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Article

Gravitational Waves from Alena Tensor
Piotr Ogonowski

Kozminski University, Jagiellonska 57/59, 03-301 Warsaw, Poland; piotrogonowski@kozminski.edu.pl

Abstract: Alena Tensor is a recently discovered class of energy-momentum tensors that proposes a
general equivalence of the curved path and the geodesic for the analyzed spacetimes which allows the
analysis of physical systems in curvilinear, classical and quantum descriptions. In this paper it is shown
that using this approach naturally leads to the existence of gravitational waves, which, next to the
classical interpretation, can be also interpreted as vacuum pressure waves with tensor amplitude. It is
also shown that Alena Tensor gives decomposition of energy-momentum tensor of the electromagnetic
field using two null-vectors, which allows for further analysis of metrics for curved spacetimes Petrov
type D (and degenerated ones) with effective cosmological constant. The calculated trace of the metric
tensor describing curved spacetime turned out to be invariant. A certain simplification of the analysis
of gravitational waves has also been proposed, which may help both in their analysis and in the proof
of the validity of the Alena Tensor. The article has been supplemented with the Alena Tensor equations
with a positive value of the electromagnetic field tensor invariant (related to cosmological constant)
which may help in further analysis of this approach.

Keywords: alena tensor; gravitational waves; general relativity; electromagnetism

1. Introduction
Gravitational waves are a well-understood and researched issue [1], and it seems that the area of

this research will develop dynamically both in theoretical understanding [2] and methods of waves
detection [3,4]. The existence of gravitational waves is the key argument for the correctness of the
General Relativity, and for this reason it is also a good tool for verifying the correctness of alternative
to GR theories [5–7] and the theories of quantum gravity [8].

Alena Tensor is at the beginning of its research journey. It is a recently discovered class of energy-
momentum tensors that allows for equivalent description and analysis of physical systems in flat
spacetime (with fields and forces) and in curved spacetime (using Einstein Field Equations) proposing
the overall equivalence of the curved path and the geodesic. In this method it is assumed that the
metric tensor is not a feature of spacetime, but only a method of its mathematical description. In
previous publications [9–11] it was already shown that this approach allows for a unified description
of a physical system (curvilinear, classical and quantum) ensuring compliance with GR and QM results.
Due to this property, the Alena Tensor seems to be a useful tool for studying unification problems,
quantum gravity and many other applications in physics.

Many researchers try to reproduce the GR equations in flat spacetime or vice versa [12,13] or
include electromagnetism in GR, connecting the spacetime geometry with electromagnetism [14–21].
There are known such approaches on the basis of differential geometry [22,22,23], based on field
equations [24,25] as well as promising analyses of spinor fields [26] or helpful approximations for
a weak field [27]. For this reason, the Alena Tensor should be viewed as another theory requiring
theoretical and experimental verification, and it seems worth checking whether the this approach
ensures the existence of gravitational waves and what their interpretation is.

In this paper it will be analyzed the possibility of describing gravitational waves using the Alena
Tensor. Due to the fact that research on this approach is a relatively young field, to facilitate the
analysis of the article, the next section summarizes the results obtained so far and introduces the
necessary notation. Although at the first moment the paradigm shift proposed by this approach may
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seem incomprehensible, the author hopes that the reader will resist the temptation to burn this article
and trust the scientific method, which encourages us to calculate and check everything based on the
correctness of the results obtained.

2. Short Introduction to Alena Tensor
The following chapter briefly explains the conclusions from the previous publications on Alena

Tensor. The author uses the metric signature (+,-,-,-) which provides a positive value of the electromag-
netic field tensor invariant. In previous publications it was treated as negative (reversal of the order of
terms in the energy-momentum tensor of the electromagnetic field). The following equations remove
this inconvenience while maintaining the correctness of the obtained results.

