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Abstract: When glucose molecules are metabolized by a biological cell, the molecules are constrained
to flow along distinct, reaction trajectories, which are defined by the cell’s underlying metabolic
network. Using the computational technique of Elementary Mode Analysis, the entire set of all
possible trajectories can be enumerated, effectively allowing metabolism to be viewed in a discretized
space. With the resulting set of Elementary Flux Modes (EM), macroscopic fluxes, (of both mass and
energy) that cross the cell envelope can be computed by a simple, linear combination of the individual
EM trajectories. The challenge in this approach is that the usage probability of each EM is unknown.
But, because the analytical framework we have adopted allows metabolism to be viewed in a discrete
space, we can use the mathematics of statistical thermodynamics to derive the usage probabilities
when the system entropy is maximized. The resulting probabilities, which obey a Boltzmann-type
distribution, predict a rate structure for the metabolic network that is in remarkable agreement with
experimentally measured rates of adaptively evolved E. coli strains. Thus, in principle, the
intracellular dynamic properties of such bacteria can be predicted, using only the knowledge of the
DNA sequence, to reconstruct the metabolic reaction network, and the measurement of the specific
glucose uptake rate.

Keywords: metabolic networks; elementary flux modes; evolution; statistical thermodynamics

1. Introduction

Chemical and entropic forces

One of the great challenges in understanding the living world is predicting how the set of
observable characteristics (phenotype) arises from the genetic makeup of the individual in the context
of a given environment (National Research Council, 2010). This is facilitated by the development of
new research tools that have revolutionized our ability to investigate and manipulate the genome,
the cellular composition and to measure multiple aspects of the environment (Todorovic, 2020)
(Barrangou & Horvath, 2017) (Hollywood, et al., 2020). In biological systems research, the task is
now to assimilate this information into causal, predictive relationships. The connection between the
genome and the phenotype of an organism in response to the environment is mediated by the
reactions that convert the information present in the genome into the structure and functioning of an
organism. Thus, understanding metabolic networks and how they evolve is expected to profoundly
contribute to solving the grand challenge in systems biology.

Biological systems, like any other system in the universe, must obey the fundamental principles
of thermodynamics.  Thus, the organization, functioning and evolution of life, as mediated by the
reaction network of cells, must be explainable at the level of these fundamental rules.

In physics, entropic forces are attributed to the tendency of matter to bring a physical system,
through the effects of thermal fluctuations, toward a macroscopic state in which the number
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of microscopic states (or micro-states) that are compatible with this macroscopic state is maximized
while the average of all the microscopic states reflects the measured properties of the macroscopic
states. In other words, thermal fluctuations tend to bring a system toward its macroscopic state of
maximum entropy (Schroedinger, 1989) (Jaynes, 1957). Similarly, in biological systems involving
cells that must constantly evolve to survive, one can argue that entropic forces are also at work, based
on the effects of genetic fluctuations, to bring the system toward a macroscopic state of maximum
entropy. Thus, cells growing in a given environment are subject to both chemical and entropic
forces. Chemical forces, due to the imbalance of chemical potentials between substrates and
products, drive the metabolic reactions, while entropic forces drive the evolution of the metabolic
network toward a state that maximizes the entropy of the system in which the cells grow.

Here we develop the thermodynamic relationships that support these statements. They provide
predictions for the structure of a metabolic network that can be validated by comparison with
experimental measurements. It is well established that in isolated systems at steady state the
chemical potentials are equilibrated such that the Gibbs free energy is minimized, and the entropy is
maximized. Both the Gibbs free energy of reaction and entropy of reaction become zero when the
system reaches a time invariant state in equilibrium (Gibbs, 1877-1878). While these principles are
firmly grounded for equilibrium systems, there is increasing evidence that they can be extended also
to open, non-equilibrium systems that exchange material and energy with the environment (Lebon,
et al,, 2008). Open, non-equilibrium systems can also reach a time invariant state when they are at
steady state. We will assert that open systems in such a state also exhibit extrema in the considered
thermodynamic properties. The Gibbs free energy tends towards a minimum as the chemical
potentials drive the reactions into the dynamic steady state of reactant concentrations (Niven, 2010),
while the associated entropy of the system represents a maximum with respect to the organization of
the cell’s metabolic network and the surrounding environment.

Here we apply the Maximum Entropy Production (MEP) principle as it relates generally to a
reacting system in a dynamic steady state. MEP has been attributed as a fundamental physical
principle in many phenomena including for example the Earth’s climate system (e.g. (Paltridge, 1975)
(Kleidon, 2004); thermal convection (Ozawa, et al., 2001); electrical currents (Zupanovié, et al., 2004)
(Christen, 2006); crystalline solids (Martyushev & Axelrod, 2003); ecological systems (Meysman &
Bruers, 2007) and biochemical processes (Jureti¢ & Zupanovié, 2003); (Dewar, et al., 2006). A similar
derivation has been developed before based on a control volume approach and a dimensionless
potential function that is a minimum when the entropy production rate is at a maximum (Niven,
2010) (Ghosh, et al., 2020).

As a mathematical basis for our model, we employ the computational technique of Elementary
Mode Analysis (EMA). The value of EMA and other techniques for metabolic modeling, has increased
in recent years given the extensive progress that has been made in the reconstruction and
understanding of metabolic networks based on detailed genomic information and experimental
techniques for quantifying flux values. A metabolic network can function according to many
different pathway options. Such redundancy of pathways enables cells to compete efficiently and to
survive under changing environmental conditions (Stelling, et al., 2004). Elementary mode (EM)
analysis has emerged as a powerful systems biological tool that rigorously dissects a metabolic
network into its basic building blocks (Schuster, et al., 2000) (Schuster, et al., 2002). Consequently, the
use of this approach allows the metabolism of a functioning cell to be viewed as a weighted average
of the fluxes through all fundamental pathways (EMs) supported by the metabolic network (Stelling,
et al., 2002) (Trinh, et al., 2006). The set of EMs represents the parts list for cell function encoded at a
higher level in the hierarchy of biological complexity. Because each EM constitutes a balanced
stoichiometric equation, this information can be used to estimate the thermodynamic properties of
each EM, e.g. the Gibbs free energy of reaction (AGg) and the entropy of reaction (ASg).

