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Abstract: A large group of people, nowadays, has been suffering from chronic sleep disorders and diseases, 

resulting in wide attention on sleep quality assessment. Conventional sleep-staging networks frequently 

consider multiple channel inputs, hindering the feasibility of the network to single-channel input or other sensor 

data input. In this paper, we proposed an Auto-SleepNet: a CPU-driven and end-to-end deep learning network 

for sleep stage classification using single-lead electroencephalogram (EEG) signals. The network is composed of 

a tailored Auto-Encoder for feature extraction and correction, and an LSTM network for temporal-signal 

classification. Compared with multi-lead connections, our design renders a higher accuracy in comparison to 

state-of-the-art, provides a meaningful reference for simplifying the hardware requirements of the EEG 

measurement device, and simultaneously lowers the computational loads significantly. We used the Per-Class 

precision (PR), Recall (RE), Per-Class F1 Score, overall accuracy, confusion matrix, and Cohen’s kappa coefficient 

(κ) to evaluate the performance. The overall accuracy, RE, and Cohen’s Kappa of our model are 95.7%, 95.19% 

and 0.91, respectively. Compared to state-of-the-art methods mentioned in the paper, Auto-SleepNet 

outperforms single-channel methods by 13.97%, and multiple-channel methods by 15.97% on average. 

Furthermore, it is not compulsory to use a GPU to train our Auto-SleepNet. Experiments show that our model 

can converge in 15.6 minutes using a CPU only. The results highlight the practicability of the network to sleep 

stage classification problems. 

Keywords: Deep Learning; electroencephalogram; Long Short-Term Memory; Single-channel EEG; 

Sleep Staging 

 

1. Introduction  

Sleep takes up around one-third of people’s lives, and good sleep quality can maintain one’s 

productive work throughout the day. Unfortunately, sleep deprivation and disorders are prevalent 

and strongly affect a substantial portion of the global population and impose significant welfare costs 

[1–5]. In the past decades, sleep staging mainly depended on the experience of human experts and 

symptoms reported by patients, which is, however, costly both for the government and the public, 

and prone to errors if the patients failed to describe their symptoms completely and accurately.  

The classification of sleep stages aids in the understanding of brain states and unconscious 

processes [6]. There are mainly two sleep staging criteria that receive worldwide recognition. In 1968, 

Rechtschaffen and Kales (R&K) proposed a sleep staging method that divides sleep stages into Wake, 

rapid eye movement (REM), and non-REM (NREM) [7]. This criterion was later revised in 2007 by 

the American Academy of Sleep Medicine (AASM), which further divides NREM into three stages, 

namely N1, N2, N3 or S1, S2, and S3 [8].  
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In recent decades, deep learning has made great breakthroughs and an increasing number of 

conventional methods have begun to be surpassed by deep learning. The most seen method to 

identify sleep stages are multiple-channel approaches [20–22,29,33,35]. Using multiple-channel 

signals as input enjoys a higher accuracy in classification, because the network may have richer and 

more direct prior information. However, those methods increase the demand for the sleep dataset, 

which means patients should wear electrodes for several nights to collect at least a dozen channels of 

data, and the data should be annotated one-by-one by human experts. This requirement, 

unfortunately, is always not easy for scholars and organizations without collaborations with medical 

institutes, hindering the possibility of generalizing the method. As a result, the difficulty in acquiring 

sleep datasets has daunted scholars who even enjoy rich knowledge in the research field and 

therefore has become the most time-consuming part of sleep staging research. There is a potential 

meaning in single-channel sleep staging both in research and industrial fields, as the requirement for 

collecting the sleep dataset is much lower and the algorithm is easy to be implemented on portable 

devices for sleep quality assessment. Unfortunately, the network may not be able to obtain sufficient 

prior information from only one channel, which may bring the algorithm a lower classification 

accuracy than multi-channel methods [12,13,18,26,27,29,31,44]. 

We proposed a single-channel deep learning network that renders remarkably higher accuracy 

yet with lower computational loads, called Auto-SleepNet. The main contributions are as follows: 

Auto-SleepNet is composed of a tailored Auto-Encoder and a Bi-directional Long Short-Term 

Memory (Bi-LSTM) network. The Auto-Encoder solves the overfitting problem presenting 

ubiquitously in the encoder-decoder structures by employing a novel design. Compared with the 

state-of-the-art, ours provides a higher accuracy in classifying sleep stages in comparison to state-of-

the-art.  

