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Abstract: Generative Al within large vision-language models (LVLMs) has revolutionized multimodal
learning, enabling machines to understand and generate visual content from textual descriptions with
unprecedented accuracy. This paper explores state-of-the-art advancements in LVLMSs, focusing on
prominent models such as CLIP for cross-modal retrieval, Flamingo for few-shot video understanding,
BLIP for self-supervised learning, CoCa for integrating contrastive and generative learning, and X-CLIP
for enhancing video-text retrieval. These models demonstrate the flexibility and scalability of LVLMs
across a variety of applications. Through an evaluation based on metrics such as image generation
quality, perceptual loss, and CLIP score, we provide insights into their capabilities, limitations, and
opportunities for future enhancement. As generative Al continues to evolve, this analysis underscores
the importance of developing scalable, efficient multimodal models capable of addressing real-world
challenges with minimal fine-tuning.
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1. Introduction

In recent years, large language models (LLMs) like GPT-4 (OpenAl, 2023) [1] and the LLaMA
family [2] have achieved remarkable progress, reshaping natural language processing by harnessing vast
datasets to excel in a variety of tasks. With the increasing importance of handling multimodal inputs,
such as images and text, vision-language models have gained prominence [3,4]. These models combine
LLMs with image encoders to process and understand both textual and visual data. This fusion has
led to the emergence of large vision-language models (LVLMs), extending the capabilities of LLMs to
multimodal data processing [5]. A key innovation in LVLMs is the integration of pre-trained image
encoders with LLMs, using large-scale image-text datasets to ensure seamless alignment between the
two domains. For instance, LLaVA [6] merges CLIP’s vision encoder with the Vicuna LLM [7], enabling
the model to effectively interpret visual information and respond to complex queries. As these models
continue to evolve, the demand for large-scale, high-quality fine-tuning datasets has increased, which is
essential for tackling sophisticated vision-language tasks [5] The next wave of VLMs will have the ability
to comprehend videos by translating them into language. However, videos present unique challenges that
don’t arise with images, such as significantly higher computational costs and the complexity of mapping
the temporal dimension through text. By exploring current methods for learning from videos, we aim to
bring attention to key research challenges that need to be addressed.

1.1. History of LVLMs

With the remarkable advancements driven by deep learning in both computer vision and natural
language processing, several efforts have been made to bridge these two fields. This paper focuses
on the most recent techniques based on transformers [8], categorizing these approaches into four
main training paradigms. The first paradigm, contrastive training, is a commonly used method
that relies on pairs of positive and negative examples, where the VLM is trained to generate similar
representations for positive pairs and distinct ones for negative pairs. The second paradigm, masking,
involves reconstructing masked image patches using unmasked text, or masked words in captions
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using unmasked images. VLMs utilizing pre-trained backbones often incorporate open-source LLMs
like LLaMA [2] learning to map between a pre-trained image encoder and the LLM, which is less
computationally intensive than training from scratch. Generative VLMs, on the other hand, are capable
of generating images or captions but tend to be more expensive to train. These paradigms are not
mutually exclusive, as many approaches combine contrastive, masking, and generative techniques.

1.2. Generative Al in LVLMs

The generative paradigm focuses on producing text, images, or both. Models like CoCa [9] train a
complete text encoder and decoder, enabling tasks such as image captioning. Other models, such as
Chameleon Team [2024] and CM3leon [10], are multimodal generative models explicitly designed to
generate both text and images. Additionally, some models, like Stable Diffusion [11], Imagen [12], and
Parti [13], are trained solely for image generation from text prompts. Despite being image-focused,
these models can also be effectively applied to various vision-language understanding tasks.Generative
Al'in LVLMs combines advances in deep learning for both vision and language tasks. This technology
allows for the creation of models that understand and generate multi-modal content, such as images
and text, simultaneously. These models are typically pre-trained on large datasets that include both
images and text descriptions, leveraging both image recognition and natural language understanding
to create outputs that align with human perception. In this section will cover various significant
concepts and recent advancements in the field of generative AI within vision-language models.
Vision-Language Pretraining (VLP): LVLMs are often pre-trained using a combination of vision
tasks (e.g., image classification, object detection) and language tasks (e.g., text generation, machine
translation) [14]. One of the primary methods used in these models is Vision-Language Pretraining
(VLP) [15], which focuses on learning shared representations across both domains. During pretraining,
the model learns from both modalities, enhancing its ability to generate images from text, captions
from images, or answer questions based on visual inputs [16].

Multimodal Transformers: One of the critical breakthroughs enabling Generative Al in LVLMs
is the use of transformers. Originally developed for NLP tasks, transformers have been adapted for
multi-modal tasks by combining text and image embeddings into a unified framework. For instance,
models like CLIP (Contrastive Language-Image Pre-training) [4] by OpenAl and DALL-E [17] have
demonstrated impressive capabilities in generating coherent and contextually relevant text-to-image
generations by leveraging transformer architectures [18].

