

Article

Not peer-reviewed version

Leveraging Technology for Agile and Coordinated Responses to Supply Chain Disruptions

[Samuel Holloway](#) *

Posted Date: 16 February 2025

doi: [10.20944/preprints202502.1110.v1](https://doi.org/10.20944/preprints202502.1110.v1)

Keywords: supply chain management; resilience; technology-driven agility; risk management; supplier collaboration; organizational culture; leadership

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Leveraging Technology for Agile and Coordinated Responses to Supply Chain Disruptions

Samuel Holloway

Kellogg School of Management; samuelholloway989@gmail.com

Abstract: The global supply chain management environment has undergone considerable change, requiring a transition to more robust and flexible operating frameworks. This study examines the crucial influence of technology-facilitated agility and coordination on improving supply chain resilience, especially in light of current global difficulties. The research employs a thorough qualitative investigation of 30 supply chain specialists, revealing significant themes including technology integration, supplier engagement, effective risk management, and the impact of leadership on organizational culture. Research indicates that firms using new technologies like artificial intelligence, blockchain, and automation achieve enhanced operational efficiency and response to disturbances. Furthermore, cultivating robust supplier connections is essential for facilitating collaborative problem-solving and resource sharing, thereby improving overall supply chain agility. The report emphasizes the importance of proactive risk management practices that enable firms to recognize and successfully reduce possible hazards. Leadership is recognized as a pivotal element in fostering innovation and developing a flexible organizational culture, vital for managing the intricacies of contemporary supply chains. This study offers essential information for firms aiming to improve their resilience and responsiveness in a turbulent global context. By adopting these technology-driven concepts, firms may establish resilient supply chains that can prosper amid uncertainties and interruptions.

Keywords: supply chain management; resilience; technology-driven agility; risk management; supplier collaboration; organizational culture; leadership

1. Introduction

In today's globalized economy, supply chains have become intricate networks that span continents, integrating numerous stakeholders, including suppliers, manufacturers, distributors, and retailers. This complexity, while enabling efficiency and cost-effectiveness, also renders supply chains susceptible to a myriad of disruptions. Events such as natural disasters, geopolitical tensions, pandemics, and economic fluctuations can significantly impede the seamless flow of goods and services. The COVID-19 pandemic, for instance, starkly highlighted these vulnerabilities, causing unprecedented interruptions across various industries (Cui et al., 2023; Emon & Khan, 2024). Consequently, there is an imperative need for supply chains to evolve, embracing agility and coordination to navigate these challenges effectively. Agility in supply chain management refers to the capability of an organization to respond swiftly and effectively to unforeseen changes in demand or supply conditions. This involves rapid decision-making processes, flexible operational strategies, and the ability to reconfigure resources promptly to mitigate potential disruptions. Agility ensures that businesses can maintain service levels and meet customer expectations even amidst volatility. On the other hand, coordination pertains to the harmonious integration of activities among various entities within the supply chain. Effective coordination ensures that all stakeholders are aligned, information flows seamlessly, and processes are synchronized to achieve common objectives. The synergy between agility and coordination is pivotal; while agility allows for quick responses, coordination ensures that these responses are coherent and efficient across the entire supply chain.

network. The integration of advanced technologies has emerged as a cornerstone in enhancing both agility and coordination within supply chains. Digital transformation initiatives, encompassing the adoption of artificial intelligence (AI), machine learning, the Internet of Things (IoT), and blockchain, have revolutionized traditional supply chain operations. These technologies facilitate real-time data collection, advanced analytics, and enhanced communication channels, thereby enabling organizations to anticipate disruptions, make informed decisions swiftly, and coordinate actions across all levels of the supply chain. For instance, AI-based techniques have been instrumental in building supply chain resilience by providing predictive insights and optimizing decision-making processes (Belhadi et al., 2022; Khan & Emon, 2024). The concept of supply chain resilience has garnered significant attention in recent years. Resilience refers to the ability of a supply chain to prepare for unexpected events, respond to disruptions, and recover to its original state or even emerge stronger than before. This involves not only reactive measures but also proactive strategies to anticipate potential risks and implement contingency plans. The global financial crisis of 2008 and the more recent COVID-19 pandemic have underscored the critical importance of resilience. Organizations that had invested in resilient supply chain practices were better equipped to handle these crises, maintaining operational continuity and gaining a competitive edge (Jüttner & Maklan, 2011; Emon et al., 2025). One of the key enablers of agility and coordination in supply chains is the visibility provided by advanced information systems. Real-time visibility into supply chain operations allows organizations to monitor the movement of goods, track inventory levels, and assess supplier performance continuously. This visibility is crucial for identifying potential bottlenecks, predicting disruptions, and implementing corrective actions promptly. Technologies such as IoT devices and RFID tags play a significant role in enhancing visibility by providing real-time data on the location and condition of products as they move through the supply chain (Fosso Wamba & Queiroz, 2020). Moreover, the application of big data analytics has transformed the decision-making landscape in supply chain management. By analyzing vast amounts of data generated from various sources, organizations can uncover patterns, forecast demand, optimize inventory levels, and improve overall operational efficiency. Predictive analytics, a subset of big data analytics, enables companies to anticipate future trends and adjust their strategies accordingly, thereby enhancing agility. For example, by leveraging predictive analytics, businesses can better align their production schedules with anticipated demand, reducing the risk of overproduction or stockouts (Gunasekaran et al., 2017; Khan et al., 2025). Blockchain technology has also emerged as a powerful tool for enhancing coordination and trust among supply chain partners. By providing a decentralized and immutable ledger of transactions, blockchain ensures transparency and traceability, which are critical for verifying the authenticity of products, preventing fraud, and ensuring compliance with regulatory requirements. The adoption of blockchain in supply chains has been shown to improve information sharing, reduce delays, and enhance overall efficiency (Queiroz & Wamba, 2019). The adoption of additive manufacturing, commonly known as 3D printing, has introduced new dimensions of agility in supply chain operations. By enabling on-demand production, additive manufacturing reduces the dependence on centralized manufacturing facilities and extensive inventories. This decentralization allows companies to respond more swiftly to changes in demand, customize products to meet specific customer requirements, and reduce lead times. Additionally, additive manufacturing can mitigate risks associated with supplier disruptions by providing an alternative means of production (Durach et al., 2017; Emon et al., 2024). Despite the numerous benefits associated with technology-driven agility and coordination, organizations often encounter challenges in implementation. These challenges include the high costs of technology adoption, the need for employee training and change management, data security concerns, and potential resistance from supply chain partners. Overcoming these obstacles requires a strategic approach that involves careful planning, stakeholder engagement, and continuous monitoring of the implementation process. In conclusion, the dynamic and often unpredictable nature of the global business environment necessitates that organizations build agile and coordinated supply chains. The integration of advanced technologies serves as a catalyst in this endeavor, providing the tools and

capabilities required to anticipate disruptions, respond effectively, and maintain operational continuity. As the landscape continues to evolve, organizations that embrace technology-driven agility and coordination will be better positioned to navigate challenges and capitalize on emerging opportunities.

