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Abstract: When glucose molecules are metabolized by a biological cell, the molecules are constrained 
to flow along distinct, reaction trajectories, which are defined by the cell’s underlying metabolic 
network. Using the computational technique of Elementary Mode Analysis, the entire set of all 
possible trajectories can be enumerated, effectively allowing metabolism to be viewed in a discretized 
space.  With the resulting set of Elementary Flux Modes (EM), macroscopic fluxes, (of both mass and 
energy) that cross the cell envelope can be computed by a simple, linear combination of the individual 
EM trajectories.  The challenge in this approach is that the usage probability of each EM is unknown.   
But, because the analytical framework we have adopted allows metabolism to be viewed in a discrete 
space, we can use the mathematics of statistical thermodynamics to derive the usage probabilities 
when the system entropy is maximized.  The resulting probabilities, which obey a Boltzmann-type 
distribution, predict a rate structure for the metabolic network that is in remarkable agreement with 
experimentally measured rates of adaptively evolved E. coli strains.  Thus, in principle, the 
intracellular dynamic properties of such bacteria can be predicted, using only the knowledge of the 
DNA sequence, to reconstruct the metabolic reaction network, and the measurement of the specific 
glucose uptake rate.   

Keywords: metabolic networks; elementary flux modes; evolution; statistical thermodynamics 
 

1. Introduction 

Chemical and entropic forces 
One of the great challenges in understanding the living world is predicting how the set of 

observable characteristics (phenotype) arises from the genetic makeup of the individual in the context 
of a given environment (National Research Council, 2010).  This is facilitated by the development of 
new research tools that have revolutionized our ability to investigate and manipulate the genome, 
the cellular composition and to measure multiple aspects of the environment (Todorovic, 2020) 
(Barrangou & Horvath, 2017) (Hollywood, et al., 2020).  In biological systems research, the task is 
now to assimilate this information into causal, predictive relationships. The connection between the 
genome and the phenotype of an organism in response to the environment is mediated by the 
reactions that convert the information present in the genome into the structure and functioning of an 
organism.  Thus, understanding metabolic networks and how they evolve is expected to profoundly 
contribute to solving the grand challenge in systems biology. 

Biological systems, like any other system in the universe, must obey the fundamental principles 
of thermodynamics.   Thus, the organization, functioning and evolution of life, as mediated by the 
reaction network of cells, must be explainable at the level of these fundamental rules. 

In  physics, entropic forces are attributed to the tendency of matter to bring a physical system, 
through the effects of thermal fluctuations, toward a macroscopic state in which the number 
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of microscopic states (or micro-states) that are compatible with this macroscopic state is maximized 
while the average of all the microscopic states reflects the measured properties of the macroscopic 
states.  In other words, thermal fluctuations tend to bring a system toward its macroscopic state of 
maximum entropy (Schroedinger, 1989) (Jaynes, 1957).  Similarly, in biological systems involving 
cells that must constantly evolve to survive, one can argue that entropic forces are also at work, based 
on the effects of genetic fluctuations, to bring the system toward a macroscopic state of maximum 
entropy.   Thus, cells growing in a given environment are subject to both chemical and entropic 
forces.  Chemical forces, due to the imbalance of chemical potentials between substrates and 
products, drive the metabolic reactions, while entropic forces drive the evolution of the metabolic 
network toward a state that maximizes the entropy of the system in which the cells grow.  

Here we develop the thermodynamic relationships that support these statements. They provide 
predictions for the structure of a metabolic network that can be validated by comparison with 
experimental measurements.  It is well established that in isolated systems at steady state the 
chemical potentials are equilibrated such that the Gibbs free energy is minimized, and the entropy is 
maximized.  Both the Gibbs free energy of reaction  and entropy of reaction become zero when the 
system reaches a time invariant state in equilibrium (Gibbs, 1877-1878).  While these principles are 
firmly grounded for equilibrium systems, there is increasing evidence that they can be extended also 
to open, non-equilibrium systems that exchange material and energy with the environment (Lebon, 
et al., 2008).  Open, non-equilibrium systems can also reach a time invariant state when they are at 
steady state.  We will assert that open systems in such a state also exhibit extrema in the considered 
thermodynamic properties.  The Gibbs free energy tends towards a minimum as the chemical 
potentials drive the reactions into the dynamic steady state of reactant concentrations (Niven, 2010), 
while the associated entropy of the system represents a maximum with respect to the organization of 
the cell’s metabolic network and the surrounding environment.  

Here we apply the Maximum Entropy Production (MEP) principle as it relates generally to a 
reacting system in a dynamic steady state.  MEP  has been attributed as a fundamental physical 
principle in many phenomena including for example the Earth’s climate system (e.g. (Paltridge, 1975) 
(Kleidon, 2004); thermal convection (Ozawa, et al., 2001); electrical currents (Županovič, et al., 2004) 
(Christen, 2006); crystalline solids (Martyushev & Axelrod, 2003); ecological systems (Meysman & 
Bruers, 2007) and biochemical processes (Juretič & Županovič, 2003); (Dewar, et al., 2006).  A similar 
derivation has been developed before based on a control volume approach and a dimensionless 
potential function that is a minimum when the entropy production rate is at a maximum (Niven, 
2010) (Ghosh, et al., 2020).   

As a mathematical basis for our model, we employ the computational technique of Elementary 
Mode Analysis (EMA). The value of EMA and other techniques for metabolic modeling, has increased 
in recent years given the extensive progress that has been made in the reconstruction and 
understanding of metabolic networks based on detailed genomic information and experimental 
techniques for quantifying flux values.  A metabolic network can function according to many 
different pathway options. Such redundancy of pathways enables cells to compete efficiently and to 
survive under changing environmental conditions (Stelling, et al., 2004). Elementary mode (EM) 
analysis has emerged as a powerful systems biological tool that rigorously dissects a metabolic 
network into its basic building blocks (Schuster, et al., 2000) (Schuster, et al., 2002). Consequently, the 
use of this approach allows the metabolism of a functioning cell to be viewed as a weighted average 
of the fluxes through all fundamental pathways (EMs) supported by the metabolic network (Stelling, 
et al., 2002) (Trinh, et al., 2006). The set of EMs represents the parts list for cell function encoded at a 
higher level in the hierarchy of biological complexity.  Because each EM constitutes a balanced 
stoichiometric equation, this information can be used to estimate the thermodynamic properties of 
each EM, e.g. the Gibbs free energy of reaction (∆𝐆𝐑) and the entropy of reaction (∆𝐒𝐑). 

