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Abstract: A large group of people, nowadays, has been suffering from chronic sleep disorders and diseases,
resulting in wide attention on sleep quality assessment. Conventional sleep-staging networks frequently
consider multiple channel inputs, hindering the feasibility of the network to single-channel input or other sensor
data input. In this paper, we proposed an Auto-SleepNet: a CPU-driven and end-to-end deep learning network
for sleep stage classification using single-lead electroencephalogram (EEG) signals. The network is composed of
a tailored Auto-Encoder for feature extraction and correction, and an LSTM network for temporal-signal
classification. Compared with multi-lead connections, our design renders a higher accuracy in comparison to
state-of-the-art, provides a meaningful reference for simplifying the hardware requirements of the EEG
measurement device, and simultaneously lowers the computational loads significantly. We used the Per-Class
precision (PR), Recall (RE), Per-Class F1 Score, overall accuracy, confusion matrix, and Cohen’s kappa coefficient
(k) to evaluate the performance. The overall accuracy, RE, and Cohen’s Kappa of our model are 95.7%, 95.19%
and 0.91, respectively. Compared to state-of-the-art methods mentioned in the paper, Auto-SleepNet
outperforms single-channel methods by 13.97%, and multiple-channel methods by 15.97% on average.
Furthermore, it is not compulsory to use a GPU to train our Auto-SleepNet. Experiments show that our model
can converge in 15.6 minutes using a CPU only. The results highlight the practicability of the network to sleep

stage classification problems.

Keywords: Deep Learning; electroencephalogram; Long Short-Term Memory; Single-channel EEG;
Sleep Staging

1. Introduction

Sleep takes up around one-third of people’s lives, and good sleep quality can maintain one’s
productive work throughout the day. Unfortunately, sleep deprivation and disorders are prevalent
and strongly affect a substantial portion of the global population and impose significant welfare costs
[1-5]. In the past decades, sleep staging mainly depended on the experience of human experts and
symptoms reported by patients, which is, however, costly both for the government and the public,
and prone to errors if the patients failed to describe their symptoms completely and accurately.

The classification of sleep stages aids in the understanding of brain states and unconscious
processes [6]. There are mainly two sleep staging criteria that receive worldwide recognition. In 1968,
Rechtschaffen and Kales (R&K) proposed a sleep staging method that divides sleep stages into Wake,
rapid eye movement (REM), and non-REM (NREM) [7]. This criterion was later revised in 2007 by
the American Academy of Sleep Medicine (AASM), which further divides NREM into three stages,
namely N1, N2, N3 or S1, S2, and S3 [8].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In recent decades, deep learning has made great breakthroughs and an increasing number of
conventional methods have begun to be surpassed by deep learning. The most seen method to
identify sleep stages are multiple-channel approaches [20-22,29,33,35]. Using multiple-channel
signals as input enjoys a higher accuracy in classification, because the network may have richer and
more direct prior information. However, those methods increase the demand for the sleep dataset,
which means patients should wear electrodes for several nights to collect at least a dozen channels of
data, and the data should be annotated one-by-one by human experts. This requirement,
unfortunately, is always not easy for scholars and organizations without collaborations with medical
institutes, hindering the possibility of generalizing the method. As a result, the difficulty in acquiring
sleep datasets has daunted scholars who even enjoy rich knowledge in the research field and
therefore has become the most time-consuming part of sleep staging research. There is a potential
meaning in single-channel sleep staging both in research and industrial fields, as the requirement for
collecting the sleep dataset is much lower and the algorithm is easy to be implemented on portable
devices for sleep quality assessment. Unfortunately, the network may not be able to obtain sufficient
prior information from only one channel, which may bring the algorithm a lower classification
accuracy than multi-channel methods [12,13,18,26,27,29,31,44].

