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Abstract: Studying the spatial variation patterns and influencing factors of soil organic matter (SOM)
in hilly and basin areas is of great significance for guiding agricultural production practices. This
study takes Lanxi City as an example and comprehensively considers soil formation factors such as
climate, vegetation, and terrain. Based on the genetic algorithm, 47 environmental variables are
combined and optimized to construct a random forest (RF) model and an improved version—a
random forest model based on genetic algorithm variable combination optimization (RF-GA). At the
same time, the SHAP interpretation method is used to quantitatively analyze the spatial distribution
characteristics of the SOM content and further identify the main driving factors. Compared with the
ordinary Kriging (OK) and random forest (RF) methods, the random forest model (RF-GA) based on
genetic algorithm variable combination optimization demonstrates a significantly improved
prediction accuracy (R? = 0.49; RMSE = 3.49 g-kg™), with an MAE = 3.019 and LCCC = 0.67. Among
the three models, the R? of the RF-GA model increases by 87.84% and 56.29%. The model prediction
results indicate that the SOM content in the study area ranges from 12.11 to 31.38 g - kg !, showing
spatial distribution characteristics of a higher content in mountainous areas and a lower content in
plains. A further SHAP analysis shows that terrain, climate, and biological factors are key
environmental factors affecting the spatial differentiation of the SOM, with the CNBL and DEM
playing particularly significant roles. By regulating moisture, erosion deposition, vegetation
distribution, and microclimate conditions, they significantly affect the spatial distribution of the
SOM. In summary, the RF-GA and its interpretable prediction model constructed in this study not
only effectively reveal the spatial and driving mechanisms of SOM in hilly and basin areas but also
provide a solid theoretical basis and practical guidance for accurate mapping, the formulation of
sustainable utilization strategies for soil resources, and ensuring national food security.

Keywords: soil organic matter; genetic algorithm; random forest; SHAP

1. Introduction

Soil organic matter (SOM) is an active and critical component of the soil carbon pool, and its
spatial distribution characteristics are of great significance for revealing regional soil quality and
global carbon cycling processes [1]. However, due to the combined effects of structural and stochastic
factors, the spatial distribution of SOM exhibits significant variability and non-stationarity, causing
significant uncertainty in modeling and quantitatively describing its spatial variation process [2].
Therefore, although it is necessary to accurately obtain spatial distribution information on regional
SOM, many challenges remain in practical operation.

The soil properties in hilly basin areas often exhibit complex spatial variability and non-
stationarity, making it particularly difficult to quantitatively describe soil morphology, properties,
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process variability, and spatial correlations [3]. Therefore, digital soil mapping (DSM) has been
widely used in recent years as an important technology for quickly and accurately determining the
spatial distribution of regional soil attributes [4]. However, due to the combined influence of natural
soil-forming factors and human activities, the SOM in farmland often exhibits significant spatial non-
stationarity, which further increases the difficulty of SOM spatial prediction [5]. Identifying the key
influencing factors of the SOM spatial distribution and introducing them into prediction models can
greatly improve prediction accuracy.

Traditional soil attribute mapping methods, such as Kriging interpolation, inverse distance
weight interpolation, spline function interpolation, and other geostatistical methods [6], as well as
the commonly used Kriging and regression analysis methods, often use linear estimation methods,
which have difficulty in capturing the complex nonlinear relationship between SOM and
environmental variables [7]. Therefore, in recent years, an increasing number of scholars have begun
to introduce machine learning algorithms, such as support vector machines (SVMs), random forests
(RFs), artificial neural networks (ANNSs), and regression trees, aiming to more accurately establish
the nonlinear relationship between SOM and environmental variables [8,9]. These methods typically
rely on sample data and environmental covariates for fitting, with the commonly used environmental
variables including soil type, climate factors, land use type, vegetation index, terrain factors, and soil
parent material [10,11]. Terrain factors in particular have a significant impact on SOM content by
regulating surface runoff, solar radiation, soil erosion, moisture content, and temperature, making
them particularly important in hilly and mountainous areas [12].

The genetic algorithm (GA) is a global optimization algorithm that simulates the natural
evolution process, continuously optimizing variable combinations through operations such as
selection, crossover, and mutation in order to select feature sets that can maximize model
performance [13]. In complex terrain and multivariate environments, the GA can effectively avoid
becoming stuck in local optima, thereby improving the robustness and accuracy of model predictions
[14]. However, the random forest model based on GA filtering features (GA-RF) has not been fully
applied in SOM estimation in complex areas, and its advantages in SOM prediction over the RF model
using full-variable prediction still need to be verified. Therefore, this study proposes a random forest
model based on the genetic algorithm for variable combination optimization, aiming to improve the
prediction accuracy of the SOM spatial distribution in complex regions and provide new perspectives
and methods for DSM research.