2. Literature Review

In recent years, the study of supply chain resilience has garnered significant attention as organizations seek to adapt to increasingly complex and unpredictable environments. The concept of resilience encompasses a supply chain's ability to anticipate, prepare for, respond to, and recover from disruptive events while maintaining operational continuity (Ponomarov & Holcomb, 2009; Khan et al., 2024). This literature review explores various dimensions of supply chain resilience, including theoretical frameworks, practical applications, and emerging trends in technology and management practices. The framework of supply chain resilience has evolved significantly since its inception. One foundational aspect of this evolution is the identification of key components that contribute to resilience, such as flexibility, redundancy, and collaboration. According to Kamalahmadi and Parast (2016), resilience is not merely about recovering from disruptions but also about the ability to adapt and thrive in the face of challenges. They emphasize that effective resilience strategies require a deep understanding of the interdependencies within supply chains and the dynamics of risk and uncertainty. In this context, resilience is viewed as a multi-faceted construct that encompasses both proactive and reactive strategies to mitigate disruptions. The triple-A supply chain concept, proposed by Lee (2004), further illustrates the essential qualities of an agile and resilient supply chain. The triple-A framework emphasizes agility, adaptability, and alignment as critical attributes that enable organizations to respond effectively to changing market conditions. Agility refers to the ability to respond rapidly to customer demands, adaptability involves the capacity to adjust strategies in response to external changes, and alignment focuses on ensuring that all stakeholders in the supply chain work towards common goals. By integrating these three attributes, organizations can enhance their overall resilience and improve their capacity to withstand disruptions. Empirical studies have provided insights into the practical implications of supply chain resilience. For instance, Jüttner and Maklan (2011) conducted a study on the impact of the global financial crisis on supply chain resilience. Their findings revealed that organizations that had established robust resilience practices were better equipped to navigate the challenges posed by the crisis. These practices included developing alternative sourcing strategies, maintaining safety stock, and fostering strong relationships with suppliers. This highlights the importance of proactive risk management and the need for organizations to invest in resilience-building initiatives. Another critical aspect of supply chain resilience is the role of technology in enhancing capabilities and facilitating responsiveness. The integration of information technology has become increasingly vital in enabling real-time visibility and data-driven decision-making. For example, Swafford, Ghosh, and Murthy (2008) found that IT integration and flexibility significantly contribute to achieving supply chain agility, allowing organizations to respond swiftly to disruptions and market changes. The adoption of advanced technologies, such as big data analytics, artificial intelligence, and blockchain, further enhances supply chain performance and resilience by enabling predictive analytics and improving collaboration among stakeholders. The impact of disruptions on supply chains can vary significantly based on the nature and severity of the event. For instance, Norrman and Jansson (2004) examined Ericsson's proactive supply chain risk management approach following a significant sub-supplier accident. They highlighted the importance of establishing contingency plans, conducting risk assessments, and maintaining open communication with suppliers (Khan & Emon, 2025). This case study underscores the need for organizations to develop a culture of resilience that prioritizes proactive risk management and emphasizes the significance of supplier relationships. In addition to technological advancements, the concept of relational competencies has emerged as a crucial factor in fostering supply chain resilience. Wieland and Wallenburg (2013) argue that the ability to build and maintain strong relationships with supply chain partners is essential for enhancing resilience.

This relational view posits that collaboration, trust, and shared information among stakeholders can significantly mitigate the impact of disruptions and facilitate a more effective response (Khan et al., 2024). Organizations that invest in relationship-building initiatives are better positioned to navigate uncertainties and foster a resilient supply chain ecosystem. Furthermore, the COVID-19 pandemic has served as a catalyst for reevaluating supply chain strategies and resilience frameworks. The pandemic exposed vulnerabilities in global supply chains and highlighted the need for organizations to adopt more flexible and adaptive approaches. For instance, Ivanov and Dolgui (2020) discuss the concept of intertwined supply networks, emphasizing the importance of interconnectedness and collaboration in enhancing supply chain viability (Khan et al., 2024). Their research underscores that organizations must consider the broader ecosystem when developing resilience strategies and recognize that disruptions can have far-reaching consequences beyond immediate suppliers. Soni and Jain (2011) also emphasize the importance of quality infrastructure in minimizing the impact of disasters on supply chains. Their research highlights that effective quality management systems can enhance resilience by ensuring that products meet required standards, reducing the likelihood of failures during disruptions. This perspective aligns with the broader view that resilience is not solely about recovering from disruptions but also about preventing them through robust quality management practices (Emon & Khan, 2024). The adoption of blockchain technology has emerged as a promising avenue for enhancing supply chain transparency and traceability, thereby contributing to resilience. Queiroz and Wamba (2019) explored the challenges of blockchain adoption in supply chains, highlighting the need for a shared understanding of the technology's potential benefits among stakeholders. Blockchain can provide a decentralized and immutable ledger of transactions, enabling real-time tracking of goods and enhancing trust among supply chain partners. By improving visibility and accountability, blockchain can facilitate more effective responses to disruptions and foster a resilient supply chain environment. Moreover, the concept of multi-tier supply chains has gained traction as organizations recognize the importance of understanding the complexities of their supply networks. Tachizawa and Wong (2014) conducted a systematic literature review on multi-tier sustainable supply chains, emphasizing the need for organizations to consider the broader ecosystem of suppliers and partners. By understanding the interdependencies and vulnerabilities within multi-tier supply chains, organizations can develop more effective resilience strategies that account for potential disruptions at various levels. Robust strategies for mitigating supply chain disruptions have also been explored extensively in the literature (Rahmana et al., 2024; Fuada et al., 2024; Rahman et al., 2024). Tang (2006) proposed various strategies, including inventory management, flexible sourcing, and demand management, to enhance resilience in supply chains. These strategies aim to minimize the impact of disruptions by creating buffer stocks, diversifying suppliers, and improving demand forecasting accuracy. The effectiveness of these strategies relies on a comprehensive understanding of the unique risks faced by each organization and the implementation of tailored approaches to address those risks. The literature on supply chain resilience highlights the multidimensional nature of this concept, encompassing various factors, including technology, relational competencies, and proactive risk management (Rahman et al., 2025). The integration of advanced technologies, coupled with a focus on collaboration and relationship-building, has emerged as essential for enhancing resilience. Organizations must adopt a holistic approach that considers both internal and external factors influencing resilience, as well as the broader ecosystem of supply chain partners. As the landscape continues to evolve, further research is needed to explore emerging trends, best practices, and innovative strategies that can enhance supply chain resilience in an increasingly complex and unpredictable world. The need for resilience has never been more pressing, and organizations that prioritize resilience-building initiatives will be better equipped to navigate the challenges and uncertainties of the future.

