [103]. Moreover, Kurtulmuş et al. [104], developed a classification method 

to discriminate pepper seed varieties using neural networks and computer vision. The multilayer 

perceptron model with 30 neurons in the hidden layer, trained using resilient back propagation, 
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achieved an accuracy of 84.94% in classifying eight pepper seed varieties [104]. Additionally, Tu et 

al. [105], focused on improving the selection of high-quality pepper seeds by automating the 

recognition of seed features. The study identified several physical traits, such as color, size, and 

weight, as key indicators of seed vigor. The best predictive model, based on a multilayer perceptron 

(MLP) neural network using 15 physical traits, achieved a high stability rate of 99.4%. The model 

significantly improved germination rates and selection efficiency, reaching up to 79.4% germination 

and 90% selection rate. This automated approach shows potential for reducing costs and labor in seed 

selection, making it an effective tool for quality control in pepper breeding programs [105].  

Ramírez-Meraz et al. [106], applied 1H NMR-based metabolomics combined with ML, 

specifically RF, to study the metabolic fingerprinting of ten experimental races of Capsicum annuum 

cv. Jalapeño. Their analysis classified and evaluated these races based on differential metabolite 

profiles, commercial traits, and multivariate data analysis. The study revealed variations in 

carbohydrate, amino acid, nucleotide, and organic acid contents among the races. RF identified 

length, width, weight, and yield as key variables for accurately distinguishing between the races, 

highlighting critical traits for commercial and breeding applications. 

2.4.3. ML Applications for Breeding Against Environmental Stressors  

AI can facilitate and improve selection efficiancy for resilient genotypes against environmental 

stressors. Dissanayake et al. [107], developed an effective method for detecting diseases and nutrient 

deficiencies in bell peppers, focusing on the rapid spread of powdery mildew and magnesium 

deficiency. The study integrated CNNs to enhance detection accuracy, achieving a 93% success rate 

in distinguishing the health status of bell pepper leaves, with 97% accuracy in identifying magnesium 

deficiency and powdery mildew. The approach also demonstrated 98% accuracy in assessing the 

progression of powdery mildew and 96% in magnesium deficiency [107]. Haque et al. [108], 

highlighted the importance of detecting pepper diseases quickly and accurately to prevent significant 

losses in pepper production. The study utilized several pre-trained DL models, including VGG-19, 

Xception, NasNet Mobile, MobileNet-V2, ResNet-152-V2, and Inception-ResNet-V2, to extract deep 

features from pepper plant images for disease identification. The customized CNN models achieved 

high accuracy, with VGG-19 and ResNet-152-V2 reaching an impressive 96.26% accuracy. 

Additionally, Xception outperformed Inception-ResNet-V2, MobileNet-V2, and NasNet-Mobile, 

achieving a 93.46% accuracy. These results suggest that DL models can be effectively used for early 

disease detection in pepper crops, helping farmers minimize losses by enabling rapid identification 

and treatment of diseases and for breeding programs to ensure disease resistance in pepper cultivars 

[108]. 

Fumia et al. [109], conducted a comparative study of genomic and phenomic selection 

methodologies to identify heat-tolerant genotypes within a core collection of 300 Capsicum annuum 

accessions, representing 84.1% of the species' diversity. Initially, anomaly analysis via k-means 

clustering was utilized to identify individuals exhibiting anomalous behavior under heat stress 

compared to optimal conditions, based on phenotypic data. This analysis informed the training of a 

RF, ML model capable of classifying heat-tolerant genotypes with near-perfect accuracy using only 

data from trials under optimal conditions. Subsequently, a genomic-based predictive analysis was 

performed, leveraging genomic data to predict component traits and generate a weighted rank-sum 

selection index (WRSSI) to identify heat-tolerant lines. Finally, the selected lines were compared 

across three selection methodologies: (1) breeder's intuition, (2) phenomics-based anomaly analysis, 

and (3) genomics-based predictive modeling and selection index. The study concluded that 

integrating classical and multispectral phenotyping techniques enhances selection efficiency and 

outcomes [109].  