Cross-Attention Mechanisms: Cross-attention mechanisms play a vital role in LVLMs [19]. These
mechanisms allow the model to focus on relevant parts of an image while generating corresponding
text or vice versa. This aligns the image regions with specific words or phrases, leading to more
accurate and context-aware generative outputs.

Large-Scale Multimodal Datasets: The success of Generative Al in LVLMs is also attributed to
the availability of large-scale multimodal datasets like MS COCO [20], ImageNet [21], and LAION [22],
which contain vast amounts of paired text and image data. These datasets enable the models to learn
intricate relationships between visual elements and language components, improving the overall
quality of generation tasks.

2. Generative Techniques for LVLMs

In this section, we will provide an in-depth exploration of various generative techniques employed
in LVLMs. These techniques play a crucial role in enhancing the model’s ability to generate coherent
and contextually relevant outputs across both visual and linguistic domains. We will examine how
these methods enable the integration of image and text modalities, allowing LVLMs to generate images
from textual descriptions, produce captions from images, or answer visual questions. Additionally, we
will discuss key advancements that have contributed to the growing effectiveness of generative Al
in LVLMs, including the development of multimodal transformers, cross-attention mechanisms, and
large-scale pretraining on diverse datasets.
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CLIP: CLIP (Contrastive Language-Image Pretraining) is a groundbreaking approach developed
by OpenAl that redefines how vision-language models are trained and utilized. Instead of relying
on fixed, predetermined labels, CLIP uses natural language supervision by jointly training an image
encoder and a text encoder to predict which image-text pairs are correctly aligned. [4] The pre-training
is performed on a massive dataset of 400 million (image, text) pairs sourced from the internet, enabling
the model to learn from a wide variety of visual and linguistic contexts without the need for manual
labeling.One of the most significant aspects of CLIP is its ability to transfer its learned representations to
various downstream tasks in a zero-shot manner, meaning it does not require additional fine-tuning or
retraining for specific tasks. This allows CLIP to perform competitively across a diverse range of tasks,
including object classification, optical character recognition (OCR), action recognition, geo-localization,
and many types of fine-grained object detection. The model’s effectiveness is evident in its ability to
match or even surpass fully supervised baselines like ResNet-50 [23] on ImageNet [21], without having
seen any of the labeled training examples. The core mechanism of CLIP is its contrastive pre-training
objective, where it learns to maximize the similarity between correctly paired images and text while
minimizing it for incorrect pairs. This creates a shared multi-modal embedding space where both
visual and textual representations can be compared, significantly enhancing the model’s capacity
to generate accurate and contextually aware outputs. The success of CLIP demonstrates the power
of leveraging natural language as a flexible supervision signal, which can express a broader range
of visual concepts than traditional label-based approaches. In conclusion, CLIP has proven to be a
highly versatile and efficient model for vision-language tasks, demonstrating remarkable zero-shot
transfer performance across a wide range of computer vision datasets and tasks, including OCR, action
recognition, and fine-grained object classification. The scalability of CLIP ensures that as compute and
data resources increase, so does its capability to transfer to new tasks, making it a valuable tool for
large-scale applications. CLIP’s cross-modal architecture, which allows for seamless integration of
text and image processing, adds significant value by enabling complex tasks such as text-based image
retrieval, image captioning, and visual question answering with a high degree of accuracy.However,
while CLIP’s flexibility and broad generalization capabilities are impressive, they also bring forth
important ethical concerns. Issues such as model bias, content generation control, and the potential
risks of deploying zero-shot models in real-world environments without thorough safeguards must be
carefully considered. Overall, CLIP represents a significant step forward in vision-language modeling,
offering both opportunities and challenges in its practical implementation and ethical use.
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Figure 1. Zero-shot CLIP surpasses few-shot linear probes, matching the average performance of a 4-shot linear
classifier trained on the same feature space. It nearly matches the best performance of a 16-shot linear classifier across
publicly available models. In the evaluation, BiT-M and SImCLRv2 models are highlighted as top performers, while
light gray lines represent other models in the evaluation suite. The analysis used 20 datasets, each with at least 16
examples per class, showcasing CLIP’s robustness even without additional training.(Fig. credit: [4]).
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Flamingo: In the Flamingo [24] paper, DeepMind introduces a sophisticated vision-language
model designed to perform few-shot learning across a wide range of tasks, such as image captioning,
video understanding, and visual question-answering. Flamingo leverages the pre-trained CLIP model’s
approach by combining a frozen vision encoder (NFNet) and a large frozen language model. Key
innovations include the Perceiver Resampler, which reduces the computational burden by transforming
visual features into a fixed number of tokens, and cross-attention layers, which integrate visual
information with text-based predictions.Flamingo uses a contrastive pre-training strategy, similar to
CLIP, on vast amounts of multimodal data gathered from the web, bypassing the need for manually
labeled datasets. This method helps create shared cross-modal representations that allow the model
to handle diverse tasks with minimal task-specific data. The model also incorporates cross-attention
layers between frozen language model layers, enabling it to condition text generation on visual inputs
effectively. These layers allow Flamingo to ingest interleaved sequences of images, videos, and text,
producing contextually relevant text outputs. Flamingo significantly outperforms existing fine-tuned
models on tasks like visual question-answering (VQA), image-text alignment, and video captioning,
using substantially fewer training examples. Its few-shot learning capability allows it to adapt to new
tasks with just a handful of examples, highlighting the model’s scalability and efficiency in multimodal
learning environments. In essence, Flamingo expands upon CLIP’s innovations by enhancing the
model’s capacity to handle both textual and visual inputs simultaneously, making it an advanced tool
for a variety of vision-language tasks with minimal data-specific fine-tuning.