Training our Auto-SleepNet is easy. The model converges in a remarkably short time even using 

a CPU. Compared with state-of-the-art methods, our model does not necessarily require a GPU for 

training but can still outperform the state-of-the-art methods mentioned in this paper both in the 

results and convergence time.  

We have also compared our method with multiple-channel ones. Contrary to the usual intuition, 

ours achieves a final classification accuracy of 95.7%, which has outperformed the state-of-the-art 

multiple-channel models significantly while leveraging less input information than those. 

Since the property of our Auto-SleepNet is based on single-channel EEG for sleep staging of the 

subject, the complexity of manually analyzing multi-channel EEG signal is greatly reduced, reducing 

the cost of human resources and the possible cost of the EEG measurement device.  

2. Methodology  

2.1. Structure Overview 

A detailed structure of Auto-SleepNet is shown in Figure 1. It consists of three main processes: 

data slicing, Auto-Encoder feature embedding, and classification using a Bi-LSTM network. The 

whole training process is driven by a combined loss function, i.e., a mean square error (MSE) loss 

function and a cross-entropy loss function. This deep neural network can be trained end-to-end for 

sleep stage classification. Different from other two-stage models [37–39], the proposed one tailors a 

stable training process, thus balancing the two training phases, namely the signal encoding phase 

and classification phase, and in turn avoiding the overfitting problem widely existing in the field of 

representation learning [40,41]. For the data slicing stage, each single-channel EEG signal is sliced 

into sub-epochs of 30 seconds each in an overlapped manner as recommended by AASM. Next, each 

sub-epoch is taken as input to the feature extraction network. This network is designed for 

dimensionality reduction while reserving the effective features as well as possible by comparing the 

restored signal with its corresponding original single-channel EEG input. In Stage 3, the extracted 

features are fed into an LSTM network. The features are regarded as a large vocabulary set, where 

each single-lead input is encoded as a short but lossless vector and the size of the whole training 
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dataset is a vocabulary set. Therefore, this design can fully use the spatial and temporal correlation 

of each vector.  

Figure 1b shows the way of resizing each original 1×3000 sub-epoch. We designed two Max-

Pooling layers and one Dropout layer in the encoding phase, and symmetrically, restore the sub-

epoch in the decoding phase by two Max-Unpooling layers with similar settings. The Dropout layer 

is embedded in Encoding Block 2. Experiments show that the final compression results can benefit 

from this structure, since redundant information in time domain can be reduced and compressed 

effectively, increasing the learning complexity and simultaneously preventing the network from 

learning the information irrelevant to the learning objective. 

 
(a) 

(b) 

Figure 1. (a) Overview of the proposed network. (b) The input and output of the Auto-Encoder (left), and a 

zoomed-in comparison between the two (right). 

① Encoder network for the sliced data samples {��, ��,  … , ��} . It is noteworthy that the 

parameters of all the encoder networks are shared. The input and output details of the network can 

be seen in Figure 1b, and the network structure of the encoder and decoder can be seen in Figure 2a,b.  
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② The feature representations of each sliced data sample form a feature sequence � =

{��,  ��,  … ,  ��}, where �� are arranged in chronological order.  

③ Initial state of the LSTM network, where ��
����⃗  is the initial hidden state and �����⃗  the initial cell 

of the forward pass. The initial state of the backward pass is represented by (��
�⃖���, ���⃖��).  

④ Outputs of the two directions are concatenated and passed through fully connected layers to 

make predictions.  

⑤ Decoder network for decoding the feature representations � = {��,  ��,  … ,  ��}. The objective 

is to construct an unbiased and highly condensed representation of the sliced data samples by 

calculating the MSE between true data samples and the output from the decoder network.  

 
(a) 

(b) 
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(c) 

Figure 2. (a) Data slicing method. (b) Detailed structure of the encoder network. In practice, the learnable 

parameters are sharable among each encoder. (c) Detailed structure of the decoder network. In practice, the 

learnable parameters are sharable among each decoder. 

