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Abstract: Studying the spatial variation patterns and influencing factors of soil organic matter (SOM) 

in hilly and basin areas is of great significance for guiding agricultural production practices. This 

study takes Lanxi City as an example and comprehensively considers soil formation factors such as 

climate, vegetation, and terrain. Based on the genetic algorithm, 47 environmental variables are 

combined and optimized to construct a random forest (RF) model and an improved version—a 

random forest model based on genetic algorithm variable combination optimization (RF-GA). At the 

same time, the SHAP interpretation method is used to quantitatively analyze the spatial distribution 

characteristics of the SOM content and further identify the main driving factors. Compared with the 

ordinary Kriging (OK) and random forest (RF) methods, the random forest model (RF-GA) based on 

genetic algorithm variable combination optimization demonstrates a significantly improved 

prediction accuracy (R² = 0.49; RMSE = 3.49 g·kg⁻¹), with an MAE = 3.019 and LCCC = 0.67. Among 

the three models, the R² of the RF-GA model increases by 87.84% and 56.29%. The model prediction 

results indicate that the SOM content in the study area ranges from 12.11 to 31.38 g · kg ⁻¹, showing 

spatial distribution characteristics of a higher content in mountainous areas and a lower content in 

plains. A further SHAP analysis shows that terrain, climate, and biological factors are key 

environmental factors affecting the spatial differentiation of the SOM, with the CNBL and DEM 

playing particularly significant roles. By regulating moisture, erosion deposition, vegetation 

distribution, and microclimate conditions, they significantly affect the spatial distribution of the 

SOM. In summary, the RF-GA and its interpretable prediction model constructed in this study not 

only effectively reveal the spatial and driving mechanisms of SOM in hilly and basin areas but also 

provide a solid theoretical basis and practical guidance for accurate mapping, the formulation of 

sustainable utilization strategies for soil resources, and ensuring national food security. 

Keywords: soil organic matter; genetic algorithm; random forest; SHAP 

 

1. Introduction 

Soil organic matter (SOM) is an active and critical component of the soil carbon pool, and its 

spatial distribution characteristics are of great significance for revealing regional soil quality and 

global carbon cycling processes [1]. However, due to the combined effects of structural and stochastic 

factors, the spatial distribution of SOM exhibits significant variability and non-stationarity, causing 

significant uncertainty in modeling and quantitatively describing its spatial variation process [2]. 

Therefore, although it is necessary to accurately obtain spatial distribution information on regional 

SOM, many challenges remain in practical operation. 

The soil properties in hilly basin areas often exhibit complex spatial variability and non-

stationarity, making it particularly difficult to quantitatively describe soil morphology, properties, 
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process variability, and spatial correlations [3]. Therefore, digital soil mapping (DSM) has been 

widely used in recent years as an important technology for quickly and accurately determining the 

spatial distribution of regional soil attributes [4]. However, due to the combined influence of natural 

soil-forming factors and human activities, the SOM in farmland often exhibits significant spatial non-

stationarity, which further increases the difficulty of SOM spatial prediction [5]. Identifying the key 

influencing factors of the SOM spatial distribution and introducing them into prediction models can 

greatly improve prediction accuracy. 

Traditional soil attribute mapping methods, such as Kriging interpolation, inverse distance 

weight interpolation, spline function interpolation, and other geostatistical methods [6], as well as 

the commonly used Kriging and regression analysis methods, often use linear estimation methods, 

which have difficulty in capturing the complex nonlinear relationship between SOM and 

environmental variables [7]. Therefore, in recent years, an increasing number of scholars have begun 

to introduce machine learning algorithms, such as support vector machines (SVMs), random forests 

(RFs), artificial neural networks (ANNs), and regression trees, aiming to more accurately establish 

the nonlinear relationship between SOM and environmental variables [8,9]. These methods typically 

rely on sample data and environmental covariates for fitting, with the commonly used environmental 

variables including soil type, climate factors, land use type, vegetation index, terrain factors, and soil 

parent material [10,11]. Terrain factors in particular have a significant impact on SOM content by 

regulating surface runoff, solar radiation, soil erosion, moisture content, and temperature, making 

them particularly important in hilly and mountainous areas [12]. 

The genetic algorithm (GA) is a global optimization algorithm that simulates the natural 

evolution process, continuously optimizing variable combinations through operations such as 

selection, crossover, and mutation in order to select feature sets that can maximize model 

performance [13]. In complex terrain and multivariate environments, the GA can effectively avoid 

becoming stuck in local optima, thereby improving the robustness and accuracy of model predictions 

[14]. However, the random forest model based on GA filtering features (GA-RF) has not been fully 

applied in SOM estimation in complex areas, and its advantages in SOM prediction over the RF model 

using full-variable prediction still need to be verified. Therefore, this study proposes a random forest 

model based on the genetic algorithm for variable combination optimization, aiming to improve the 

prediction accuracy of the SOM spatial distribution in complex regions and provide new perspectives 

and methods for DSM research. 