In reflecting on Flamingo’s architecture and capabilities, one can observe its remarkable ability to
bridge the gap between visual and textual inputs using minimal task-specific training data. This model
exemplifies the next evolution of vision-language models by effectively leveraging frozen pre-trained
components, making it both efficient and scalable. The integration of the Perceiver Resampler and
cross-attention layers is particularly innovative, allowing Flamingo to process multimodal inputs
seamlessly. In my view, Flamingo sets a strong precedent for future multimodal models that aim
to handle complex real-world tasks with minimal data and fine-tuning efforts. Its performance on
few-shot learning benchmarks further highlights its flexibility, making it an important contribution to
the field of AL
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Figure 2. Flamingo result overview.Flamingo’s largest model outperforms state-of-the-art fine-tuned models on 6
out of 16 tasks without fine-tuning, setting new benchmarks for few-shot learning on 9 tasks. Its performance
improves with model size and the number of shots, showcasing scalability and adaptability. The RareAct
benchmark was excluded due to a lack of fine-tuned results for comparison. (Fig. credit: [24]).

BLIP : In this paper BLIP [25] presents a novel framework designed to integrate both under-
standing and generation capabilities within a single model architecture. The authors introduce the
Multimodal Mixture of Encoder-Decoder (MED) model, which can function as a unimodal encoder
(for separate image and text encoding), an image-grounded text encoder, or an image-grounded text
decoder. This flexible architecture allows BLIP to address a range of tasks, such as image-text retrieval
and caption generation. The model is trained using three objectives: Image-Text Contrastive (ITC) Loss,
which aligns image and text features for distinguishing positive and negative pairs; Image-Text Match-
ing (ITM) Loss, which refines the model’s ability to recognize matched image-text pairs; and Language
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Modeling (LM) Loss, which enables the model to generate accurate textual descriptions of images.
One of BLIP’s key innovations is the CapFilt method, which improves the quality of its training data
by generating synthetic captions and filtering out noisy image-text pairs, ensuring better alignment
between the modalities. BLIP’s use of large-scale web datasets, combined with human-annotated
datasets, enables it to perform well across multiple tasks. The results show that BLIP outperforms
existing models in both vision-language understanding and generation, setting new benchmarks in
tasks like image-text retrieval and captioning. This framework’s unified approach makes it an efficient
solution for multimodal learning, demonstrating strong generalization to various datasets.

When compared to state-of-the-art models in the vision-language domain, BLIP demonstrates
superior performance across various benchmarks. Unlike models such as CLIP and ALIGN, which
primarily focus on either understanding or retrieval tasks, BLIP’s unified encoder-decoder architecture
enables it to excel in both vision-language understanding (e.g., image-text retrieval) and generation
(e.g., captioning). Additionally, the integration of the CapFilt method distinguishes BLIP from its
counterparts by addressing the issue of noisy data in web-crawled datasets. This filtering mechanism
ensures that BLIP learns from high-quality image-text pairs, which enhances its ability to perform
multimodal alignment more effectively.In terms of few-shot and zero-shot learning, BLIP also out-
performs state-of-the-art models on several popular datasets such as COCO and Visual Genome. Its
pre-training on a combination of human-annotated and web datasets gives it a competitive edge over
models like SimVLM and UNITER, which rely heavily on human-labeled data. Furthermore, BLIP’s
ability to handle both image-text retrieval and generation tasks in a unified framework positions it as a
more versatile solution compared to models that specialize in only one of these areas. Overall, BLIP
sets new performance benchmarks while demonstrating more robust generalization capabilities across
a variety of vision-language tasks.