An ideal system for investigating the fate of growing cells is the continuous stirred tank reactor
(CSTR). It represents an open, non-equilibrium system in which the state of cells together with the
growth environment are precisely defined when a steady state is reached. Therefore, such a system
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enables a quantitative assessment of how cells function based on the underlying metabolism and how
they interact with their environment. = Here, the quantitative macroscopic relationships are
developed for the steady state of the system in which the chemical driving forces are minimized. By
dissecting the metabolic network into its fundamental parts or elementary modes, metabolism can be
discretized at the microscopic level. With this approach, the metabolic network becomes accessible
to the rules of statistical thermodynamics that reveal the entropic forces that are at work in the
evolving cell system. Analogous to the way in which statistical mechanical models must be
informed by empirically measured properties of the macroscopic state, our model makes use of
experimental measurements of the cell’s overall growth stoichiometry as well as environmental
properties of the CSTR. Together, this information can be combined to estimate the rate of entropy
production by the macroscopic, biological system. Finally, a probability distribution for the
underlying microstates can be constructed whose mean matches the experimentally measured
macroscopic state.

The developed theory enables the prediction of the internal fluxes through the metabolism of
cells and their interactions with the growth environment. = The predictions are in remarkable
agreement with detailed experimental measurements of intracellular metabolic fluxes that have been
recently made possible.

2. Results

2.1. Theory

We have previously attempted to relate the dynamic properties of a metabolic network to the
inherent thermodynamic properties of such system Specifically, in Srienc and Unrean (2010) we
provide a derivation for the Boltzmann distribution of reaction entropies when the rate of type 2
entropy production rate (defined below) is maximized. In Unrean and Srienc (2011) the entropy
balance is derived and the data are then interpreted based on the previously presented statistical
thermodynamical approach. Unfortunately, the derivations provided in these two papers are
incomplete and as such not as transparent and comprehensive as one would expect from a self-
consistent theory. Thus, in the current work these shortcomings have been eliminated and a
consistent and complete theory is presented.

This has been accomplished by following novel aspects of the presented theory: (i) the affinity
of reaction is introduced which provides the commonly accepted link to the rate of entropy
production of a reacting system. We define this rate as the Type 1 entropy production rate; (ii) the
results are expressed as the entropy and as the Gibbs free energy of the SYSTEM at steady state which
has not been done before. It is shown that, at steady state, the minimization of the Gibbs free energy
of the system corresponds to the maximization of the Type 1 entropy production rate which
corroborates the MEP (Maximum Entropy Production) principle. Thus, the MEP principle is not
assumed but derived from basic balances. In contrast, the entropy of the system is maximized when
the Type 2 entropy production rate is maximized. The Type 2 entropy production rate lacks the
enthalpic contribution present in the Type 1 rate. (iii) The statistical treatment introduces a new
parameter of the system: the maximum attainable specific growth rate of the evolving system. This
reveals the Boltzmann constant in the Boltzmann factor and unifies the data of the experimentally
tested strains since the data collapse into one general relationship that is valid for all strains.

Non-equilibrium Thermodynamics of open systems

The entropy balance for a continuous stirred tank reactor (CSTR), representing a non-
equilibrium, open system, results in the following expression (see supplemental file S1 for a detailed
derivation):

ds , , Q .
i E (Si,inNiin — SiNj) — T + Sgen (1)
i
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Here siin (si) are the molar entropies of the individual components [k]J/K/mol], at the
corresponding concentrations, transported in (out) of the system at molar flow rates niin (ni) [mol/h];
Q is the rate of heat transfer through the reactor walls [k]/h], and Sgen [k]J/K/h] is the rate of internal
entropy generation of the system due to the irreversibility of the process. The first two terms on
the right-hand side represent the net entropy transported to the surroundings due to material
transport and due to heat transfer, respectively. From this expression one can see that in a steady
state situation with zero entropy accumulation, the internal entropy production term must be
balanced by the transport of entropy to the surroundings. Due to the Second Law, the internal
entropy production term must always be larger or equal to zero.

Using an energy balance to obtain Q and considering the irreversibilities in the system due to
reaction and mixing, we can convert this expression at steady state into Equ (2) by substituting the
molar flow rates ni with the product of volumetric flow rates F [L/h] and concentrations ci [mol/L]
and by introducing the space time t = V/F [h]. The rate of entropy generation is given by the
product of the entropy of reaction DSk and the extent of reaction £ [mol/L.h] (see also Equ. 11).
Recalling that entropy is an extensive property, we see that the expression provides a statement of
the entropy content of the system at steady state

Ssys = Z Si i = Z SiCiin + T6ASR 2)
i i

This expression shows that the system entropy is a function of the concentration of the species
in the inlet stream, the entropy of the species evaluated at the system (outlet) conditions—this
includes effects from dilution, temperature, pH, and ionic strength—and the rate of entropy
production in the system contributed by the reaction entropy. Equ 2 shows that the system entropy
is expected to increase as the rate of entropy production by reaction increases. Furthermore, when
the system is operated at isothermal conditions, and dilution of the incoming stream is negligible, as
is commonly the case for low cell-density, chemostat cultures, the reaction term dominates, and
system entropy approaches a maximum. We define this entropy production rate as the Type 2
entropy production rate since it omits the enthalpic contribution to the entropy formation.