Although machine learning methods typically outperform traditional statistical methods in
terms of prediction accuracy, their “black box” nature —i.e., their lack of sufficient interpretability —
has always limited their practical applications. To address this issue, the SHAP (Shapley Additive
exPlans) method based on game theory and local interpretation theory was introduced to
quantitatively estimate the contribution of each feature variable to the model’s prediction results [15].
In the field of soil property simulation, SHAP has not only successfully identified key driving factors
but has also effectively analyzed the interactions between different climate and terrain variables,
making it widely used to interpret the prediction results of complex models [16].

Lanxi City is located in the central and western part of Zhejiang Province, and it is the largest
Yangmei producing area in the region, with a typical hilly and basin landform. Identifying the main
controlling factors of the SOM in farmland in Lanxi City and obtaining a high-precision SOM spatial
distribution map will help not only to formulate scientific and reasonable farmland planting and
management strategies, optimize land use layouts, increase soil carbon sequestration capacities, and
alleviate the greenhouse effect but also to enhance soil fertility and achieve increased grain
production.

The main objectives of this study are to (1) explore the potential application of GA-RF models
based on variable combination optimization in DSM in complex regions; (2) evaluate the performance
differences between this model and the ordinary Kriging method (OK) and the RF model based on
full-variable prediction in terms of predicting the SOM spatial distribution; and (3) use the SHAP
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method to analyze the spatial correlation between SOM formation environmental variables and SOM
content.

2. Research Area and Data Sources

2.1. Overview of the Study Area

Lanxi City is located in the central and western part of Zhejiang Province, with the geographical
coordinates of 29°120"-29°27'30" north latitude and 119°13'30"-119°53'50" east longitude; it has a
total area of 1313 square kilometers. The climate belongs to the subtropical monsoon region of East
Asia, with abundant annual precipitation. The landform is a hilly basin in central Zhejiang,
surrounded by mountains in the northeast, winding low hills in the southwest, and a flat plain in the
central part. The main soil types in the research area are red soil, yellow soil, lithological soil, tidal
soil, and paddy soil, with agriculture being the main land use.

2.2. Data Sources and Processing

2.2.1. Soil Sample Data

Surface soil samples were collected in 2022. Before conducting field investigations, soil sample
points were evenly distributed in the study area based on field surveys, effectively reflecting the
distribution characteristics of the agricultural land soil properties in the study area. The soil sample
points were set up in advance using the grid sampling method. Firstly, to meet the soil sample size
requirement, a 2 x 2 km regular grid was generated in the exploration area, and points were generated
at the center of each grid to obtain uniformly distributed grid points. Next, to remove the grid points
in the non-agricultural land area, actual measurement data were used to extract agricultural map
layers for the preliminary screening of the grid points. Considering the complex agricultural
landscape in the research area, the selected grid points were overlaid with high-resolution images
from Google Earth to visually determine the land use type and further screen the grid points. A total
of 1566 surface soil and crop samples were ultimately collected. For soil sampling, the upward
drilling method was adopted, and a 10 m x 10 m grid was established at each sampling point, with a
sampling depth of 0-20 cm. Ten soil cores were randomly selected at each point using a 5 cm diameter
spiral soil drill, and all soil cores were mixed into one soil sample.

After the field investigation was completed, the soil samples collected via air drying and
crushing were filtered through a 1.0 mm sieve and stored in sealed glass jars for further analysis.
Finally, the SOM content was measured using the potassium dichromate volumetric method. To
reduce the interference of a few outliers in the data analysis, the organic matter data of 1566 samples
from Lanxi City were checked and removed as outliers in Excel software. Finally, 1560 sampling
points were determined, and their spatial distribution is shown in Figure 1. In ArcGIS 10.2, 80% of
the samples were randomly and uniformly selected as the training set (1249), and the remaining 20%
were selected as the validation set (311).
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Figure 1. Location of the research area and distribution of sampling points.

2.2.2. Obtaining Environmental Covariates

Based on the soil landscape SCORPAN function model [17], following the principles of
correlation and availability, soil texture, terrain factors, remote sensing biological indices, climate
factors, soil types, and land use were selected as environmental variables to predict the soil properties
in the study area, as shown in Table 1. According to McBratney et al. [18], of the digital mapping
studies, 80% have used terrain elements, 25% have used biological elements, another 25% have used
parent rock elements, 5% have used climate elements, and none have used time elements.