Pre-train VQA NLVR?
Method #lmages | test-dev test-std dev test-P
LXMERT 180K 72.42 7254 7490 74.50
UNITER 4M 72.70 7291 77.18 77.85
VL-T5/BART 180K - 71.3 - 73.6
OSCAR 4M 73.16 73.44 78.07 78.36
SOHO 219K 73.25 73.47 7637 77.32
VILLA 4M 73.59 73.67 7839 79.30
UNIMO 5.6M 75.06 75.27 - -
ALBEF 14M 75.84 76.04
SimVLMyp,.T 1.8B 77.87 78.14  81.72 81.77
BLIP 14M 77.54 77.62 82.67 82.30
BLIP 129M 78.24 78.17 82.48 83.08
BLIPcapFite-L 129M 7825 7832 82.15 8224

Figure 3. In comparison with state-of-the-art methods on VQA and NLVR2, ALBEF includes an additional
pre-training step specifically for the NLVR2 task. SimVLMT, on the other hand, utilizes 13 times more training data
than BLIP and employs a larger vision backbone, combining ResNet and ViT, to enhance performance. Despite
these advantages in data and architecture, BLIP demonstrates competitive results, highlighting its efficiency and
effectiveness with a more streamlined approach. (Fig. credit: [25]).

UniT: In this paper UniT [26] introduces a versatile framework that unifies various tasks across
different domains, such as object detection, natural language understanding, and multimodal rea-
soning, within a single Transformer-based model. The UniT model is based on an encoder-decoder
architecture, where separate encoders handle different input modalities (like images and text), and a
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shared decoder works across tasks. This allows for joint training and effective multitasking, signifi-
cantly reducing the number of parameters compared to training separate models for each task.UniT
achieves this multitasking capability by sharing the same model parameters across different tasks and
domains, allowing it to handle both vision-based tasks (such as object detection) and text-based tasks
(like language understanding). The model demonstrates strong performance across seven tasks using
eight datasets, with experiments showing a 87.5% reduction in the number of parameters compared to
conventional task-specific models. The architecture also enables easy extension to more modalities,
showecasing its flexibility in handling diverse input types and outputs. The use of transformers for
both image and text encoders, with the inclusion of BERT for textual inputs and convolutional neural
networks (CNNs) for image inputs, enables efficient and scalable multitasking.

In conclusion, UniT is a breakthrough in multitask learning, offering a unified solution that ele-
gantly balances complexity and scalability across diverse tasks and modalities. By leveraging a shared
transformer-based architecture, UniT demonstrates the potential of joint learning without sacrificing
performance. What stands out most about this work is its efficient parameterization—reducing model
size by 87.5%—while still excelling across both vision and language tasks. This approach could inspire
future research on building highly versatile Al models that generalize well across domains, opening
new possibilities for more robust and scalable Al systems in real-world applications. The ability to
extend this model to additional modalities further enhances its relevance in advancing multimodal
learning.

X-CLIP: In this paper X-CLIP [27] author proposes a novel approach for video-text retrieval
by introducing multi-grained contrastive learning. Unlike previous methods that primarily focus
on either coarse-grained or fine-grained contrasts, X-CLIP handles both, as well as cross-grained
contrasts. Specifically, the model aligns video and text representations at multiple levels: frame-
word, video-sentence, sentence-frame, and video-word. This multi-grained approach allows X-CLIP
to more effectively capture the semantic alignment between videos and their corresponding text
descriptions.The X-CLIP framework utilizes the CLIP architecture’s powerful image-text retrieval
capabilities and extends it to video-text tasks by implementing a more granular alignment of visual
and textual data. It includes both frame-level and video-level representations, processed by temporal
encoders, to better account for the temporal dynamics in video data. This results in improved
performance across several benchmarks, outperforming state-of-the-art models, with significant gains
on datasets like MSR-VTT, MSVD, and DiDeMo. The innovative contribution of this paper lies in
its multi-grained contrastive learning mechanism, which integrates both fine and coarse levels of
alignment, offering a more nuanced understanding of video-text relationships. This makes X-CLIP
a strong advancement in the domain of video-text retrieval, demonstrating the potential for more
accurate and scalable models. In conclusion, X-CLIP represents a significant advancement in video-text
retrieval by introducing a multi-grained contrastive learning approach. Its ability to align video and
text representations at various levels, such as frame-word and video-sentence, enables deeper semantic
understanding, which is crucial for handling the complexity of video data. By building on the existing
CLIP architecture and extending it to video, X-CLIP demonstrates impressive scalability and flexibility,
making it a promising tool for real-world applications like video search, recommendation systems, and
autonomous systems. Despite its high computational demands, the performance improvements across
multiple benchmarks, such as MSR-VTT and MSVD, highlight X-CLIP’s superior ability to capture
both visual and temporal information. As the need for more accurate and contextually aware video
retrieval systems grows, X-CLIP paves the way for future innovations in the field of multimodal AL
offering an enhanced ability to understand and process sequential and complex video content.