Although machine learning methods typically outperform traditional statistical methods in 

terms of prediction accuracy, their “black box” nature—i.e., their lack of sufficient interpretability—

has always limited their practical applications. To address this issue, the SHAP (Shapley Additive 

exPlans) method based on game theory and local interpretation theory was introduced to 

quantitatively estimate the contribution of each feature variable to the model’s prediction results [15]. 

In the field of soil property simulation, SHAP has not only successfully identified key driving factors 

but has also effectively analyzed the interactions between different climate and terrain variables, 

making it widely used to interpret the prediction results of complex models [16]. 

Lanxi City is located in the central and western part of Zhejiang Province, and it is the largest 

Yangmei producing area in the region, with a typical hilly and basin landform. Identifying the main 

controlling factors of the SOM in farmland in Lanxi City and obtaining a high-precision SOM spatial 

distribution map will help not only to formulate scientific and reasonable farmland planting and 

management strategies, optimize land use layouts, increase soil carbon sequestration capacities, and 

alleviate the greenhouse effect but also to enhance soil fertility and achieve increased grain 

production. 

The main objectives of this study are to (1) explore the potential application of GA-RF models 

based on variable combination optimization in DSM in complex regions; (2) evaluate the performance 

differences between this model and the ordinary Kriging method (OK) and the RF model based on 

full-variable prediction in terms of predicting the SOM spatial distribution; and (3) use the SHAP 
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method to analyze the spatial correlation between SOM formation environmental variables and SOM 

content. 

2. Research Area and Data Sources 

2.1. Overview of the Study Area 

Lanxi City is located in the central and western part of Zhejiang Province, with the geographical 

coordinates of 29°1′20″–29°27′30″ north latitude and 119°13′30″–119°53′50″ east longitude; it has a 

total area of 1313 square kilometers. The climate belongs to the subtropical monsoon region of East 

Asia, with abundant annual precipitation. The landform is a hilly basin in central Zhejiang, 

surrounded by mountains in the northeast, winding low hills in the southwest, and a flat plain in the 

central part. The main soil types in the research area are red soil, yellow soil, lithological soil, tidal 

soil, and paddy soil, with agriculture being the main land use. 

2.2. Data Sources and Processing 

2.2.1. Soil Sample Data 

Surface soil samples were collected in 2022. Before conducting field investigations, soil sample 

points were evenly distributed in the study area based on field surveys, effectively reflecting the 

distribution characteristics of the agricultural land soil properties in the study area. The soil sample 

points were set up in advance using the grid sampling method. Firstly, to meet the soil sample size 

requirement, a 2 × 2 km regular grid was generated in the exploration area, and points were generated 

at the center of each grid to obtain uniformly distributed grid points. Next, to remove the grid points 

in the non-agricultural land area, actual measurement data were used to extract agricultural map 

layers for the preliminary screening of the grid points. Considering the complex agricultural 

landscape in the research area, the selected grid points were overlaid with high-resolution images 

from Google Earth to visually determine the land use type and further screen the grid points. A total 

of 1566 surface soil and crop samples were ultimately collected. For soil sampling, the upward 

drilling method was adopted, and a 10 m × 10 m grid was established at each sampling point, with a 

sampling depth of 0–20 cm. Ten soil cores were randomly selected at each point using a 5 cm diameter 

spiral soil drill, and all soil cores were mixed into one soil sample. 

After the field investigation was completed, the soil samples collected via air drying and 

crushing were filtered through a 1.0 mm sieve and stored in sealed glass jars for further analysis. 

Finally, the SOM content was measured using the potassium dichromate volumetric method. To 

reduce the interference of a few outliers in the data analysis, the organic matter data of 1566 samples 

from Lanxi City were checked and removed as outliers in Excel software. Finally, 1560 sampling 

points were determined, and their spatial distribution is shown in Figure 1. In ArcGIS 10.2, 80% of 

the samples were randomly and uniformly selected as the training set (1249), and the remaining 20% 

were selected as the validation set (311). 
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Figure 1. Location of the research area and distribution of sampling points. 

2.2.2. Obtaining Environmental Covariates 

Based on the soil landscape SCORPAN function model [17], following the principles of 

correlation and availability, soil texture, terrain factors, remote sensing biological indices, climate 

factors, soil types, and land use were selected as environmental variables to predict the soil properties 

in the study area, as shown in Table 1. According to McBratney et al. [18], of the digital mapping 

studies, 80% have used terrain elements, 25% have used biological elements, another 25% have used 

parent rock elements, 5% have used climate elements, and none have used time elements. 

Table 1. Input variables used in this study. 