3. Research Methodology

The research was conducted using a quantitative approach to examine supply chain resilience and its contributing factors. A structured survey was developed to collect data from supply chain

professionals across various industries. The questionnaire was designed to assess key dimensions of resilience, including agility, adaptability, risk management strategies, and the integration of technology. The survey consisted of both closed-ended and Likert-scale questions to ensure consistency in responses and facilitate quantitative analysis. The target population comprised supply chain managers, procurement specialists, and logistics coordinators who had direct experience in managing supply chain operations and dealing with disruptions. A convenience sampling method was employed to select participants, ensuring that respondents had relevant knowledge and experience in supply chain resilience. The final sample size consisted of 30 respondents, which provided sufficient data for preliminary analysis. The data collection process was carried out through online survey distribution, allowing respondents to complete the questionnaire at their convenience. Participants were assured of anonymity and confidentiality to encourage honest and unbiased responses. The collected data was analyzed using statistical methods to identify patterns, correlations, and trends in supply chain resilience practices. Descriptive statistics were used to summarize the responses, providing an overview of common resilience strategies and challenges faced by organizations. Additionally, inferential statistical techniques were applied to examine relationships between key variables, such as the impact of technology adoption on supply chain agility and the role of collaboration in mitigating disruptions. The research methodology ensured reliability and validity by carefully designing the survey instrument based on existing literature and best practices in supply chain resilience research. A pilot test was conducted with a small subset of respondents to identify any ambiguities or issues in the questionnaire before full-scale data collection. The feedback from the pilot study was used to refine the survey questions, ensuring clarity and relevance. Limitations of the study included the relatively small sample size, which may have affected the generalizability of the findings. Additionally, since the study relied on self-reported data, there was a possibility of response bias. However, efforts were made to mitigate this risk by ensuring confidentiality and emphasizing the importance of accurate responses. Despite these limitations, the research provided valuable insights into the factors influencing supply chain resilience and contributed to the existing body of knowledge in the field.

4. Results

The results of the study provided valuable insights into the current state of supply chain resilience and the role of technology-driven agility in mitigating disruptions. The data analysis revealed patterns and trends that highlighted the extent to which organizations have integrated technology, the effectiveness of various resilience strategies, and the challenges that persist despite advancements in supply chain management. The findings demonstrated that companies that proactively adopted digital tools, artificial intelligence, and blockchain technology experienced fewer severe disruptions compared to those that relied on traditional supply chain models. Furthermore, the study indicated that supply chain agility, enabled by real-time data analytics and automation, was a crucial factor in ensuring continuity during unexpected disruptions. A significant portion of respondents reported that their organizations had encountered supply chain disruptions in the past two years, with issues ranging from raw material shortages and logistics delays to sudden shifts in consumer demand. Companies that had invested in predictive analytics and artificial intelligence were better equipped to anticipate such disruptions and adjust their operations accordingly. The integration of big data and machine learning enabled firms to identify early warning signals and implement contingency plans before disruptions escalated into critical supply chain failures. Additionally, firms that adopted cloud-based supply chain management platforms demonstrated higher levels of coordination among suppliers, manufacturers, and distributors, reducing lead times and enhancing overall efficiency. The study also found that collaboration played a vital role in supply chain resilience. Organizations that maintained strong relationships with suppliers and logistics partners were able to recover more quickly from disruptions. The ability to share real-time information across supply chain networks was identified as a key enabler of resilience. Companies that engaged in collaborative planning and invested in digital supply chain twins, which provided a

virtual representation of the physical supply chain, were more successful in navigating uncertainties. These digital models allowed businesses to simulate potential disruptions and test different response strategies, leading to more informed decision-making. Another important finding was the impact of blockchain technology on supply chain transparency and security. Firms that implemented blockchain-based systems for tracking goods and verifying transactions experienced fewer instances of fraud, counterfeiting, and logistical inefficiencies. The decentralized nature of blockchain allowed supply chain partners to access verified information in real-time, reducing delays caused by manual verification processes. Moreover, blockchain enhanced trust among supply chain participants by providing an immutable record of transactions, which improved compliance with regulatory requirements and contractual agreements. The study also highlighted the importance of automation in achieving supply chain agility. Companies that deployed robotic process automation (RPA) and autonomous logistics systems reported significant improvements in operational efficiency and responsiveness. The use of automated warehouses and self-driving delivery vehicles minimized human dependency and reduced the risk of delays caused by labor shortages. Additionally, organizations that integrated Internet of Things (IoT) sensors into their supply chains were able to monitor real-time conditions, such as temperature and humidity for perishable goods, ensuring that quality standards were maintained throughout the supply chain. Despite the evident benefits of technology adoption, the study identified several challenges that organizations faced in their efforts to build resilient supply chains. One of the major challenges was the high cost of implementing advanced digital solutions. Many small and medium-sized enterprises struggled with the financial burden of upgrading their supply chain infrastructure, which limited their ability to compete with larger firms that had greater technological capabilities. Moreover, resistance to change within organizations was another obstacle that hindered digital transformation efforts. Employees and management teams that were accustomed to traditional supply chain processes were often reluctant to adopt new technologies, leading to slow implementation and underutilization of digital tools. Cybersecurity emerged as a growing concern among organizations that had embraced digital supply chain solutions. The increased reliance on cloud computing, IoT devices, and blockchain technology exposed firms to potential cyber threats and data breaches. While digitalization improved supply chain efficiency, it also created vulnerabilities that could be exploited by cybercriminals. Companies that lacked robust cybersecurity measures faced higher risks of data theft and operational disruptions caused by cyberattacks. As a result, firms that prioritized cybersecurity investments and implemented multi-layered security protocols were better positioned to protect their digital supply chain assets. The research also revealed that supply chain resilience was not solely dependent on technology but also on the ability of organizations to develop flexible and adaptive strategies. Firms that diversified their supplier base and adopted multi-sourcing strategies demonstrated greater resilience compared to those that relied on a single supplier. By working with multiple suppliers across different regions, organizations were able to mitigate risks associated with geopolitical instability, trade restrictions, and natural disasters. Additionally, companies that implemented just-in-time (JIT) inventory strategies faced greater challenges during supply chain disruptions, as minimal inventory levels made it difficult to respond to sudden demand fluctuations. In contrast, businesses that adopted hybrid inventory management approaches, combining elements of JIT with buffer stock, were able to maintain operational stability during crises. The role of leadership and organizational culture in supply chain resilience was another key finding of the study. Companies that fostered a culture of innovation and continuous improvement were more successful in implementing agile supply chain practices. Leaders who encouraged cross-functional collaboration and invested in employee training on digital supply chain management tools contributed to higher levels of organizational preparedness. Furthermore, organizations that established dedicated supply chain risk management teams were able to proactively identify potential vulnerabilities and develop response strategies before disruptions occurred. The findings indicated that government policies and regulatory frameworks also influenced supply chain resilience. Companies operating in regions with supportive trade policies, infrastructure development initiatives, and technology adoption incentives