CoCa: In the paper CoCa (Contrastive Captioner) [9] framework presented in this paper by google
proposes a unified approach that combines contrastive learning and caption generation for enhanced
image-text understanding. The model is designed to handle both image-to-text and text-to-image tasks
within a single architecture. CoCa incorporates two branches: a contrastive branch that aligns images
with text descriptions and a generative branch that produces captions from visual inputs. By leveraging
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pre-training on large-scale datasets, CoCa achieves state-of-the-art performance across various vision-
language benchmarks, including MSCOCO, Flickr30k, and NoCaps. The model’s architecture includes
a dual-encoder structure for contrastive learning, along with an autoregressive decoder for caption
generation. This combination allows CoCa to excel at tasks like image captioning, text-based image
retrieval, and image-based text generation. The joint training of contrastive and generative tasks
enhances CoCa’s ability to generalize to unseen data, offering a robust and scalable solution for
multimodal tasks. Additionally, the paper demonstrates that CoCa significantly outperforms prior
models on zero-shot transfer capabilities and general-purpose image-text tasks, making it a versatile
tool for real-world applications such as search engines, recommendation systems, and automated
content generation
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Figure 4. This radar plot showcases the performance of CoCa, SimVLM, Florence, and state-of-the-art specialized
models across a variety of datasets, including ImageNet, Kinetics-400, NoCaps, VQA, and NLVR2. CoCa
demonstrates consistent and superior performance across vision-language tasks like image captioning, visual
question answering, and video understanding, outperforming other models in both zero-shot and fine-tuned
settings. (Fig. credit: [9]).
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Figure 5. These graphs illustrate the trade-offs between model size (number of parameters in millions) and
ImageNet Top-1 Accuracy for various models. The left plot compares CoCa’s performance to other models such
as Florence, ViT, and SwinV2, highlighting CoCa’s superior accuracy across different model sizes. The right plot
further emphasizes CoCa’s efficiency by comparing it against models like CLIP, ALIGN, and LiT, where CoCa
achieves higher accuracy with a relatively compact model size. (Fig. credit: [9]).

CoCa seamlessly integrates contrastive learning and generative tasks, offering a unified model ca-
pable of tackling a broad range of image-text tasks. You emphasize CoCa’s scalability and performance
efficiency, noting that its ability to perform well on both small and large datasets, and across multiple
modalities, marks it as a standout in the field. Moreover, CoCa’s capacity to outperform state-of-the-art
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models while using fewer parameters is a significant takeaway, setting a new benchmark for real-world
applications in search, recommendation, and content generation.

Florence: Florence is a large-scale foundation model for computer vision introduced by Lu
Yuan [28] aiming to unify multiple visual tasks within a single architecture. Drawing inspiration from
foundational models in natural language processing, Florence leverages a Vision Transformer (ViT)
architecture and is trained on a massive dataset comprising billions of image-text pairs collected from
the web. A key component of the model is its use of a contrastive learning objective that aligns visual
and textual representations in a shared embedding space, enhancing its ability to understand and
relate visual content to textual descriptions. Efficient training strategies, including distributed training
across multiple GPUs and advanced optimization algorithms, enable the model to handle its scale
effectively. Florence achieves state-of-the-art results on standard benchmarks like ImageNet for image
classification and COCO for object detection and segmentation, demonstrates strong transfer learning
capabilities with minimal fine-tuning, and excels in cross-modal tasks that require understanding
the relationship between images and text. This work sets a new precedent for foundation models in
computer vision by demonstrating that scaling up models and training data, combined with effective
learning objectives, can lead to significant advancements in visual understanding across diverse tasks.
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SimCLRv2-ResNet-152x3 836 968 845 69.1 685 631 867 805 926 949 963
VITL/16 (@384pix) 874 979 890 749 625 S22 861 750 929 947 993
EfficientNet-L2 (@800pix) 920 987 890 757 755 684 894 825 956 947 979
CLIP-ResNet-50x64 948 941 786 8L1 905 677 889 820 945 954 989
CLIP-ViT-L/14 (@336pix) 959 979 874 822 915 716 899 80 951 960 992
Florence-CoSwin-H (@384pix) | 962 976 87.1 842 957 839 905 860 964 966 99.7

Figure 6. Comparison of linear probing results for image classification on 11 datasets against existing state-of-the-
art models, including SimCLRv2 (Chen et al., 2020c), ViT (Dosovitskiy et al., 2021a), EfficientNet (Xie et al., 2020),
and CLIP [4]. (Fig. credit: [28]).