Soil-

Forming 

Factors 

Input Variables 

Spatial 

Resoluti

on 

Topograph

ic factors 

Analytical hillshading (AH), aspect (ASP), closed depressions (CDs), convergence 

index (CI), channel network base level (CNBL), channel network distance (CND), 

elevation (DEM), coefficient of variation of elevation (ECV), LS factor (LS), mass 

balance index (MBI), multiscale ridge top flatness (MRRTF), multi-resolution valley 

bottom flatness (MRVBF), plan curvature (PLC), profile curvature (PRC), relative 

slope position (RSP), surface cutting depth (SCD), slope (SLP), total catchment area 

(TCA), topographic position index (TPI), terrain ruggedness index (TRI), topographic 

wetness index (TWI), terrain undulation (TU), valley depth (VD), wind exposition 

index (WEI) 

12.5 m 

Biological 

factors 

Bare soil index (BSI), enhanced vegetation index (EVI), global environment 

monitoring index (GEMI), green normalized difference vegetation index (GNDVI), 

modified normalized difference water index (MNDWI), modified soil-adjusted 

vegetation index (MSAVI), normalized difference moisture index (NDMI), 

normalized difference vegetation index (NDVI), normalized difference water index 

(NDWI), net primary production (NPP), soil-adjusted vegetation index (SAVI), 

simple ratio (SR), visible light atmospheric impedance index (VARI) 

10 m 

Soil texture Sand content (sand), silt content (silt), clay content (clay) 900 m 

Climate 

factors  

Evaporation (E_m), humidity mean (H_m), land surface temperature mean (LST_m), 

precipitation mean (P_m), temperature mean (T_m) 
1000 m 

Land use (LU) Vector 

data Soil type (ST) 

(1) Topographical factors 

The terrain series of soil is mainly controlled by surface morphology characteristics and parent 

rocks, which are relatively uniform in a small area. Therefore, terrain is the most important 

influencing factor in the formation of local soil. Terrain factors directly affect the energy cycle of 

surface materials and the occurrence and evolution of soil, and they are commonly used 

environmental variables in soil mapping. This study used 12.5 m digital elevation model (DEM) data 

for terrain data, and, based on these DEM data, the slope, aspect, profile curvature, plane curvature, 

terrain roughness index (TRI), total catchment area (TCA), stream power index (SPI), topographic 

wetness index (TWI), multiscale ridge top flatness (MRRTF), multiscale valley bottom flatness 

(MRVBF), etc., were extracted using SAGA-GIS 7.6.2 software. Among them, MRRTF and MRVBF 

are humidity indices that identify flat and low terrain or high flat areas at multiple resolutions by 

progressively smoothing and coarsening the DEM while reducing slope thresholds to identify valleys 

or ridges. These terrain factors affect the movement of surface materials and energy from different 

aspects, thereby influencing the soil formation process. 

(2) Climate factors 
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The annual average temperature, the annual average precipitation, and other climate factors 

were sourced from the National Qinghai Tibet Plateau Data Center in China http://data.tpdc.ac.cn 

(14 May 2022). The dataset was generated by downscaling in China based on the gridded time series 

climate dataset released by the Climate Research Unit (CRU) at the University of East Anglia in the 

UK, as well as the WorldClim global high-resolution climate dataset [19]. 

(3) Biological factors 

Biological factors indirectly reflect the surface conditions and vegetation landscape 

characteristics formed by soil properties through the characteristic bands and different combinations 

of remote sensing images. Remote sensing image data were obtained from Sentinel-2, which involves 

high-resolution multispectral imaging satellites carrying a multispectral imager (MSI) for land 

monitoring. Sentinel-2 can provide images of vegetation, soil and water cover, inland waterways, 

and coastal areas and involves two satellites: 2A and 2B. This study used Sentinel-2A satellite data, 

with a spatial resolution of 10m, downloaded from the GEE (Google Earth Engine) public data 

platform. The image time was consistent with the sampling time, and the cloud cover was 0. 

Subsequently, the obtained image data underwent preprocessing such as format conversion, 

projection transformation, and resampling. Information on the frequency bands of Sentinel-2 is 

shown in Table 2. 

Table 2. Band Information of Sentinel-2. 