Figure 1 The processing pipeline of the proposed method. The raw EEG signal is first sliced to 

several sub-epochs of 30 seconds each in an overlapped manner. The sliced epochs are taken as 

different training samples and fed into the Auto-Encoder feature embedder. The Auto-Encoder can 

encode the time-series data, i.e., 30-second sub-epochs, into efficient and highly condensed feature 

representations, which are then corrected by a decoder network and supervised by their own original 

input sub-epoch. The error between the Auto-Encoder output and the original input is calculated by 

an MSE loss function. In one training batch, all the feature representations are arranged in 

chronological order and fed into a Bi-directional LSTM network. Next, the two-directional outputs of 

the LSTM network are concatenated and linearly mapped to one-hot predictions of the classes. 

Finally, the true label is compared with the predicted label by calculating a cross-entropy loss 

function and the error is added with the MSE loss to form an end-to-end training. 

2.2. Feature Encoding and Classification 

A fundamental problem of sequence modeling is to compress context into a smaller vector [14]. 

The effectiveness of the encoding network directly affects the convergence speed of the entire model. 

As proved by our experiments and mentioned in the work [40,41], a naïve Auto-Encoder network is 

extremely easy to overfit, as it is oversimple for the model to learn some shortcuts irrelevant to the 

main training task, causing it to converge quickly in a different way than expected. The frequent 

practice is to create some barriers to the training, such as introducing noise to the input data, but the 

effects of those actions are extremely limited. Different from the above, we tailored a novel Auto-

Encoder for data embedding which can effectively avoid overfitting by introducing several max-

pooling and un-pooling layers and one dropout layer in the network, and by involving an end-to-

end training strategy to balance the encoding and classification process so that the training cannot be 

stopped earlier than expected. Therefore, the proposed network is end-to-end trained and supervised 

by two combined loss functions. The data slicing is the initial step for classifying such time-series 

data. The encoder network is composed of two encoding blocks, two max pooling layers, and one 

hidden encoding block. 

The method to process original EEG data is shown in Figure 2a. A single-channel EEG signal is 

sliced into 30-second sub-epochs in an overlapped manner. Then, each sub-epoch is treated as a data 

sample and fed into the Auto-Encoder. All the trainable parameters updated by those samples are 

sharable, hence the Auto-Encoders shown in Figure 2a can be seen as a model of a whole. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2025 doi:10.20944/preprints202502.0451.v1

https://doi.org/10.20944/preprints202502.0451.v1


 6 of 13 

 

The encoder network is shown in Figure 2b. Borrowed an idea from the standard ResNet 

structure, in the first encoding block the kernel size of the convolutional layer is designed to be 50 

and the stride is 6, because EEG signals are redundant in the time domain hence should be 

compressed as much as possible in the first stage to facilitate the learning efficiency. The two max 

pooling layers here can create barriers to the learning process and in turn avoid overfitting. In the 

final stage of the encoder network, the high-level features are passed through a hidden layer with the 

settings shown in the blue block in Figure 2b to obtain the feature representation ��. 

Given a sequence of EEG epochs represented by � = {��, ��, … , ��}, the sleep staging network is 

to model the conditional probability �(��|��), where � is the total number of sub-epochs in the 

dataset, each scalar ��  in � = {��, ��, … , ��}  is the true sleep stage, and each vector ��  in � =

{��, ��, … , ��} represents a 30-second EEG sub-epoch.  

First, we apply data standardization to ensure that the training and testing datasets are from the 

same distribution. We standardize the original training data to remove the mean and scale it to unit 

variance, as depicted in Eq. (1): 

� = (�� − �)/� ,                       (1) 

where � and � are respectively the mean value and standard deviation of the training dataset. � =

{��, ��, … , ��} is the normalized dataset, and �� = {��
�, ��

�, … , ��
�} is the set of corresponding original 

sub-epochs. Note that the test dataset should also be normalized by the same training configuration 

because the mean and variance of the test dataset are not available prior to training.  