Table 1. Input variables used in this study.

Soil- Spatial
Forming Input Variables Resoluti
Factors on

Analytical hillshading (AH), aspect (ASP), closed depressions (CDs), convergence
index (CI), channel network base level (CNBL), channel network distance (CND),
elevation (DEM), coefficient of variation of elevation (ECV), LS factor (LS), mass
balance index (MBI), multiscale ridge top flatness (MRRTF), multi-resolution valley
bottom flatness (MRVBF), plan curvature (PLC), profile curvature (PRC), relative =~ 12.5m
slope position (RSP), surface cutting depth (SCD), slope (SLP), total catchment area
(TCA), topographic position index (TPI), terrain ruggedness index (TRI), topographic
wetness index (TWI), terrain undulation (TU), valley depth (VD), wind exposition
index (WEI)
Bare soil index (BSI), enhanced vegetation index (EVI), global environment
monitoring index (GEMI), green normalized difference vegetation index (GNDVI),
modified normalized difference water index (MNDWI), modified soil-adjusted
vegetation index (MSAVI), normalized difference moisture index (NDMI), 10 m
normalized difference vegetation index (NDVI), normalized difference water index
(NDWI), net primary production (NPP), soil-adjusted vegetation index (SAVI),
simple ratio (SR), visible light atmospheric impedance index (VARI)

Topograph
ic factors

Biological
factors

Soil texture Sand content (sand), silt content (silt), clay content (clay) 900 m
Climate Evaporation (E_m), humidity mean (H_m), land surface temperature mean (LST_m), 1000 m
factors precipitation mean (P_m), temperature mean (T_m)
Land use (LU) Vector
Soil type (ST) data

(1) Topographical factors

The terrain series of soil is mainly controlled by surface morphology characteristics and parent
rocks, which are relatively uniform in a small area. Therefore, terrain is the most important
influencing factor in the formation of local soil. Terrain factors directly affect the energy cycle of
surface materials and the occurrence and evolution of soil, and they are commonly used
environmental variables in soil mapping. This study used 12.5 m digital elevation model (DEM) data
for terrain data, and, based on these DEM data, the slope, aspect, profile curvature, plane curvature,
terrain roughness index (TRI), total catchment area (TCA), stream power index (SPI), topographic
wetness index (TWI), multiscale ridge top flatness (MRRTF), multiscale valley bottom flatness
(MRVBF), etc., were extracted using SAGA-GIS 7.6.2 software. Among them, MRRTF and MRVBF
are humidity indices that identify flat and low terrain or high flat areas at multiple resolutions by
progressively smoothing and coarsening the DEM while reducing slope thresholds to identify valleys
or ridges. These terrain factors affect the movement of surface materials and energy from different
aspects, thereby influencing the soil formation process.

(2) Climate factors
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The annual average temperature, the annual average precipitation, and other climate factors
were sourced from the National Qinghai Tibet Plateau Data Center in China http://data.tpdc.ac.cn
(14 May 2022). The dataset was generated by downscaling in China based on the gridded time series
climate dataset released by the Climate Research Unit (CRU) at the University of East Anglia in the
UK, as well as the WorldClim global high-resolution climate dataset [19].

(3) Biological factors

Biological factors indirectly reflect the surface conditions and vegetation landscape
characteristics formed by soil properties through the characteristic bands and different combinations
of remote sensing images. Remote sensing image data were obtained from Sentinel-2, which involves
high-resolution multispectral imaging satellites carrying a multispectral imager (MSI) for land
monitoring. Sentinel-2 can provide images of vegetation, soil and water cover, inland waterways,
and coastal areas and involves two satellites: 2A and 2B. This study used Sentinel-2A satellite data,
with a spatial resolution of 10m, downloaded from the GEE (Google Earth Engine) public data
platform. The image time was consistent with the sampling time, and the cloud cover was 0.
Subsequently, the obtained image data underwent preprocessing such as format conversion,
projection transformation, and resampling. Information on the frequency bands of Sentinel-2 is
shown in Table 2.

Table 2. Band Information of Sentinel-2.