Using the Gibbs relation (Gsys = Hsys -TSsys ) along with expressions for Hsys and Gsys that are
derived similarly to the procedure used for Equ 2, we can derive an expression for the Gibbs free
energy of the system:

Gsys = Hgys — Z hjciin — TEAHR + Z giCiin — TTEAGR 3)
T T

By combining Equ 2 with different statements of the Gibbs relation (Gsys = Hsys -TSsys, gi = hi —
Tsi, and AGr = AHr — TASr), we can convert this to the following expression for the Gibbs free energy
of the system given that the first three terms on the right hand side of Equ 3 must sum to zero

Gsys = Z 8iCijin T TEAGR €))
i

The rate of entropy production due to the irreversibility of the reaction can also be expressed
as

A.
TE (%)

where 6., [J/K.L.h] is the rate of entropy production per unit volume, and A [J/mol] is the

V6rxn = ern =V

affinity of reaction defined as the negative of the Gibbs Free Energy of reaction (De Donder & Van
Rysselberghe, 1936):

A= —AGg (6)
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With these relations we can write
Gsys = Z 8iCijin — TGy @)
i

The Gibbs free energy of the system at steady state is proportional to the negative rate of entropy
production G.4,. We define this entropy production rate as the Type 1 production rate since it
expresses the commonly known entropy production rate based on the affinity of reaction that
includes contributions from both the enthalpy as well as entropy of reaction. Thus, a reacting open
system adjusts the component concentrations because of reactions such that the Gibbs free energy at
steady state is at a minimum due to the tendency to equilibrate chemical potentials. This is
accomplished when the rate of entropy production is maximized corroborating the Maximum
Entropy Production (MEP) principle (Martyushev & Seleznev, 2006) (Dewar, 2009). But the
corresponding system entropy (Equ. 2), under the assumed experimental conditions, depends only
on the rate of entropy formation due to the entropy of reaction. From the contributions to the
internal entropy generation expression, only the reaction entropy affects the entropy of the system,
because the enthalpic component of the internal entropy generation is exported into the surroundings
and does not contribute to the entropy content of the system. The obtained relationships describe
the macroscopic behavior of the system and are generally valid for any reacting, non-equilibrium
system at steady state. A detailed derivation including material and energy balances is given in
supplemental file S1.

Thermodynamics of Elementary Modes. An Elementary Mode (EM) is formally defined as a
minimal set of enzymes that can operate at steady state with all irreversible reactions proceeding in
the appropriate direction (Schuster, et al., 1999). An alternate definition that can be easier visualized,
is that an EM represents a reaction sequence (or pathway) that a glucose molecule follows when it is
metabolized. At the dynamic steady state, the overall growth reaction can be formally represented
by the general chemical equation

A+ VBB+“‘ = VcC + VDD + .- (8)

that represents all components (nutrients, biomass and products) in the reactor. Here, one mole
of Glucose (A) plus nutrients (B) get converted into biomass (C) and products (D). The factors ni
represent the individual stoichiometry coefficients or the molar yields per one mole of glucose
utilized of each component. They are negative for reactants and positive for products. The rate of
reaction is described by the extent of reaction £ [mol/Lh]. The extent of reaction represents also
the rate of glucose consumption since the stoichiometry coefficient for glucose is -1. The rate of the
chemical growth reaction (Equ 8) is proportional to the biomass concentration or the number of cells
present. Because the reaction equation holds for all biomass concentrations it is convenient to express
it on a per cell mass basis. The rates of reaction then become specific rates of reaction { [mol/h.g
CDW].

Such a chemical equation can be written for each EM. It involves only the external metabolites
that are taken up or that are excreted by the cells. Each EM contributes to the specific glucose
uptake at a rate defined by

& = & )

where pj represents the fraction of the total specific glucose uptake rate & [mol/h.g CDW] that is
consumed by elementary mode ‘j. Thus, each elementary mode contributes to the overall
metabolism with a usage probability p;.

For each EM (j), the entropy, Gibbs free energy and enthalpy of reaction can be computed based
on the individual, molar properties of formation (i) summed over the m reactants participating in the
growth equation (see Equ 8)
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ASr’]‘ = Zvi'jsi

Agr,j = zvi,jgi (10)

Ahr,j = Z Vi,jhi

1
Here we use a lowercase (Asri, Agri, or Ahsj) to represent the reaction properties of a single EM.
However, the same relation is also true, for the overall chemical reaction of the cell. Thus, the
macroscopic rate of entropy, Gibbs free energy and enthalpy generation (S, G,H) can be defined in
terms of the individual EM reaction properties

n
S = EASg = Z%,-Asj
j
n
G= EAGy = ZEjAgj (11)
j

n
H= £AHR = ZéjAhj
j

where £ [moles glucose/h.g CDW] is the cell specific glucose consumption rate in the reactor,
DSr [J/K.mole glucose] is the reaction entropy of the overall growth reaction per mole glucose
consumed and DGr and DHr the corresponding Gibbs free energy and enthalpy of reaction [J/mole
glucose]. S [J/K.h.g CDW] is the cell specific rate of entropy production, G and H [J/h.g CDW] are
the cell specific rate of Gibbs free energy and enthalpy production, & [mole glucose/h.g CDW] is
the specific glucose uptake reaction rate of elementary mode j and Dsj, Dgj Dhj and pj are the
respective reaction properties and usage probabilities of individual elementary modes, respectively.
Note that for simplicity the subscript r is omitted for the reaction properties of individual elementary
modes, and the thermodynamic properties of the overall cell reaction are assigned using uppercase
letters (ASg, AGg, AHy ). After substituting with (9) one obtains

n
j

G=% ijAg; (12)
j

n
j

Equ. (12) shows that the cell specific rate of production of the thermodynamic reaction properties
is a function of the usage probability of individual elementary modes and of the total glucose uptake
rate of a cell. In fact, once the usage probabilities of elementary modes are known the specific rates
of change relative to the glucose uptake rate are defined by the overall stoichiometry of the growth
reaction (Eq. 8) since the stoichiometry coefficients (or yields) can be computed from the sum of
contributions of individual elementary modes.


https://doi.org/10.20944/preprints202502.1060.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 February 2025 d0i:10.20944/preprints202502.1060.v1

7 of 20

n

Vi = Z ViiPj (13)
j
where ni is the stoichiometry coefficient of the it reactant in the overall growth equation and nj;
is the corresponding stoichiometry coefficient in the elementary mode j.
The specific rate of Gibbs free energy production (Equ. 12) can be combined with Equ. (5) and
(6) to obtain the specific rate of entropy production of the system due to the irreversibility of the
reaction system:
. n . n A A] n E A]
Orxn = Z Orxnj = Z Ej <?) - z Pj <T)
) ) ]
N (14)

SIE

The corresponding entropy production rate due to individual reaction entropies becomes

S=isj =ip,-(As,-%) (15)
j j

It is important to distinguish between the two rates of entropy production defined by Equ. (14)

and (15). In the first case (Equ. 14), designated as type 1, the total entropy production rate reflects
the irreversibility of reactions (entropy of reaction and entropy due to heat generation). In the
second case (Equ. 15), designated as type 2, the entropy production rate reflects the contribution by
the entropy of reaction only (type 2). The previously derived macroscopic relations have shown that
the type 1 entropy production rate is a maximum when the Gibbs free energy of the system is a
minimum at steady state (see Equ. 7). In contrast, the type 2 entropy production rate is a maximum
when the entropy of the system is at a maximum (see Equ. 2). Clearly, both types of entropy
production rates are defined by the internal rate structure of the metabolism, ie. by the
thermodynamic properties of external substrates, by the usage probability of each elementary mode
and by the specific rate of glucose uptake.