An ideal system for investigating the fate of growing cells is the continuous stirred tank reactor 
(CSTR). It represents an open, non-equilibrium system in which the state of cells together with the 
growth environment are precisely defined when a steady state is reached.  Therefore, such a system 
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enables a quantitative assessment of how cells function based on the underlying metabolism and how 
they interact with their environment.   Here, the quantitative macroscopic relationships are 
developed for the steady state of the system in which the chemical driving forces are minimized.  By 
dissecting the metabolic network into its fundamental parts or elementary modes, metabolism can be 
discretized at the microscopic level. With this approach, the metabolic network becomes accessible 
to the rules of statistical thermodynamics that reveal the entropic forces that are at work in the 
evolving cell system.  Analogous to the way in which statistical mechanical models must be 
informed by empirically measured properties of the macroscopic state, our model makes use of 
experimental measurements of the cell’s overall growth stoichiometry as well as environmental 
properties of the CSTR.  Together, this information can be combined to estimate the rate of entropy 
production by the macroscopic, biological system.  Finally, a probability distribution for the 
underlying microstates can be constructed whose mean matches the experimentally measured 
macroscopic state. 

The developed theory enables the prediction of the internal fluxes through the metabolism of 
cells and their interactions with the growth environment.   The predictions are in remarkable 
agreement with detailed experimental measurements of intracellular metabolic fluxes that have been 
recently made possible.   

2. Results 

2.1. Theory 

We have previously attempted to relate the dynamic properties of a metabolic network to the 
inherent thermodynamic properties of such system  Specifically, in Srienc and Unrean (2010) we 
provide a derivation for the Boltzmann distribution of reaction entropies when the rate of type 2 
entropy production rate (defined below) is maximized. In Unrean and Srienc (2011) the entropy 
balance is derived and the data are then interpreted based on the previously presented statistical 
thermodynamical approach. Unfortunately, the derivations provided in these two papers are 
incomplete and as such not as transparent and comprehensive as one would expect from a self-
consistent theory.  Thus, in the current work these shortcomings have been eliminated and a 
consistent and complete theory is presented. 

This has been accomplished by following novel aspects of the presented theory:  (i) the affinity 
of reaction is introduced which provides the commonly accepted link to the rate of entropy 
production of a reacting system. We define this rate as the Type 1 entropy production rate; (ii) the 
results are expressed as the entropy and as the Gibbs free energy of the SYSTEM at steady state which 
has not been done before.  It is shown that, at steady state, the minimization of the Gibbs free energy 
of the system corresponds to the maximization of the Type 1 entropy production rate which 
corroborates the MEP (Maximum Entropy Production) principle. Thus, the MEP principle is not 
assumed but derived from basic balances. In contrast, the entropy of the system is maximized when 
the Type 2 entropy production rate is maximized.  The Type 2 entropy production rate lacks the 
enthalpic contribution present in the Type 1 rate. (iii) The statistical treatment introduces a new 
parameter of the system: the maximum attainable specific growth rate of the evolving system.  This 
reveals the Boltzmann constant in the Boltzmann factor and unifies the data of the experimentally 
tested strains since the data collapse into one general relationship that is valid for all strains.   

Non-equilibrium Thermodynamics of open systems 
The entropy balance for a continuous stirred tank reactor (CSTR), representing a non-

equilibrium, open system, results in the following expression (see supplemental file S1 for a detailed 
derivation): 

 
dSdt = ෍(s୧,୧୬nሶ ୧,୧୬୧ − s୧nሶ ୧)  −  QTሶ + Sሶ ୥ୣ୬ (1)  
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Here si,in (si) are the molar entropies of the individual components [kJ/K/mol], at the 
corresponding concentrations, transported in (out) of the system at molar flow rates ni,in (ni) [mol/h];  Qሶ  is the rate of heat transfer through the reactor walls [kJ/h], and Sሶ ୥ୣ୬ [kJ/K/h] is the rate of internal 
entropy generation of the system due to the irreversibility of the process.   The first two terms on 
the right-hand side represent the net entropy transported to the surroundings due to material 
transport and due to heat transfer, respectively.  From this expression one can see that in a steady 
state situation with zero entropy accumulation, the internal entropy production term must be 
balanced by the transport of entropy to the surroundings.  Due to the Second Law, the internal 
entropy production term must always be larger or equal to zero.  

Using an energy balance to obtain Qሶ   and considering the irreversibilities in the system due to 
reaction and mixing, we can convert this expression at steady state into Equ (2) by substituting the 
molar flow rates ǹi with the product of volumetric flow rates F [L/h] and concentrations ci [mol/L] 
and by introducing   the space time τ = V/F [h].  The rate of entropy generation is given by the 
product of the entropy of reaction DSR and the extent of reaction ξሶ  [mol/L.h] (see also Equ. 11).  
Recalling that entropy is an extensive property, we see that the expression provides a statement of 
the entropy content of the system at steady state 

 Sୱ୷ୱ = ෍ s୧୧ c୧ = ෍ s୧c୧,୧୬୧ + τξሶΔSୖ (2)  

This expression shows that the system entropy is a function of the concentration of the species 
in the inlet stream, the entropy of the species evaluated at the system (outlet) conditions—this 
includes effects from dilution, temperature, pH, and ionic strength—and the rate of entropy 
production in the system contributed by the reaction entropy.  Equ 2 shows that the system entropy 
is expected to increase as the rate of entropy production by reaction increases. Furthermore, when 
the system is operated at isothermal conditions, and dilution of the incoming stream is negligible, as 
is commonly the case for low cell-density, chemostat cultures, the reaction term dominates, and 
system entropy approaches a maximum. We define this entropy production rate as the Type 2 
entropy production rate since it omits the enthalpic contribution to the entropy formation. 

Using the Gibbs relation (Gsys = Hsys  -TSsys ) along with expressions for Hsys and Gsys that are 
derived similarly to the procedure used for Equ 2, we can derive an expression for the Gibbs free 
energy of the system: 

 Gୱ୷ୱ =  Hୱ୷ୱ −෍ h୧c୧,୧୬୧ − τξሶΔHୖ + ෍ g୧c୧,୧୬୧ − TτξሶΔGୖ (3)  

By combining Equ 2 with different statements of the Gibbs relation (Gsys = Hsys  -TSsys, gi = hi – 
Tsi, and ΔGR = ΔHR – TΔSR), we can convert this to the following expression for the Gibbs free energy 
of the system given that the first three terms on the right hand side of Equ 3 must sum to zero 

 Gୱ୷ୱ =  ෍ g୧c୧,୧୬୧ +  τξሶΔGୖ (4)  

The rate of entropy production due to the irreversibility of the reaction  can also be expressed 
as 