Sentinel-2 Bands Bandwidth (nm) Central Wavelength (nm)
Band 1—coastal aerosol 21 4427
Band 2—blue 66 4924
Band 3—green 36 559.8
Band 4—red 31 664.6
Band 5—vegetation red edge 2 704.1
Band 6—vegetation red edge 15 740.5
Band 7 —vegetation red edge 20 782.8
Band 8 —NIR 106 832.8
Band 8A —narrow NIR 21 864.7
Band 9—water vapor 20 945.1
Band 10—SWR-Cirrus 3 1373.5
Band 11—-SWIR 91 1613.7
Band 12—SWIR 175 2202.4

(4) soil texture

Soil texture is one of the physical properties of soil, referring to the combination of mineral
particles of different sizes and diameters in the soil. Soil texture is closely related to soil aeration,
fertilizer retention, the water retention status, and the difficulty of cultivation, and its condition is an
important basis for formulating soil utilization, management, and improvement measures. Fertile soil
requires not only a good texture of the plow layer but also a good texture profile. Although soil
texture is mainly determined by the type of parent material and is relatively stable, the texture of the
cultivated layer can still be adjusted through activities such as tillage and fertilization. The spatial
distribution data of soil texture were compiled based on soil type maps and soil profile data obtained
from soil surveys, and they were divided into three categories, namely, sand, silt, and clay, each of
which reflects the content of particles with different textures through percentages. The dataset was
provided by the Geographic Remote Sensing Ecological Network Platform (www.gisrs.cn), and it has
a spatial resolution of 900m.

(5) Soil type and land use data

The soil type and land use data were sourced from the measured data collected in this
experiment. This study used arithmetic mean transformation for categorical variables, such as land
use and soil type, which allowed for the quantitative relationship between the levels of the


http://data.tpdc.ac.cn/
https://doi.org/10.20944/preprints202502.0895.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 February 2025 d0i:10.20944/preprints202502.0895.v1

6 of 17

independent variables and the quantitative outcome variables to be established using the relationship
between the categorical independent variables and quantitative dependent variables. The arithmetic
mean (area percentage) of the quantitative dependent variable under different land use and soil types
was used to replace the land use and soil types.

3. Research Method

3.1. Ordinary Kriging

Ordinary Kriging (OK) is an accurate spatial local interpolation method based on the theory of
variation functions [20,21]. In OK, a theoretical semi-variogram model of the regionalized variable is
first fitted with the observed values. The value zjk(x,) at the predicted point x, can be obtained by
linearly weighting the observed values within a certain range around it, while the weight value 4; is
determined under the guidance of unbiased and optimal thinking. The calculation formula for OK is
as follows:

Zo (x0) = Xiq A 2(x;) (1)

Here, zjk(%,) is the OK estimate at x,, z(x;) is the observation at x;, and A; is the weight
value. The OK method determines the optimal weight value on the premise of unbiasedness (the
estimated value equal to the true value) and optimality (minimum variance), thus satisfying the
following conditions:

Unbiased condition:

E[zok(x0) — Zok (x)] = 0 2)

Optimal condition:

Var[zpy (xo) — Zok (xp)] = min 3)

3.2. Random Forest

Random forest (RF) is a tree structure model that adopts an ensemble learning strategy, which
can be used for both the classification and prediction of continuous variables [22]. In recent years, the
random forest (RF) algorithm, as an excellent machine learning algorithm, has been widely used in
digital soil mapping research based on multi-source environmental variables. RF-based models are
non-parametric models and can handle the complex nonlinear relationship between soil properties
and environmental covariates [23]. Moreover, RF has low sensitivity to the noise present in training
samples; thus, it can better handle the problem of reduced accuracy caused by data loss and identify
the importance of predictive variables [24]. Numerous studies have shown that RF has a higher
prediction accuracy than other machine learning algorithms and traditional statistical regression
methods [25].

Its advantages are that it does not require the assumption that the dependent variable is
normally distributed, and it does not require testing for multicollinearity between independent
variables. More importantly, it can explore the nonlinear relationship between independent and
dependent variables. The RF model uses the bootstrap method to perform random sampling with
replacement from the original training set, forming m new training sets and independently
constructing CART decision tree models using each new training set. The samples remaining each
time are called out-of-bag data. n independent variables are randomly selected from each tree to
determine the classification of tree nodes. The final prediction result is determined by voting on the
prediction results of all trees (when the dependent variable is a categorical variable) or by taking the
average (when the dependent variable is a continuous variable). RF calculates the increase in the
mean square error (MSE) of the regression equation to predict the out-of-bag data when removing
each variable, % IncMSE, and it determines the relative importance of each variable based on this:
the higher the % IncMSE, the more important the variable [26]. The RF model has two key parameters:
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the number of trees (ntree) and the number of nodes (mtry). When the computational load allows, a
larger ntree is better; changes in mtry will affect the goodness of fit of the model, and multiple
attempts will be required (ranging from 1 to the number of independent variables).