Sentinel-2 Bands Bandwidth (nm) Central Wavelength (nm) 

Band 1—coastal aerosol 21 442.7 

Band 2—blue 66 492.4 

Band 3—green 36 559.8 

Band 4—red 31 664.6 

Band 5—vegetation red edge 2 704.1 

Band 6—vegetation red edge 15 740.5 

Band 7—vegetation red edge 20 782.8 

Band 8—NIR 106 832.8 

Band 8A—narrow NIR 21 864.7 

Band 9—water vapor 20 945.1 

Band 10—SWR-Cirrus 3 1373.5 

Band 11—SWIR 91 1613.7 

Band 12—SWIR 175 2202.4 

(4) soil texture 

Soil texture is one of the physical properties of soil, referring to the combination of mineral 

particles of different sizes and diameters in the soil. Soil texture is closely related to soil aeration, 

fertilizer retention, the water retention status, and the difficulty of cultivation, and its condition is an 

important basis for formulating soil utilization, management, and improvement measures. Fertile soil 

requires not only a good texture of the plow layer but also a good texture profile. Although soil 

texture is mainly determined by the type of parent material and is relatively stable, the texture of the 

cultivated layer can still be adjusted through activities such as tillage and fertilization. The spatial 

distribution data of soil texture were compiled based on soil type maps and soil profile data obtained 

from soil surveys, and they were divided into three categories, namely, sand, silt, and clay, each of 

which reflects the content of particles with different textures through percentages. The dataset was 

provided by the Geographic Remote Sensing Ecological Network Platform (www.gisrs.cn), and it has 

a spatial resolution of 900m. 

(5) Soil type and land use data 

The soil type and land use data were sourced from the measured data collected in this 

experiment. This study used arithmetic mean transformation for categorical variables, such as land 

use and soil type, which allowed for the quantitative relationship between the levels of the 
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independent variables and the quantitative outcome variables to be established using the relationship 

between the categorical independent variables and quantitative dependent variables. The arithmetic 

mean (area percentage) of the quantitative dependent variable under different land use and soil types 

was used to replace the land use and soil types. 

3. Research Method 

3.1. Ordinary Kriging 

Ordinary Kriging (OK) is an accurate spatial local interpolation method based on the theory of 

variation functions [20,21]. In OK, a theoretical semi-variogram model of the regionalized variable is 

first fitted with the observed values. The value 𝑧𝑂𝐾
∗ (𝑥0) at the predicted point 𝑥0 can be obtained by 

linearly weighting the observed values within a certain range around it, while the weight value 𝜆𝑖 is 

determined under the guidance of unbiased and optimal thinking. The calculation formula for OK is 

as follows: 

𝑧𝑂𝐾
∗ (𝑥0) = ∑ 𝜆𝑖

𝑛
𝑖=1 𝑧(𝑥𝑖)  (1) 

Here, zOK
∗ (x0) is the OK estimate at 𝑥0 , z(𝑥𝑖) is the observation at 𝑥𝑖 , and λi  is the weight 

value. The OK method determines the optimal weight value on the premise of unbiasedness (the 

estimated value equal to the true value) and optimality (minimum variance), thus satisfying the 

following conditions: 

Unbiased condition: 

E[𝑧𝑂𝐾
∗ (𝑥0) − 𝑧𝑂𝐾(𝑥0)] = 0  (2) 

Optimal condition: 

Var[𝑧𝑂𝐾
∗ (𝑥0) − 𝑧𝑂𝐾(𝑥0)] = min  (3) 

3.2. Random Forest 

Random forest (RF) is a tree structure model that adopts an ensemble learning strategy, which 

can be used for both the classification and prediction of continuous variables [22]. In recent years, the 

random forest (RF) algorithm, as an excellent machine learning algorithm, has been widely used in 

digital soil mapping research based on multi-source environmental variables. RF-based models are 

non-parametric models and can handle the complex nonlinear relationship between soil properties 

and environmental covariates [23]. Moreover, RF has low sensitivity to the noise present in training 

samples; thus, it can better handle the problem of reduced accuracy caused by data loss and identify 

the importance of predictive variables [24]. Numerous studies have shown that RF has a higher 

prediction accuracy than other machine learning algorithms and traditional statistical regression 

methods [25]. 

Its advantages are that it does not require the assumption that the dependent variable is 

normally distributed, and it does not require testing for multicollinearity between independent 

variables. More importantly, it can explore the nonlinear relationship between independent and 

dependent variables. The RF model uses the bootstrap method to perform random sampling with 

replacement from the original training set, forming m new training sets and independently 

constructing CART decision tree models using each new training set. The samples remaining each 

time are called out-of-bag data. n independent variables are randomly selected from each tree to 

determine the classification of tree nodes. The final prediction result is determined by voting on the 

prediction results of all trees (when the dependent variable is a categorical variable) or by taking the 

average (when the dependent variable is a continuous variable). RF calculates the increase in the 

mean square error (MSE) of the regression equation to predict the out-of-bag data when removing 

each variable, % IncMSE, and it determines the relative importance of each variable based on this: 

the higher the % IncMSE, the more important the variable [26]. The RF model has two key parameters: 
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the number of trees (ntree) and the number of nodes (mtry). When the computational load allows, a 

larger ntree is better; changes in mtry will affect the goodness of fit of the model, and multiple 

attempts will be required (ranging from 1 to the number of independent variables). 