We proposed a single-channel deep learning network that renders remarkably higher accuracy
yet with lower computational loads, called Auto-SleepNet. The main contributions are as follows:

Auto-SleepNet is composed of a tailored Auto-Encoder and a Bi-directional Long Short-Term
Memory (Bi-LSTM) network. The Auto-Encoder solves the overfitting problem presenting
ubiquitously in the encoder-decoder structures by employing a novel design. Compared with the
state-of-the-art, ours provides a higher accuracy in classifying sleep stages in comparison to state-of-
the-art.

Training our Auto-SleepNet is easy. The model converges in a remarkably short time even using
a CPU. Compared with state-of-the-art methods, our model does not necessarily require a GPU for
training but can still outperform the state-of-the-art methods mentioned in this paper both in the
results and convergence time.

We have also compared our method with multiple-channel ones. Contrary to the usual intuition,
ours achieves a final classification accuracy of 95.7%, which has outperformed the state-of-the-art
multiple-channel models significantly while leveraging less input information than those.

Since the property of our Auto-SleepNet is based on single-channel EEG for sleep staging of the
subject, the complexity of manually analyzing multi-channel EEG signal is greatly reduced, reducing
the cost of human resources and the possible cost of the EEG measurement device.

2. Methodology

2.1. Structure Qverview

A detailed structure of Auto-SleepNet is shown in Figure 1. It consists of three main processes:
data slicing, Auto-Encoder feature embedding, and classification using a Bi-LSTM network. The
whole training process is driven by a combined loss function, i.e., a mean square error (MSE) loss
function and a cross-entropy loss function. This deep neural network can be trained end-to-end for
sleep stage classification. Different from other two-stage models [37-39], the proposed one tailors a
stable training process, thus balancing the two training phases, namely the signal encoding phase
and classification phase, and in turn avoiding the overfitting problem widely existing in the field of
representation learning [40,41]. For the data slicing stage, each single-channel EEG signal is sliced
into sub-epochs of 30 seconds each in an overlapped manner as recommended by AASM. Next, each
sub-epoch is taken as input to the feature extraction network. This network is designed for
dimensionality reduction while reserving the effective features as well as possible by comparing the
restored signal with its corresponding original single-channel EEG input. In Stage 3, the extracted
features are fed into an LSTM network. The features are regarded as a large vocabulary set, where
each single-lead input is encoded as a short but lossless vector and the size of the whole training
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dataset is a vocabulary set. Therefore, this design can fully use the spatial and temporal correlation
of each vector.

Figure 1b shows the way of resizing each original 1x3000 sub-epoch. We designed two Max-
Pooling layers and one Dropout layer in the encoding phase, and symmetrically, restore the sub-
epoch in the decoding phase by two Max-Unpooling layers with similar settings. The Dropout layer
is embedded in Encoding Block 2. Experiments show that the final compression results can benefit
from this structure, since redundant information in time domain can be reduced and compressed
effectively, increasing the learning complexity and simultaneously preventing the network from
learning the information irrelevant to the learning objective.
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Figure 1. (a) Overview of the proposed network. (b) The input and output of the Auto-Encoder (left), and a
zoomed-in comparison between the two (right).

(1) Encoder network for the sliced data samples {X;,X;, ..., X,}. It is noteworthy that the
parameters of all the encoder networks are shared. The input and output details of the network can
be seen in Figure 1b, and the network structure of the encoder and decoder can be seen in Figure 2a,b.
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(2) The feature representations of each sliced data sample form a feature sequence F =
{f1, f2, -, fn}, where f; are arranged in chronological order.

(3) Initial state of the LSTM network, where h—(; is the initial hidden state and ¢, the initial cell
of the forward pass. The initial state of the backward pass is represented by (hy, &).

(®) Outputs of the two directions are concatenated and passed through fully connected layers to
make predictions.

(5) Decoder network for decoding the feature representations F = {fy, f5, ..., fn}. The objective
is to construct an unbiased and highly condensed representation of the sliced data samples by
calculating the MSE between true data samples and the output from the decoder network.
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Figure 2. (a) Data slicing method. (b) Detailed structure of the encoder network. In practice, the learnable
parameters are sharable among each encoder. (¢) Detailed structure of the decoder network. In practice, the
learnable parameters are sharable among each decoder.