Thus, the question arises whether the internal elementary mode structure of a cell evolves to
minimize the Gibbs free energy of the system or to maximize the entropy of the system. In the first
case the Gibbs free energies of reaction are the characteristic properties of the reaction trajectories
defined by individual elementary modes as they determine the type 1 entropy production rate. In
the second case, the entropies of reaction define the rate structure of the metabolism based on the
type 2 entropy production rates of individual elementary modes.

Frequency Distribution of Elementary Modes

Having derived the equations that link a cell’s macroscopic rate of entropy production to the EM
microstates of its metabolic network, the challenge then becomes to adjust the individual usage
probabilities (pj) so that that rate of entropy production by the system is a maximum. At the same
time, the probability distribution must be made to satisfy three constraints: (i) the fair apportionment
of outcomes, (ii) a constant macroscopic specific entropy production rate, and (iii) unity of the sum
of all probabilities (Dill & Bromberg, 2002). The solution to this maximization problem, which is
obtained by the method of Lagrange multipliers, represents then the constrained maximum specific
entropy production rate with respect to the underlying variation of usage probabilities of elementary
modes. This approach has been previously described for the case of maximizing the entropy of the
system on the basis of maximizing the type 2 entropy production rate (Srienc & Unrean, 2010).

Alternately, one can carry out the thought experiment as done originally by Boltzmann
(Boltzmann, 1877) for the energy distribution in gas particles. But instead of observing the energy
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content of individual particles, one observes the time trajectories of individual glucose molecules
when they are metabolized, and one evaluates the associated rate of specific entropy production. One
should recall that individual glucose molecules are always metabolized following a path along an
elementary mode. Arranging the same number of glucose molecule trajectories in all possible
permutations yielding the fixed macroscopic specific entropy production rate, results in the most
probable distribution of the usage of individual elementary modes.

Both approaches result in following expressions for the usage frequency of an elementary mode
which represents a constrained maximum of the overall entropy production rate depending on which
type of entropy production rate (type 1 or 2) determines the distribution:

EAs;
pj = exp (- L +0) (16)
K
or E(—A gj)
pj=exp (- — +0 (17)
In linearized form the equations become
EAs;
lnpj=—L+c (18)
or
Ao
]np.z_u_FC (19)

J TK

This expression relates the usage probability of an elementary mode j to the net glucose uptake
rate of the cell § [moles glucose/h.g CDW] and to the individual entropies of reaction As; or Gibbs
free energies of reaction A g; of elementary modes. K and c are the Lagrange multipliers arising
via the constrained optimization.

To keep dimensional consistency, we can separate from K the constant Q=1 [1/ h. g CDW] to
give

with R [J/K.mol] representing the universal gas constant (or molar Boltzmann constant).

The usage probability of elementary modes based on type 2 entropy production rates becomes

K=QR (20)

lnp]-=——.+c 21

To obtain the constant ¢ Equ (16) can be rewritten as

EAS-
pj = expexp (—Q—R] (22)

Then, by summing up all probabilities to unity, one obtains the “partition” function Z along with

the value of C
—c 7 i EAS]
exp “=7Z= . exp QR (23)
j

The unique form of Egs. 16 and 17, suggests that the evolution of a metabolic network involves
an interplay between two mechanisms, each having the ability to advance the fitness of the cell. The
first mechanism is due to changing the network structure as reflected in the distribution of usage
probabilities pj of elementary modes. The second mechanism is due to the selection process reflected
by the specific glucose uptake rate £. The network structure determines the yield of biomass on

d0i:10.20944/preprints202502.1060.v1
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glucose (Y) (see Equ. 13), and when this is multiplied by the specific glucose uptake rate, the resulting
value gives the specific growth rate,

W=Y§ 24)

where m [1/h] represents the specific growth rate and Y [mol biomass/mol-glucose] is the yield
coefficient of biomass on glucose, i.e. the stoichiometry coefficient associated with the biomass in the
growth equation (Equ. 8).

In the process of evolution, the rate of entropy production is increased. The rate of entropy
production (see Equ. 12) can be increased (i) by increasing the specific glucose uptake rate or (ii) by
changing the rate structure of the network such that a higher specific entropy of reaction is obtained.
The latter case would require that more weight (usage probability) would be given to an elementary
mode that has a higher entropy of reaction. The highest rate of entropy production is obtained when
the highest specific glucose uptake rate is reached together with the associated rate structure of the
metabolism. In that case the specific glucose uptake rate becomes €max and the network structure
is given by

EmaXAsj
exp (— R ) (25)
Z

representing the most probable distribution of elementary modes for the case of a fully evolved

pj =

metabolic network.

But there could be the case where this state of ultimate network structure has been reached but
not yet the state of maximum specific glucose uptake rate. Insuch a case, the specific glucose uptake
rate of a cell can be increased, in principle, by increasing in equal proportions all catalysts (enzymes)
in a cell. This would increase proportionally the rate of each individual reaction including the specific
growth rate, without changing the network structure. But one should expect a limit to this increase,
since there will likely be a maximum specific glucose uptake rate that a cell can achieve due to
physical transport limitations. For instance, glucose can only diffuse to the surface of a cell at a
maximum rate dictated by the diffusion coefficient, or glucose uptake could be limited by a limited
number of permeases on the cell surface (Koch, 1971). It is therefore useful to relate the
experimentally measured glucose uptake rate to this maximum possible specific uptake rate

where &, [mol glucose/h.g CDW] is the maximum specific glucose uptake rate of a cell

€ = bEmay (26)

attainable by evolution under the given environmental conditions, and b represents the fraction of
the maximum specific growth rate that the strain has attained during the ongoing evolution process.