Given a sequence of EEG epochs represented by � = {��, ��, … , ��}, the sleep staging network is 

to model the conditional probability �(��|��), where � is the total number of sub-epochs in the 

dataset, each scalar ��  in � = {��, ��, … , ��}  is the true sleep stage, and each vector ��  in � =

{��, ��, … , ��} represents a 30-second EEG sub-epoch. We introduced an MSE loss function to achieve 

self-correction of the encoded sub-epochs, ensuring that the encoded features accurately represent 

the original data. The loss function for data encoding is shown in Eq. (2): 

�� =
�

�
∑ (��� − ��)

��
��� , 

(2) 

��� = �(�(��)), 

where �� ∈ �  represents the 1 × 3000  sub-epoch. ��� ∈ ��  stands for the estimate of the 

corresponding sub-epoch ��  after going through the Auto-Encoder. �(∙) represents the encoder 

network, while �(∙) the decoder network. The objective of this Auto-Encoder is to learn a highly 

condensed and precise representation of the input sub-epoch, i.e., in Eq. (3): 

� = argmin
��∈�

∑ (�(��) − ��)
��

��� , 

(3) 

 �� = �(��), 

As shown in Eq. (4), � is the targeted chronological sequence of feature representation that will 

be fed into the classification network for sleep staging: 

� = {��, ��, … , ��} (4) 

In the Auto-Encoder network, �� is the extracted representative feature matrix of the i-th 30-

second PSG sub-epoch in the training dataset, and {��, ��, … , ��} is arranged in chronological order, 

composing a feature sequence F.  

Inspired by [45], in our network we also adopted a Bi-LSTM structure to ensure the temporal 

features can be fully extracted. The feature sequence F with hidden state is processed in both the 

forward and backward directions. Mathematically, the inputs and outputs of the LSTM network are 

given by Eq. (5): 
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���
����⃗ , �����⃗ � = R��⃗ (��, ����

��������⃗ , ������������⃗ ), 

(5) 

���
�⃖���, ���⃖��� = R⃖��(��, ����

�⃖�������, �����⃖�������), 

where ��
����⃗  is the hidden state at time step �, �� the cell of time �, and �� the feature vector at time 

step � in the feature sequence F, arranged in the same order as in � = {��, ��, … , ��}. Before training 

the LSTM network, the hidden state �� and cell �� should be initialized to all zeros. To predict �, 

the last hidden states are concatenated and fed into the fully connected layer to output the final 

predicted class. 

2.3. Loss Functions for the End-to-End Training 

Borrowing ideas from other remarkable work [47–50], we used a weighted cross entropy loss 

function to avoid the imbalance of the prediction. Eq. (6) explains the mechanism we used for 

balancing the weights of each class. 

�� = −
�

�
∑ ∑  (��/�)�� ∙ ��,� ∙ log (���,�)���

���
���
��� ,                  (6) 

where � represents the total number of samples in the training dataset, i.e., total number of sub-

epochs, ��,� the true class of the current sub-epoch i, and �� the predicted class of the sub-epoch of 

the network. � is the current true class, and �� is the total number of samples of class �. The policy 

to give a weight �� to each class is �� = (��/�)��, meaning that the weight to each class is inversely 

proportional to the number of samples of this class. Therefore, �� penalizes the classes with a clear 

numerical advantage over others by multiplying with the term ��,� ∙ log (���,�). 

End-to-end network training is desirable in this problem since it learns the global solution 

directly in contrast to multiple-stage training that estimates local solutions in separate stages. Our 

experiments have also proved that training in an end-to-end manner can avoid the overfitting 

problem of the Auto-Encoder more effectively than other typical operations, such as adding noise. 

The overall loss function for the training is given in Eq. (7). 

� = ��� + ���,                               (7) 

where �  and � are respectively the training coefficients that adjust the weights of the two loss 

functions in the training. In the real training process, we set � = 0.5 and � = 0.5. 

3. Evaluation 

3.1. Dataset Organization 

The public dataset we used for evaluation is the SleepEDFx dataset. The SleepEDFx dataset used 

in this study is a publicly available dataset that has been anonymized and made publicly available 

for research purposes. This is a collection of sleep recordings from healthy subjects contributed to 

PhysioNet and presented in European Data Format (EDF) [42]. It contains two types of PSG record, 

namely SC for 20 healthy subjects without sleep-related disorders and ST for 22 subjects of a study 

on Temazepam effects on sleep. Each record includes two-channel EEGs from the Fpz-Cz and Pz-Oz 

channels, a single-channel EOG, and a single-channel EMG. Each half-minute epoch is labeled as one 

of eight classes (W, REM, N1, N2, N3, N4, MOVEMENT, UNKNOWN) according to R&K rules [20,45].  