Figure 1 The processing pipeline of the proposed method. The raw EEG signal is first sliced to
several sub-epochs of 30 seconds each in an overlapped manner. The sliced epochs are taken as
different training samples and fed into the Auto-Encoder feature embedder. The Auto-Encoder can
encode the time-series data, i.e., 30-second sub-epochs, into efficient and highly condensed feature
representations, which are then corrected by a decoder network and supervised by their own original
input sub-epoch. The error between the Auto-Encoder output and the original input is calculated by
an MSE loss function. In one training batch, all the feature representations are arranged in
chronological order and fed into a Bi-directional LSTM network. Next, the two-directional outputs of
the LSTM network are concatenated and linearly mapped to one-hot predictions of the classes.
Finally, the true label is compared with the predicted label by calculating a cross-entropy loss
function and the error is added with the MSE loss to form an end-to-end training.

2.2. Feature Encoding and Classification

A fundamental problem of sequence modeling is to compress context into a smaller vector [14].
The effectiveness of the encoding network directly affects the convergence speed of the entire model.
As proved by our experiments and mentioned in the work [40,41], a naive Auto-Encoder network is
extremely easy to overfit, as it is oversimple for the model to learn some shortcuts irrelevant to the
main training task, causing it to converge quickly in a different way than expected. The frequent
practice is to create some barriers to the training, such as introducing noise to the input data, but the
effects of those actions are extremely limited. Different from the above, we tailored a novel Auto-
Encoder for data embedding which can effectively avoid overfitting by introducing several max-
pooling and un-pooling layers and one dropout layer in the network, and by involving an end-to-
end training strategy to balance the encoding and classification process so that the training cannot be
stopped earlier than expected. Therefore, the proposed network is end-to-end trained and supervised
by two combined loss functions. The data slicing is the initial step for classifying such time-series
data. The encoder network is composed of two encoding blocks, two max pooling layers, and one
hidden encoding block.

The method to process original EEG data is shown in Figure 2a. A single-channel EEG signal is
sliced into 30-second sub-epochs in an overlapped manner. Then, each sub-epoch is treated as a data
sample and fed into the Auto-Encoder. All the trainable parameters updated by those samples are
sharable, hence the Auto-Encoders shown in Figure 2a can be seen as a model of a whole.
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The encoder network is shown in Figure 2b. Borrowed an idea from the standard ResNet
structure, in the first encoding block the kernel size of the convolutional layer is designed to be 50
and the stride is 6, because EEG signals are redundant in the time domain hence should be
compressed as much as possible in the first stage to facilitate the learning efficiency. The two max
pooling layers here can create barriers to the learning process and in turn avoid overfitting. In the
final stage of the encoder network, the high-level features are passed through a hidden layer with the
settings shown in the blue block in Figure 2b to obtain the feature representation f;.

Given a sequence of EEG epochs represented by X = {X4, Xy, ..., X,,}, the sleep staging network is
to model the conditional probability p(y;|x;), where n is the total number of sub-epochs in the
dataset, each scalar y; in Y= {y;,y,,..,»} is the true sleep stage, and each vector x; in X =
{x1,X5, ...,X,} represents a 30-second EEG sub-epoch.

First, we apply data standardization to ensure that the training and testing datasets are from the
same distribution. We standardize the original training data to remove the mean and scale it to unit
variance, as depicted in Eq. (1):

X=Xo—w/o, 1)

where p and o are respectively the mean value and standard deviation of the training dataset. X =
{X4,X3, ..., X} is the normalized dataset, and X, = {xg,X3, ..., X3} is the set of corresponding original
sub-epochs. Note that the test dataset should also be normalized by the same training configuration
because the mean and variance of the test dataset are not available prior to training.