Thus, the usage probability of an elementary mode of a fully evolved metabolic network
structure in a cell that has not yet attained the maximum specific glucose uptake rate, can be
computed explicitly from

EAS]
P (" hor @7)
b=
or, in linearized form, from
EAs;
lnpj=—le;+c (28)

If we know the maximum possible glucose uptake rate, we can estimate b from the measured
actual specific glucose uptake rate using Equ. (26). Alternately, if we do not know the maximum
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possible macroscopic glucose uptake rate, we need to determine both the specific glucose uptake rate
at the current point in the evolution process and estimate the fraction b as shown below.

In case the internal rate structure is determined by the type 1 entropy production rate, an
analogous expression is obtained in which the reaction entropy is substituted by the affinity of
reaction divided by T. However, we will focus in the following on the type 2 entropy production
rate as the data suggest that this type determines the usage frequencies of elementary modes, the
justification for which we present later in the Discussion.

2.2. Comparison of Theory with Experimental Systems

Recently, a radioisotope labeling method combined with mass spectrometry has been developed
that allows estimation of multiple intracellular reaction rates comprising a metabolic reaction
network (Antoniewicz, 2015). This method has been applied to evaluate the reaction rates of six
strains of E. coli that were evolved over 300 generations from the same ancestor cell line in growth
experiments using glucose as the carbon and energy source (Long, et al., 2017). Over this time the
strains increased their specific growth rate by 28 - 38 %. Surprisingly, in the set of evolved strains,
the network structure is very similar to the original wildtype. This could indicate that the strains
are already close to the fully evolved network state. We have used these data to test the presented
theory. We first determined the constant b from the experimentally measured glucose uptake rate
and Equ. (28), and then predicted the intracellular rate structure and compared it with the
experimentally measured data.

The thermodynamic reaction properties for each elementary mode, sorted according to

decreasing values of Gibbs free energies of reaction, are shown in Figure 1.
4

Entropy Equiv (kJ/K/mol)

14 : ‘ ‘
0 2000 4000 6000 8000

Mode Order

Figure 1. Entropy equivalents from Gibbs free energy, enthalpy and entropy of reaction of all 7363 elementary
modes. The thermodynamic properties are plotted as a function of the elementary mode number after sorting

the modes according to decreasing Gibbs free energy values.

The graph shows that the Gibbs free energy of reaction is negative for all elementary modes,
indicating that all elementary modes are thermodynamically spontaneous at the experimental
conditions.  Furthermore, all elementary modes are exothermic. There is a strong correlation
between the Gibbs free energy and the enthalpy of reaction and an inverse correlation with the
entropy of reaction. All elementary modes have a positive entropy of reaction and a negative Gibbs
free energy of reaction indicating that all pathways are feasible and spontaneous. The results of this
first test, are presented to justify our assumption that all identified EMs should be included in the
probability distribution.
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Figure 2. Negative Gibbs free energy of reaction divided by temperature vs. Entropy of reaction for all 7363
elementary modes. The solid diamond represents the arithmetic average over all elementary modes. Open
red circles represent the thermodynamic reaction values computed from experimental measurements of
externally occuring metabolites (e.g oxygen, COz, biomass, and acetate). Open green circles represent the usage

probabilities of individual elementary modes computed as in Fig 3.

In Figure 2 the entropy contribution from the Gibbs free energy of reaction (-DG;j/T) versus the
entropies of reaction (DS;j) are plotted for all elementary modes.

The solid diamond represents the arithmetic average of -DGj/T and DS;jtaken over all modes,
while the open red circles represent the entropy and Gibbs free energy of reaction computed from
the experimentally determined overall growth reaction (Equ. 8) of each strain. Thermodynamic
values were calculated from the experimental flux data for the externally occurring metabolites of the
seven strains tested by Long (Long, et al., 2017). Compared to the mode-average entropy and Gibbs
free energy of reaction, which assumes a uniform probability distribution over all the modes, the
experimentally determined thermodynamic values are clearly biased towards lower values of
entropy as expected from a Boltzmann distribution of elementary modes (see Eq. 28). In addition,
probability values for each elementary mode are superimposed onto the figure.

Determination of the maximum glucose uptake rate from experimental data

The metabolic network contains n Elementary Modes (n = 7363), which were computed using
Cell Net Analyzer, based on the reaction network specified by Long et al. The elementary modes are
listed in supplementary file S2. Based on n elementary modes, Equ. (28) results in n independent
relationships in which the probabilities pj and the constants b and ¢ account for n+2 unknowns.
Thus, to completely specify the system, two additional relationships are needed. One is given by
the requirement that the probabilities must sum up to unity, and the second is provided from the
experimental data for the stoichiometry coefficients of the overall growth reaction (Equ.8) that
permits computation of the entropy of reaction according to Equ. (10). The solution is numerically
accessible in MATLAB using the Levenberg-Marquardt least square algorithm for solving non-linear
equations.

Note that each EM can be represented by a reaction equation as shown in Equation (8) that is
based only on external metabolites. Only the stoichiometry coefficients may be different. Then, the
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Gibbs free energy and entropy of external metabolites can be evaluated using standard physical
chemistry approaches, and, from the difference of products and reactants, the Gibbs free energy and
entropy of reaction can be evaluated. These values are then used in the system of equations as
described above and numerically solved using MATLAB providing the probabilities of each EM and

the parameters of the distribution.

Once the parameters of the distribution are known, the
robabilities can be directly computed from Equ. (27) or (28).
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Figure 3. Usage probabilities of elementary modes as a function of entropy production rates of individual
elementary modes for the six evolved strains and for the parent wildtype. (a) For each strain the usage
probabilities of elementary modes and the constants b and c have been computed (see text). The set of data points
show the linear relationship defined by Equ. (28). (Rather than plotting all 7363 probabilities for each strain
only a set of equally spaced datapoints covering the range of entropy production rates is displayed.) The single,
dashed line is the computed linear regression of all the displayed datapoints from each strain. (b) In the right-
hand graph, the entropy production rates are normalized to the maximum glucose uptake rate by dividing by
the unique value of b for each strain. Presented in this way, the slope of each graph represents the universal

gas constant (or molar Boltzmann constant). AEx = ALE-x (as used in text).