 Vσሶ ୰୶୬ = Sሶ ୰୶୬ =  V AT ξሶ (5)  

where σሶ ୰୶୬ [J/K.L.h] is the rate of entropy production per unit volume, and A [J/mol] is the 
affinity of reaction defined as the negative of the Gibbs Free Energy of reaction (De Donder & Van 
Rysselberghe, 1936): 

 A ≡ − ΔGୖ (6)  
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With these relations we can write 

 Gୱ୷ୱ =  ෍ g୧c୧,୧୬୧ −  τTσሶ ୰୶୬ (7)  

The Gibbs free energy of the system at steady state is proportional to the negative rate of entropy 
production σሶ ୰୶୬ . We define this entropy production rate as the Type 1 production rate since it 
expresses the commonly known entropy production rate based on the affinity of reaction that 
includes contributions from both the enthalpy as well as entropy of reaction.  Thus, a reacting open 
system adjusts the component concentrations because of reactions such that the Gibbs free energy at 
steady state is at a minimum due to the tendency to equilibrate chemical potentials.  This is 
accomplished when the rate of entropy production is maximized corroborating the Maximum 
Entropy Production (MEP) principle (Martyushev & Seleznev, 2006) (Dewar, 2009).  But the 
corresponding system entropy (Equ. 2), under the assumed experimental conditions, depends only 
on the rate of entropy formation due to the entropy of reaction.  From the contributions to the 
internal entropy generation expression, only the reaction entropy affects the entropy of the system, 
because the enthalpic component of the internal entropy generation is exported into the surroundings 
and does not contribute to the entropy content of the system.  The obtained relationships describe 
the macroscopic behavior of the system and are generally valid for any reacting, non-equilibrium 
system at steady state.  A detailed derivation including material and energy balances is given in 
supplemental file S1. 

Thermodynamics of Elementary Modes.  An Elementary Mode (EM) is formally defined as a 
minimal set of enzymes that can operate at steady state with all irreversible reactions proceeding in 
the appropriate direction (Schuster, et al., 1999).  An alternate definition that can be easier visualized, 
is that an EM represents a reaction sequence (or pathway) that a glucose molecule follows when it is 
metabolized.  At the dynamic steady state, the overall growth reaction can be formally represented 
by the general chemical equation 

 A +   ν୆B + ⋯ =  νେC +  νୈD + ⋯    (8)  

that represents all components (nutrients, biomass and products) in the reactor.  Here, one mole 
of Glucose (A) plus nutrients (B) get converted into biomass (C) and products (D).  The factors ni 
represent the individual stoichiometry coefficients or the molar yields per one mole of glucose 
utilized of each component. They are negative for reactants and positive for products.  The rate of 
reaction is described by the extent of reaction ξሶ  [mol/L.h].  The extent of reaction represents also 
the rate of glucose consumption since the stoichiometry coefficient for glucose is -1. The rate of the 
chemical growth reaction (Equ 8) is proportional to the biomass concentration or the number of cells 
present. Because the reaction equation holds for all biomass concentrations it is convenient to express 
it on a per cell mass basis.  The rates of reaction then become specific rates of reaction ξመ  [mol/h.g 
CDW].   

Such a chemical equation can be written for each EM. It involves only the external metabolites 
that are taken up or that are excreted by the cells.   Each EM contributes to the specific glucose 
uptake at a rate defined by 

  ξመ୨  =   ξመ p୨ (9)  

where pj represents the fraction of the total specific glucose uptake rate ξመ [mol/h.g CDW] that is 
consumed by elementary mode ‘j’.  Thus, each elementary mode contributes to the overall 
metabolism with a usage probability pj.    

For each EM (j), the entropy, Gibbs free energy and enthalpy of reaction can be computed based 
on the individual, molar properties of formation (i) summed over the m reactants participating in the 
growth equation (see Equ 8) 
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Δs୰,୨ =  ෍ν୧,୨s୧୫
୧  

Δg୰,୨ =  ෍ν୧,୨g୧୫
୧  

Δh୰,୨ =  ෍ν୧,୨h୧୫
୧  

(10)  

Here we use a lowercase (Δsr,i, Δgr,i, or Δhr,j) to represent the reaction properties of a single EM. 
However, the same relation is also true, for the overall chemical reaction of the cell.   Thus, the 
macroscopic rate of entropy, Gibbs free energy and enthalpy generation (Sሶ  , Gሶ , Hሶ )  can be defined in 
terms of the individual EM reaction properties 

 

Sሶ  =  ξመ ΔSୖ =  ෍ξመ୨Δs୨୬
୨  

Gሶ =  ξመ ΔGୖ =  ෍ξመ୨Δg୨୬
୨  

Hሶ =  ξመ ΔHୖ =  ෍ξመ୨Δh୨୬
୨  

(11)  

where ξመ [moles glucose/h.g CDW]  is the cell specific glucose consumption rate in the reactor, 
DSR [J/K.mole glucose] is the reaction entropy of the overall growth reaction per mole glucose 
consumed and DGR and DHR the corresponding Gibbs free energy and enthalpy of reaction [J/mole 
glucose]. Sሶ  [J/K.h.g CDW] is the cell specific rate of entropy production, Gሶ  and Hሶ  [J/h.g CDW] are 
the cell specific rate of Gibbs free energy and enthalpy production,  ξመ୨ [mole glucose/h.g CDW] is 
the specific glucose uptake reaction rate of elementary mode j and Dsj, Dgj, Dhj and pj are the 
respective reaction properties and usage probabilities of individual elementary modes, respectively. 
Note that for simplicity the subscript r is omitted for the reaction properties of individual elementary 
modes, and the thermodynamic properties of the overall cell reaction are assigned using uppercase 
letters (ΔSୖ,ΔGୖ,ΔHୖ ). After substituting with (9) one obtains 

 

Sሶ = ξመ  ෍p୨Δs୨୬
୨  

Gሶ = ξመ  ෍p୨Δg୨୬
୨  

Hሶ = ξመ  ෍p୨Δh୨୬
୨  

(12)  

Equ. (12) shows that the cell specific rate of production of the thermodynamic reaction properties 
is a function of the usage probability of individual elementary modes and of the total glucose uptake 
rate of a cell.  In fact, once the usage probabilities of elementary modes are known the specific rates 
of change relative to the glucose uptake rate are defined by the overall stoichiometry of the growth 
reaction (Eq. 8) since the stoichiometry coefficients (or yields) can be computed from the sum of 
contributions of individual elementary modes.   
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  ν୧  =   ෍ν୨,୧୬
୨ p୨ (13)  

where ni is the stoichiometry coefficient of the ith reactant in the overall growth equation and nj,i 
is the corresponding stoichiometry coefficient in the elementary mode j. 