2.1. Transforming a Curved Path into a Geodesic

To understand the Alena Tensor, it is easiest to recreate the reasoning that led to its creation [10]
using the example of the electromagnetic field. One may consider the energy-momentum tensor in flat
spacetime for a physical system with an electromagnetic field in the following form

Tαβ = ϱ UαUβ − 1
µr

Υαβ (1)

where Tαβ is energy-momentum tensor for a physical system, ϱ is density of matter, Uα is four-velocity,
µr is relative permeability, Υαβ is energy-momentum tensor for the electromagnetic field.

The density of four-forces acting in a physical system can be considered as a four-divergence. One
may therefore denote the four-force densities occurring in the system:

• f β ≡ ∂αϱ UαUβ is the density of the total four-force acting on matter

• 1
µr

f β
em + f β

gr ≡ ∂α
1
µr

Υαβ are forces due to the field, where

• f β
em is the density of the electromagnetic four-force

• f β
gr = Υαβ∂α

1
µr

was shown in [9] as related to the presence of gravity in the system.

One may assume that the forces balance, which will provide a vanishing four-divergence of the
energy-momentum tensor for the entire system

0 = ∂αTαβ = f β − 1
µr

f β
em − f β

gr (2)

It may be noticed, that if one wanted to use Tαβ for a curvilinear description, which would describe
the same physical system but curvilinearly, then in curved spacetime the forces due to the field can be
replaced with help of Christoffel symbols of the second kind. This means, that the entire field term
can simply disappear from the equation in curved spacetime, because instead of a field and the forces
associated with it, there will be corresponding curvature.

This would mean, that in curved spacetime 1
µr

Υαβ = 0 → Tαβ = ϱ UαUβ. As shown in [10], a
minor amendment to continuum mechanics provides this property. Assuming ϱo as rest mass density
and ϱUα ≡ ϱoγUα one gets mass density taking into account motion and Lorentz contraction of the
volume and provides

∂αϱUα = 0 → Uα
,α = −dγ

dt
→ Uα

;α = 0 ; UαUβ
;α = 0 ;

D Uβ

D τ
= 0 ;

(
ϱ UαUβ

)
;α
= 0 (3)

One may thus generalize Υαβ making the following substitution

Υαβ ≡ Λρ

(
4
k kαβ − gαβ

)
=

1
µo

Fαδ gδγ Fβγ − Λρgαβ (4)
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where Fαδ is electromagnetic field strength tensor, µo is vacuum magnetic permeability, gαβ is metric
tensor with the help of which the spacetime is considered, and

• Λρ = 1
4µo

Fαµ gµγ Fβγgαβ is invariant of the electromagnetic field tensor,

• k = gµν kµν is trace of kαβ,

• kαβ ≡ 2 Fαδ gδγ Fβγ√
Fαδ gδγ Fβγ gµβ Fαη gηξ Fµ

ξ

is a metric tensor of a spacetime for which Υαβ vanishes.

Tensor kαβ may be calculated in flat spacetime as kαβ = 2 Fαγ Fβ
γ√

Fαγ Fµ
γ Fαν F ν

µ

and may be treated as fixed,

since the value of kαβ is independent of the gαβ adopted for analysis. In this way one obtains a
generalized description of the tensor Υαβ, which has the following properties:

• in flat spacetime Υαβ is the usual, classical energy-momentum tensor of the electromagnetic field
• its trace vanishes in any spacetime, regardless of the considered metric tensor gαβ

• in spacetime for which gαβ = kαβ the entire tensor Υαβ vanishes
• kαβkαβ = 4 which is expected property of the metric tensor (it was already shown in [10] that kαβ

indeed is a metric tensor)

In the above manner one obtains the Alena Tensor Tαβ in form of

Tαβ = ϱ UαUβ − 1
µr

Λρ

(
4
k kαβ − gαβ

)
(5)

with the yet unknown 1
µr

for which in curved spacetime (gαβ = kαβ) the energy-momentum tensor of

the field Υαβ vanishes.
The reasoning carried out above for electromagnetism is universal and allows to consider the

Alena Tensor also for energy-momentum tensors associated with other fields. This leads to obtaining
an energy-momentum tensor Tαβ for the system that can be considered both in flat spacetime and in
curved spacetime.