Figure 3 shows the usage probabilities of elementary modes as a function of specific entropy
production rates (type 2). When the entropy production values for the strains are normalized, each
by their own specific value of b, the trends all collapse to a common form, having the same slope
which corresponds to the universal gas constant as defined by Eq. (20). The measured macroscopic
growth parameters together with the constants b and c for the individual strains are summarized in
Table 1.

Using Egs.(24) and (26) along with the measured specific growth rate for each strain and the
computed constant b, we can make an estimate of the maximum theoretical growth rate (max) that is
possible for E. coli under the given environmental conditions. Then, with the maximum specific
growth rate, the minimum doubling time can also be calculated (see Table 1).

Table 1. Measured growth parameters (Long et al., 2017) and computed constants b and c.

Pl qs Yb/g b C leax qs, max Tmin
mmol/
1/h mmol/h.gCDW g/g — — 1/h min
h.gCDW
WT 0.670 +0.002 8.46 +0.42 0.444 0.30410 | -1.44 | 2.23 -27.83 19
ALE-1 | 0.886 +0.030 11.57 +0.52 0.425 0.42324 | -1.55 | 2.09 -27.35 20
ALE-2 | 0.869 +0.015 10.79 +0.40 0.447 0.39574 | -1.57 | 2.20 -27.27 19
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ALE-3 | 0.891 +£0.024 11.97 +0.72 0.414 0.41514 | -1.20 | 2.15 -28.82 19
ALE-4 | 0.819+0.013 10.29 +0.27 0.442 0.36869 | -1.42 | 2.22 -2791 19
ALE-5 | 0.934 £0.011 11.82 +0.57 0.439 0.40408 | -1.11 2.31 -29.26 18
ALE-6 | 0.936 +0.021 12.46 + 0.37 0.417 0.34908 | 0.35 2.68 -35.69 16

u  measured specific growth rate, [1/h]

gs measured glucose uptake rate, [mmol/h.gCDW]

Yb; measured yield of biomass on glucose [g/g].

Hmax maximum specific growth rate, predicted [1/h] (u /b)

gs max maximum glucose uptake rate, predicted, (qs/b) [mmol/h.gCDW]

Tmin mMinimum doubling time, predicted (In(2) /p_ ) [min]

The average minimum doubling time for all strains is 18 +/- 1.4 min. This predicted doubling
time points to further evolution capacity as it is shorter than the doubling time of 23 min inferred
after evolving E. coli on minimal media over 21 years or 50,000 generations (Wiser, et al., 2013). In
making this calculation, it is important to remember, we have assumed that all strains are already at
(or very near) the optimum network structure. Consequently, this implies that the additional
rounds of adaptive evolution conducted by Long et al., served mainly to reduce the effects of any
rate limiting states that were restricting the overall flux of glucose, rather than affecting any
significant changes in the distribution of the underlying, elementary modes.

Estimation of measured fluxes and comparison to predicted fluxes

With the maximum possible glucose uptake rate identified we can now explicitly compute the
usage probabilities of elementary modes from Equ. (28).  Since each elementary mode is assumed
to be operating at steady state, without accumulating intermediate metabolites, the metabolic flux
across all reaction steps of the EM is conserved. The flux contribution for each elementary mode can
then be obtained from Eq. (9), and the rate of production of each external metabolite can be computed

from
n

ry = z Vij & (29)
j=1
Where ri [moles/h] represent the rate of change in the overall chemical equation and nji the

stoichiometry coefficient of the it reactant of elementary mode j and its corresponding flux x;.  The
rates of internal reactions can be obtained from

n
I = Z Pié; (30)
=1

where 1« [mol/h] is the flux through the kthreaction in the metabolic reaction network and xx; is
the contribution to the kth reaction by elementary mode j .

The experimentally determined reaction rates for strain ALE-3, which is representative for all
other strains, are compared with the reaction rates predicted from the model in Fig.4.

d0i:10.20944/preprints202502.1060.v1
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Figure 4. Measured vs predicted metabolic rates for strain ALE-3. The rates of the metabolic reaction network
are expressed relative to the glucose uptake rate, which has a value of 100 %. The metabolic reaction network
consists of 73 reaction steps of which 11 (marked with red full circles) are transport reactions into and out of the
external cell environment. The remaining intracellular reactions are marked with closed blue circles. The
three labeled, gray datapoints deviate significantly from the correlation between measured and predicted
reaction rates. Label v65 represents the reaction rate of the conversion of intracellular ATP into the external ATP
pool (see text for explanation). Label v34 represents the anabolic conversion of oxaloacetate to
phosphoenolpyruvate consuming ATP. Label v33 represents the anaplerotic conversion of
phosphoenolpyruvate into oxaloacetate. The linear regression represented by the dashed line, excludes the

labeled datapoints.

With the exclusion of three outlying flux values (v33, v34, and v65), the measured and predicted
reaction rates are in remarkable agreement as expressed in the R2value of 0.97 of the linear regression
of the data (see Fig. 4). The three, inconsistent reaction rates represent (i) the conversion of ATP into
the external ATP pool (label v65 in Fig.4), (ii) the anabolic conversion of oxaloacetate into
phosphoenolpyruvate consuming ATP (label v34 in Fig.4), and (iii) the anaplerotic conversion of
phosphoenolpyruvate to oxaloacetate (label v33 in Fig.4). The discrepancy arises because in the
measured data set assumes a significant export of ATP and the anaplerotic reaction v34 is essentially
zero while the elementary mode-based model predicts a significant reaction activity of v34 that
consumes ATP. Thus, in the model, based on elementary modes, a significant turnaround between
phosphoenolpyruvate and oxaloacetate consuming ATP is predicted. If this ATP consumption
would be assigned to a maintenance reaction (not included in the model) the experimental data
would be very well predicted by the model considering that the total consumption of ATP is within
4 % when comparing the experimental data with the prediction. At this point it is not clear whether
this discrepancy is possibly caused by the extraction of the rate data from the measurements. For
instance, a constant ATP production based on a P/O ratio of 2 has been assumed for all strains in the
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experiment (Long et al., 2017).  Or errors could be introduced when a futile cycle exists in the model
of elementary modes which lacks a reaction consuming energy for cell maintenance.