Florence represents a significant advancement in the field of computer vision, illustrating the
profound impact of combining large-scale multimodal data with a unified architectural approach. By
training on billions of image-text pairs and employing a contrastive learning objective to align visual
and textual representations, Florence not only achieves state-of-the-art performance on traditional
benchmarks but also excels in cross-modal tasks that bridge the gap between vision and language. This
work underscores the potential of foundation models to generalize across diverse tasks, suggesting
that the future of computer vision lies in scalable models that can learn rich, versatile representations
from vast and varied datasets. The success of Florence paves the way for further exploration into
even larger models and more integrated learning objectives, pointing toward a new era of Al systems
capable of more holistic understanding and reasoning.

ALIGN: In the paper ALIGN [29], author introduces a large-scale model that learns visual and
vision-language representations by leveraging over one billion noisy image-text pairs collected from
the web without manual filtering. Utilizing a dual-encoder architecture—with an image encoder
(such as EfficientNet or Vision Transformer) and a text encoder (like BERT)—trained jointly using a
contrastive learning objective, the model aligns images and their corresponding textual descriptions in
a shared embedding space, enhancing its ability to understand and relate visual content to language.
ALIGN achieves strong zero-shot performance on ImageNet and other classification benchmarks
by mapping class labels or descriptions into the shared embedding space and matching them with
image embeddings. It sets new state-of-the-art results in image-to-text and text-to-image retrieval
tasks and shows significant improvements when fine-tuned on downstream applications, highlighting
its effectiveness as a foundational model for various vision and language tasks. The success of
ALIGN underscores the potential of utilizing large-scale, noisy web data to train powerful vision-
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language models, demonstrating that with appropriate training objectives and architectures, models
can learn rich, generalizable representations without the need for costly manual annotation or curation.
This work paves the way for future research to explore even larger datasets and more sophisticated
architectures to further bridge the gap between vision and language understanding.

Flickr30K (1K test set) MSCOCO (5K test set)
image — text text — image image — text text — image

R@1 R@5 R@I0 R@l R@5 R@I0 | R@l R@5 R@10 R@1 R@5 Re@10
ImageBERT | 70.7 902 940 543 796 875 | 440 712 804 323  59.0 70.2
UNITER 836 957 977 687 892 93.9 - - - - - -
CLIP 880 987 994 687 90.6 952 | 584 815 88.1 378 624 722

Zero-shot

ALIGN 88.6 98.7 99.7 757 938 96.8 | 586 83.0 89.7 456 69.8 78.6

GPO 887 989 998 76.1 945 97.1 | 68.1 902 - 527 802 -

UNITER 873  98.0 992 756 941 96.8 | 657 88.6 938 529 799 88.0

Fi ERNIE-ViL 88.1 98.0 992 767 93.6 96.4 - - - - - -
ine-tuned

VILLA 879 975 988 763 942 96.8 - - - - - -
Oscar - - - - - - 735 922 96.0 575 828 89.8
ALIGN 953 998 1000 849 974 986 | 770 935 969 599 833 89.8

Figure 7. Comparison of image-text retrieval results on the Flickr30K and MSCOCO datasets, evaluated in both
zero-shot and fine-tuned settings. ALIGN is benchmarked against several state-of-the-art models, including
ImageBERT (Qi et al., 2020), UNITER (Chen et al., 2020c), CLIP (Radford et al., 2021), GPO (Chen et al., 2020a),
ERNIE-ViL (Yu et al., 2020), VILLA (Gan et al., 2020), and Oscar (Li et al., 2020). (Fig. credit: [29]).

ALIGN marks a advancement in vision-language representation learning by effectively harnessing
massive amounts of noisy, uncurated web data. By employing a dual-encoder architecture and a
contrastive learning objective to align visual and textual modalities in a shared embedding space, the
model demonstrates that large-scale noisy supervision can rival or even surpass models trained on
smaller, curated datasets. This approach not only achieves state-of-the-art performance in zero-shot
image classification and cross-modal retrieval tasks but also emphasizes the scalability and robustness
of learning from real-world data. ALIGN’s success underscores the potential of leveraging vast, readily
available web resources to train powerful AI models, suggesting a paradigm shift in how we approach
data collection and model training in the field of computer vision and beyond.