2.2. Connection with Continuum Mechanics, GR and QFT/QM

To make the Alena Tensor consistent with Continuum Mechanics in flat spacetime, it is enough
to adopt the substitution 1

µr
≡ −p

Λρ
where p is the negative pressure in the system and it is equal to

p ≡ ϱc2 − Λρ where c is the speed of light in a vacuum. Such substitution yields

ϱ UαUβ − Tαβ = p ηαβ − c2ϱ
4
k kαβ + Λρ

4
k kαβ (6)

where ηαβ is the metric tensor of flat Minkowski spacetime. Introducing deviatoric stress tensor
Παβ ≡ −c2ϱ 4

k k
αβ one obtains relativistic equivalence of Cauchy momentum equation (convective

form) in which only fem appears as a body force

f α = ∂α p + ∂β Παβ + f α
em (7)

The above substitution also provides a connection to General Relativity in curved spacetime. For this
purpose, one may introduce the following tensors, which can be analyzed in both flat and curved
spacetime

Rαβ ≡ 2ϱ UαUβ − p gαβ ; R ≡ Rαβ gαβ = 2Λρ − 2p ; Gαβ ≡ Rαβ − 1
2

R
4
k kαβ (8)

Above allows to rewrite Alena Tensor as

Gαβ + Λρ gαβ = 2 Tαβ + ϱc2
(

gαβ − 4
k kαβ

)
(9)
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Analyzing the above equation in curved spacetime (gαβ = kαβ), one obtains simplifications

Gαβ + Λρ gαβ = 2 Tαβ ; Gαβ = Rαβ − 1
2

R gαβ (10)

thus above can be interpreted as the main equation of General Relativity up to the constant 4πG
c4 where

Gαβ and Rαβ can be interpreted in curved spacetime, respectively, as Einstein curvature tensor and
Ricci tensor both with an accuracy of 4πG

c4 constant.
Analyzing the Gαβ tensor in flat spacetime (gαβ = ηαβ) one can also see that it is related to the

non-body forces seen in the description of the Cauchy momentum equation

∂βGαβ = ∂α p + ∂β Παβ = f α
gr + f α

rr (11)

which means that in the Alena Tensor analysis method gravity is not a body force, and as shown in [9]
in above

• f α
rr =

(
1
µr

− 1
)

f α
em is the density of the radiation reaction four-force

• f α
gr = ϱ

(
dϕ
dτ Uα − c2∂αϕ

)
is density of the four-force related to gravity, where

• ϕ = −ln(µr) is related to the effective potential in the system with gravity.

It can be calculated that f α
gr vanishes in two cases:

• u⃗ = u⃗ f f ≡ −c ∇ϕ

∂0ϕ
- which turns out to be the case of free fall

• ∂αϕ = 0 which occurs in the case of circular orbits

Neglecting the electromagnetic force and the radiation reaction force, using the above equation one
can reproduce the motion of bodies in the effective potential obtained from the solutions of General
Relativity. Such a description has already been done for the Schwarzschild metric [9] for

ϕ + co ≡

√
E2

m2c4 −
(

1
c

dr
dτ

)2
=

√(
1 − rs

r

)(
1 +

L2

r2

)
(12)

where co is a certain constant. The solutions obtained in this way enforce the existence of gravitational
waves due to time-varying ϕ (except for free fall and circular orbits).

In the above description, gravity itself is not a force, because the above description is based on an
effective potential. However, one can see a similarity to Newton’s classical equations for the stationary
case with a stationary observer, for which f α

gr can be approximated by Newton’s gravitational force
with the opposite sign. Thus for stationary observer f α

gr represents a force that must exist to keep a
stationary observer suspended above the source of gravity in fixed place.

