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Abstract: Chronic diseases, including cardiovascular disease, stroke, diabetes, and cancer, are among 

the leading causes of death in the US. An unhealthy diet is one of the most significant risk factors 

underlying these chronic, noncommunicable diseases. Eating out has become increasingly common, 

while  home‐cooking  has  declined.  Culinary  Medicine  is  an  evidenced‐based  strategy  that 

incorporates culinary arts in nutrition education. Multiple studies indicate that Culinary Medicine 

can improve eating behaviors, expand culinary knowledge, and improve confidence in oneʹs cooking 

ability. However, Culinary Medicine studies often rely on subjective data such as Food Frequency 

Questionnaires and 24‐hour dietary recall. These instruments are subject to bias. Dietary biomarkers 

enhance Culinary Medicine evaluations. Since diet is a well‐known modulator of the gut microbiome 

and  its metabolites, we argue  that  fecal microbiome and metabolome assessments are valuable  in 

investigating the outcomes of Culinary Medicine studies.   

Keywords:  culinary  medicine;  microbiome;  metabolome;  microbiota;  nutrition;  healthy  eating; 

dietary biomarkers   

 

1. Introduction 

A suboptimal diet contributes to approximately half of all cardiometabolic deaths in the US [1]. 

Based on the US Burden of Disease Collaboratorsʹ analysis of 17 leading risk factors for mortality—

including smoking tobacco, an unhealthy diet contributes to the most deaths [2]. In contrast, healthy 

eating patterns rich in fruits and vegetables promote longevity [3–5]. Many factors are responsible 

for poor dietary habits, but  frequent  eating out and  infrequent  cooking  at home  are particularly 

concerning. As of 2010, Americans spend more on  food away from home  than groceries  [6]. Data 

from the National Health and Nutrition Examination Survey (NHANES) estimates that 16% of the 

average Americanʹs daily calories come from fast foods [6]. Foods away from home are typically high 

in sodium, calories, trans fats, and ultra‐processed ingredients [6]. Thus, eating away from home can 

decrease dietary quality and increase body mass index [7,8]. As eating out has become more popular, 

home cooking has simultaneously declined  [9]. The downturn  in cooking at home  is unfortunate 

because  home  cooking  can  improve  dietary  quality  and  increase  adherence  to  US  nutritional 

guidelines [10,11].   

Culinary Medicine (CM) seeks to decrease the burden of diet‐related illnesses through blending 

nutrition, culinary arts, disease prevention, public health, and evidenced‐based medicine [12–15]. To 

promote  healthy  eating, CM  emphasizes  food  and  health  literacy  [16–18]. Despite  the  lack  of  a 
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standardized definition, CM can educate health practitioners, students, and patients about the links 

between dietary behaviors, cooking techniques, and disease [19–21]. Food safety, meal preparation, 

grocery  shopping,  and  food  storage  are  common  topics  in  CM  [14,22,23].  Cooking  classes  and 

demonstrations are essential components of CM.   

We  argue  that  analyzing  the  gut  microbiome  and  metabolome  can  complement  CM 

interventions  due  to  the  profound  link  between  diet  and  the  gut microbiome  and metabolome. 

Further, short‐term CM interventions may benefit from fecal analyses since diet can rapidly alter gut 

bacteria. We also describe the feasibility of fecal microbiome and metabolomic testing in CM with 

our pilot experience since hygiene and embarrassment have been previously portrayed as barriers to 

stool collection [24].   

2. Culinary Medicine’s Evidence and Limitations 

Evidence for the value of CM exists. Multiple studies have demonstrated the effectiveness and 

limitations of CM despite its relative nascency [10,15,25]. A 2021 meta‐analysis of 33 CM interventions 

by Asher et al. highlighted the effect of CM on dietary behaviors. Most of the studies had a pre‐post 

design—seven were  randomized  clinical  trials  (RCT). The  studies had varying program  lengths, 

ranging  from  1  day  to  2  years.  Reported  measures  included  changes  in  culinary  knowledge, 

motivation,  self‐efficacy  for healthier  cooking, and dietary  intake. The  seven RCTs  showed CMʹs 

benefits  for  improving dietary patterns, cooking confidence, culinary knowledge, and body mass 

index [15]. Similarly, a recent scoping review of the effect of CM interventions on medical students 

indicated improvements in their self‐efficacy in providing nutritional counseling and their culinary 

knowledge [26]. 

Meta‐analyses  of  CM  have  noted  several  limitations  of  commonly  measured  outcomes 

[10,15,25]. One notable  limitation  is a shortage of quantitative measurements. Researchers seldom 

measure how CM affects anthropomorphic variables or metabolic parameters such as hemoglobin 

A1c, blood pressure, homeostatic model assessment of insulin resistance (HOMA‐IR), or lipid levels. 

When CM studies assess quantitative variables, other factors such as genetics, health status, sleep, 

and physical  activity may  act  as  confounders. Additionally, many  quantitative  clinical  variables 

change  slowly  and may  require multiple  assessments  over months  or  years.  Furthermore,  CM 

interventions intending to prevent disease may not benefit from using these clinical markers since 

they may be normal in a healthy population.   