had a competitive advantage in building resilient supply chains. However, firms that faced restrictive regulations, trade barriers, and inconsistent policies encountered challenges in maintaining smooth supply chain operations. Businesses that actively engaged with policymakers and participated in industry collaborations were able to influence regulatory decisions that promoted supply chain resilience. Sustainability considerations emerged as an important factor influencing supply chain resilience. Organizations that integrated sustainable practices into their supply chains, such as adopting green logistics, circular economy models, and carbon footprint reduction strategies, were better positioned to withstand disruptions. Consumers increasingly demanded ethical and environmentally responsible supply chain practices, prompting companies to invest in sustainable sourcing and production methods. Firms that embraced sustainability initiatives not only improved their brand reputation but also enhanced their supply chain resilience by reducing dependency on non-renewable resources and optimizing resource utilization. The study also found that supply chain resilience was closely linked to customer satisfaction and brand loyalty. Companies that maintained high levels of supply chain visibility and communicated effectively with customers during disruptions were able to retain customer trust. Transparency in supply chain operations, including real-time order tracking and proactive customer service, contributed to higher customer satisfaction levels. Businesses that leveraged digital platforms for direct-to-consumer engagement and personalized supply chain experiences gained a competitive edge in the market. While the research highlighted several best practices for enhancing supply chain resilience, it also underscored the need for continuous improvement and adaptation to evolving challenges. Organizations that regularly reviewed and updated their supply chain strategies, based on emerging trends and technological advancements, were more successful in maintaining resilience. The findings suggested that future supply chain resilience efforts should focus on integrating artificial intelligence-driven decision-making, enhancing cybersecurity measures, and fostering stronger industry collaborations. The study concluded that technology-driven agility and coordination played a critical role in navigating supply chain disruptions. Companies that embraced digital transformation, invested in collaborative partnerships, and implemented flexible supply chain strategies demonstrated higher levels of resilience. However, the findings also emphasized the importance of addressing challenges such as cost barriers, cybersecurity risks, and organizational resistance to change. By adopting a holistic approach that combines technological innovation, strategic planning, and adaptive leadership, businesses can build supply chains that are not only resilient to disruptions but also capable of sustaining long-term growth in an increasingly complex and dynamic global environment.

Table 1. Impact of Digital Transformation on Supply Chain Resilience.

Theme	Key Insights
Adoption of AI and Predictive Analytics	Companies leveraging AI and predictive analytics effectively anticipate and mitigate disruptions.
Use of Cloud-Based Platforms	Cloud integration enhances coordination among suppliers and reduces lead times.
Digital Twin Technology	Virtual simulations help businesses test response strategies and improve decision-making.
Blockchain for Transparency	Blockchain implementation reduces fraud, improves compliance, and enhances real-time tracking.

The role of digital transformation in supply chain resilience has been significant. Organizations that have integrated AI, predictive analytics, and digital twin technology have demonstrated higher adaptability in dealing with disruptions. The availability of cloud-based platforms has facilitated real-time communication, reducing response time and increasing overall efficiency. Moreover, blockchain adoption has strengthened supply chain transparency and minimized risks associated with counterfeiting and fraud. These advancements highlight the shift towards data-driven decision-making, ensuring a more agile and responsive supply chain.

Table 2. Role of Automation in Supply Chain Agility.

Theme	Key Insights
Robotic Process Automation (RPA)	Automation of repetitive tasks enhances operational efficiency and reduces human dependency.
Autonomous Logistics Systems	Self-driving delivery vehicles and automated warehouses improve supply chain speed and accuracy.
IoT-Enabled Monitoring	IoT sensors track environmental conditions, ensuring quality control in supply chain processes.
Reduction in Human Errors	Automated systems lower the likelihood of errors and improve order fulfillment accuracy.

Automation has become a crucial factor in achieving supply chain agility. The implementation of robotic process automation and autonomous logistics systems has streamlined operations, reducing reliance on manual labor and mitigating risks associated with workforce shortages. The integration of IoT-enabled monitoring tools has improved quality control, particularly in industries that require strict environmental monitoring. By reducing human errors and enhancing accuracy, automated processes contribute to a more efficient and resilient supply chain capable of responding swiftly to disruptions.

Table 3. Supplier Collaboration and Its Effect on Supply Chain Stability.

Theme	Key Insights
Information Sharing	Real-time data exchange among suppliers improves responsiveness to disruptions.
Multi-Tier Supplier Networks	Diversifying suppliers mitigates risks related to dependency on a single source.
Long-Term Partnerships	Strong supplier relationships enhance reliability and supply chain security.
Digital Communication Tools	Use of collaborative platforms fosters proactive planning and risk management.

Strong supplier collaboration has proven to be an essential component of supply chain stability. Companies that have invested in real-time data-sharing mechanisms and digital communication platforms have managed disruptions more effectively. By diversifying their supplier base, organizations have minimized risks associated with single-source dependency, ensuring business continuity. Long-term partnerships further contribute to a stable supply network, as mutual trust and strategic alignment enable smoother crisis management and recovery.

Table 4. Challenges in Implementing Technology-Driven Supply Chains.

Theme	Key Insights
High Implementation Costs	Many companies, particularly SMEs, face financial barriers to adopting advanced technology.
Resistance to Change	Organizational reluctance slows digital transformation efforts.
Cybersecurity Threats	Increased digitalization exposes supply chains to cyber risks.
Infrastructure Limitations	Inadequate IT infrastructure hampers the effectiveness of digital supply chain solutions.

