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Abstract: Software defect prediction remains a critical challenge in software engineering, as
traditional approaches struggle to effectively capture complex code relationships and dependencies,
leading to missed defects and inefficient resource allocation in quality assurance. This paper
introduces HAG-SDP, a novel hierarchical attention-based graph neural network approach that
addresses these challenges by representing source code as a multi-level graph structure. Our method
uniquely combines syntactic and semantic relationships while employing attention mechanisms to
identify defect-prone patterns, processing code at multiple granularity levels from individual
statements to module-level interactions. We evaluate our approach on the JM1 dataset from the
NASA Metrics Data Program, demonstrating superior performance with an accuracy of 87.3%,
precision of 83.6%, and Fl-score of 82.7%, significantly outperforming both traditional machine
learning methods and recent deep learning approaches. The model's attention mechanism not only
enhances prediction accuracy but also provides interpretable insights by highlighting potentially
problematic code regions. Through comprehensive ablation studies, we demonstrate the significant
contribution of each architectural component, particularly the hierarchical structure and attention
mechanisms. Our results show robust performance across various defect types, offering practical
insights for code review prioritization and testing resource allocation, ultimately contributing to
more efficient software quality assurance processes.

Keywords: software defect prediction; graph neural networks (GNN); hierarchical attention
mechanism; code quality analysis; machine learning in software engineering

1. Introduction

Software defect prediction remains a critical challenge in software engineering, directly
impacting development costs, maintenance efforts, and overall software quality. As software systems
grow in complexity and scale, the ability to accurately identify potential defects early in the
development cycle becomes increasingly vital [1]. Traditional approaches to defect prediction, while
valuable, often struggle to capture the intricate relationships and dependencies within modern
software systems.In recent years, the software development landscape has witnessed a significant
transformation, with systems becoming more interconnected and modular [2]. This evolution has led
to new challenges in defect prediction, as conventional methods often fail to adequately model the
complex structural and semantic relationships present in software artifacts. The limitations of
traditional approaches, which typically rely on hand-crafted features or simple statistical models,
have become increasingly apparent, particularly when dealing with large-scale systems and diverse
programming paradigms.Graph Neural Networks (GNNs) have emerged as a promising solution to
address these challenges. By naturally modeling software systems as graphs, GNNs can capture both
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the structural and semantic relationships between different components of the code. This approach

represents a significant advancement over traditional methods, as it allows for the automatic learning

of representations that incorporate both local code characteristics and broader system context.The

motivation for this research stems from several key observations in the field of software engineering:

e Traditional defect prediction methods often treat code components as independent entities,
failing to capture the rich interconnections between different parts of a software system.

e Existing approaches frequently rely on manually engineered features, which may not scale well
across different projects and programming languages.

e The dynamic nature of modern software development, with its rapid iterations and continuous
integration practices, requires more sophisticated and adaptive prediction mechanisms.

This paper introduces a novel graph-based neural network architecture specifically designedfor
software defect prediction. Our approach leverages the power of GNNs to learn richrepresentations
of software systems by modeling them as interconnected graphs of codecomponents. The proposed
model incorporates multiple levels of abstraction, from finegrained code structures to high-level
system architecture, enabling more accurate andcontext-aware defect prediction.The main
contributions of this research are:

e A novel graph neural network architecture that effectively captures both local and global code
characteristics for defect prediction.

e A comprehensive framework for representing software systems as multi-level graphs,
incorporating both structural and semantic information.

e An extensive evaluation of the proposed approach on real-world software projects,
demonstrating significant improvements over existing methods.

e New insights into the relationship between code structure, dependencies, and defect probability,
derived from the learned representations.

The remainder of this paper is organized as follows: Section 2 reviews related work in software
defect prediction and graph neural networks. Section 3 provides the theoretical background
necessary for understanding our approach. Section 4 describes our proposed methodology in detail.
Section 5 presents the experimental setup and evaluation metrics. Section 6 discusses the results and
their implications. Section 7 addresses threats to validity, and Section 8 concludes the paper with
future research directions.This research represents a significant step forward in the field of automated
software defect prediction, offering both theoretical contributions to the understanding of software
defects and practical tools for improving software quality. The insights and methods presented here
have implications for both research and practice in software engineering, particularly in the context
of large-scale system development and maintenance.

2. Related Work

The journey of software defect prediction began with statistical approaches in the early 1990s.
Basili and Perricone introduced one of the first systematic approaches using regression models to
predict defects based on code metrics [1]. Their work established fundamental relationships between
code complexity measures and defect probability.