Moreover, many CM interventions rely on self‐reports of dietary intake, such as Food Frequency 

Questionnaires and 24‐hour dietary recall. Despite their low cost and ease of use, these survey tools 

have limitations. Social desirability, errors in recall, and underreporting can compromise the validity 

of  both  tools  [27–29].  In  CM  research,  these  inaccuracies  can  cause  false  conclusions  and 

misinterpretations of results. Using biomarkers of dietary intake and nutritional status can improve 

the quantitative and dietary assessment of CM. 

Nutritional  biomarkers  are measurable  characteristics  of dietary  intake  or  nutritional  status 

found in biological samples such as urine, plasma, saliva, hair, or stool [30]. The availability of dietary 

biomarkers stems from the recent rise in omics technologies—metabolomics, genomics, proteomics, 

transcriptomics, and microbiomics [31–33]. In CM, dietary biomarkers may directly suggest nutrient 

intake  or  indirectly  reflect  the  effects  of  digestion,  absorption,  and  metabolism  on  consumed 

nutrients. Assessing dietary metabolites  is attractive  in CM because dietary  intake alone does not 

reflect  the  complex  processes  involved  in  nutrition,  such  as  nutrient‐nutrient  interactions, 

bioavailability, and metabolism. Pico et al. provide an excellent review of nutritional biomarkers [34]. 

Likewise, Liang et al. thoroughly appraise the use of nutritional biomarkers in RCTs [30].   

3. Understanding the Gut Microbiome and its Relationships with Health and 

Disease 
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The gut microbiome  is a complex ecosystem of symbiotic microorganisms housed within  the 

gastrointestinal  tract  that  influences  health  and  disease  through microbe‐host  interactions  [35]. 

Almost 1000 different species of bacteria reside in the gut [36]. Bacteria account for approximately 

60% of the dry weight of human feces [37]. The microbiome encompasses not only the gastrointestinal 

tractʹs bacteria (microbiota), but also their bacterial genomes and products [38]. Researchers estimate 

that the gut microbiome contains 150 times more genes than the human genome [36]. This wide array 

of  genetic  information  translates  to  a  vast  catalog  of  bacterial  products,  including metabolites, 

interacting with the human body. Microbial metabolites include vitamins, short‐chain fatty acids, bile 

acids,  neurotransmitters,  lipids,  choline  derivatives,  and  gases.  Evidence  shows  that  these 

metabolites  can  play  a  causal  or  indirect  role  in  various  disease  states.  These  include 

noncommunicable diseases associated with diet such as obesity, diabetes, cardiovascular disease, and 

cancer [39]. As such, understanding how diet manipulates the gut microbiome and metabolome may 

have value in treating and preventing disease [24]. 

4. The Influence of Diet on the Gut Microbiota Composition 

Bacteria colonize the gut during birth. The mode of delivery ‐ Cesarean or vaginal ‐ impacts this 

initial microbiota composition [40]. After birth, the primary determinants of gut microbiota are age, 

host genetics, and environmental  factors such as antibiotic exposure, smoking, and diet  [41]. The 

influence of diet on the microbiota is apparent early in life, as breast milk and formula affect bacterial 

diversity differently  [42]. Similarly, a diet rich  in fruits and vegetables affects the gut microbiome 

differently than one rich in protein and ultra‐processed foods like the Standard American Diet [43]. 

The American Gut Project analyzed lifestyle data and stool samples from over 10,000 participants. 

Their analysis demonstrated that consuming foods from plants diversifies the gut microbiota. They 

found  an  association between  consuming  at  least  30 plants per week with  the most diverse gut 

microbiota [44].   

In contrast, dietary patterns rich in ultra‐processed food may decrease diversity within the gut 

microbiota. For example, Manor et al.ʹs examination of lifestyle factors and gut microbiota revealed 

a negative association between increased consumption of sugary beverages and microbial diversity 

[45]. Likewise, in a systemic review, Marit Zinöcker and Inge Lindseth highlighted the detrimental 

impact  of  ultra‐processed  foods  ultra‐processed  foods  on  the microbiota  and  host  physiology. 

Specifically,  they  note  concerns with  emulsifiers,  artificial  sweeteners,  and  acellular  nutrients—

isolated nutrients free from the framework of plant or animal cells [46]. Hence, evaluating the gut 

microbiota may help assess reductions in ultra‐processed food consumption, an essential target for 

CM interventions.   

5. The Effect of Diet on the Gut Metabolome and the Gut Metabolome’s Role in 

Disease 

Diet can also affect the gut metabolome, a function of the metabolic activity of bacteria within 

the  gut.  In  a  landmark  study  evaluating  the  impact  of  diet  on  colon  cancer  risk, Oʹkeefe  et  al. 

performed  a  cross‐over  study  involving African Americans  and black,  rural South Africans. The 

participants  exchanged  their  traditional  diets,  a  fiber‐rich  South  African  diet  and  a  fiber‐poor, 

protein‐heavy American diet. An analysis of the participants’ stool metabolites revealed the African 

diet reduced secondary bile acids, a metabolite, by 70%, whereas the American diet increased them 

by 400% [47]. Secondary bile acids within the colon may contribute to colonic inflammation and colon 

cancer [48].   