Moreover, Islam et al. [69], developed a method for classifying early-stage stress symptoms in 

pepper seedlings using image processing and a SVM. The study investigated the effects of different 

environmental factors (temperature, light intensity, and day-night cycles) on stress symptoms. Using 

RGB camera images, the researchers extracted 18 color features, nine texture features, and one 
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morphological feature. The SVM model, validated with cross-validation, achieved an accuracy of 

85%. This system provides a way for real-time stress monitoring, enabling growers to optimize 

environmental conditions for improved seedling growth. This approach could also assist in 

accelerating the identification of stress-resistant traits, aiding in the development of improved 

cultivars with enhanced resilience to environmental stresses.  

Ataş et al. [110], explored the use of hyperspectral imaging for detecting aflatoxin contamination 

in chili peppers, offering a rapid, non-destructive alternative to traditional chemical methods. The 

study utilized both UV and Halogen excitations, extracting features from individual spectral bands 

and their differences. ML classifiers, including multi-layer perceptrons (MLPs) and linear 

discriminant analysis (LDA), were applied, achieving robust classification performance with fewer 

spectral bands. This method could be useful in breeding programs for selecting aflatoxin-resistant 

cultivars, enhancing food safety and quality. 

3. Conclusions 

The history and evolution of ML provides a robust framework for understanding its 

contemporary applications in plant breeding. As methodologies continue to evolve, AI ML and DL 

applications could become a cornerstone for addressing critical matters in agriculture and food 

security in the future. ML and DL techniques can revolutionize plant breeding by speeding up 

decision-making and improving precision through the creation of advanced predictive models that 

quickly respond to economic and environmental challenges. The combination of the innovative AI 

tools, ML models and Big Data Science with traditional breeding methods can optimize Solanaceae 

crop breeding, and enhance efficiency by accelerating the pace and precision of breeding efforts 

creating new advanced varieties with superior agronomic traits [42].  

The capacity of ML algorithms to uncover hidden data relationships makes them essential 

partners in developing sophisticated breeding strategies that integrate multiple parameters, 

supporting the creation of crops that are not only highly productive but also resilient and sustainable 

across diverse agricultural environments.Therefore AI advancements aim to help breeders to utilize 

the new technologies and their transformative impact on agriculture, to develop cultivars well-

adapted to various cultivation systems. It also aims to enhance their effort to make decisions rapidly 

and precisely, as the new trend of cultivation cropping systems demands [11,46,65]. 

The present study underscores the transformative potential of AI and more specifically ML and 

DL, in driving advancements in the genetic improvement of tomatoes, potatoes, peppers, and 

eggplants. By harnessing advanced algorithms, big data analytics, multiomics and gene-editing 

technologies, these innovations not only accelerate breeding cycles but also enable precise selection 

of traits such as yield, pest resistance, and climate adaptability, creating thus opportunities for 

personalized breeding strategies on Solanaceous crops, tailored to the specific needs of different 

regions and agricultural conditions. The adoption of these emerging technologies enables plant 

breeders to develop resilient and high-yielding Solanaceous crops capable of addressing all critical 

challenges such as food security, climate change, and resource scarcity ensuring that innovations 

effectively address the diverse agricultural needs worldwide. 

The future of ML and DL in plant genetic improvement appears exceptionally promising as new 

technologies continue to evolve. Multimodal AI systems capable of analyzing and integrating diverse 

data types — such as genetic information, plant images, and environmental parameters — are set to 

revolutionize crop management by providing breeders with a more holistic approach to decision-

making. Automated ML (AutoML) will further facilitate the use of ML by researchers without prior 

experience in data analysis, allowing for faster development of models that can be integrated into 

genetic breeding programs. Additionally, the convergence of quantum computing and ML holds the 

potential to significantly enhance data processing speeds and analytical capabilities, unlocking 

unprecedented opportunities for innovation in plant breeding. 
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