2.1. Traditional Software Defect Prediction Methods

Building upon this foundation, Khoshgoftaar and Allen developed more sophisticated statistical
models incorporating historical defect data and developer metrics [2]. These early statistical methods,
while groundbreaking, were limited by their assumption of linear relationships between features and
defects.The field evolved significantly with the introduction of machine learning techniques in the
early 2000s. Menzies et al. demonstrated the effectiveness of Naive Bayes classifiers in defect
prediction, achieving promising results across multiple datasets [3]. This work sparked interest in
more advanced machine learning approaches. Support Vector Machines (SVM) gained popularity
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through the work of Kim et al., who showed that SVMs could effectively handle the non-linear nature
of defect patterns [4]. Random Forests emerged as another powerful tool, with Wang et al.
demonstrating their superior performance in handling imbalanced defect datasets [5].

2.2. Deep Learning in Defect Prediction

The advent of deep learning brought new possibilities to defect prediction. Wang and Liu
pioneered the use of deep neural networks for defect prediction, introducing a multi-layer
architecture that could automatically learn feature representations from raw code [6]. Their work
demonstrated significant improvements over traditional machine learning approaches, particularly
in capturing complex code patterns.Convolutional Neural Networks (CNNs) made their mark
through the work of Li et al., who treated code as a sequence and applied CNN architectures to
capture local patterns [7]. This approach proved particularly effective for detecting defects in closely
related code segments. Recurrent Neural Networks (RNNs) and their variants, especially LSTM
networks, were successfully applied by Zhang et al. to capture sequential dependencies in code [8].

2.3. Graph Neural Networks in Software Engineering

The application of Graph Neural Networks (GNNs) in software engineering represents a
relatively recent but promising direction. Allamanis et al. introduced the first significant application
of GNNSs to code analysis, demonstrating their effectiveness in capturing program dependencies [9].
Their work showed how representing code as graphs could preserve both syntactic and semantic
relationships.In the context of defect prediction, Zhou et al. proposed a graph-based neural network
that modeled software systems as hierarchical graphs [10]. Their approach captured both method-
level and class-level relationships, showing improved accuracy over traditional deep learning
models. Building on this, Chen et al. developed a multi-view graph neural network that
simultaneously considered different types of relationships in code [11].

3. Current Challenges and Gaps

Despite these advances, several significant challenges remain in software defect prediction. First,
most existing approaches struggle with scalability when applied to large-scale software systems. The
work of Liu et al. highlighted how performance degrades significantly as system size increases
[12].Second, there's a notable gap in handling dynamic code behavior. While static analysis through
GNNs has shown promise, capturing runtime behavior patterns remains challenging. Smith et al.
discussed this limitation and proposed potential directions for incorporating dynamic analysis
[13].Third, the interpretability of deep learning models, particularly GNNs, remains a significant
concern. While these models achieve high accuracy, understanding their decision-making process is
crucial for practical adoption in software development. Recent work by Park et al. has begun
addressing this challenge through attention mechanisms [14].Finally, the generalizability of models
across different programming languages and project types remains limited. Brown et al.
demonstrated how models trained on one programming language often perform poorly when
applied to others [15].

4. Proposed Methodology

Our proposed system consists of three main components working in harmony to achieve
accurate software defect prediction. The first component handles code parsing and graph
construction, transforming source code into a rich graph representation. The second component
comprises the graph neural network that learns from these representations. The third component
manages the prediction and output generation, providing interpretable results for developers
[16].The system processes source code files through a pipeline that begins with abstract syntax tree
(AST) generation, followed by graph construction, feature extraction, and finally, defect prediction.
The proposed methodology is presented in Figure 1. We implement this pipeline using a modular
architecture that allows for easy extension and modification of individual components. This design
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choice facilitates experimentation with different graph construction strategies and neural network
architectures while maintaining a consistent interface for evaluation [17].

‘ FEATURE PROCESSING

[ TOKEN EMBEDDING | -»{COMPLEXITY METRICS 5[ HISTORICAL PATTERNS |

NEUVRAL NETWORK
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Figure 1. Proposed Methodology.

4.1. Graph Construction

Node Definition: We represent source code as a hierarchical graph where nodes exist at multiple
levels of abstraction. At the finest granularity, nodes represent individual code tokens, such as
variables, operators, and function calls. At intermediate levels, nodes represent code blocks, methods,
and classes. This multi-level representation allows our model to capture both fine-grained code
patterns and high-level structural information [18].Each node is enriched with contextual information
derived from its role in the code. For method nodes, we include complexity metrics such as
cyclomatic complexity and number of parameters. For variable nodes, we incorporate type
information and usage patterns. This rich node representation helps the model understand both the
syntax and semantics of the code [19].Edge Definition: Our graph incorporates multiple types of
edges to capture different relationships within the code:

¢ Control flow edges represent the execution flow between code blocks
e Data dependency edges track variable usage and data flow
e Syntactic edges preserve the hierarchical structure of the code

e Call graph edges represent method invocations

Figure 2 shows the code analysis graph, For a given source code file F, we construct a hierarchical
graph G = (V,E) where V represents a code elements at different abstraction levels:

V=VnUV.UVi(1)

Where, VmMethod-level nodes, V. is Code block nodes, Viis Fine-grained AST nodes

Edges E are defined as a union of different relationship types

E=EctUEdadUEsymUEcan(2)

Where, E« represents control flow edges, Edd presents data dependency edges Esym is syntactic
edges and Ecn
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Code Analysis Graph: Different Edge Types
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Figure 2. Code Analysis Graph.