3.3. Genetic Algorithm 

The genetic algorithm (GA) is a random search optimization algorithm based on natural 

selection and genetic mechanisms, inspired by the theory of biological evolution. It simulates genetic 

operations (selection, crossover, mutation, etc.) to achieve the iterative process from the initial 

population to the optimal solution [27]. In variable combination optimization problems, the GA 

encodes variable combinations into chromosomes (such as binary encoding, where each gene 

corresponds to a variable) to achieve feature selection or optimization [28]. The algorithm starts from 

a randomly generated initial population; evaluates the quality of each chromosome through fitness 

functions, such as prediction accuracy and AIC/BIC indicators; and then uses selection, crossover, 

and mutation operations to generate new populations during the iteration process, continuously 

optimizing the quality of the solution. The optimization objectives of the GA typically include 

maximizing model performance (such as accuracy or minimum error), minimizing the number of 

variables to simplify the model, and ensuring the robustness of the results. This process outputs the 

optimal variable combination after meeting the predetermined termination conditions, such as the 

number of iterations or the convergence of fitness [29]. The GA has a wide range of applications in 

feature selection and variable combination optimization due to its powerful global search capability 

and adaptability to complex high-dimensional nonlinear problems. The principle of GA algorithm is 

shown in Figure 2. 

 

Figure 2. Schematic diagram of the GA model structure. 

3.4. SHAP Driving Force Analysis 

SHAP is a game theory-based method proposed by Lundberg and Lee to describe the 

performance of machine learning models, it uses Shapley values to estimate the contribution value 

of each feature [30]. According to game theory, each feature variable in a dataset can be seen as the 

result of a member training a model using that dataset to obtain predictions, and it can be seen as the 

benefit of all members working together to complete a project. The Shapley value provides a fair 

distribution of the benefits of cooperation by considering the contributions of each member. Due to 

the use of Shapley values from game theory as explanatory measures, an SHAP attribution analysis 
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has the advantages of strong global and local interpretability of variables, a fair distribution of 

variable contributions, and excellent visualization effects, which compensate for the poor 

interpretability of black box models. Therefore, SHAP is introduced to explain and analyze the 

nonlinear relationship between a single variable and the dependent variable through the Shapley 

value and to evaluate the contributions of various environmental variables. 

Let us assume the use of 𝐹 groups (with 𝑛 features) to predict the output of the RF model. In 

SHAP, the contribution of each feature to the model output 𝑓(𝑓) is allocated based on its marginal 

contribution. The Shapley value is determined by using the following formula: 

∅𝑖 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹{𝑖} [𝑓𝑆⋃{𝑖}(𝑥𝑆⋃{𝑖}) − 𝑓𝑆(𝑥𝑆)]  (4) 

In the formula, ∅𝑖 is the Shapley value of feature 𝑖; 𝐹 is the set of all features; 𝑆 is the set of all 

feature subsets produced from 𝐹  after removing feature 𝑖 ; 
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
 refers to the probability 

weight of 𝑆 derived after feature permutation and combination; and 𝑓𝑆⋃{𝑖} and 𝑓𝑆 represent sets of 

the 𝑆 feature subsets. The features and predicted values of model 𝑖 are input, and its prediction is 

compared with that of the current input 𝑓𝑆⋃{𝑖}(𝑥𝑆⋃{𝑖}) − 𝑓𝑆(𝑥𝑆), where represents the values of the 

input features in set 𝑆. 

3.5. Model Evaluation Indicators 

Four indicators were selected to evaluate the predictive performance of the model: the mean 

absolute error (MAE), the root mean square error (RMSE), the coefficient of determination (R2) of the 

linear regression equation between the predicted and observed values, and Lin’s consistency 

correlation coefficient (LCCC). Their calculation formulas are as follows: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑂𝑖 − 𝑃𝑖|
𝑛
1   (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)2
𝑛
1

2
  (6) 

𝑅2 = 1 −
∑ （𝑂𝑖−𝑃𝑖)

2𝑛
1

∑ （𝑂𝑖−𝑂̅)
2𝑛

1
  (7) 

𝐿𝐶𝐶𝐶 =
2𝑟𝑆𝑂𝑆𝑃

𝑆𝑂
2+𝑆𝑃

2+（𝑂̅−𝑃̅)2
  (8) 

Among them, 𝑛 is the number of sample points in the validation set, 𝑂𝑖  is the observed value 

at sample point i, 𝑃𝑖  is the predicted value at sample point i, 𝑂̅ is the average of the observed values, 

𝑃̅ is the average of the predicted values, r is the Pearson correlation coefficient between the observed 

and predicted values, 𝑆𝑂 is the standard deviation of the observed values, and 𝑆𝑃 is the standard 

deviation of the predicted values. Among them, the 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 measure the numerical error 

of the prediction set, with smaller values indicating a higher model prediction accuracy. Moreover, 

𝑅2 mainly reflects whether the predicted trend is correct; the larger the value, the more accurate the 

model’s predicted trend. On the basis of measuring correlations (Pearson correlation coefficient), 

𝐿𝐶𝐶𝐶 also considers prediction bias; that is, it comprehensively considers the prediction accuracy 

and trend of the model [31,32]. 