A detailed enumeration of samples corresponding to the five sleep stages in SleepEDF is 

presented in Table 1. 

Table 1. Sample size of each sleep class (the length of each data sample is 1 × 3000). 
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Dataset W N1 N2 N3 REM Total 

SleepEDF 
8,285 

(20%) 

2,804 

(7%) 

17,799 

(42%) 

5,703 

(13%) 

7,717 

(18%) 
42,308 

After reorganizing the raw dataset into sub-epochs in 30 seconds, the sample size of each class 

is presented in Table 2.  

Table 2. The class-wise number of 30-second sub-epochs after the reorganization. 

Class W N1 N2 N3 REM 

Number of 

Training 

Samples 

53,574 2,149 13,034 4,242 5,665 

Number of Test 

Samples 
14,178 571 3,485 1,062 1,460 

3.2 Results Evaluation 

The Auto-SleepNet was evaluated by the Per-Class precision (PR), Recall (RE), Per-Class F1 

Score, overall accuracy (Acc. in Table 5), confusion matrix, and Cohen’s kappa coefficient (κ). The 

way to calculate those evaluation indices is given as follows: 

PR� =
���

∑ ���
�
���

, (8) 

RE� =
���

∑ ���
�
���

, (9) 

F1� =
�

�/�����/���
, 

(10) 

� =
�����

����
= 1 −

����

����
, 

(11) 

where ��� is the element in the i-th row and j-th column of the confusion matrix and c is the number 

of sleep stages, i.e., five stages in this study [9].  

PR represents the prediction precision with which the model discriminates the current sleep 

stage from the others. RE represents the accuracy with which the model predicts the sleep stage. 

Overall accuracy represents the class-wise prediction accuracy of each class. Since F1 is calculated 

from the harmonic mean of the PE and RE, it can be more informative than the overall accuracy, 

especially in the case of an imbalanced class distribution. κ indicates the agreement between the true 

label and prediction, ranging between 0 and 1. The higher the value, the more consistent the true and 

prediction labels. 

Table 3 shows the confusion matrix of our final training result. We summarized the result by 

performing 5-fold cross-validation. Confusion matrix is an effective method for evaluating 

classification performance by showing the accuracy rate of each class and cross-class. In Table 3, the 

expected result is that the larger the value on the diagonal, where ‘True Label’ and ‘Predicted Label’ 

overlap, the better the performance of this model. Auto-SleepNet shows a state-of-the-art 

performance in classifying the five sleep stages. For the class N1, the accuracy is slightly lower than 

others by virtue of the lack of training samples in the public dataset. 
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Table 3. Confusion matrix of the averaged training result. 

True Label 
Predicted Label 

W N1 N2 N3 REM 

W 14,009 28 48 16 77 

N1 75 267 77 0 152 

N2 24 22 3,151 98 190 

N3 4 0 136 922 0 

REM 23 76 142 1 1,218 

The averaged overall accuracy and RE are 95.7% and 95.19%, respectively. The rest of the results 

can be seen in Table 4, which compares our result with other state-of-the-art that use SleepEDF as the 

dataset. Auto-SleepNet has outperformed single-channel methods by 13.97%, and multiple-channel 

methods by 15.97% on average, in terms of the overall accuracy. Unlike the problem with other 

methods, where it is difficult to balance the training and test results, our method can show relatively 

better compatibility between the two. This is because the design of the Auto-Encoder can better 

explain the features of the data and the end-to-end mechanism fits the data more properly and 

efficiently. Furthermore, our model exhibits a relatively better convergence speed compared to other 

deep learning models. 

Table 4. Comparisons between our model and other state-of-the-art. 

Method 
EEG 

Dataset 

Input 

Channel 

Acc. 