The description of gravity obtained in this way is surprisingly consistent with current knowledge,
despite the fact that gravity itself in this description is not a force, and the force f α

gr is not a body force.
The Alena Tensor constructed in presented way according to [9,11] may be simplified in flat

spacetime to

Tαβ = Λρηαβ − 1
µo

Fαγ∂β Aγ ; L = T00 = −Λρ = − 1
4µo

Fαβ Fαβ (13)

which allows its analysis in classical field theory and quantum theories. Obtained canonical four-
momentum Hα ≡ − 1

c
∫

Tα0 d3x provides 0 = Hα
,α = HαHα and

∂α HµXµ = Hα = µrPα + qEα ; −L =
mc2

γ
− Wpv (14)

where Pα is four-momentum, Wpv = −
∫

p d3x is pressure-volume work, and where qEα and −µrPα

are in fact two gauges of electromagnetic four-potential. In above (µr − 1)Pα is responsible for the force
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associated with gravity and radiation reaction force. It was also shown that cannonical four-momentum
Hµ may be expressed as

Hµ = Pµ + Wµ = −γL
c2 Uµ + Sµ (15)

where Sµ due to its property SµUµ = 0, seems to be some description of rotation or spin, and where
Wµ describes the transport of energy due to the field.

The quantum picture obtained from the Alena Tensor [9,11] for the system with electromagnetic
field leads to the conclusion that gravity and the radiation reaction force have always been present
in Quantum Mechanics and Quantum Field Theory. This conclusion follows from the fact that the
quantum equations obtained from the Alena Tensor for the system with electromagnetic field [9] are
actually the three main quantum equations currently used:

• simplified Dirac equation for QED:
LQED = 1

4µo
Fαβ Fαβ = 1

2µo
F0γ∂0 Aγ = 1

2 Ψ̄
(
iℏc ̸ D − mc2)Ψ

• Klein-Gordon equation,

• equivalent of the Schrödinger equation: ich̄ ∂0 ψ = − h̄2

m
(

γ+ 1
γ

)∇2 ψ + cqÂ0 ψ

where Aα and Âα are two gauges of electromagnetic four-potential, and where the last equation in the
limit of small energies (Lorentz factor γ ≈ 1) turns into the classical Schrödinger equation considered
for charged particles.

The above results make the Alena Tensor a useful tool for the analysis of physical systems with
fields, allowing modeling phenomena in flat spacetime, curved spacetime, and in the quantum image.

3. Results
One may consider a flat spacetime with an electromagnetic field, described in a way provided by

Alena Tensor using notation introduced in section 2. Completing the definition of the first invariant of
the electromagnetic field tensor Λρ, one may define the second invariant I⊥ by electric E⃗ and magnetic
B⃗ fields as

I⊥ ≡ 1
cµo

E⃗B⃗ (16)

It can then be seen, after some transformations, that

Fαγ Fµ
γ Fαν F ν

µ = 4µ2
o

(
2Λ2

ρ + I2
⊥

)
(17)

Therefore the metric tensor for curved spacetime kαβ and its trace k (mentioned in introduction)
calculated in flat spacetime are

kαβ =

1
µo

FαγFβ
γ√

2Λ2
ρ + I2

⊥

;
4
k =

√
2 +

I2
⊥

Λ2
ρ

(18)

The above simplifies further for I⊥ → 0, but the key conclusion is that the trace k is invariant.
Based on the above, one may reverse the reasoning presented in introduction and consider the

field as a manifestation of a propagating perturbation of the curvature of spacetime (which in flat
spacetime is just interpreted as a field). For this purpose, one may define a certain perturbation hαβ of
the metric tensor kαβ that describes the deviation from flat spacetime, and also define its trace h as

hαβ ≡ kαβ − ηαβ ; h = hαβηαβ = k− 4 (19)

The stress-energy tensor of the electromagnetic field in flat spacetime can be thus represented as
follows

k
4Λρ

Υαβ = hαβ − h
4

ηαβ (20)
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As one can see in the above, considering gravitational waves in the Alena Tensor is natural and
does not require classical linearization. Traces h and k are invariants, thus 0 = □h = □k and
condition 0 = □kαβ = □hαβ can be reduced to Maxwell’s equations in vacuum. This would mean that
gravitational waves in Alena Tensor approach are de facto a propagating disturbance of the energy-
momentum tensor for the field (in the case analyzed, the electromagnetic field energy-momentum
tensor).