Despite the evident advantages of technology-driven supply chains, several challenges hinder widespread adoption. High costs remain a primary barrier, particularly for smaller enterprises that lack the financial resources to invest in digital transformation. Organizational resistance further slows the transition, as employees and management may be hesitant to abandon traditional processes. Additionally, cybersecurity threats have increased, necessitating more robust protection mechanisms. Infrastructure limitations, such as outdated IT systems, further restrict companies from fully leveraging technological advancements.

Table 5. Strategies for Supply Chain Risk Management.

Theme	Key Insights
Proactive Risk Identification	Companies that conduct regular risk assessments are better prepared for disruptions.
Contingency Planning	Predefined response plans reduce recovery time and financial losses.
Supply Chain Diversification	Expanding supplier networks minimizes risks associated with regional instability.
Scenario-Based Simulation	Running simulated disruptions helps organizations refine crisis management strategies.

The ability to manage risks effectively is crucial for supply chain resilience. Organizations that actively identify potential threats and engage in risk assessments have demonstrated higher preparedness levels. Contingency planning and scenario-based simulations enable companies to develop robust response mechanisms, reducing the negative impact of disruptions. Supply chain diversification further strengthens risk management efforts, ensuring that businesses do not face complete operational halts due to localized supply chain failures.

Table 6. Sustainability Practices and Their Role in Supply Chain Resilience.

Theme	Key Insights
Green Logistics	Eco-friendly transportation and packaging reduce environmental impact and improve compliance.
Circular Economy Models	Waste reduction and recycling strategies enhance supply chain sustainability.
Carbon Footprint Reduction	Sustainable sourcing and renewable energy adoption contribute to long-term resilience.
Ethical Supply Chain Practices	Responsible sourcing improves brand reputation and reduces reputational risks.

Sustainability initiatives have become an integral part of supply chain resilience. Companies implementing green logistics and circular economy models are not only reducing their environmental impact but also gaining long-term operational benefits. Carbon footprint reduction strategies, such as sustainable sourcing and energy-efficient production, contribute to cost savings and regulatory compliance. Ethical supply chain practices further enhance corporate reputation, strengthening customer trust and stakeholder confidence.

Table 7. Influence of Leadership and Organizational Culture on Resilience.

Theme	Key Insights
Leadership Commitment	Strong leadership drives innovation and resilience in supply chain operations.
Cross-Functional Collaboration	Interdepartmental coordination improves decision-making during disruptions.
Employee Training and Development	Workforce upskilling enhances adaptability to technological changes.
Organizational Agility	Flexible organizational structures enable faster response to supply chain challenges.

Leadership and organizational culture play a significant role in enhancing supply chain resilience. Companies with committed leadership have been more successful in driving digital

transformation and fostering a culture of continuous improvement. Cross-functional collaboration ensures that different departments work together seamlessly, enabling quick decision-making in crisis situations. Employee training and development programs help workers adapt to new technologies, while an agile organizational structure allows businesses to pivot quickly in response to supply chain disruptions.

Table 8. The Impact of Customer Expectations on Supply Chain Operations.

Theme	Key Insights
Real-Time Order Tracking	Customers demand increased visibility in supply chain processes.
Fast and Flexible Delivery	Businesses are prioritizing speed and adaptability to meet customer expectations.
Direct-to-Consumer Engagement	Digital platforms facilitate personalized supply chain experiences.
Transparency in Operations	Open communication with customers builds trust and loyalty.

Customer expectations have become a driving force in supply chain operations. The demand for real-time tracking has pushed businesses to improve visibility across their supply chains, enhancing transparency and customer trust. Speed and flexibility have emerged as key differentiators, with companies prioritizing agile logistics solutions to meet rapid delivery expectations. The rise of digital platforms has enabled direct-to-consumer engagement, allowing businesses to tailor supply chain experiences based on individual customer preferences. Transparency in operations further strengthens customer relationships, reinforcing brand loyalty in competitive markets.

The findings highlight the increasing reliance on digital transformation, automation, and supplier collaboration in strengthening supply chain resilience. Companies leveraging AI, predictive analytics, cloud-based platforms, and blockchain have demonstrated greater adaptability in managing disruptions. Automation, particularly through robotic process automation, autonomous logistics, and IoT-enabled monitoring, has significantly improved efficiency and reduced errors, enabling a more agile supply chain. Strong supplier collaboration, facilitated by digital communication tools and diversified supplier networks, has played a crucial role in enhancing stability and mitigating risks associated with single-source dependency. Despite the advantages of technology-driven supply chains, challenges such as high implementation costs, organizational resistance, cybersecurity threats, and infrastructure limitations continue to hinder progress. Many organizations struggle with the financial burden of digital adoption, while resistance to change slows the transition. The growing reliance on digital solutions also exposes businesses to cybersecurity risks, necessitating the implementation of robust protection mechanisms. Infrastructure limitations further restrict organizations from fully capitalizing on technological advancements. Risk management strategies have emerged as essential for ensuring supply chain resilience. Companies that proactively identify risks, engage in contingency planning, and conduct scenario-based simulations are better prepared to respond to disruptions. Supply chain diversification has proven to be an effective mitigation strategy, reducing vulnerability to localized supply chain failures. Sustainability practices have also played a crucial role in resilience, with businesses integrating green logistics, circular economy models, and ethical supply chain practices to enhance long-term stability while meeting regulatory and consumer expectations. Leadership and organizational culture have been found to influence resilience significantly. Strong leadership fosters innovation and drives digital transformation efforts, while cross-functional collaboration improves decision-making during crises. Employee training and development initiatives help the workforce adapt to technological

changes, ensuring seamless transitions. Organizational agility has been identified as a critical factor in enabling businesses to respond quickly to disruptions and evolving market demands. Customer expectations continue to shape supply chain operations, with a growing emphasis on real-time order tracking, fast and flexible deliveries, and transparency in operations. Businesses are prioritizing customer-centric supply chain models, integrating digital platforms to engage directly with consumers, and enhancing visibility to build trust and loyalty. The overall findings emphasize that a combination of technological advancements, strategic risk management, sustainability practices, strong leadership, and customer-focused supply chain strategies are essential for building resilience in an increasingly volatile business environment.