3.3. Genetic Algorithm

The genetic algorithm (GA) is a random search optimization algorithm based on natural
selection and genetic mechanisms, inspired by the theory of biological evolution. It simulates genetic
operations (selection, crossover, mutation, etc.) to achieve the iterative process from the initial
population to the optimal solution [27]. In variable combination optimization problems, the GA
encodes variable combinations into chromosomes (such as binary encoding, where each gene
corresponds to a variable) to achieve feature selection or optimization [28]. The algorithm starts from
a randomly generated initial population; evaluates the quality of each chromosome through fitness
functions, such as prediction accuracy and AIC/BIC indicators; and then uses selection, crossover,
and mutation operations to generate new populations during the iteration process, continuously
optimizing the quality of the solution. The optimization objectives of the GA typically include
maximizing model performance (such as accuracy or minimum error), minimizing the number of
variables to simplify the model, and ensuring the robustness of the results. This process outputs the
optimal variable combination after meeting the predetermined termination conditions, such as the
number of iterations or the convergence of fitness [29]. The GA has a wide range of applications in
feature selection and variable combination optimization due to its powerful global search capability
and adaptability to complex high-dimensional nonlinear problems. The principle of GA algorithm is
shown in Figure 2.
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1 !
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Figure 2. Schematic diagram of the GA model structure.

3.4. SHAP Driving Force Analysis

SHAP is a game theory-based method proposed by Lundberg and Lee to describe the
performance of machine learning models, it uses Shapley values to estimate the contribution value
of each feature [30]. According to game theory, each feature variable in a dataset can be seen as the
result of a member training a model using that dataset to obtain predictions, and it can be seen as the
benefit of all members working together to complete a project. The Shapley value provides a fair
distribution of the benefits of cooperation by considering the contributions of each member. Due to
the use of Shapley values from game theory as explanatory measures, an SHAP attribution analysis
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has the advantages of strong global and local interpretability of variables, a fair distribution of
variable contributions, and excellent visualization effects, which compensate for the poor
interpretability of black box models. Therefore, SHAP is introduced to explain and analyze the
nonlinear relationship between a single variable and the dependent variable through the Shapley
value and to evaluate the contributions of various environmental variables.

Let us assume the use of F groups (with n features) to predict the output of the RF model. In
SHAP, the contribution of each feature to the model output f(f) is allocated based on its marginal
contribution. The Shapley value is determined by using the following formula:

IS!(F]-]S]-1)!

Oi = Xscriy ™ mp [fsu (s uw) = fs(xs)] 4)
In the formula, @; is the Shapley value of feature i; F is the set of all features; S is the set of all
W refers to the probability
weight of S derived after feature permutation and combination; and fs;; and fs represent sets of

feature subsets produced from F after removing feature i;

the S feature subsets. The features and predicted values of model i are input, and its prediction is
compared with that of the current input fs U{i}(xs U{i}) — fs(xs), where represents the values of the
input features in set S.

3.5. Model Evaluation Indicators

Four indicators were selected to evaluate the predictive performance of the model: the mean
absolute error (MAE), the root mean square error (RMSE), the coefficient of determination (R?) of the
linear regression equation between the predicted and observed values, and Lin’s consistency
correlation coefficient (LCCC). Their calculation formulas are as follows:

MAE = -0, — P,| (5)
RMSE = 2\/% Y™(0; — P;)? (6)
LCCC = ﬁ—oz_mz ®)

Among them, n is the number of sample points in the validation set, 0; is the observed value
at sample point i, P; is the predicted value at sample point i, O is the average of the observed values,
P is the average of the predicted values, r is the Pearson correlation coefficient between the observed
and predicted values, S, is the standard deviation of the observed values, and Sp is the standard
deviation of the predicted values. Among them, the MAE and RMSE measure the numerical error
of the prediction set, with smaller values indicating a higher model prediction accuracy. Moreover,
R? mainly reflects whether the predicted trend is correct; the larger the value, the more accurate the
model’s predicted trend. On the basis of measuring correlations (Pearson correlation coefficient),
LCCC also considers prediction bias; that is, it comprehensively considers the prediction accuracy
and trend of the model [31,32].