Denoting the pressure amplitude Po and h̄αβ one obtains

Po ≡
4Λρ

k ; h̄αβ ≡ hαβ − h
4

ηαβ → Υαβ = Po h̄αβ (21)

which shows that the energy-momentum tensor of the field may be also interpreted as propagating
vacuum pressure waves with tensor amplitude.

To provide an analysis of the above equation for gravitational waves and the analysis of the
resulting classes of metrics, a representation using null-vectors will be useful. Therefore, in the next
few steps it will be shown that Alena Tensor allows representing the energy-momentum tensor of the
electromagnetic field with the use of two null-vectors.

At first step one may recall equation (15) and define new four-vector Bµ as

Bµ ≡ −γL
c2 Uµ − Sµ (22)

Since it is know from previous publications, that Hµ Hµ = 0 and UµSµ = 0, therefore (15) and (22) also
yield BµBµ = 0. This property therefore allows to represent four-velocity using two null-vectors Hµ

and Bµ as follows

Hα + Bα = −2γL
c2 Uα → HαBα =

2γ2L2

c2 (23)

thus

HαBβ + Bα Hβ =
2HµBµ

c2 UαUβ −
(

Hα Hβ + BαBβ
)

(24)

Next, one may define auxiliary parameter α as

α ≡ B0

H0 +
2HµBµ

H0mcγ
(25)

and subtract the linear combination of Hα and Bα from both sides

HαBβ + BαHβ − αHα Hβ − H0

B0 BαBβ =

=
2HµBµ

c2 UαUβ −
(
[1 + α]Hα Hβ +

[
1 +

H0

B0

]
BαBβ

)
(26)

Next, one may recall from [9] coefficients related to the electromagnetic field

• relative permeability µr =
Λρ

−p = cH0

Wpv

• volume magnetic susceptibility χ = µr − 1 = ϱc2

−p

• relative permittivity εr =
1
µr

= −p
Λρ

=
Wpv
cH0

• electric susceptibility χe = εr − 1 = − ϱc2

Λρ
= −mcγ

H0 = −χεr
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and notice, that one obtains Alena Tensor Tαβ as

µr

Λρ
Tαβ =

χ

2HµBµ

(
HαBβ + BαHβ − αHα Hβ − H0

B0 BαBβ

)
=

=
χ

c2 UαUβ − χ

2HµBµ

(
[1 + α]Hα Hβ +

[
1 +

H0

B0

]
BαBβ

)
(27)

where electromagnetic stress-energy tensor is equal to

1
Λρ

Υαβ =
χ

2HµBµ

(
[1 + α]HαHβ +

[
1 +

H0

B0

]
BαBβ

)
(28)

and where T0β actually simplifies to
µr

Λρ
T0β = − µr

H0 Hβ (29)

Since it is known from existing literature [28], that invariants of electromagnetic stress-energy tensor
are

ΥαβΥαβ = 4
(

Λ2
ρ + I2

⊥

)
= 4

(
Υ0βΥ0β

)
(30)

therefore from (28) one obtains simplifications

B0 =
HµBµ

4H0 =
γ2L2

2c2H0 → α =
B0

H0

(
1 − 8

χe

)
→ 1

H0 +
1

B0 = −4c
L

(31)

and by defining a useful variable φ one gets

γ ≡ 1√
2

cosh (φ) → e2φ =
B0

H0 (32)

Finally, defining as below, referring to (18)

eθ sinh (θ) ≡ −L
mc2γ

; I2 ≡ 1 +
I2
⊥

Λ2
ρ
=

(
4
k

)2
− 1 (33)

then calculating with the use of Wpv from (14)

I2 = χ2γ2
(

1 − 2L
mc2γ

)
= χ2γ2e2θ → −γL

Wpv
= I sinh (θ) (34)

and expressing µr =
cH0

Wpv
= e−ϕ as before in introduction, one gets

I =
√

2
eφ−ϕ

sinh (θ)
; χγ2 = I2 e−2θ

χ
(35)

which can be further used to model and simplify the description of the electromagnetic field. From the
perspective of describing gravitational waves, other elements of the description are crucial, which we
will discuss next.