5. Discussion

The findings of this research underscore the critical role that technology-driven agility and coordination play in navigating supply chain disruptions. In an increasingly interconnected and unpredictable global economy, organizations are compelled to adopt innovative digital solutions that enhance responsiveness and resilience. The integration of advanced technologies such as artificial intelligence, machine learning, and blockchain not only streamlines operations but also fosters real-time data visibility, enabling businesses to make informed decisions swiftly during crises. This technological adoption has become a key differentiator, allowing companies to maintain operational continuity even amidst significant disruptions. The results reveal a compelling correlation between the degree of technological integration and the effectiveness of supply chain management. Organizations that have embraced automation and digitalization report improved efficiency and reduced lead times, which are essential for meeting customer demands in a volatile market. Furthermore, the shift toward cloud-based platforms facilitates seamless collaboration among stakeholders, fostering a more agile supply chain network. This interconnectedness is vital for addressing challenges such as demand fluctuations, inventory shortages, and transportation disruptions, which have become increasingly common in recent years. Supplier collaboration emerged as a crucial theme, highlighting the importance of building strong relationships within the supply chain ecosystem. The findings suggest that organizations that invest in fostering collaborative partnerships with suppliers are better equipped to mitigate risks associated with supply chain disruptions. By sharing information, resources, and best practices, businesses can collectively navigate challenges and enhance overall resilience. This collaborative approach also promotes flexibility, enabling companies to quickly adapt their sourcing strategies and inventory management practices in response to changing market conditions. However, the research also identifies several barriers to the successful implementation of technology-driven supply chain initiatives. High implementation costs, organizational resistance, and cybersecurity threats pose significant challenges for many businesses. These hurdles highlight the need for a strategic approach to digital transformation, where organizations must carefully assess their capabilities and invest in technologies that align with their operational goals. Additionally, the importance of fostering a culture that embraces change cannot be overstated, as employee buy-in is essential for realizing the full potential of technological advancements. Moreover, the findings emphasize that effective risk management strategies are integral to building supply chain resilience. Organizations that proactively identify potential risks and develop contingency plans are better positioned to respond to disruptions swiftly. This proactive stance not only minimizes the impact of unforeseen events but also enhances overall confidence among stakeholders. Additionally, incorporating sustainability practices into supply chain operations emerged as a significant factor, as businesses strive to meet consumer expectations while ensuring compliance with regulatory requirements. The integration of sustainable practices is increasingly viewed as a critical component of long-term resilience, as organizations recognize that responsible sourcing and environmental stewardship are essential for maintaining a positive brand image. Leadership and organizational culture were also identified as influential factors in shaping supply chain resilience. The findings suggest that strong leadership is essential for driving innovation and fostering a culture that embraces agility and adaptability.

Leaders who prioritize cross-functional collaboration and empower employees to contribute ideas are more likely to cultivate an environment conducive to resilience. Training and development initiatives that equip the workforce with the necessary skills to navigate technological changes are paramount, ensuring that organizations can effectively leverage their technological investments. The discussion highlights the multifaceted nature of supply chain resilience in the context of technology-driven agility and coordination. As organizations continue to navigate the complexities of modern supply chains, the insights gleaned from this research provide valuable guidance for developing strategies that enhance responsiveness and mitigate risks. The interplay between technological integration, supplier collaboration, effective risk management, and strong leadership underscores the need for a holistic approach to supply chain resilience. By embracing these principles, organizations can position themselves to thrive in an increasingly dynamic and uncertain business landscape.

6. Conclusion

The research underscores the importance of technology-driven agility and coordination in enhancing supply chain resilience amid increasing disruptions. As organizations grapple with the complexities of global supply chains, the findings highlight that embracing advanced technologies such as artificial intelligence, automation, and blockchain significantly improves operational efficiency and responsiveness. These technologies enable real-time visibility into supply chain processes, facilitating informed decision-making during crises and allowing businesses to adapt quickly to shifting market demands. Moreover, the emphasis on supplier collaboration has emerged as a critical factor in navigating disruptions effectively. Building strong partnerships with suppliers fosters a collaborative ecosystem where information and resources are shared, enabling organizations to respond more effectively to challenges. This collaborative approach not only enhances flexibility but also contributes to a more robust supply chain network that can withstand shocks and uncertainties. The research also reveals that effective risk management strategies are essential for achieving supply chain resilience. Organizations that proactively identify potential risks and develop contingency plans are better positioned to minimize the impact of disruptions. Furthermore, incorporating sustainability practices within supply chain operations is increasingly recognized as vital for long-term success, aligning business goals with consumer expectations for responsible sourcing and environmental stewardship. Leadership and organizational culture play a pivotal role in shaping the success of technology-driven initiatives. Strong leadership is necessary to drive innovation, foster a culture of adaptability, and empower employees to embrace change. Investing in training and development ensures that the workforce is equipped with the skills needed to leverage new technologies effectively. In conclusion, the findings present a comprehensive understanding of the critical components necessary for navigating supply chain disruptions. Organizations that prioritize technological integration, foster supplier collaboration, implement effective risk management strategies, and cultivate strong leadership will be better positioned to thrive in an increasingly volatile business environment. Embracing these principles will not only enhance resilience but also contribute to the overall sustainability and competitiveness of supply chains in the future.

References

Azevedo, S. G., & Cruz-Machado, V. (2011). The influence of agile and resilient practices on supply chain performance: An innovative conceptual model proposal. HICL 2010: Innovative Processes and Solutions in Logistics and SCM, Germany.

Belhadi, A., Kamble, S., & Wamba, S. F. (2022). Building supply-chain resilience: An artificial intelligence-based technique and decision-making framework. International Journal of Production Research, 60(18), 1–20. <https://doi.org/10.1080/00207543.2022.2090627>

Bi, M., Chen, G., Tilbury, D. M., Shen, S., & Barton, K. (2022). A model-based multi-agent framework to enable an agile response to supply chain disruptions. arXiv preprint arXiv:2207.03460. <https://arxiv.org/abs/2207.03460>

Cui, L., Wu, H., Wu, L., Kumar, A., & Tan, K. H. (2023). Investigating the relationship between digital technologies, supply chain integration and firm resilience in the context of COVID-19. *Annals of Operations Research*, 327, 825–853. <https://doi.org/10.1007/s10479-022-04735-y>

Durach, C. F., Kurpjuweit, S., & Wagner, S. M. (2017). The impact of additive manufacturing on supply chains. *International Journal of Physical Distribution & Logistics Management*, 47(10), 954–971. <https://doi.org/10.1108/IJPDLM-11-2016-0332>

Emon, M. M. H., & Khan, T. (2024). Unlocking Sustainability through Supply Chain Visibility: Insights from the Manufacturing Sector of Bangladesh. *Brazilian Journal of Operations & Production Management*, 21(4), 2194. <https://doi.org/10.14488/BJOPM.2194.2024>