The specific rate of Gibbs free energy production (Equ. 12) can be combined with Equ. (5) and 
(6) to obtain the specific rate of entropy production of the system due to the irreversibility of the 
reaction system: 

 

σሶ ୰୶୬ = ෍σሶ ୰୶୬,୨୬
୨  = ෍ξመ୨ ൬A୨T ൰ =୬

୨ ෍p୨ ቆξመ A୨T ቇ ୬
୨

= ෍ p୨ ቆ −Δg୨ξመT ቇ ୬
୨  

(14)  

The corresponding entropy production rate due to individual reaction entropies becomes 

 Sሶ = ෍ Sሶ ୨୬
୨ = ෍p୨൫Δs୨ξመ൯ ୬

୨  (15)  

It is important to distinguish between the two rates of entropy production defined by Equ. (14) 
and (15).  In the first case (Equ. 14), designated as type 1, the total entropy production rate reflects 
the irreversibility of reactions (entropy of reaction and entropy due to heat generation).  In the 
second case (Equ. 15), designated as type 2, the entropy production rate reflects the contribution by 
the entropy of reaction only (type 2).  The previously derived macroscopic relations have shown that 
the type 1 entropy production rate is a maximum when the Gibbs free energy of the system is a 
minimum at steady state (see Equ. 7).  In contrast, the type 2 entropy production rate is a maximum 
when the entropy of the system is at a maximum (see Equ. 2).  Clearly, both types of entropy 
production rates are defined by the internal rate structure of the metabolism, i.e. by the 
thermodynamic properties of external substrates, by the usage probability of each elementary mode 
and by the specific rate of glucose uptake. 

Thus, the question arises whether the internal elementary mode structure of a cell evolves to 
minimize the Gibbs free energy of the system or to maximize the entropy of the system.  In the first 
case the Gibbs free energies of reaction are the characteristic properties of the reaction trajectories 
defined by individual elementary modes as they determine the type 1 entropy production rate.  In 
the second case, the entropies of reaction define the rate structure of the metabolism based on the 
type 2 entropy production rates of individual elementary modes.   

Frequency Distribution of Elementary Modes  

Having derived the equations that link a cell’s macroscopic rate of entropy production to the EM 
microstates of its metabolic network, the challenge then becomes to adjust the individual usage 
probabilities (pj) so that that rate of entropy production by the system is a maximum.   At the same 
time, the probability distribution must be made to satisfy three constraints: (i) the fair apportionment 
of outcomes, (ii) a constant macroscopic specific entropy production rate, and (iii) unity of the sum 
of all probabilities (Dill & Bromberg, 2002).  The solution to this maximization problem, which is 
obtained by the method of Lagrange multipliers, represents then the constrained maximum specific 
entropy production rate with respect to the underlying variation of usage probabilities of elementary 
modes.  This approach has been previously described for the case of maximizing the entropy of the 
system on the basis of maximizing the type 2 entropy production rate (Srienc & Unrean, 2010). 

Alternately, one can carry out the thought experiment as done originally by Boltzmann 
(Boltzmann, 1877) for the energy distribution in gas particles.  But instead of observing the energy 
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content of individual particles, one observes the time trajectories of individual glucose molecules 
when they are metabolized, and one evaluates the associated rate of specific entropy production. One 
should recall that individual glucose molecules are always metabolized following a path along an 
elementary mode.  Arranging the same number of glucose molecule trajectories in all possible 
permutations yielding the fixed macroscopic specific entropy production rate, results in the most 
probable distribution of the usage of individual elementary modes. 

Both approaches result in following expressions for the usage frequency of an elementary mode 
which represents a constrained maximum of the overall entropy production rate depending on which 
type of entropy production rate (type 1 or 2) determines the distribution: 

 
 p୨ = exp (−  ξመ∆s୨K + c) (16)  

or 
 p୨ = exp (−  ξመ(−∆ g୨)TK + c) (17)  

 In linearized form the equations become 

 ln p୨ = −  ξመ∆s୨K + c (18)  

or 

 ln p୨ = −  ξመ(−∆ g୨)TK + c (19)  

This expression relates the usage probability of an elementary mode j to the  net glucose uptake 
rate of the cell ξመ [moles glucose/h.g CDW]  and to the individual entropies of reaction ∆s୨ or Gibbs 
free energies of reaction  ∆ g୨ of elementary modes.  K and c are the Lagrange multipliers arising 
via the constrained optimization.  

To keep dimensional consistency, we can separate from K the constant Q = 1 [1/ h. g CDW] to 
give 

with R [J/K.mol] representing the universal gas constant (or molar Boltzmann constant).  
The usage probability of elementary modes based on type 2 entropy production rates becomes 

 ln p୨ = −  ξመ∆s୨Q R + c (21)  

To obtain the constant c Equ (16) can be rewritten as 

 p୨ = expୡexp (−ξመ∆s୨QR ) (22)  

Then, by summing up all probabilities to unity, one obtains the “partition” function Z along with 
the value of C 

 expିୡ = Z =  ෍ expቆ− ξመ∆s୨QR ቇ୬
୨  (23)  

The unique form of Eqs. 16 and 17, suggests that the evolution of a metabolic network involves 
an interplay between two mechanisms, each having the ability to advance the fitness of the cell.  The 
first mechanism is due to changing the network structure as reflected in the distribution of usage 
probabilities pj of elementary modes. The second mechanism is due to the selection process reflected 
by the specific glucose uptake rate ξመ . The network structure determines the yield of biomass on 

 K = QR (20)  
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glucose (Y) (see Equ. 13), and when this is multiplied by the specific glucose uptake rate, the resulting 
value gives the specific growth rate,  

 μ = Yξመ (24)  

where m [1/h] represents the specific growth rate and Y [mol biomass/mol-glucose] is the yield 
coefficient of biomass on glucose, i.e. the stoichiometry coefficient associated with the biomass in the 
growth equation (Equ. 8). 

In the process of evolution, the rate of entropy production is increased. The rate of entropy 
production (see Equ. 12) can be increased (i) by increasing the specific glucose uptake rate or (ii) by 
changing the rate structure of the network such that a higher specific entropy of reaction is obtained.  
The latter case would require that more weight (usage probability) would be given to an elementary 
mode that has a higher entropy of reaction.  The highest rate of entropy production is obtained when 
the highest specific glucose uptake rate is reached together with the associated rate structure of the 
metabolism.  In that case the specific glucose uptake rate becomes ξመ୫ୟ୶ and the network structure 
is given by  

 p୨ = exp (−ξመ୫ୟ୶∆s୨QR )Z  
(25)  

representing the most probable distribution of elementary modes for the case of a fully evolved 
metabolic network.  