Therefore, its results are more reliable. The range of LCCC values is between 0 and + 1. The larger
the value, the closer the predicted and observed point pairs are to the perfect consistency line (45°
diagonal) in the scatter plot. When the absolute value of LCCC is equal to 1, it indicates perfect
consistency (or perfect inconsistency); when LCCC is equal to 0, it indicates no correlation. Overall,
a good predictive model has lower MAE and RMSE values and higher R? and LCCC values.

4. Experimental Results and Analysis
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4.1. Basic Statistics of Soil Organic Matter Content

The distribution characteristics and variability of data have an impact on the reliability of spatial
interpolation results. In Kriging interpolation, if the data follow a normal distribution, the optimal
prediction results can be obtained [33]. Therefore, normality testing and transformation of the data
were performed to obtain more reliable prediction results.

This study first conducted descriptive statistics on the soil organic matter content of the training
and validation sets, and it performed K-S tests on the experimental data in SPSS 26. The results (Table
2) show that the maximum value (Max), minimum value (Min), average value (AVE), and standard
deviation (SD) of the training and validation sets were relatively consistent. The magnitude of the
coefficient of variation (CV) indicates the spatial variability of soil properties. When the coefficient of
variation is less than 10%, it suggests weak variability; when the coefficient of variation is greater
than 100%, it suggests strong variability. A value between the two suggests moderate variability.
According to Table 3, the soil organic matter in the study area belongs to a moderately variable type.

Based on the skewness and kurtosis values, as well as the K-S value (K-S) test results, it could be
concluded that both the training and validation sets are non-normally distributed. Although Kriging
interpolation does not strictly require data to be normally distributed, when the data deviate too far
from the normal distribution, the interpolation effect may not be ideal. After performing Box—Cox
transformation (Box—Cox) on the training and validation sets, the skewness and kurtosis values were
close to 0, and the K-S test results were greater than 0.05, thus conforming to the normal distribution.

Table 3. Descriptive statistics of soil organic matter content at sampling points in the study area.

Type Samples (;f(?l) (gl\;i: 1y AVE (g-kg?) SD (g-kg™
Training set Raw data 1249 66.20 391 22.25 8.40
Box—Cox 1249 10.87 1.81 6.01 1.31
Validation set Raw data 311 58.60 521 22.50 8.58
Box—Cox 311 10.24 2.34 6.05 1.30
Type CV (%) Skewness  Kurtosis K-S
Training set Raw data 37.77 0.85 1.89 0.000
Box—Cox 21.84 —0.01 0.44 0.081
Validation set Raw data 38.15 0.86 1.40 0.006
Box—Cox 21.54 0.12 0.29 0.200

4.2. Assessment of the Importance of Environmental Variables in RF Models

The optimal parameters of a random forest are determined using the grid search method. Grid
search traverses all possible combinations within a preset hyperparameter range to find the optimal
hyperparameter combination [34]. This method can quickly find a relatively good hyperparameter
setting, but it may require significant computational resources and time. The optimal parameters for
the RF model in this study were mtry = 19 and ntree = 500, and the optimal parameters for the RFGA
model were mtry = 4 and tree = 500. Based on the RF model, the importance ranking of all
environmental variables involved in modeling was conducted, and it was found that there were
differences in the importance of the effects of the different environmental variables on the prediction
results of different attribute spaces. In the RF model importance evaluation results (% IncMSE) of the
soil SOM content, the order of influence on the SOM from high to low was as follows (Figure 3): the
CNBL, DEM, Tm, LSTMm, Hm, MSAVI, WEI, E-m, SCD, BS], etc. Therefore, the two factors that had
the greatest impact on the SOM in the RF results were the CNBL and DEM.
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Figure 3. Ranking of % IncMSE values of various influencing factors in the random forest model.

4.3. Comparative Analysis of Mapping Accuracy

After obtaining the SOM (Box—-Cox transformation) spatial prediction results of each prediction
model, inverse transformation can be used to obtain the SOM spatial distribution results based on
Kriging interpolation. RF uses 47 full variables to predict soil organic matter across the entire domain.
The optimal variable combination selected by GA-RF is P_m, E_m, VARI, NDWI, NPP, MNDW]I,
GNDVI, BSI, AH, ASP, CI, CNBL, CND, DEM, LS, MRRTF, RSP, TCA, LU, ST, and SCD, predicting
soil SOM across the entire region based on 21 environmental variables.