Given a sequence of EEG epochs represented by X = {X4,X,, ..., X, }, the sleep staging network is
to model the conditional probability p(y;|x;), where n is the total number of sub-epochs in the
dataset, each scalar y; in Y = {y,¥,,.., ¥} is the true sleep stage, and each vector x; in X =
{x1,X;, ...,X,} represents a 30-second EEG sub-epoch. We introduced an MSE loss function to achieve
self-correction of the encoded sub-epochs, ensuring that the encoded features accurately represent
the original data. The loss function for data encoding is shown in Eq. (2):

L, = %Z?:l(ﬁi -X;)%, )
X; = G(H(xy)),

where x; €X represents the 1x3000 sub-epoch. X; €X stands for the estimate of the
corresponding sub-epoch x; after going through the Auto-Encoder. H(-) represents the encoder
network, while G(-) the decoder network. The objective of this Auto-Encoder is to learn a highly
condensed and precise representation of the input sub-epoch, i.e., in Eq. (3):

F = argmin Y1, (G(f;) — x;)?,
fiEF
3)
fi = H(Xi)/

As shown in Eq. (4), F is the targeted chronological sequence of feature representation that will
be fed into the classification network for sleep staging:

F= {fl' f2' e fn} (4)

In the Auto-Encoder network, f; is the extracted representative feature matrix of the i-th 30-
second PSG sub-epoch in the training dataset, and {f;,f,, ..., f,} is arranged in chronological order,
composing a feature sequence F.

Inspired by [45], in our network we also adopted a Bi-LSTM structure to ensure the temporal
features can be fully extracted. The feature sequence F with hidden state is processed in both the
forward and backward directions. Mathematically, the inputs and outputs of the LSTM network are
given by Eq. (5):


https://doi.org/10.20944/preprints202502.0451.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2025 d0i:10.20944/preprints202502.0451.v1

7 of 13

(h-t)' E;) = —R)(ft' H:' E:)/

()

(E' (c_t) = E(ft' E:' m)/

where E is the hidden state at time step t, c; the cell of time t, and f; the feature vector at time
step t in the feature sequence F, arranged in the same order as in F = {f,f,, ..., f,,}. Before training
the LSTM network, the hidden state hy and cell ¢, should be initialized to all zeros. To predict y,
the last hidden states are concatenated and fed into the fully connected layer to output the final
predicted class.

2.3. Loss Functions for the End-to-End Training

Borrowing ideas from other remarkable work [47-50], we used a weighted cross entropy loss
function to avoid the imbalance of the prediction. Eq. (6) explains the mechanism we used for
balancing the weights of each class.

L ) N
Ly = =BG RS (Ne/N) ™ yie - log (Bic), 6)

where N represents the total number of samples in the training dataset, i.e., total number of sub-
epochs, y; . the true class of the current sub-epoch i, and y the predicted class of the sub-epoch of
the network. c is the current true class, and N, is the total number of samples of class c. The policy
to give a weight w, to each classis w, = (N./N)~!, meaning that the weight to each class is inversely
proportional to the number of samples of this class. Therefore, w, penalizes the classes with a clear
numerical advantage over others by multiplying with the term y; . - log (J; ).

End-to-end network training is desirable in this problem since it learns the global solution
directly in contrast to multiple-stage training that estimates local solutions in separate stages. Our
experiments have also proved that training in an end-to-end manner can avoid the overfitting
problem of the Auto-Encoder more effectively than other typical operations, such as adding noise.
The overall loss function for the training is given in Eq. (7).

L =0£L1+ﬂL2, (7)

where a and f are respectively the training coefficients that adjust the weights of the two loss
functions in the training. In the real training process, we set « = 0.5 and g = 0.5.

3. Evaluation

3.1. Dataset Organization

The public dataset we used for evaluation is the SleepEDFx dataset. The SleepEDFx dataset used
in this study is a publicly available dataset that has been anonymized and made publicly available
for research purposes. This is a collection of sleep recordings from healthy subjects contributed to
PhysioNet and presented in European Data Format (EDF) [42]. It contains two types of PSG record,
namely SC for 20 healthy subjects without sleep-related disorders and ST for 22 subjects of a study
on Temazepam effects on sleep. Each record includes two-channel EEGs from the Fpz-Cz and Pz-Oz
channels, a single-channel EOG, and a single-channel EMG. Each half-minute epoch is labeled as one
of eight classes (W, REM, N1, N2, N3, N4, MOVEMENT, UNKNOWN) according to R&K rules 2041,

A detailed enumeration of samples corresponding to the five sleep stages in SleepEDF is
presented in Table 1.