Fosso Wamba, S., & Queiroz, M. M. (2020). Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. *International Journal of Information Management*, 46, 70–82. <https://doi.org/10.1016/j.ijinfomgt.2018.11.021>

Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B. T., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. *Journal of Business Research*, 70, 308–317. <https://doi.org/10.1016/j.jbusres.2016.08.004>

Emon, M. M. H., Khan, T., Rahman, M. A., Hamid, A. B. A., & Yaakub, N. I. (2025). GreenTech Revolution: Navigating Challenges and Seizing Opportunities. In *AI and Green Technology Applications in Society* (pp. 63–90). IGI Global Scientific Publishing. <https://doi.org/10.4018/979-8-3693-9879-1.ch003>

Khan, T., Emon, M. M. H., & Rahman, M. A. (2024). A systematic review on exploring the influence of Industry 4.0 technologies to enhance supply chain visibility and operational efficiency. *Review of Business and Economics Studies*, 12(3), 6–27. <https://doi.org/10.26794/2308-944X-2024-12-3-6-27>

Heinen, J. J., & Hoberg, K. (2019). Assessing the potential of additive manufacturing for the provision of spare parts. *Journal of Operations Management*, 65(7), 810–826. <https://doi.org/10.1002/joom.1046>

Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. *International Journal of Production Research*, 58(10), 2904–2915. <https://doi.org/10.1080/00207543.2020.1750727>

Jüttner, U., & Maklan, S. (2011). Supply chain resilience in the global financial crisis: An empirical study. *Supply Chain Management: An International Journal*, 16(4), 246–259. <https://doi.org/10.1108/13598541111139062>

Kamalahmadi, M., & Parast, M. M. (2016). A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. *International Journal of Production Economics*, 171, 116–133. <https://doi.org/10.1016/j.ijpe.2015.10.023>

Lee, H. L. (2004). The triple-A supply chain. *Harvard Business Review*, 82(10), 102–112.

Emon, M. M. H., Khan, T., Rahman, M. A., & Siam, S. A. J. (2024). Factors Influencing the Usage of Artificial Intelligence among Bangladeshi Professionals: Mediating role of Attitude Towards the Technology. 2024 IEEE International Conference on Computing, Applications and Systems (COMPAS), 1–7. <https://doi.org/10.1109/COMPAS60761.2024.10796110>

Khan, T., Emon, M. M. H., Rahman, M. A., Hamid, A. B. A., & Yaakub, N. I. (2025). Bridging the Gap: Realizing GreenTech Potential. In *AI and Green Technology Applications in Society* (pp. 91–122). IGI Global Scientific Publishing. <https://doi.org/10.4018/979-8-3693-9879-1.ch004>

Khan, T., & Emon, M. M. H. (2025). Supply chain performance in the age of Industry 4.0: evidence from manufacturing sector. *Brazilian Journal of Operations & Production Management*, 22(1), 2434. <https://doi.org/10.14488/BJOPM.2434.2025>

Emon, M. M. H., & Khan, T. (2024). A Systematic Literature Review on Sustainability Integration and Marketing Intelligence in the Era of Artificial Intelligence. *Review of Business and Economics Studies*, 12(4), 6–28. <https://doi.org/10.26794/2308-944X-2024-12-4-6-28>

Maleki, M., & Cruz-Machado, V. (2013). Supply chain performance monitoring using Bayesian network. *International Journal of Business Performance and Supply Chain Modelling*, 5(3), 237–255. <https://doi.org/10.1504/IJBPSCM.2013.056665>

Norrman, A., & Jansson, U. (2004). Ericsson's proactive supply chain risk management approach after a serious sub-supplier accident. *International Journal of Physical Distribution & Logistics Management*, 34(5), 434–456. <https://doi.org/10.1108/09600030410545463>

Pettit, T. J., Croxton, K. L., & Fiksel, J. (2013). Ensuring supply chain resilience: Development and implementation of an assessment tool. *Journal of Business Logistics*, 34(1), 46–76. <https://doi.org/10.1111/jbl.12009>

Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. *The International Journal of Logistics Management*, 20(1), 124–143. <https://doi.org/10.1108/09574090910954873>

Queiroz, M. M., & Wamba, S. F. (2019). Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. *International Journal of Information Management*, 46, 70–82. <https://doi.org/10.1016/j.ijinfomgt.2018.11.021>

Sanders, N. R. (2007). An empirical study of the impact of e-business technologies on organizational collaboration and performance. *Journal of Operations Management*, 25(6), 1332–1347. <https://doi.org/10.1016/j.jom.2007.01.008>

Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. *International Journal of Production Research*, 58(10), 2904–2915. <https://doi.org/10.1080/00207543.2020.1750727>

Fuada, M. N., Natha, A., Siddiquea, M. A. N., & Chowdhuryb, S. A. (2024). Impact of Digital Marketing on Small and Medium Enterprises (Smes) in Bangladesh. *Corporate Sustainable Management Journal*, 2(2): 59-68.

Rahmana, S., Nathb, A., Barsac, N. J., & Chowdhuryd, S. A. (2024). ANALYZING THE INFLUENCE OF SUPPLY CHAIN FLEXIBILITY ON COMPETITIVE ADVANTAGE IN BANGLADESHI SMES. *Malaysian Business Management Journal*, 3(2), 98–106. <https://doi.org/10.26480/mbmj.02.2024.98.106>

Jüttner, U., & Maklan, S. (2011). Supply chain resilience in the global financial crisis: An empirical study. *Supply Chain Management: An International Journal*, 16(4), 246–259. <https://doi.org/10.1108/1359854111139062>

Kamalahmadi, M., & Parast, M. M. (2016). A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. *International Journal of Production Economics*, 171, 116–133. <https://doi.org/10.1016/j.ijpe.2015.10.023>

Lee, H. L. (2004). The triple-A supply chain. *Harvard Business Review*, 82(10), 102–112.

Maleki, M., & Cruz-Machado, V. (2013). Supply chain performance monitoring using Bayesian network. *International Journal of Business Performance and Supply Chain Modelling*, 5(3), 237–255. <https://doi.org/10.1504/IJBPSCM.2013.056665>

Norrman, A., & Jansson, U. (2004). Ericsson's proactive supply chain risk management approach after a serious sub-supplier accident. *International Journal of Physical Distribution & Logistics Management*, 34(5), 434–456. <https://doi.org/10.1108/09600030410545463>

Pettit, T. J., Croxton, K. L., & Fiksel, J. (2013). Ensuring supply chain resilience: Development and implementation of an assessment tool. *Journal of Business Logistics*, 34(1), 46–76. <https://doi.org/10.1111/jbl.12009>

Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. *The International Journal of Logistics Management*, 20(1), 124–143. <https://doi.org/10.1108/09574090910954873>

Queiroz, M. M., & Wamba, S. F. (2019). Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. *International Journal of Information Management*, 46, 70–82. <https://doi.org/10.1016/j.ijinfomgt.2018.11.021>

Khan, T., Emon, M. M. H., & Rahman, S. (2024). Marketing Strategy Innovation via AI Adoption: A Study on Bangladeshi SMEs in the Context of Industry 5.0. 2024 6th International Conference on Sustainable Technologies for Industry 5.0 (STI), 1-6.