The prediction results of each model are externally validated using the MAE, RMSE, R? and
LCCC, as shown in Table 4. It can be observed that, among the three types of prediction models, the
OK model has higher MAE and RMSE values, while R2 and LCCC are very low, indicating that using
only the Kriging method results in poor prediction accuracy and trends. In the regression model,
according to the LCCC results, the order from best to worst for each model is RE-GA > RF > OK. These
results indicate that the RF-GA model considering nonlinear relationships has the smallest spatial
interpolation error, OK has the largest spatial interpolation error, and RF-GA and RF have improved
interpolation accuracy compared to OK due to the use of auxiliary variables.

Table 4. Cross-validation results of different interpolation methods.

Method MAE RMSE R? LCCC
OK 6.31 8.33 0.06 0.16
RF 4.60 5.86 0.21 0.38

RF-GA 3.02 3.49 0.49 0.67

4.4. SHAP Overlay Explanation

Figure 4 shows the distribution of the SHAP values for each environmental variable, with
positive values indicating a positive impact on the SOM content and negative values indicating a
negative impact on the SOM content. As shown in Figure 5, the importance of SR, VARI, GNDV],
and NDVI is relatively low, and the SHAP values are concentrated around 0. However, the
importance of the CNBL and DEM is relatively high, with a wide distribution range of SHAP values.

The bee colony plot in Figure 5 shows that the CNBL and DEM have a significant impact on the SOM
content.

d0i:10.20944/preprints202502.0895.v1
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Figure 4. Shapley values between soil organic matter content and environmental variables. The overall
importance of each variable is shown, with the x-axis representing the ranking of environmental variable

importance and the y-axis representing the average SHAP value of each influencing factor.
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Figure 5. Colony plot of Shapley values between soil organic matter content and environmental variables. The
overall importance and direction of influence of variables are shown. Feature ranking (x-axis) represents the
importance of the environmental variables, the SHAP value (y-axis) represents the unified index of the influence
of a certain factor in the model, and red (blue) dots represent the value of environmental variables. SHAP > 0
represents a positive contribution. As the SHAP value increases, the positive effect of the factor on the SOM
content is higher. SHAP < 0 represents a negative contribution, and, as the SHAP value decreases, the negative
effect of the factor on SOM content is higher.
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According to the results of the environmental variable driving force analysis of the soil organic
matter content in the study area, terrain factors, climate factors, and biological factors are important
environmental variables that affect the spatial distribution of the SOM in the study area, which is
consistent with the conclusion of RF. Among them, terrain factors reflect not only the regional
environment but also the influence of hydrogeological features on the distribution of soil properties.
Climate factors not only directly affect the decomposition rate of soil organic matter but also
indirectly affect soil organic matter content by influencing soil moisture content and vegetation type.
Biological factors affect the distribution of organic matter through vegetation cover and growth
conditions.

4.5. Spatial Distribution of Soil Organic Matter

The prediction accuracy of the optimization model based on the combination of RF and GA
variables is relatively high, achieving an R? of 0.49, an MAE of 3.01 g-kg~!, an RMSE of 3.49 g-kg~!, and
an LUCC of 0.67. The fitting with actual values indicates that the model can effectively predict the
SOM content. To allow for a visual comparison of the SOM prediction results of different models, we
display the prediction results of all models within the same range (Figures 6-8). The SOM content in
the predicted graph exhibits a significant spatial variability in distribution. The prediction results
indicate that, in the study area, the SOM content is higher in the northern and eastern mountainous
areas, while it is lower in the central area with a flat terrain, and a few high values are also distributed
in southern cities and mixed forest areas. In the northern and eastern mountainous areas, the main
land cover type is forest, with dense vegetation and a complex terrain; less human intervention allows
vegetation to continuously input organic matter into the soil, and the mountainous terrain may slow
down soil erosion, resulting in a higher accumulation rate of organic matter in the soil. The flat areas
in the central region are mainly farmland, and more agricultural activities such as long-term
cultivation and fertilization may accelerate the decomposition of organic matter. In addition, areas
with a flat terrain are more susceptible to rainfall and wind erosion, further reducing the SOM
content.

MAE=6.31
RMSE=8.33
30 R2=0.06

25

200
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Figure 6. Spatial distribution map of prediction accuracy of the OK model for SOM.
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Figure 8. Spatial distribution map of prediction accuracy of the RF-GA model for SOM.

The prediction results of the three models are shown in Figure 4. It can be seen that the SOM
spatial distribution prediction results of RF and RF-GA are very similar. The difference is that the OK
prediction results are very smooth, while the RF and RF-GA prediction models can highlight the
spatial details and changes in the SOM, demonstrating richer SOM spatial variation information. The
OK valuation significantly differs from the original data. The areas exhibiting high SOM are mainly

distributed in areas with significant terrain fluctuations, which is conducive to the accumulation of
SOM.