Table 1. Sample size of each sleep class (the length of each data sample is 1 x 3000).
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Dataset W N1 N2 N3 REM Total
8,285 2,804 17,799 5,703 7,717
SleepEDF 42,308
(20%) (7%) (42%) (13%) (18%)

After reorganizing the raw dataset into sub-epochs in 30 seconds, the sample size of each class
is presented in Table 2.

Table 2. The class-wise number of 30-second sub-epochs after the reorganization.

Class \2 N1 N2 N3 REM
Number of
Training 53,574 2,149 13,034 4,242 5,665
Samples
Number of Test
14,178 571 3,485 1,062 1,460
Samples

3.2 Results Evaluation

The Auto-SleepNet was evaluated by the Per-Class precision (PR), Recall (RE), Per-Class F1
Score, overall accuracy (Acc. in Table 5), confusion matrix, and Cohen’s kappa coefficient (k). The
way to calculate those evaluation indices is given as follows:

e (8)

PR; = ey
e ©)

RE; = S
_ 2 (10)

F1; = 1/PR;+1/RE;
K= PotPe _ 1— 1-po (11)
1-pe 1-pe’

where e;; is the element in the i-th row and j-th column of the confusion matrix and ¢ is the number
of sleep stages, i.e., five stages in this study [9].

PR represents the prediction precision with which the model discriminates the current sleep
stage from the others. RE represents the accuracy with which the model predicts the sleep stage.
Overall accuracy represents the class-wise prediction accuracy of each class. Since F1 is calculated
from the harmonic mean of the PE and RE, it can be more informative than the overall accuracy,
especially in the case of an imbalanced class distribution. k indicates the agreement between the true
label and prediction, ranging between 0 and 1. The higher the value, the more consistent the true and
prediction labels.

Table 3 shows the confusion matrix of our final training result. We summarized the result by
performing 5-fold cross-validation. Confusion matrix is an effective method for evaluating
classification performance by showing the accuracy rate of each class and cross-class. In Table 3, the
expected result is that the larger the value on the diagonal, where ‘True Label and ‘Predicted Label’
overlap, the better the performance of this model. Auto-SleepNet shows a state-of-the-art
performance in classifying the five sleep stages. For the class N1, the accuracy is slightly lower than
others by virtue of the lack of training samples in the public dataset.
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Table 3. Confusion matrix of the averaged training result.
True Label Predicted Label

W N1 N2 N3 REM

W 14,009 28 48 16 77

N1 75 267 77 0 152

N2 24 22 3,151 98 190

N3 4 0 136 922 0

REM 23 76 142 1 1,218

The averaged overall accuracy and RE are 95.7% and 95.19%, respectively. The rest of the results
can be seen in Table 4, which compares our result with other state-of-the-art that use SleepEDF as the
dataset. Auto-SleepNet has outperformed single-channel methods by 13.97%, and multiple-channel
methods by 15.97% on average, in terms of the overall accuracy. Unlike the problem with other
methods, where it is difficult to balance the training and test results, our method can show relatively
better compatibility between the two. This is because the design of the Auto-Encoder can better
explain the features of the data and the end-to-end mechanism fits the data more properly and
efficiently. Furthermore, our model exhibits a relatively better convergence speed compared to other
deep learning models.

Table 4. Comparisons between our model and other state-of-the-art.

EEG Input  Acc. Per-Class F1 Score (%) Cohen’s
Dataset Channel (%) w N1 N2 N3 REM Kappa

Method

Our Method SleepEDF  Single 95.7 99.0 350 89.0 89.0 78.0 0.91
IITNet [45] SleepEDF  Single 83.6 847 29.8 863 871 728 0.77
SleePyCo [18] SleepEDF  Single 84.6 935 504 865 805 84.2 0.79

SleepTransformer .