3. Discussion

Starting from the basic material, energy and entropy balances of a precisely defined system, a
continuous stirred tank reactor (CSTR), we provide a theoretical justification for the Maximum
Entropy Production principle when the system is in a stationary state that minimizes its Gibbs free
energy. We show that in this state the Gibbs free energy of the system is proportional to the negative
rate of entropy production, especially for conditions when there is a minimal change in state between
the outlet and the inlet conditions, e.g. isothermal operation with low fractional conversion of the
incoming stream. In such reacting system the chemical forces drive the system into a time invariant
steady state in which the Gibbs free energy is at a minimum. Therefore, the entropy production rate
must be at a maximum. The presented derivation is striking due to its simplicity and is a direct
extension of the Gibbs Free energy concept (Gibbs, 1877-1878) to a non-equilibrium situation at steady
state (Lebon, et al., 2008).

The macroscopic relations show that the Gibbs free energy of the system is at a minimum when
the rate of entropy production (type 1) is maximized. In contrast, the entropy of the system is at a
maximum when the rate of entropy production (type 2), which is based only on reaction entropies,
is maximized. Thus, the question arises whether evolution attempts to minimize the Gibbs Free
energy content of the system or to maximize the entropy content of the system. In order to test this
question, we compared flux estimates obtained experimentally to flux estimates calculated using the
thermodynamic properties of the discrete reaction trajectories of the metabolic network. The
described system is unique in the sense that all discrete reaction states can be computed, and the
associated distribution can be solved numerically. In many other cases the distribution of
microscopic states can only be inferred based on assumed maximization principles such as the
maximum entropy principle (see for instance (Dixit, et al.,, 2018) (De Martino, et al., 2018)). The
obtained frequency distribution functions are either defined by the affinities (negative Gibbs free
energies) or by the entropies of reaction of the individual trajectories. It turns out that both
approaches provide frequency distributions that can fit the experimental rate data. = This is expected
since the reaction affinities are strongly correlated with the reaction entropies (see Fig. 2). Thus, the
reaction entropies as a random variable can be linearly transformed into another random variable,
the reaction affinities, resulting in similar frequency distributions. However, there are significant
differences between the results of the two models. First, when the three inconsistent reactions are
removed, the fit between measured and predicted internal and external reactions is better for the
reaction entropy model than for the reaction affinity model (R? = 0.97 vs. R2=0.94). Furthermore, the
slope of the correlation between the two datasets is close to 1 for the reaction entropy model (1.02) in
contrast to 0.95 in the case of the reaction affinity model. Second, there is a significant difference in
the prediction of the maximum possible specific growth rate. The frequency distribution model that
is based on reaction entropies predicts a shortening of the doubling time during the progressing
evolution process consistent with the selection process that requires increasingly faster specific
growth rates. In contrast, the reaction affinity-based model predicts a doubling time that is longer
than the current one. This would require slower specific growth rates when the system evolves which
is not consistent with the selection mechanism. Therefore, the former model is expected to apply.

But this does not contradict the MEP principle and the minimization of the Gibbs Free energy of
the system at steady state. This state is achieved by the variation of reactant concentrations in the
system. In contrast, the entropy of the system is maximized through variation of the frequencies
that individual elementary modes are used in the metabolism. Evolution appears to favor this state
which seems to be a general property as it can be observed not only in the metabolic network of E.
coli but also in the metabolism of other bacteria such as Thermoanaerobacterium saccharolyticum
(Unrean & Srienc, 2011). One should note also that the difference between the two models is
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generated by the heat effect of the reactions. If there are no heat effects involved in the reacting
system, the two approaches become equivalent.

The developed framework provides a possible explanation for the evolution of regulation in the
metabolism. One can argue that it is driven by the tendency of the system to operate at the state of
the most probable distribution of elementary modes. Therefore, individual enzymes have to be
expressed in coordination to support such distribution. Regulation of enzyme synthesis is thus
determined by the underlying thermodynamic principles of a reacting network to maximize the
entropy production of the system. This has important implications in biotechnology where
production systems are created that are expected to be efficient and robust. ~ Furthermore, this
opens a much broader outlook on explaining biological behavior and evolution. What happens
when environmental conditions change? Does the system evolve towards the new set of conditions?
And do these principles also apply to more complex organisms? These are testable propositions
which will have to be addressed in future work. Thus, an important goal for future research is to
elucidate how complex gene regulatory networks evolve and how their evolution results in
phenotypic change and speciation (Chen & Rajewsky, 2007).

The idea of using the Second Law of thermodynamics to describe evolution is not new. As far
back as in the 19t century, physicist Ludwig Boltzmann was contemplating about connections
between Darwin’s theory of evolution and statistical thermodynamics (Kaila & Annila, 2008). The
connection between increasing entropy and decreasing Gibbs free energy, provides a unified
understanding of how metabolism and nature works.

4. Methods

The creation of adaptive laboratory evolved E. coli strains (ALE 1-6), as well as measurements
of their growth rate, biomass yield, and external metabolite stoichiometries (glucose, acetate, and
oxygen) were reported by Sandberg (Sandberg, et al., 2016). Measurements of internal fluxes, using
13Cradioisotope labeling, and creation of the reaction network model used for metabolic flux analysis
were completed by Long et al. (Long, et al., 2017).