Therefore, its results are more reliable. The range of LCCC values is between 0 and ± 1. The larger 

the value, the closer the predicted and observed point pairs are to the perfect consistency line (45° 

diagonal) in the scatter plot. When the absolute value of LCCC is equal to 1, it indicates perfect 

consistency (or perfect inconsistency); when LCCC is equal to 0, it indicates no correlation. Overall, 

a good predictive model has lower MAE and RMSE values and higher R2 and LCCC values. 

4. Experimental Results and Analysis 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 February 2025 doi:10.20944/preprints202502.0895.v1

https://doi.org/10.20944/preprints202502.0895.v1


 9 of 17 

 

4.1. Basic Statistics of Soil Organic Matter Content 

The distribution characteristics and variability of data have an impact on the reliability of spatial 

interpolation results. In Kriging interpolation, if the data follow a normal distribution, the optimal 

prediction results can be obtained [33]. Therefore, normality testing and transformation of the data 

were performed to obtain more reliable prediction results. 

This study first conducted descriptive statistics on the soil organic matter content of the training 

and validation sets, and it performed K-S tests on the experimental data in SPSS 26. The results (Table 

2) show that the maximum value (Max), minimum value (Min), average value (AVE), and standard 

deviation (SD) of the training and validation sets were relatively consistent. The magnitude of the 

coefficient of variation (CV) indicates the spatial variability of soil properties. When the coefficient of 

variation is less than 10%, it suggests weak variability; when the coefficient of variation is greater 

than 100%, it suggests strong variability. A value between the two suggests moderate variability. 

According to Table 3, the soil organic matter in the study area belongs to a moderately variable type. 

Based on the skewness and kurtosis values, as well as the K-S value (K-S) test results, it could be 

concluded that both the training and validation sets are non-normally distributed. Although Kriging 

interpolation does not strictly require data to be normally distributed, when the data deviate too far 

from the normal distribution, the interpolation effect may not be ideal. After performing Box–Cox 

transformation (Box–Cox) on the training and validation sets, the skewness and kurtosis values were 

close to 0, and the K-S test results were greater than 0.05, thus conforming to the normal distribution. 

Table 3. Descriptive statistics of soil organic matter content at sampling points in the study area. 

Type Samples 
Max 

(g·kg−1) 

Min 

(g·kg−1) 
AVE (g·kg−1) SD (g·kg−1) 

Training set 
Raw data 1249 66.20 3.91 22.25 8.40 

Box–Cox  1249 10.87 1.81 6.01 1.31 

Validation set 
Raw data 311 58.60 5.21 22.50 8.58 

Box–Cox  311 10.24 2.34 6.05  1.30 

Type CV (%) Skewness Kurtosis K-S  

Training set 
Raw data 37.77  0.85 1.89 0.000  

Box–Cox  21.84  −0.01 0.44 0.081  

Validation set 
Raw data 38.15  0.86 1.40 0.006  

Box–Cox  21.54  0.12 0.29 0.200  

4.2. Assessment of the Importance of Environmental Variables in RF Models 

The optimal parameters of a random forest are determined using the grid search method. Grid 

search traverses all possible combinations within a preset hyperparameter range to find the optimal 

hyperparameter combination [34]. This method can quickly find a relatively good hyperparameter 

setting, but it may require significant computational resources and time. The optimal parameters for 

the RF model in this study were mtry = 19 and ntree = 500, and the optimal parameters for the RFGA 

model were mtry = 4 and tree = 500. Based on the RF model, the importance ranking of all 

environmental variables involved in modeling was conducted, and it was found that there were 

differences in the importance of the effects of the different environmental variables on the prediction 

results of different attribute spaces. In the RF model importance evaluation results (% IncMSE) of the 

soil SOM content, the order of influence on the SOM from high to low was as follows (Figure 3): the 

CNBL, DEM, Tm, LSTMm, Hm, MSAVI, WEI, E-m, SCD, BSI, etc. Therefore, the two factors that had 

the greatest impact on the SOM in the RF results were the CNBL and DEM. 
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Figure 3. Ranking of % IncMSE values of various influencing factors in the random forest model. 

4.3. Comparative Analysis of Mapping Accuracy 

After obtaining the SOM (Box–Cox transformation) spatial prediction results of each prediction 

model, inverse transformation can be used to obtain the SOM spatial distribution results based on 

Kriging interpolation. RF uses 47 full variables to predict soil organic matter across the entire domain. 