3. Evaluation of Generative Techniques in LVLMs

Generative techniques in LVLMs have evolved to balance complex multimodal tasks involving
image-text interactions. Each technique, whether focused on retrieval, few-shot learning, or self-
supervised training, has its own set of trade-offs and applications. Below 1, we discuss key models
and their strengths and limitations, providing insights into their impact on various vision-language
tasks and applications. The CLIP model from OpenAl, with its cross-modal retrieval capabilities, set
a new standard for aligning visual and textual data. Its strength lies in its ability to generalize well
across diverse datasets in zero-shot settings. However, CLIP struggles with handling more nuanced,
complex visual contexts where detailed, task-specific understanding is required. On the other hand,
Flamingo, developed by DeepMind, is tailored for few-shot video understanding tasks. It performs
exceptionally well in visual question-answering tasks related to videos, but this model requires signifi-
cant computational resources, making it less accessible for resource-constrained applications.BLIP, a
self-supervised learning model, excels by leveraging synthetic data for image captioning and other re-
lated tasks. Its capacity to learn from synthetic sources allows it to bypass the need for large annotated
datasets. However, the variation in the quality of these synthetic captions can affect its performance
consistency across domains. For multitask learning, UniT shines by efficiently generalizing tasks across
different modalities. It can tackle a wide range of tasks, from image classification to text-based tasks,
with a single architecture. However, this generalization comes at the cost of task-specific fine-tuning,
which might be required for optimal performance in specialized domains. X-CLIP, an extension of
the CLIP architecture, enhances video understanding by capturing sequential dependencies, making
it particularly strong for tasks like video search and video captioning. Its multi-grained approach to
contrastive learning offers significant improvements in semantic alignment. The downside, however, is
its high computational demand, which may limit its scalability in some real-world applications. Finally,
CoCa (Contrastive Captioner) represents a powerful blend of contrastive learning and generative
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tasks, achieving state-of-the-art performance in image captioning and retrieval. The model’s key
advantage lies in its dual approach, combining caption generation with contrastive alignment, but it
faces challenges in balancing the two objectives efficiently. Nonetheless, its versatility and scalability
make it an influential model for both zero-shot and fine-tuned tasks.

Table 1. Comparative Analysis of Generative Techniques in LVLMs.

Technique | Primary Use | Advantages | Challenges | Github
CLIP | Cross Model Retrieval | Strong cross-modal alignment | Struggles with complex visual context | GitHub
Flamingo | Few-shot video understanding | Effective for video understanding | Computationally expensive | GitHub
BLIP | Self-supervised learning | Enables learning from synthetic data |  Varies in quality of synthetic captions | ~GitHub
UniT | Multitask learning | Efficient task generalization | Requires task-specific tuning |  GitHub
X-CLIP | Video understanding | Good for sequential tasks | High computational demand |~ GitHub
CoCa | Caption generation and retrieval | Combines contrastive and generative tasks | Balancing dual objectives |  GitHub
Florence | Large-scale vision-language pretraining | High performance on visual tasks | High computational demand | GitHub
ALIGN |  Large-scale vision-language alignment | Large-scale pretraining benefits | Demands large-scale datasets | N/A

4. Evaluating Performance and Benchmark Robustness

The evaluation of Vision-Language Models (VLMs) must go beyond traditional metrics to account
for language biases that may skew results. For instance, in the influential Visual Question Answer-
ing (VQA) benchmark [30], blind algorithms have been shown to exploit linguistic biases, such as
frequently recurring questions like “Is there a clock?” which are answered "yes" 98% of the time [31].
This highlights the danger of unimodal biases in multimodal benchmarks, where linguistic features
alone can dominate performance. A recent study by Lin et al. [6] observed that a blind language prior
(P(text))—estimated from image-captioning models like BLIP can perform well on benchmarks like
ARO [32] and VL-CheckList [33]. However, balanced datasets like Winoground [32] actively penalize
such unimodal shortcuts, ensuring a more accurate assessment of the model’s multimodal capabil-
ities. This exemplifies the need for well-curated datasets that challenge both the visual and textual
understanding of VLMs. In another study, Udandarao et al. [34] emphasize how concept frequency in
training data impacts downstream performance. Models tend to perform well on frequently occurring
concepts in the training set but struggle with rare or unseen concepts. By leveraging recognition models
such as RAM [35] to evaluate the presence of task-specific concepts in the training data, researchers
can approximate the likelihood of a VLM’s success in downstream tasks. This method offers a more
reliable way of evaluating VLM performance, especially for complex real-world applications.

Table 2. Comparative Analysis of Final Results Across LVLM Models.

Model Dataset Zero-Shot Accuracy | Fine-Tuned Accuracy
CLIP ImageNet 76.2% N/A
Flickr30k 88.0% N/A
MSCOCO 57.6% N/A
Flamingo | VQAvV2 85.5% (Few-Shot) N/A
VATEX SOTA (Few-Shot) N/A
MSRVTTQA SOTA (Few-Shot) N/A
BLIP COCO Captioning 82.3% N/A
Visual Question Answering 78.3% N/A
UniT | Visual Question Answering | 79.6% (VQA) | 84.3%
X-CLIP | MSR-VTT | 47.3% | N/A
ALIGN ImageNet 76.4% N/A
MSCOCO 58.6% N/A
CoCa ImageNet 91.0% 91.0%
Kinetics-400 85.5% 85.5%
Florence | ImageNet 90.1% 90.1%
Kinetics-400 85.0% 85.0%
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5. Challenges and Future Directions

In this section, we discuss the key challenges currently being faced and explore potential future
directions for addressing them.