In the present study, the original reaction network that was specified by Long et al. has been
adapted with the following modifications: (i) two new equations are added, v72, for the export of
water (h2o >h20.Ext ) and v73, for the import of phosphate (po4.Ext = po4); (ii) Where
appropriate h2o, po4, NAD, NADP, and CoA are added to the original equations in order to satisfy
elemental balances on C, H, N, O, P, and S, and (iii) Equation v24 (1 akg + 1 coa + 1 nad => 1 succoa
+1co2+1nadh) hasbeen changed from reversible to irreversible (which is in accord with the latest
scientific information). In addition, a proton balance reaction has been added to the model (v74).
These modifications, particularly (i) and (ii) are necessary to obtain correct estimates for the
thermodynamic reaction properties of each individual elementary mode and of the overall growth
reaction. A list of the metabolic reactions used in the model is given in the supplementary material
S2. Elementary modes of the network (7363 total) were computed using CellNet Analyzer (Klamt,
et al., 2007), available for download at www2.mpi-magdeburg.mpg.de/projects/cna/cna.html). A
table of all the elementary modes is included in the supplementary material S2.

To make an accurate calculation of the thermodynamic properties of each elementary mode, it
is necessary to make an estimate of the concentration of external metabolites present during
cultivation. To obtain these values, we constructed a mathematical model of the cell evolution
experiment based on approximation of each culture as a continuously stirred tank reactor (CSTR),
operating at steady-state conditions. Parameter values for the CSTR simulation were taken from the
growth rate and stoichiometric yield data collected by Sandberg et al. To summarize; strains were
cultivated in flasks with 15-mL of M9 media, supplemented with 2 g/L glucose, kept at 37°C and
mixed well to provide full aeration. To maintain the cells in a continual state of exponential growth
and avoid glucose depletion, cultures were grown in a semicontinuous fashion with repeated
transfers into fresh media. Prior to transfer, cells were cultivated to an optical density of ~1 (ODsoo)
before being diluted into fresh media (100 pL into 15 mL). Using an automated transfer system, cell
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cultivation was continued for ~1000 generations before the evolution was concluded (Sandberg et al.,
2016). A detailed description of the CSTR model is given in the supplementary file S3. The steady-
state concentrations of the metabolites together with the corresponding values of the thermodynamic
properties of formation are summarized in supplemental file S4 for a medium conversion condition
that has been applied in the presented analysis.

For the most accurate estimate of thermodynamic properties of biological molecules, Alberty
has pointed out that calculations should consider not only factors such as concentration and
temperature, but also pH, ionic strength, concentrations of metal cofactors (e.g. Mg), and the potential
for certain compounds to exist simultaneously in multiple, ionic charge states (e.g. aqueous
phosphoric acid occurring as HsPO4 , H.PO«!, HPOs?, and PO4+? , together referred to as a
“pseudoisomer” group) (Alberty, 2003). Furthermore, Alberty has proposed that the
thermodynamics properties of pseudoisomer groups can be modeled using a single, weighted
average, with the weighting factor for a specific pseudoisomer i being calculated as pi = exp((Ltiso -
wi)/RT). Here, piis the chemical potential of the i-th pseudoisomer, and pliso is the composite average
of the pseudoisomer group. (Interestingly, the probability function derived by Alberty to explain
the distribution of pseudoisomer species is very similar in form to the one we have derived in Eqs 16
and 17 for describing the probability distribution of elementary mode usage.) Values for enthalpy
and free energy of formation of chemical species at the standard reference state were obtained
primarily from Atkins (Atkins, 1999) and Alberty (Alberty, 2003).  Other sources include: Rard and
Wolery (Rard & Wolery, 2007) for phosphate and Roels (Roels, 1980) for biomass. The molecular
formula for E. coli biomass was taken as CH1.6No.260038P0.02350.006 (Neidhardt & Curtiss, 1996). While
we did include pH and ionic strength as part of our thermodynamic model, we did not include the
effects of Mg?* ions.

In the present paper, we extend the computation of pseudoisomer average thermodynamic
properties to include not only the aqueous pseudoisomers but also the components present in
gaseous form (e.g. H20g, Oz, and COzg). Because the adaptive evolution experiments conducted by
Sandberg et al. were performed in well-mixed flasks, we have assumed that both oxygen and carbon
dioxide participate primarily as gas phase reactants. However, for water, which has a lower volatility,
the CSTR model predicts that only ~4 mol% of this species is present in the gas phase. Thus, the
thermodynamic values for water are computed as a molar average of both gas and liquid properties.

Recently, the method of pseudoisomers has been taken up by Noor et al., who have curated a
collection of thermodynamics properties for different ionic species and has made them available via
an online database and thermodynamic calculator, the Equilibrator (Noor et al., 2012). While in the
present study we use our own routine for calculating non-reference-state thermodynamic properties
and pseudoisomer averages, comparison of our values with those available from the Equilibrator
gives largely identical results.

Another useful result that comes from the pseudoisomer calculations is an estimate for the
average charge state of each ionizing species, which is a function of both the pH and the ionic strength
of the media. Ionizing species that occur in the elementary mode equations include ammonia,
acetate, phosphate, sulfate, carbonate, and water. By performing a charge balance on each mode,
the number of protons required for charge neutrality can be calculated and then incorporated into
the overall stoichiometric equation for each mode. Because protons are included in the net
stoichiometric equation, they must also be incorporate for computation of each mode’s reaction
thermodynamic values.  For this calculation, we assumed that pH remains constant at a value of
7.0 throughout cultivation, which is reasonable because of pH buffering by the medium and, because
media depletion is minimized by keeping cultures in a low-density state. However, for a neutral pH,
the formation enthalpy and free energy values of protons are zero; thus, at pH 7 the production of
protons by an elementary mode does not affect its reaction thermodynamics values. Nevertheless,
the number of protons produced by each mode is still a useful value, because it gives an additional
flux for evaluating agreement between experiment and the model. For biological systems,
consideration of pH effects can be especially important because several biologically relevant
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compounds have acidic isoforms, which when present at the standard, thermodynamic, reference
concentration of 1 M, result in pH levels very far from neutral, e.g. ammonia (pH = 11.4), carbonate
(pH = 3.18), acetate (pH = 2.38), lactate (pH = 1.93) , phosphate (pH = 1), and sulfate (pH = 0).

Experimental data from Long et al. (Long, et al., 2017) and thermodynamic reference data were
stored in Microsoft Excel. All other computation, data analysis, and figure generation were made
using Matlab R2019a. A pseudocode of the important computational steps is provided in the
supplemental file S5.
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