Aside from cancer, fecal metabolites may reflect a risk for cardiometabolic diseases [49]. Fecal 

Trimethylamine (TMA) is one of several metabolites implicated in cardiovascular disease. The gut 

microbiota metabolizes  choline  and  carnitine, nutrients  commonly  found  in  eggs  and meat,  into 

TMA. In turn, the liver metabolizes TMA to trimethylamine N‐oxide (TMAO), a plasma metabolite 

associated with atherosclerosis [50]. Besides TMA, Deng et al. analyzed fecal metabolites from 1007 
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participants.  They  found  that  12  other  fecal  metabolites  besides  TMA  were  associated  with 

cardiometabolic conditions, including type 2 diabetes, non‐alcoholic fatty liver disease, and obesity. 

Their study also revealed that butyric acid, a short‐chain fatty acid (SCFA), was inversely associated 

with  type 2 diabetes [51]. SCFAs stem from microbial fermentation of dietary fiber and may offer 

protection against diabetes and obesity [52]. 

Additionally, the metabolites found within the gut metabolome may correspond to the intake of 

specific nutrients. Shinn et al. identified metabolites that predict intake by using machine learning. 

They specifically assessed for metabolites corresponding to the intake of almonds, broccoli, avocado, 

walnuts, barley, and whole‐grain oats. The accuracy of their predictive models ranged from 47% to 

89% [53].   

Diet‐associated changes in the gut microbiota and metabolome can occur rapidly. In a controlled 

feeding study, Wu et al. showed detectable changes in the gut microbiome within 24 hours of dietary 

modification [54]. Researchers also compared the effects of four days of fast‐food or a Mediterranean 

diet on the microbiota and metabolite production. Their study showed that four days of either diet 

was enough to alter the gut microbiota composition and metabolites [55].   

The speed at which diet can alter the microbiota is another reason supporting  its use in CM. 

Again,  CM  studies  of  days  or  weeks  in  duration  may  be  too  brief  to  impact  clinical  and 

anthropomorphic markers such as BMI and hemoglobin A1C. 

6. Feasibility: Our Pilot Experience with CM and Gut Microbiome Evaluation 

  In 2022, we began providing free cooking classes and nutrition education in under‐resourced 

neighborhoods  on  Chicago’s  South  and West  sides. We  developed  and  implemented  a  6‐week 

healthy cooking curriculum called Good Food is Good Medicine (GFGM). A chef and a chef‐trained 

physician created the curriculum by utilizing their expertise and both the Health Belief Model and 

the Socio‐ecological model as theoretical frameworks. The curriculum was also culturally tailored to 

meet  the  needs  of  the  predominantly  non‐Black Hispanic  and  Black  non‐Hispanic  populations 

residing in our service areas. We utilized surveys and focus groups to tailor the curriculum to meet 

our participantsʹ needs.   

We delivered the curriculum  in partnership with the non‐profit organization, the Good Food 

Catalyst. The program occurred in several teaching kitchens in under‐resourced neighborhoods in 

Chicago, including Garfield Park, Englewood, Little Village, and North Lawndale. To demonstrate 

the programʹs real‐world effectiveness, we analyzed the stool metabolome of 18 participants from the 

Garfield Park site.   

After we explained the gut microbiomeʹs roles in health and disease in a focus group setting, the 

participants were eager to participate. Using whipped cream as a model, we demonstrated how to 

collect stools with our collection kit in the teaching kitchen. We collected stool samples at weeks 1, 3, 

and 6. To collect  the stool  in a sanitary  fashion, participants did not bring stool samples  into  the 

building housing the teaching kitchen. Hand‐washing before and after stool drop‐off was mandatory.   

Our  preliminary  evaluation  of  fecal  metabolites  suggests  our  CM  intervention  leads  to 

detectable changes in the fecal metabolome (Figure 1). 
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Figure 1. 

7. Conclusions 

Diet  is  a well‐established  risk  factor  for  chronic disease. CM  is  a practical,  evidenced‐based 

strategy for facilitating healthier eating. Incorporating biomarkers of diet and nutritional status could 

help with understanding the effectiveness of CM interventions. Food is a powerful determinant of 

the  gut  microbiomeʹs  and  metabolomeʹs  composition  and  function.  As  such,  there  is  value  in 

investigating the gut microbiome and metabolome before and after CM interventions. 

Our findings demonstrate the feasibility of collecting stool samples for metabolomic testing in a 

CM  intervention  targeting  under‐resourced  communities.  We  also  showed  that  our  six‐week 

curriculum leads to detectable dietary changes by analyzing the gut metabolome. Further studies are 

needed to correlate metabolomic changes with changes in dietary intake.   
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