Data Limitations and Ambiguity: One of the persistent challenges in training Vision-Language
Models (VLMs) lies in the inherent limitations of real-world datasets. For instance, it is often diffi-
cult to find images paired with negative captions, which are essential for robust model evaluation.
Furthermore, current benchmarks struggle to diagnose whether a model fails due to a lack of object
recognition or an inability to comprehend relationships between recognized objects. Captions in
these datasets, such as those from COCO, tend to be overly simplistic and may introduce biases or
ambiguities, limiting the model’s understanding of complex visual scenes. This raises the need for
more sophisticated datasets that provide richer, more varied captions, particularly those that challenge
a model’s ability to grasp relational and contextual understanding.

Video-Based Challenges: Video data introduces an additional layer of complexity due to its
temporal dimension, which requires models not only to recognize static objects but also to understand
the motion, dynamics, and spatial-temporal relationships of objects and actions. Tasks like text-to-
video retrieval, video question answering, and video generation are becoming core challenges in
computer vision research. However, video data demands significantly higher storage, processing
power, and GPU memory compared to images, due to the frame-by-frame nature of video processing.
For instance, a 24 fps video necessitates 24 times the storage and computational power if treated as a
sequence of static images, pushing VLMs to make trade-offs such as using compressed video formats
or employing more efficient data processing techniques. A major hurdle in video-text pretraining is
the scarcity of high-quality supervision for temporal relationships. Current datasets often describe the
content of video scenes rather than actions or motions, causing video-based models to behave similarly
to image-based models and neglect the temporal aspects. Models like CLIP trained on video data tend
to exhibit noun biases, struggling to capture interactions and temporal dynamics in videos. Generating
paired video-caption data that accurately reflects both static content and temporal dynamics is costly
and complex, making it difficult to build robust video VLMs. Although video captioning models can
generate more captions, they still require an initial, high-quality dataset for training. Another possible
solution is training a video encoder solely on video data, as done in models like VideoPrism [36],
which reduces the reliance on imperfect captions but still requires massive computational resources.

Computational Complexity: Video data processing is inherently more resource-intensive than
image processing due to the redundancy between consecutive frames [37]. While images already
contain redundant information, this redundancy is even more pronounced in videos, where successive
frames are often very similar. This redundancy calls for more efficient training methods, such as
frame sampling or masked modeling, which has shown promise in image-based VLMs. Processing
high volumes of video data demands not only advanced compression techniques but also optimized
architectures that can handle the temporal aspects without overwhelming computational resources.

Biases in Vision-Language Models: Another pressing challenge is addressing the biases that
emerge during training, such as noun bias in video models [38], where models prioritize object
recognition over understanding interactions and actions. This bias limits the generalization capabilities
of VLMs in real-world applications, especially for tasks requiring action recognition and complex
reasoning. Developing methods to mitigate these biases, including better curation of training data and
the use of multimodal attention mechanisms, remains a critical area of research.

Future research should focus on compressing video data, utilizing frame-sampling techniques,
and developing lightweight architectures that handle video streams effectively. Masked training
strategies, which have reduced redundancy in image models, could be employed for video models
as well. Furthermore, existing benchmarks for VLMs often fail to account for the complexity of real-
world vision-language tasks, necessitating the development of new evaluation methods that assess
both object recognition and relational understanding. Balanced datasets, like Winoground [39], can
discourage unimodal shortcuts and encourage true multimodal understanding. Addressing model
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biases, such as noun bias in video-text models, will also be critical. Future efforts should focus on
training models to recognize complex interactions, using balanced datasets, attention mechanisms,
and regularization techniques to reduce biases. Finally, scaling generative Al for video remains a major
challenge. Refining techniques like text-to-video generation [40] and video question answering will
be key to capturing the full range of temporal dynamics, and developing efficient generative models
that handle video data without overwhelming computational resources is crucial for the future of
multimodal Al

6. Conclusion

The field of mapping vision to language remains a vibrant area of research, with various ap-
proaches ranging from contrastive to generative methods for training Vision-Language Models (VLMs).
However, the high computational and data demands often pose a significant challenge for many re-
searchers, leading to the adoption of pre-trained language models or image encoders to simplify the
process by focusing on modality mapping. Regardless of the approach, certain key considerations are
crucial. Large-scale, high-quality datasets of images and captions are essential for enhancing model
performance, while improving model grounding and aligning outputs with human preferences is
necessary to boost reliability. Although multiple benchmarks have been developed to evaluate the
vision-language and reasoning capabilities of these models, they often face limitations, such as relying
heavily on language priors rather than true multimodal understanding. Moreover, vision-language
models are not limited to image-text associations; video is another critical modality that offers potential
for learning richer representations. However, significant challenges remain in developing effective
video representations. As a result, research in VLMs continues to thrive, with many components still
needing refinement to make these models more dependable.
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