But there could be the case where this state of ultimate network structure has been reached but 
not yet the state of maximum specific glucose uptake rate.  In such a case, the specific glucose uptake 
rate of a cell can be increased, in principle, by increasing in equal proportions all catalysts (enzymes) 
in a cell. This would increase proportionally the rate of each individual reaction including the specific 
growth rate, without changing the network structure.  But one should expect a limit to this increase, 
since there will likely be a maximum specific glucose uptake rate that a cell can achieve due to 
physical transport limitations.  For instance, glucose can only diffuse to the surface of a cell at a 
maximum rate dictated by the diffusion coefficient, or glucose uptake could be limited by a limited 
number of permeases on the cell surface (Koch, 1971).     It is therefore useful to relate the 
experimentally measured glucose uptake rate to this maximum possible specific uptake rate  

where ξመ୫ୟ୶  [mol glucose/h.g CDW] is the maximum specific glucose uptake rate of a cell 

attainable by evolution under the given environmental conditions, and b represents the fraction of 
the maximum specific growth rate that the strain has attained during the ongoing evolution process.   

Thus, the usage probability of an elementary mode of a fully evolved metabolic network 
structure in a cell that has not yet attained the maximum specific glucose uptake rate, can be 
computed explicitly from 

 p୨ = exp (− ξመ∆s୨bQR)Z  
(27)  

or, in linearized form, from 

 ln p୨ = −  ξመ∆s୨bQ R + c (28)  

If we know the maximum possible glucose uptake rate, we can estimate b from the measured 
actual specific glucose uptake rate using Equ. (26). Alternately, if we do not know the maximum 

 ξመ = bξመ୫ୟ୶ (26)  
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possible macroscopic glucose uptake rate, we need to determine both the specific glucose uptake rate 
at the current point in the evolution process and estimate the fraction b as shown below.   

In case the internal rate structure is determined by the type 1 entropy production rate, an 
analogous expression is obtained in which the reaction entropy is substituted by the affinity of 
reaction divided by T.   However, we will focus in the following on the type 2 entropy production 
rate as the data suggest that this type determines the usage frequencies of elementary modes, the 
justification for which we present later in the Discussion. 

2.2. Comparison of Theory with Experimental Systems  

Recently, a radioisotope labeling method combined with mass spectrometry has been developed 
that allows estimation of multiple intracellular reaction rates comprising a metabolic reaction 
network (Antoniewicz, 2015). This method has been applied to evaluate the reaction rates of six 
strains of E. coli that were evolved over 300 generations from the same ancestor cell line in growth 
experiments using glucose as the carbon and energy source (Long, et al., 2017).  Over this time the 
strains increased their specific growth rate by 28 - 38 %.  Surprisingly, in the set of evolved strains, 
the network structure is very similar to the original wildtype.  This could indicate that the strains 
are already close to the fully evolved network state.  We have used these data to test the presented 
theory.  We first determined the constant b from the experimentally measured glucose uptake rate 
and Equ. (28), and then predicted the intracellular rate structure and compared it with the 
experimentally measured data.   

The thermodynamic reaction properties for each elementary mode, sorted according to 
decreasing values of Gibbs free energies of reaction, are shown in Figure 1. 

 

Figure 1. Entropy equivalents from Gibbs free energy, enthalpy and entropy of reaction of all 7363 elementary 
modes. The thermodynamic properties are plotted as a function of the elementary mode number after sorting 
the modes according to decreasing Gibbs free energy values. 

The graph shows that the Gibbs free energy of reaction is negative for all elementary modes, 
indicating that all elementary modes are thermodynamically spontaneous at the experimental 
conditions.   Furthermore, all elementary modes are exothermic.  There is a strong correlation 
between the Gibbs free energy and the enthalpy of reaction and an inverse correlation with the 
entropy of reaction.  All elementary modes have a positive entropy of reaction and a negative Gibbs 
free energy of reaction indicating that all pathways are feasible and spontaneous. The results of this 
first test, are presented to justify our assumption that all identified EMs should be included in the 
probability distribution.   
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Figure 2. Negative Gibbs free energy of reaction divided by temperature vs. Entropy of reaction for all 7363 
elementary modes.  The solid diamond represents the arithmetic average over all elementary modes.  Open 
red circles represent the thermodynamic reaction values computed from experimental measurements of 
externally occuring metabolites (e.g oxygen, CO2, biomass, and acetate). Open green circles represent the usage 
probabilities of individual elementary modes computed as in Fig 3. 

In Figure 2 the entropy contribution from the Gibbs free energy of reaction (-DGj/T) versus the 
entropies of reaction (DSj) are plotted for all elementary modes.  

The solid diamond represents the arithmetic average of -DGj/T and DSj taken over all modes, 
while the open red circles represent the entropy and Gibbs free energy of reaction computed from 
the experimentally determined overall growth reaction (Equ. 8) of each strain.  Thermodynamic 
values were calculated from the experimental flux data for the externally occurring metabolites of the 
seven strains tested by Long (Long, et al., 2017). Compared to the mode-average entropy and Gibbs 
free energy of reaction, which assumes a uniform probability distribution over all the modes, the 
experimentally determined thermodynamic values are clearly biased towards lower values of 
entropy as expected from a Boltzmann distribution of elementary modes (see Eq. 28).  In addition, 
probability values for each elementary mode are superimposed onto the figure.   

Determination of the maximum glucose uptake rate from experimental data 

The metabolic network contains n Elementary Modes (n = 7363), which were computed using 
Cell Net Analyzer, based on the reaction network specified by Long et al. The elementary modes are 
listed in supplementary file S2.  Based on n elementary modes, Equ. (28) results in n independent 
relationships in which the probabilities pj and the constants b and c account for n+2 unknowns.   
Thus, to completely specify the system, two additional relationships are needed.  One is given by 
the requirement that the probabilities must sum up to unity, and the second is provided from the 
experimental data for the stoichiometry coefficients of the overall growth reaction (Equ.8) that 
permits computation of the entropy of reaction according to Equ. (10).  The solution is numerically 
accessible in MATLAB using the Levenberg–Marquardt least square algorithm for solving non-linear 
equations.   

Note that each EM can be represented by a reaction equation as shown in Equation (8) that is 
based only on external metabolites. Only the stoichiometry coefficients may be different.  Then, the 
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Gibbs free energy and entropy of external metabolites can be evaluated using standard physical 
chemistry approaches, and, from the difference of products and reactants, the Gibbs free energy and 
entropy of reaction can be evaluated.  These values are then used in the system of equations as 
described above and numerically solved using MATLAB providing the probabilities of each EM and 
the parameters of the distribution.  Once the parameters of the distribution are known, the 
probabilities can be directly computed from Equ. (27) or (28).   