5. Discussion

5.1. Advantages of RF-GA Model

Compared with the traditional OK and RF methods based on full-variable prediction, the RF-
GA method used in this study has the following advantages: Firstly, it addresses the issue of spatial
heterogeneity in complex regions, improving the ability to understand data features and achieving a
better fitting accuracy, even without distinguishing land use types. In addition, this model has
significant advantages over the OK and RF methods in predicting the SOM in complex areas.
Compared with RF, the RF-GA model can effectively screen out environmental covariates with high
contributions to the model, avoiding the interference of variables with low contributions on model
accuracy and significantly improving the accuracy of SOM prediction.

5.2. Explanation of Environmental Variables

The influencing factors of SOM vary greatly among regions under the influence of natural and
human disturbances [35]. Terrain, climate, and biological factors have become key influencing factors
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of the SOM in the hilly basin area of Lanxi City, and they exhibit a certain degree of threshold or peak
effects. The CNBL and DEM have the greatest impact on the SOM, a similar conclusion to that drawn
in related studies [36-38]. Terrain factors regulate the soil organic matter distribution by influencing
the water content, erosion deposition, vegetation distribution, and the microclimate [39]. Climate
factors affect the accumulation and decomposition of soil organic matter through temperature,
precipitation, vegetation, and microbial activity. Warm and humid environments accelerate
decomposition, while cold and arid regions promote accumulation. Biological factors affect the soil
organic matter distribution through vegetation growth, litter input, and biological activity [40].

5.3. Limitations and Potential Improvements

5.3.1. Insufficient Data Scale and Representativeness

This study is based on a data analysis of 1560 sampling points in Lanxi City. The limited sample
size and spatial distribution may affect the universality of the model prediction. In addition,
environmental variables such as climate variables do not fully take into account temporal dynamic
changes. In the future, the predictive ability of the model can be improved by increasing the number
of sampling points, expanding the research area, and introducing a time series analysis.

5.3.2. Improvement Directions for Model Optimization

Although genetic algorithms effectively improve model performance, they have high
computational complexity and longer variable optimization time. At the same time, both the RF and
RF-GA models exhibit sparse samples of extreme values. This is because, in the spatial distribution
of soil properties, extreme values often correspond to special geographical conditions or
environmental factors, and these areas may have fewer sampling points. Random forests cannot fully
capture the complex features of these sparse areas, resulting in a tendency to approach the mean of
the global data when predicting, thereby narrowing the range of the predicted values. By optimizing
the model and data in the future, combined with subsequent correction methods, this phenomenon
can be alleviated.

5.3.3. Lack of Applicability and Interaction Analysis of Explanatory Methods

The SHAP interpretation method effectively analyzes the contribution of environmental
variables to SOM, but it has high computational complexity and resource consumption. Furthermore,
this study did not delve into the interactions between environmental factors. In the future, a
lightweight explanatory model can be considered, combined with SHAP interaction values, to further
analyze the coupling relationship of environmental variables.

6. Conclusions and Prospects

This study was based on a soil investigation and measured data, with Kriging interpolation
(OK), a random forest (RF) model, a random forest model based on genetic algorithm variable
combination optimization (RF-GA), and the SHAP interpretation method (SHAP) used to analyze the
spatial differentiation characteristics and key influencing factors of the SOM in Lanxi City, as well as
the impact of their effects. The following important conclusions were obtained:

(1) The distribution of the SOM in the research area is influenced by factors such as terrain, climate,
and biological factors, and it has obvious spatial differentiation characteristics. In the study area,
the SOM content is higher in the northern and eastern mountainous areas, while it is lower in
the central area with a flat terrain. A few high values are also distributed in southern cities and
mixed forest areas.

(2) The random forest model RF-GA based on genetic algorithm variable combination optimization
is more effective in extracting environmental variables, it demonstrates improved accuracy in


https://doi.org/10.20944/preprints202502.0895.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 February 2025 d0i:10.20944/preprints202502.0895.v1

15 of 17

SOM prediction compared to the RF model using full-variable prediction, making it a promising
tool for SOM prediction in complex areas.

(3) Further research using the REGA-SHAP model indicates that the key influencing factors on the
spatial distribution of surface SOM in the hilly basin area of Lanxi City are CNBL, DEM, Pm,
NDWI, CI, Tm, SCD, BSI, etc. These factors can make significant contributions to soil
management practices and provide information for decision-making to promote sustainable
land use and agricultural productivity.
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