To simplify the analysis, one may first normalize four-vectors Hµ and Bµ as follows

hµ ≡ 1
H0 Hµ ; bµ ≡ 1

B0 Bµ (36)
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One may now rewrite the electromagnetic field tensor from (28) to obtain (after few calculations using
previously derived relationships) its following representation

Υαβ = µrΛρ

(
1 +

1
2eθ sinh (θ)

)
hαhβ + Λρ

(
χγ2 − µr

2eθ sinh (θ)

)
bαbβ (37)

As shown in [9] element µrΛρ is responsible for electric field energy caried by light, where Λρχγ2 was
shown as describing energy density of magnetic moment linked to matter in motion. The element

1
2eθ sinh (θ)

is a new term and since it does not actually carry energy (as seen below denoted as sαβ)
but only momentum, it can in principle be associated with some description of spin field effects or,
potentially, polarization of gravitational waves. This element may be expressed with help of (35) as

Λρ sαβ ≡ e−(θ+φ)

2
√

2
Λρ I

(
hαhβ − bαbβ

)
(38)

Finally, substituting (37) into (20) using (35) one gets

hαβ =
k
4

(
e−ϕhαhβ + I2 e−2θ

χ
bαbβ + sαβ

)
+

h
4

ηαβ (39)

As can be seen in the above result, the described system is Petrov type D [29], although to be sure,
the Weyl tensor should be calculated. However, since type D can degenerate to type N (or with
perturbation - go to type II), this means that the Alena Tensor allows for the existence of gravitational
waves. It is also worth noting that the obtained term h

4 ηαβ can in principle be interpreted as a vacuum
energy contribution (effective cosmological constant) as in [30,31] playing the role of a metric scaling
factor, as e.g. described in [32]

Additionally, one may invoke the scalar field ϕ associated with the presence of matter, where
eϕ = 1

µr
. It is known from 2.2 that eϕ is responsible for the presence of sources and in their absence

µr = 1. Therefore, interpreting whole Υαβ as the wave amplitude tensor one would get representation
1
µr

Υαβ = Po h̄αβeϕ which allows to search for eϕ as a certain wave function.
This approach allows for two simplifications related to the analysis of gravitational waves.

Considering the force f α
gr responsible for effects related to gravity as shown in (12) and extracting the

acceleration Aα from it, one gets

ϱAα ≡ f α
gr = ϱ

(
dϕ

dτ
Uα − c2∂αϕ

)
→ c2□ϕ = γ2 d2ϕ

dt2 − ∂αAα (40)

since according amendment from [10] ∂αγUα = 0.
As shown in [9], ϕ is directly related to the effective potential in gravitational systems which

can be calculated from the GR equations. This would allow searching for propagating changes of the
effective potential itself (□ϕ = 0) similarly as was postulated in [33]. It would significantly simplify
both the calculations and perhaps the methods of detecting gravitational waves.

The second simplification results from the possibility of analyzing only the Poynting four-vector
Υα0 as 1

µr
Υα0 = Po h̄α0eϕ which might also help simplify the calculations and look for experimental

proof of correctness for the Alena Tensor approach.

4. Conclusions and Discussion
As shown in the above article, the Alena Tensor ensures the existence of gravitational waves

and allows their physical interpretation. The obtained decomposition of the electromagnetic field
stress-energy tensor (39) allows for further analysis of metrics for curved spacetime and the possibility
of describing gravitational waves.
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It remains an open question whether the Alena Tensor is a correct way to describe physical
systems, but this paper shows that it exhibits many properties that are expected from such a description,
including the existence of gravitational waves.
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