  

Figure 3. Usage probabilities of elementary modes as a function of entropy production rates of individual 
elementary modes for the six evolved strains and for the parent wildtype.  (a) For each strain the usage 
probabilities of elementary modes and the constants b and c have been computed (see text). The set of data points 
show the linear relationship defined by Equ. (28).  (Rather than plotting all 7363 probabilities for each strain 
only a set of equally spaced datapoints covering the range of entropy production rates is displayed.)  The single, 
dashed line is the computed linear regression of all the displayed datapoints from each strain.  (b) In the right-
hand graph, the entropy production rates are normalized to the maximum glucose uptake rate by dividing by 
the unique value of b for each strain.  Presented in this way, the slope of each graph represents the universal 
gas constant (or molar Boltzmann constant).  AEx = ALE-x (as used in text). 

Figure 3 shows the usage probabilities of elementary modes as a function of specific entropy 
production rates (type 2).  When the entropy production values for the strains are normalized, each 
by their own specific value of b, the trends all collapse to a common form, having the same slope 
which corresponds to the universal gas constant as defined by Eq. (20). The measured macroscopic 
growth parameters together with the constants b and c for the individual strains are summarized in 
Table 1.   

Using Eqs.(24) and (26) along with the measured specific growth rate for each strain and the 
computed constant b, we can make an estimate of the maximum theoretical growth rate (μmax) that is 
possible for E. coli under the given environmental conditions. Then, with the maximum specific 
growth rate, the minimum doubling time can also be calculated (see Table 1).   

Table 1. Measured growth parameters (Long et al., 2017) and computed constants b and c. 

 
 

 μ qs Yb/g b c μmax qs, max τmin 

 1/h mmol/h.gCDW g/g ― ― 1/h 
mmol/ 

h.gCDW 
min 

 WT 0.670 ± 0.002 8.46 ± 0.42 0.444 0.30410 -1.44 2.23 -27.83 19 

ALE-1 0.886 ± 0.030 11.57 ± 0.52 0.425 0.42324 -1.55 2.09 -27.35 20 

ALE-2 0.869 ± 0.015 10.79 ± 0.40 0.447 0.39574 -1.57 2.20 -27.27 19 
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ALE-3 0.891 ± 0.024 11.97 ± 0.72 0.414 0.41514 -1.20 2.15 -28.82 19 

ALE-4 0.819 ± 0.013 10.29 ± 0.27 0.442 0.36869 -1.42 2.22 -27.91 19 

ALE-5 0.934 ± 0.011 11.82 ± 0.57 0.439 0.40408 -1.11 2.31 -29.26 18 

ALE-6 0.936 ± 0.021 12.46 ± 0.37 0.417 0.34908 0.35 2.68 -35.69 16 

μ  measured specific growth rate, [1/h] 

qs measured glucose uptake rate, [mmol/h.gCDW] 

Yb/g measured yield of biomass on glucose [g/g].  

μmax maximum specific growth rate, predicted [1/h] (μ /b) 

qs, max maximum glucose uptake rate, predicted, (qs/b) [mmol/h.gCDW] 
τmin  minimum doubling time, predicted (ln(2) /μmax) [min] 

The average minimum doubling time for all strains is 18 +/- 1.4 min.  This predicted doubling 
time points to further evolution capacity as it is shorter than the doubling time of 23 min inferred 
after evolving E. coli on minimal media over 21 years or 50,000 generations (Wiser, et al., 2013). In 
making this calculation, it is important to remember, we have assumed that all strains are already at 
(or very near) the optimum network structure.  Consequently, this implies that the additional 
rounds of adaptive evolution conducted by Long et al., served mainly to reduce the effects of any 
rate limiting states that were restricting the overall flux of glucose, rather than affecting any 
significant changes in the distribution of the underlying, elementary modes.  

Estimation of measured fluxes and comparison to predicted fluxes 

With the maximum possible glucose uptake rate identified we can now explicitly compute the 
usage probabilities of elementary modes from Equ. (28).   Since each elementary mode is assumed 
to be operating at steady state, without accumulating intermediate metabolites, the metabolic flux 
across all reaction steps of the EM is conserved.  The flux contribution for each elementary mode can 
then be obtained from Eq. (9), and the rate of production of each external metabolite can be computed 
from 

 r୧ = ෍ν୧,୨୬
୨ୀଵ ξሶ ୨ (29)  

Where ri [moles/h] represent the rate of change in the overall chemical equation and nj,i  the 
stoichiometry coefficient of the ith reactant of elementary mode j and its corresponding flux xj.   The 
rates of internal reactions can be obtained from 

 r୩ = ෍p୨ξሶ୩,୨୬
୨ୀଵ  (30)  

where rk [mol/h] is the flux through the kth reaction in the metabolic reaction network and xk,j is 
the contribution to the kth reaction by elementary mode j .   

The experimentally determined reaction rates for strain ALE-3, which is representative for all 
other strains, are compared with the reaction rates predicted from the model in Fig.4.   
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Figure 4. Measured vs predicted metabolic rates for strain ALE-3. The rates of the metabolic reaction network 
are expressed relative to the glucose uptake rate, which has a value of 100 %. The metabolic reaction network 
consists of 73 reaction steps of which 11 (marked with red full circles) are transport reactions into and out of the 
external cell environment.  The remaining intracellular reactions are marked with closed blue circles.  The 
three labeled, gray datapoints deviate significantly from the correlation between measured and predicted 
reaction rates. Label v65 represents the reaction rate of the conversion of intracellular ATP into the external ATP 
pool (see text for explanation). Label v34 represents the anabolic conversion of oxaloacetate to 
phosphoenolpyruvate consuming ATP.  Label v33 represents the anaplerotic conversion of 
phosphoenolpyruvate into oxaloacetate.  The linear regression represented by the dashed line, excludes the 
labeled datapoints. 