21] SleepEDF  Single 814 917 404 843 779 772 0.74
TinySleepNet )

(13] SleepEDF  Single 831 928 51.0 853 811 803 0.77

U-Time [14] SleepEDF  Single 81.3 920 51.0 835 746 80.2 0.75
SleepEEGNet [46] SleepEDF  Single 80.0 91.7 441 825 735 761 0.73

DeepSleepNet

[12] SleepEDF  Single 82.0 84.7 46.6 859 848 824 0.76

Phanetal [15] SleepEDF Multiple 79.8 - - - - - -

Andreotti et al

SleepEDF Multiple 76.8 - - - - - -
[16] P p

Tsinalis et al [17] SleepEDF Multiple  78.9 - - - - - -
XSleepNet [19]  SleepEDF Multiple 84.0 933 499 86.0 78.7 818 0.78
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SeqSleepNet [5]  SleepEDF Multiple  82.6 - - - - - 0.76

Figure 3 displays the real-time sleep scoring of Auto-SleepNet. The blue line represents the
classification result by Auto-SleepNet, while the orange line represents the true sleep stages. It can
be seen that most of the sleep stages can be classified accurately.

Sleep Stage
g

Al ) 1

. = s oY i a
o 200 400 600 BOO 1000
Time (30-s epoch)

Figure 3. Real-time sleep scoring of Auto-SleepNet.

We used a MacBook Pro equipped with 64-GiB memory and a graphics processing unit (GPU)
for the training, yet our model can converge in a short time even without using a GPU, namely
spending 15.6 minutes for convergence. Table 5 describes the machine specifications used to train
Auto-SleepNet and state-of-the-art and the time spent by our model and others. Other models,
however, mostly spent infinite time to converge using a central processing unit (CPU), therefore the
specific time is replaced by a short dash ‘-'.

Table 5. Comparison with other models in terms of machine specifications.

Time to Time to
Memory
Network Converge Converge
Method Usage for the GPU
Size by GPU by CPU
Evaluation
(Min.) (Min.)
Ours 64 GiB Optional 2.39 MB 4.00 15.6

IITNet [45] 64 GiB Compulsory 40.4 MB 111.09 -
SleePyCo [23] 64 GiB Compulsory 194 MB 523.03 -
SleepTransformer[26] 64 GiB Compulsory  39.7 MB 200.30 -
TinySleepNet [13] 64 GiB Compulsory  56.6 MB 230.04 -
U-Time [14] 64 GiB Compulsory 300 MB 220.03 -
SleepEEGNet [46] 64 GiB Compulsory  68.9 MB 370.70 -
DeepSleepNet [12] 64 GiB Compulsory  59.9 MB 270.00 -
Phan et al [15] 64 GiB Compulsory  49.00 MB 110.10 -
Andreotti et al [16] 64 GiB Compulsory  89.9 MB 260.10 -

Tsinalis et al [17] 64 GiB Compulsory  48.8 MB 170.05 -
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XSleepNet [19] 64 GiB Compulsory  66.8 MB 260.60 -

SeqSleepNet [5] 64 GiB Compulsory  76.8 MB 220.20 -

4. Conclusions

Sleep-related disorders have long plagued a large group of people of various ages, and sleep
staging is of great significance for understanding human sleep status and improving sleep quality. In
this study, we proposed an end-to-end automatic sleep staging network, called Auto-SleepNet, for
single-lead sleep staging. Compared to other existed networks, ours achieves a significant
improvement on sleep stage classification accuracy while simplifies the hardware requirement and
lower the computational loads. This network would provide a meaningful reference for single-
channel sleep staging problems. In the future, the application of Auto-SleepNet would make sleep
staging more accessible to the public and researchers without professional equipment for collecting
multiple-channel EEG signals.

Acknowledgments: The authors gratefully acknowledge the financial support of the non-wearable and non-
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