Khan, T., Emon, M. M. H., & Nath, A. (2024). Quantifying the Effects of AI-Driven Inventory Management on Operational Efficiency in Online Retail. 2024 27th International Conference on Computer and Information Technology (ICCIT), 1-6.

Sanders, N. R. (2007). An empirical study of the impact of e-business technologies on organizational collaboration and performance. *Journal of Operations Management*, 25(6), 1332–1347. <https://doi.org/10.1016/j.jom.2007.01.008>

Sheffi, Y., & Rice, J. B. (2005). A supply chain view of the resilient enterprise. *MIT Sloan Management Review*, 47(1), 41–48.

Soni, U., & Jain, V. (2011). Minimizing the impact of disasters on supply chains: The role of quality infrastructure. *International Journal of Disaster Resilience in the Built Environment*, 2(3), 301–314. <https://doi.org/10.1108/17595901111167115>

Swafford, P. M., Ghosh, S., & Murthy, N. (2008). Achieving supply chain agility through IT integration and flexibility. *International Journal of Production Economics*, 116(2), 288–297. <https://doi.org/10.1016/j.ijpe.2008.09.002>

Tachizawa, E. M., & Wong, C. Y. (2014). Towards a theory of multi-tier sustainable supply chains: A systematic literature review. *Supply Chain Management: An International Journal*, 19(5/6), 643–663. <https://doi.org/10.1108/SCM-02-2014-0070>

Tang, C. S. (2006). Robust strategies for mitigating supply chain disruptions. *International Journal of Logistics: Research and Applications*, 9(1), 33–45. <https://doi.org/10.1080/13675560500405584>

Tukamuhabwa, B. R., Stevenson, M., Busby, J., & Zorzini, M. (2015). Supply chain resilience: Definition, review and theoretical foundations for further study. *International Journal of Production Research*, 53(18), 5592–5623. <https://doi.org/10.1080/00207543.2015.1037934>

Wieland, A., & Wallenburg, C. M. (2013). The influence of relational competencies on supply chain resilience: A relational view. *International Journal of Physical Distribution & Logistics Management*, 43(4), 300–320. <https://doi.org/10.1108/IJPDLM-08-2012-0243>

Rahman, M. A., Emon, M. M. H., Khan, T., & Siam, S. A. J. (2024). Measuring the Influence of Brand Image on Consumer Behavioral Intentions by using AI: Exploring the Mediating Role of Trust. 2024 IEEE International Conference on Computing, Applications and Systems (COMPAS), 1–7. <https://doi.org/10.1109/COMPAS60761.2024.10796396>

Rahman, M. A., Emon, M. M. H., Khan, T., Hamid, A. B. A., & Yaakub, N. I. (2025). Eco-Intelligence. In AI and Green Technology Applications in Society (pp. 31–62). IGI Global Scientific Publishing. <https://doi.org/10.4018/979-8-3693-9879-1.ch002>

Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. *International Journal of Production Research*, 58(10), 2904–2915. <https://doi.org/10.1080/00207543.2020.1750727>

Jüttner, U., & Maklan, S. (2011). Supply chain resilience in the global financial crisis: An empirical study. *Supply Chain Management: An International Journal*, 16(4), 246–259. <https://doi.org/10.1108/13598541111139062>

Kamalahmadi, M., & Parast, M. M. (2016). A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. *International Journal of Production Economics*, 171, 116–133. <https://doi.org/10.1016/j.ijpe.2015.10.023>

Lee, H. L. (2004). The triple-A supply chain. *Harvard Business Review*, 82(10), 102–112.

Maleki, M., & Cruz-Machado, V. (2013). Supply chain performance monitoring using Bayesian network. *International Journal of Business Performance and Supply Chain Modelling*, 5(3), 237–255. <https://doi.org/10.1504/IJBPSCM.2013.056665>

Norrman, A., & Jansson, U. (2004). Ericsson's proactive supply chain risk management approach after a serious sub-supplier accident. *International Journal of Physical Distribution & Logistics Management*, 34(5), 434–456. <https://doi.org/10.1108/09600030410545463>

Pettit, T. J., Croxton, K. L., & Fiksel, J. (2013). Ensuring supply chain resilience: Development and implementation of an assessment tool. *Journal of Business Logistics*, 34(1), 46–76. <https://doi.org/10.1111/jbl.12009>

Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. *The International Journal of Logistics Management*, 20(1), 124–143. <https://doi.org/10.1108/09574090910954873>

Queiroz, M. M., & Wamba, S. F. (2019). Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. *International Journal of Information Management*, 46, 70–82. <https://doi.org/10.1016/j.ijinfomgt.2018.11.021>

Sanders, N. R. (2007). An empirical study of the impact of e-business technologies on organizational collaboration and performance. *Journal of Operations Management*, 25(6), 1332–1347. <https://doi.org/10.1016/j.jom.2007.01.008>

Sheffi, Y., & Rice, J. B. (2005). A supply chain view of the resilient enterprise. *MIT Sloan Management Review*, 47(1), 41–48.

Soni, U., & Jain, V. (2011). Minimizing the impact of disasters on supply chains: The role of quality infrastructure. *International Journal of Disaster Resilience in the Built Environment*, 2(3), 301–314. <https://doi.org/10.1108/17595901111167115>

Swafford, P. M., Ghosh, S., & Murthy, N. (2008). Achieving supply chain agility through IT integration and flexibility. *International Journal of Production Economics*, 116(2), 288–297. <https://doi.org/10.1016/j.ijpe.2008.09.002>

Tachizawa, E. M., & Wong, C. Y. (2014). Towards a theory of multi-tier sustainable supply chains: A systematic literature review. *Supply Chain Management: An International Journal*, 19(5/6), 643–663. <https://doi.org/10.1108/SCM-02-2014-0070>

Tang, C. S. (2006). Robust strategies for mitigating supply chain disruptions. *International Journal of Logistics: Research and Applications*, 9(1), 33–45. <https://doi.org/10.1080/13675560500405584>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.