With the exclusion of three outlying flux values (v33, v34, and v65), the measured and predicted 
reaction rates are in remarkable agreement as expressed in the R2 value of 0.97 of the linear regression 
of the data (see Fig. 4). The three, inconsistent reaction rates represent (i) the conversion of ATP into 
the external ATP pool (label v65 in Fig.4), (ii) the anabolic conversion of oxaloacetate into 
phosphoenolpyruvate consuming ATP (label v34 in Fig.4), and (iii) the anaplerotic conversion of 
phosphoenolpyruvate to oxaloacetate (label v33 in Fig.4).  The discrepancy arises because in the 
measured data set assumes a significant export of ATP and the anaplerotic reaction v34 is essentially 
zero while the elementary mode-based model predicts a significant reaction activity of v34 that 
consumes ATP.  Thus, in the model, based on elementary modes, a significant turnaround between 
phosphoenolpyruvate and oxaloacetate consuming ATP is predicted.  If this ATP consumption 
would be assigned to a maintenance reaction (not included in the model) the experimental data 
would be very well predicted by the model considering that the total consumption of ATP is within 
4 % when comparing the experimental data with the prediction.  At this point it is not clear whether 
this discrepancy is possibly caused by the extraction of the rate data from the measurements. For 
instance, a constant ATP production based on a P/O ratio of 2 has been assumed for all strains in the 
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experiment (Long et al., 2017).   Or errors could be introduced when a futile cycle exists in the model 
of elementary modes which lacks a reaction consuming energy for cell maintenance. 

3. Discussion 

Starting from the basic material, energy and entropy balances of a precisely defined system, a 
continuous stirred tank reactor (CSTR), we provide a theoretical justification for the Maximum 
Entropy Production principle when the system is in a stationary state that minimizes its Gibbs free 
energy.  We show that in this state the Gibbs free energy of the system is proportional to the negative 
rate of entropy production, especially for conditions when there is a minimal change in state between 
the outlet and the inlet conditions, e.g. isothermal operation with low fractional conversion of the 
incoming stream.  In such reacting system the chemical forces drive the system into a time invariant 
steady state in which the Gibbs free energy is at a minimum. Therefore, the entropy production rate 
must be at a maximum.  The presented derivation is striking due to its simplicity and is a direct 
extension of the Gibbs Free energy concept (Gibbs, 1877-1878) to a non-equilibrium situation at steady 
state (Lebon, et al., 2008).   

The macroscopic relations show that the Gibbs free energy of the system is at a minimum when 
the rate of entropy production (type 1) is maximized.  In contrast, the entropy of the system is at a 
maximum when the rate of entropy production (type 2), which is based only on reaction entropies, 
is maximized.  Thus, the question arises whether evolution attempts to minimize the Gibbs Free 
energy content of the system or to maximize the entropy content of the system.  In order to test this 
question, we compared flux estimates obtained experimentally to flux estimates calculated using the 
thermodynamic properties of the discrete reaction trajectories of the metabolic network. The 
described system is unique in the sense that all discrete reaction states can be computed, and the 
associated distribution can be solved numerically.  In many other cases the distribution of 
microscopic states can only be inferred based on assumed maximization principles such as the 
maximum entropy principle (see for instance (Dixit, et al., 2018) (De Martino, et al., 2018)). The 
obtained frequency distribution functions are either defined by the affinities (negative Gibbs free 
energies) or by the entropies of reaction of the individual trajectories. It turns out that both 
approaches provide frequency distributions that can fit the experimental rate data.   This is expected 
since the reaction affinities are strongly correlated with the reaction entropies (see Fig. 2).  Thus, the 
reaction entropies as a random variable can be linearly transformed into another random variable, 
the reaction affinities, resulting in similar frequency distributions.  However, there are significant 
differences between the results of the two models.  First, when the three inconsistent reactions are 
removed, the fit between measured and predicted internal and external reactions is better for the 
reaction entropy model than for the reaction affinity model (R2 = 0.97 vs. R2 = 0.94). Furthermore, the 
slope of the correlation between the two datasets is close to 1 for the reaction entropy model (1.02) in 
contrast to 0.95 in the case of the reaction affinity model.  Second, there is a significant difference in 
the prediction of the maximum possible specific growth rate.  The frequency distribution model that 
is based on reaction entropies predicts a shortening of the doubling time during the progressing 
evolution process consistent with the selection process that requires increasingly faster specific 
growth rates.  In contrast, the reaction affinity-based model predicts a doubling time that is longer 
than the current one. This would require slower specific growth rates when the system evolves which 
is not consistent with the selection mechanism.  Therefore, the former model is expected to apply.   

But this does not contradict the MEP principle and the minimization of the Gibbs Free energy of 
the system at steady state.  This state is achieved by the variation of reactant concentrations in the 
system.  In contrast, the entropy of the system is maximized through variation of the frequencies 
that individual elementary modes are used in the metabolism. Evolution appears to favor this state 
which seems to be a general property as it can be observed not only in the metabolic network of E. 
coli but also in the metabolism of other bacteria such as Thermoanaerobacterium saccharolyticum 
(Unrean & Srienc, 2011). One should note also that the difference between the two models is 
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generated by the heat effect of the reactions.  If there are no heat effects involved in the reacting 
system, the two approaches become equivalent. 

The developed framework provides a possible explanation for the evolution of regulation in the 
metabolism. One can argue that it is driven by the tendency of the system to operate at the state of 
the most probable distribution of elementary modes.  Therefore, individual enzymes have to be 
expressed in coordination to support such distribution.  Regulation of enzyme synthesis is thus 
determined by the underlying thermodynamic principles of a reacting network to maximize the 
entropy production of the system. This has important implications in biotechnology where 
production systems are created that are expected to be efficient and robust.   Furthermore, this 
opens a much broader outlook on explaining biological behavior and evolution.  What happens 
when environmental conditions change?  Does the system evolve towards the new set of conditions? 
And do these principles also apply to more complex organisms?  These are testable propositions 
which will have to be addressed in future work.   Thus, an important goal for future research is to 
elucidate how complex gene regulatory networks evolve and how their evolution results in 
phenotypic change and speciation (Chen & Rajewsky, 2007).   

The idea of using the Second Law of thermodynamics to describe evolution is not new. As far 
back as in the 19th century, physicist Ludwig Boltzmann was contemplating about connections 
between Darwin’s theory of evolution and statistical thermodynamics (Kaila & Annila, 2008).  The 
connection between increasing entropy and decreasing Gibbs free energy, provides a unified 
understanding of how metabolism and nature works.   

4. Methods 

The creation of adaptive laboratory evolved E. coli strains (ALE 1-6), as well as measurements 
of their growth rate, biomass yield, and external metabolite stoichiometries (glucose, acetate, and 
oxygen) were reported by Sandberg (Sandberg, et al., 2016).  Measurements of internal fluxes, using 
13C radioisotope labeling, and creation of the reaction network model used for metabolic flux analysis 
were completed by Long et al. (Long, et al., 2017). 