The optimal variable combination selected by GA-RF is P_m, E_m, VARI, NDWI, NPP, MNDWI, 

GNDVI, BSI, AH, ASP, CI, CNBL, CND, DEM, LS, MRRTF, RSP, TCA, LU, ST, and SCD, predicting 

soil SOM across the entire region based on 21 environmental variables. 

The prediction results of each model are externally validated using the MAE, RMSE, R2, and 

LCCC, as shown in Table 4. It can be observed that, among the three types of prediction models, the 

OK model has higher MAE and RMSE values, while R2 and LCCC are very low, indicating that using 

only the Kriging method results in poor prediction accuracy and trends. In the regression model, 

according to the LCCC results, the order from best to worst for each model is RF-GA > RF > OK. These 

results indicate that the RF-GA model considering nonlinear relationships has the smallest spatial 

interpolation error, OK has the largest spatial interpolation error, and RF-GA and RF have improved 

interpolation accuracy compared to OK due to the use of auxiliary variables. 

Table 4. Cross-validation results of different interpolation methods. 

Method MAE RMSE R2 LCCC 

OK 6.31  8.33  0.06  0.16  

RF 4.60  5.86  0.21  0.38  

RF-GA 3.02  3.49  0.49  0.67  

4.4. SHAP Overlay Explanation 

Figure 4 shows the distribution of the SHAP values for each environmental variable, with 

positive values indicating a positive impact on the SOM content and negative values indicating a 

negative impact on the SOM content. As shown in Figure 5, the importance of SR, VARI, GNDVI, 

and NDVI is relatively low, and the SHAP values are concentrated around 0. However, the 

importance of the CNBL and DEM is relatively high, with a wide distribution range of SHAP values. 

The bee colony plot in Figure 5 shows that the CNBL and DEM have a significant impact on the SOM 

content. 
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Figure 4. Shapley values between soil organic matter content and environmental variables. The overall 

importance of each variable is shown, with the x-axis representing the ranking of environmental variable 

importance and the y-axis representing the average SHAP value of each influencing factor. 

 

Figure 5. Colony plot of Shapley values between soil organic matter content and environmental variables. The 

overall importance and direction of influence of variables are shown. Feature ranking (x-axis) represents the 

importance of the environmental variables, the SHAP value (y-axis) represents the unified index of the influence 

of a certain factor in the model, and red (blue) dots represent the value of environmental variables. SHAP > 0 

represents a positive contribution. As the SHAP value increases, the positive effect of the factor on the SOM 

content is higher. SHAP < 0 represents a negative contribution, and, as the SHAP value decreases, the negative 

effect of the factor on SOM content is higher. 
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According to the results of the environmental variable driving force analysis of the soil organic 

matter content in the study area, terrain factors, climate factors, and biological factors are important 

environmental variables that affect the spatial distribution of the SOM in the study area, which is 

consistent with the conclusion of RF. Among them, terrain factors reflect not only the regional 

environment but also the influence of hydrogeological features on the distribution of soil properties. 

Climate factors not only directly affect the decomposition rate of soil organic matter but also 

indirectly affect soil organic matter content by influencing soil moisture content and vegetation type. 

Biological factors affect the distribution of organic matter through vegetation cover and growth 

conditions. 

4.5. Spatial Distribution of Soil Organic Matter 

The prediction accuracy of the optimization model based on the combination of RF and GA 

variables is relatively high, achieving an R2 of 0.49, an MAE of 3.01 g·kg−1, an RMSE of 3.49 g·kg−1, and 

an LUCC of 0.67. The fitting with actual values indicates that the model can effectively predict the 

SOM content. To allow for a visual comparison of the SOM prediction results of different models, we 

display the prediction results of all models within the same range (Figures 6–8). The SOM content in 

the predicted graph exhibits a significant spatial variability in distribution. The prediction results 

indicate that, in the study area, the SOM content is higher in the northern and eastern mountainous 

areas, while it is lower in the central area with a flat terrain, and a few high values are also distributed 

in southern cities and mixed forest areas. In the northern and eastern mountainous areas, the main 

land cover type is forest, with dense vegetation and a complex terrain; less human intervention allows 

vegetation to continuously input organic matter into the soil, and the mountainous terrain may slow 

down soil erosion, resulting in a higher accumulation rate of organic matter in the soil. The flat areas 

in the central region are mainly farmland, and more agricultural activities such as long-term 

cultivation and fertilization may accelerate the decomposition of organic matter. In addition, areas 

with a flat terrain are more susceptible to rainfall and wind erosion, further reducing the SOM 

content. 

 
 

Figure 6. Spatial distribution map of prediction accuracy of the OK model for SOM. 
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Figure 7. Spatial distribution map of prediction accuracy of the RF model for SOM. 

 
 

Figure 8. Spatial distribution map of prediction accuracy of the RF-GA model for SOM. 