(%) 

Per-Class F1 Score (%) Cohen’s 

Kappa W N1 N2 N3 REM 

Our Method SleepEDF Single 95.7 99.0 35.0 89.0 89.0 78.0 0.91 

IITNet [45] SleepEDF Single 83.6 84.7 29.8 86.3 87.1 72.8 0.77 

SleePyCo [18] SleepEDF Single 84.6 93.5 50.4 86.5 80.5 84.2 0.79 

SleepTransformer 

[21] 
SleepEDF Single  81.4 91.7 40.4 84.3 77.9 77.2 0.74 

TinySleepNet 

[13] 
SleepEDF Single 83.1 92.8 51.0 85.3 81.1 80.3 0.77 

U-Time [14] SleepEDF Single 81.3 92.0 51.0 83.5 74.6 80.2 0.75 

SleepEEGNet [46] SleepEDF Single 80.0 91.7 44.1 82.5 73.5 76.1 0.73 

DeepSleepNet 

[12] 
SleepEDF Single 82.0 84.7 46.6 85.9 84.8 82.4 0.76 

Phan et al [15] SleepEDF Multiple  79.8 - - - - - - 

Andreotti et al 

[16] 
SleepEDF Multiple 76.8 - - - - - - 

Tsinalis et al [17] SleepEDF Multiple 78.9 - - - - - - 

XSleepNet [19] SleepEDF Multiple 84.0 93.3 49.9 86.0 78.7 81.8 0.78 
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SeqSleepNet [5] SleepEDF Multiple 82.6 - - - - - 0.76 

Figure 3 displays the real-time sleep scoring of Auto-SleepNet. The blue line represents the 

classification result by Auto-SleepNet, while the orange line represents the true sleep stages. It can 

be seen that most of the sleep stages can be classified accurately. 

 

Figure 3. Real-time sleep scoring of Auto-SleepNet. 

We used a MacBook Pro equipped with 64-GiB memory and a graphics processing unit (GPU) 

for the training, yet our model can converge in a short time even without using a GPU, namely 

spending 15.6 minutes for convergence. Table 5 describes the machine specifications used to train 

Auto-SleepNet and state-of-the-art and the time spent by our model and others. Other models, 

however, mostly spent infinite time to converge using a central processing unit (CPU), therefore the 

specific time is replaced by a short dash ‘-’. 

Table 5. Comparison with other models in terms of machine specifications. 

Method 

Memory 

Usage for the 

Evaluation 

GPU 
Network 

Size 

Time to 

Converge 

by GPU 

(Min.) 

Time to 

Converge 

by CPU 

(Min.) 

Ours 64 GiB Optional 2.39 MB 4.00 15.6 

IITNet [45] 64 GiB Compulsory 40.4 MB 111.09 - 

SleePyCo [23] 64 GiB Compulsory 194 MB 523.03 - 

SleepTransformer[26] 64 GiB Compulsory 39.7 MB 200.30 - 

TinySleepNet [13] 64 GiB Compulsory 56.6 MB 230.04 - 

U-Time [14] 64 GiB Compulsory 300 MB 220.03 - 

SleepEEGNet [46] 64 GiB Compulsory 68.9 MB 370.70 - 

DeepSleepNet [12] 64 GiB Compulsory 59.9 MB 270.00 - 

Phan et al [15] 64 GiB Compulsory 49.00 MB 110.10 - 

Andreotti et al [16] 64 GiB Compulsory 89.9 MB 260.10 - 

Tsinalis et al [17] 64 GiB Compulsory 48.8 MB 170.05 - 
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XSleepNet [19] 64 GiB Compulsory 66.8 MB 260.60 - 

SeqSleepNet [5] 64 GiB Compulsory 76.8 MB 220.20 - 

4. Conclusions 

Sleep-related disorders have long plagued a large group of people of various ages, and sleep 

staging is of great significance for understanding human sleep status and improving sleep quality. In 

this study, we proposed an end-to-end automatic sleep staging network, called Auto-SleepNet, for 

single-lead sleep staging. Compared to other existed networks, ours achieves a significant 

improvement on sleep stage classification accuracy while simplifies the hardware requirement and 

lower the computational loads. This network would provide a meaningful reference for single-

channel sleep staging problems. In the future, the application of Auto-SleepNet would make sleep 

staging more accessible to the public and researchers without professional equipment for collecting 

multiple-channel EEG signals. 
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