 In the present study, the original reaction network that was specified by Long et al. has been 
adapted with the following modifications: (i) two new equations are added, v72,  for the export  of 
water (h2o h2o.Ext )  and v73, for the import of phosphate  (po4.Ext  po4);       (ii) Where 
appropriate h2o, po4, NAD, NADP, and CoA are added to the original equations in order to satisfy 
elemental balances on C, H, N, O, P, and S,  and (iii) Equation v24 (1 akg + 1 coa + 1 nad => 1 succoa 
+ 1 co2 + 1 nadh)  has been changed from reversible to irreversible (which is in accord with the latest 
scientific information). In addition, a proton balance reaction has been added to the model (v74). 
These modifications, particularly (i) and (ii) are necessary to obtain correct estimates for the 
thermodynamic reaction properties of each individual elementary mode and of the overall growth 
reaction.  A list of the metabolic reactions used in the model is given in the supplementary material 
S2.  Elementary modes of the network (7363 total) were computed using CellNet Analyzer (Klamt, 
et al., 2007), available for download at www2.mpi-magdeburg.mpg.de/projects/cna/cna.html).  A 
table of all the elementary modes is included in the supplementary material S2. 

To make an accurate calculation of the thermodynamic properties of each elementary mode, it 
is necessary to make an estimate of the concentration of external metabolites present during 
cultivation.  To obtain these values, we constructed a mathematical model of the cell evolution 
experiment based on approximation of each culture as a continuously stirred tank reactor (CSTR), 
operating at steady-state conditions.  Parameter values for the CSTR simulation were taken from the 
growth rate and stoichiometric yield data collected by Sandberg et al.  To summarize; strains were 
cultivated in flasks with 15-mL of M9 media, supplemented with 2 g/L glucose, kept at 37°C and 
mixed well to provide full aeration. To maintain the cells in a continual state of exponential growth 
and avoid glucose depletion, cultures were grown in a semicontinuous fashion with repeated 
transfers into fresh media.  Prior to transfer, cells were cultivated to an optical density of ~1 (OD600) 
before being diluted into fresh media (100 μL into 15 mL).  Using an automated transfer system, cell 
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cultivation was continued for ~1000 generations before the evolution was concluded (Sandberg et al., 
2016). A detailed description of the CSTR model is given in the supplementary file S3.  The steady-
state concentrations of the metabolites together with the corresponding values of the thermodynamic 
properties of formation are summarized in supplemental file S4 for a medium conversion condition 
that has been applied in the presented analysis.    

For the most accurate estimate of thermodynamic properties of biological molecules, Alberty 
has pointed out that calculations should consider not only factors such as concentration and 
temperature, but also pH, ionic strength, concentrations of metal cofactors (e.g. Mg), and the potential 
for certain compounds to exist simultaneously in multiple, ionic charge states (e.g. aqueous 
phosphoric acid occurring as H3PO4 , H2PO4-1, HPO4-2, and PO4-3 , together referred to as a 
“pseudoisomer” group) (Alberty, 2003).  Furthermore, Alberty has proposed that the 
thermodynamics properties of pseudoisomer groups can be modeled using a single, weighted 
average, with the weighting factor for a specific pseudoisomer i being calculated as pi = exp((μiso -
μi)/RT ).  Here, μi is the chemical potential of the i-th pseudoisomer, and μiso is the composite average 
of the pseudoisomer group.  (Interestingly, the probability function derived by Alberty to explain 
the distribution of pseudoisomer species is very similar in form to the one we have derived in Eqs 16 
and 17 for describing the probability distribution of elementary mode usage.)  Values for enthalpy 
and free energy of formation of chemical species at the standard reference state were obtained 
primarily from Atkins (Atkins, 1999) and Alberty (Alberty, 2003).   Other sources include: Rard and 
Wolery (Rard & Wolery, 2007) for phosphate and Roels (Roels, 1980) for biomass.   The molecular 
formula for E. coli biomass was taken as CH1.6N0.26O0.38P0.023S0.006 (Neidhardt & Curtiss, 1996). While 
we did include pH and ionic strength as part of our thermodynamic model, we did not include the 
effects of Mg2+ ions. 

In the present paper, we extend the computation of pseudoisomer average thermodynamic 
properties to include not only the aqueous pseudoisomers but also the components present in 
gaseous form (e.g. H2Og, O2,g, and CO2,g). Because the adaptive evolution experiments conducted by 
Sandberg et al. were performed in well-mixed flasks, we have assumed that both oxygen and carbon 
dioxide participate primarily as gas phase reactants. However, for water, which has a lower volatility, 
the CSTR model predicts that only ~4 mol% of this species is present in the gas phase.  Thus, the 
thermodynamic values for water are computed as a molar average of both gas and liquid properties. 

 Recently, the method of pseudoisomers has been taken up by Noor et al., who have curated a 
collection of thermodynamics properties for different ionic species and has made them available via 
an online database and thermodynamic calculator, the Equilibrator (Noor et al., 2012).  While in the 
present study we use our own routine for calculating non-reference-state thermodynamic properties 
and pseudoisomer averages, comparison of our values with those available from the Equilibrator 
gives largely identical results.   

Another useful result that comes from the pseudoisomer calculations is an estimate for the 
average charge state of each ionizing species, which is a function of both the pH and the ionic strength 
of the media.  Ionizing species that occur in the elementary mode equations include ammonia, 
acetate, phosphate, sulfate, carbonate, and water.  By performing a charge balance on each mode, 
the number of protons required for charge neutrality can be calculated and then incorporated into 
the overall stoichiometric equation for each mode.  Because protons are included in the net 
stoichiometric equation, they must also be incorporate for computation of each mode’s reaction 
thermodynamic values.   For this calculation, we assumed that pH remains constant at a value of 
7.0 throughout cultivation, which is reasonable because of pH buffering by the medium and, because 
media depletion is minimized by keeping cultures in a low-density state. However, for a neutral pH, 
the formation enthalpy and free energy values of protons are zero; thus, at pH 7 the production of 
protons by an elementary mode does not affect its reaction thermodynamics values. Nevertheless, 
the number of protons produced by each mode is still a useful value, because it gives an additional 
flux for evaluating agreement between experiment and the model.  For biological systems, 
consideration of pH effects can be especially important because several biologically relevant 
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compounds have acidic isoforms, which when present at the standard, thermodynamic, reference 
concentration of 1 M, result in pH levels very far from neutral, e.g. ammonia (pH = 11.4), carbonate 
(pH = 3.18), acetate (pH = 2.38), lactate (pH = 1.93) , phosphate (pH = 1), and sulfate (pH = 0). 

Experimental data from Long et al. (Long, et al., 2017) and thermodynamic reference data were 
stored in Microsoft Excel.  All other computation, data analysis, and figure generation were made 
using Matlab R2019a.  A pseudocode of the important computational steps is provided in the 
supplemental file S5. 
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