The prediction results of the three models are shown in Figure 4. It can be seen that the SOM 

spatial distribution prediction results of RF and RF-GA are very similar. The difference is that the OK 

prediction results are very smooth, while the RF and RF-GA prediction models can highlight the 

spatial details and changes in the SOM, demonstrating richer SOM spatial variation information. The 

OK valuation significantly differs from the original data. The areas exhibiting high SOM are mainly 

distributed in areas with significant terrain fluctuations, which is conducive to the accumulation of 

SOM. 

5. Discussion 

5.1. Advantages of RF-GA Model 

Compared with the traditional OK and RF methods based on full-variable prediction, the RF-

GA method used in this study has the following advantages: Firstly, it addresses the issue of spatial 

heterogeneity in complex regions, improving the ability to understand data features and achieving a 

better fitting accuracy, even without distinguishing land use types. In addition, this model has 

significant advantages over the OK and RF methods in predicting the SOM in complex areas. 

Compared with RF, the RF-GA model can effectively screen out environmental covariates with high 

contributions to the model, avoiding the interference of variables with low contributions on model 

accuracy and significantly improving the accuracy of SOM prediction. 

5.2. Explanation of Environmental Variables 

The influencing factors of SOM vary greatly among regions under the influence of natural and 

human disturbances [35]. Terrain, climate, and biological factors have become key influencing factors 
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of the SOM in the hilly basin area of Lanxi City, and they exhibit a certain degree of threshold or peak 

effects. The CNBL and DEM have the greatest impact on the SOM, a similar conclusion to that drawn 

in related studies [36–38]. Terrain factors regulate the soil organic matter distribution by influencing 

the water content, erosion deposition, vegetation distribution, and the microclimate [39]. Climate 

factors affect the accumulation and decomposition of soil organic matter through temperature, 

precipitation, vegetation, and microbial activity. Warm and humid environments accelerate 

decomposition, while cold and arid regions promote accumulation. Biological factors affect the soil 

organic matter distribution through vegetation growth, litter input, and biological activity [40]. 

5.3. Limitations and Potential Improvements 

5.3.1. Insufficient Data Scale and Representativeness 

This study is based on a data analysis of 1560 sampling points in Lanxi City. The limited sample 

size and spatial distribution may affect the universality of the model prediction. In addition, 

environmental variables such as climate variables do not fully take into account temporal dynamic 

changes. In the future, the predictive ability of the model can be improved by increasing the number 

of sampling points, expanding the research area, and introducing a time series analysis. 

5.3.2. Improvement Directions for Model Optimization 

Although genetic algorithms effectively improve model performance, they have high 

computational complexity and longer variable optimization time. At the same time, both the RF and 

RF-GA models exhibit sparse samples of extreme values. This is because, in the spatial distribution 

of soil properties, extreme values often correspond to special geographical conditions or 

environmental factors, and these areas may have fewer sampling points. Random forests cannot fully 

capture the complex features of these sparse areas, resulting in a tendency to approach the mean of 

the global data when predicting, thereby narrowing the range of the predicted values. By optimizing 

the model and data in the future, combined with subsequent correction methods, this phenomenon 

can be alleviated. 

5.3.3. Lack of Applicability and Interaction Analysis of Explanatory Methods 

The SHAP interpretation method effectively analyzes the contribution of environmental 

variables to SOM, but it has high computational complexity and resource consumption. Furthermore, 

this study did not delve into the interactions between environmental factors. In the future, a 

lightweight explanatory model can be considered, combined with SHAP interaction values, to further 

analyze the coupling relationship of environmental variables. 

6. Conclusions and Prospects 

This study was based on a soil investigation and measured data, with Kriging interpolation 

(OK), a random forest (RF) model, a random forest model based on genetic algorithm variable 

combination optimization (RF-GA), and the SHAP interpretation method (SHAP) used to analyze the 

spatial differentiation characteristics and key influencing factors of the SOM in Lanxi City, as well as 

the impact of their effects. The following important conclusions were obtained: 

(1) The distribution of the SOM in the research area is influenced by factors such as terrain, climate, 

and biological factors, and it has obvious spatial differentiation characteristics. In the study area, 

the SOM content is higher in the northern and eastern mountainous areas, while it is lower in 

the central area with a flat terrain. A few high values are also distributed in southern cities and 

mixed forest areas. 

(2) The random forest model RF-GA based on genetic algorithm variable combination optimization 

is more effective in extracting environmental variables, it demonstrates improved accuracy in 
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SOM prediction compared to the RF model using full-variable prediction, making it a promising 

tool for SOM prediction in complex areas. 

(3) Further research using the RFGA-SHAP model indicates that the key influencing factors on the 

spatial distribution of surface SOM in the hilly basin area of Lanxi City are CNBL, DEM, Pm, 

NDWI, CI, Tm, SCD, BSI, etc. These factors can make significant contributions to soil 

management practices and provide information for decision-making to promote sustainable 

land use and agricultural productivity. 
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