These diverse edge types allow the model to reason about code behavior from multiple
perspectives, improving its ability to identify potential defects [20].

4.2. Feature Extraction
We extract features at both node and edge levels using a combination of static analysis and
semantic processing. For nodes, we compute a comprehensive set of features including:

¢ Token embeddings for code identifiers
e Abstract syntax tree patterns
¢ Complexity metrics

e Historical change patterns

Edge features are derived from the relationship type and context, incorporating information
about control flow patterns and data dependencies [21].For each nodeV €V we compute a feature
vector X, that combines different metrics:

_ static semantic historical

Where: X®" Static code metrics, X

semantic . historical

y is Semantic embeddings, X, is Historical

change metrics, || denotes vector concatenation
Each edge g; € E is associated with a feature vector:
&, =9(v,,v;,type;) n

(J is a learnable edge feature function.

4.3. Neural Network Design

Our graph neural network employs a novel architecture specifically designed for software defect
prediction. The network consists of an input embedding layer that processes node and edge features,
Multiple graph attention layers that learn code representations, A hierarchical pooling layer that
combines information across different abstraction levels, Output layers that generate defect
predictionsEach layer is designed to preserve important code properties while learning increasingly
abstract representations [22].At each layer 1 node features are updated using a multi-head attention
mechanism:
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k
(I+1) _ My ® (UIN0)
hv O-(; ak k Z ﬁuv hu

ueN (v) ( 5)
Where, h\fM) Hidden state of node v at layer ], a,ﬁ') Attention weight for head k, Wk(l) Learnable
weight matrix, S Edge attention weight, N(V) Neighbors of node v

Aggregation Functions

We introduce a new aggregation mechanism that weights neighbor contributions based on both
structural and semantic similarity. This approach extends traditional graph attention mechanisms by
incorporating domain-specific knowledge about code relationships. Our aggregation function uses
Edge attention weights are computed as:

o _ eXp(Leaky Re LU (aT [\Nceuv ”Whhu ”Whh\fl)]))

"> exp(Leaky ReLU(a' [W,¢,, [|W,h, [[W,h{"1))
weN (v)
(6)

Where, W Edge feature transformation matrix, Wh Node feature transformation matrix, ais
Attention vector

Z,=Pool({h®® |lueC()}) ”

Where, C(v) Child nodes of v in the hierarch, Pool isDifferentiable pooling function

The final representation for defect prediction is:
L =MLP(Z WY 6]
Where, @, Global context vector, MLP Multi-layer perceptron

P(Defect |v) = o(W,r, +b) ©)

Where, W, Weight matrix, b Bias term, o Sigmoid activation function. This design allows the

model to focus on the most relevant code relationships for defect prediction [8]. The Software
complexity metrics relationship is presented in Figure 3

Software Complexity Metrics Relationships
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Figure 3. Software Complexity Metrics Relationship.

Loss Function: The model is trained using a compound loss function:
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L = I-BCE + ﬂlLfocal + j“ZLstructure (9)

Where, Ly presents Binary cross-entropy loss, L, presents Focal loss for handling class

focal

imbalance, L presents Structure preservation loss

structure

Lfocal =— (1_ pt)y Iog(pt) (10)

Where, a, gives Class balancing factor ,” presents Focusing parameter , P, presents Model's

estimated probability for the true class. The proposed algorithm 1 is given below:

Algorithm 1: Hierarchical Attention-based Graph Neural Network for Software Defect Prediction

(HAG-SDP)

1 Input: Code repository R, training epochs E, learning rate n
Output: Trained model parameters 0

2 Initialize model parameters O randomly

3 For epoche=1 to E:

4 For each code file f in R:

5 Construct hierarchical graph Gt

6 Extract node and edge features

7 For each layer 1:

8 Compute attention weights 3

9 Update node representations hv

10 Apply hierarchical pooling

11 Compute defect probabilities

12 Calculate loss L

13 Update parameters: © < 0 - nVL

14 return 0

Our optimization process considers both model performance and computational efficiency,
resulting in a practical balance between accuracy and training time [26].

5. Experimental Setup

Our experimental evaluation utilizes the JM1 dataset from the NASA Metrics Data Program
(MDP), accessed through Kaggle [28]. This dataset represents a significant C language project
containing software metrics and defect data. The dataset comprises 10,885 method-level instances,
each characterized by 21 software metrics and binary defect labels. These metrics encompass various
aspects of code quality, including complexity measures, size metrics, and Halstead attributes. The
dataset exhibits a natural class imbalance, with approximately 19% of instances labeled as defective,
reflecting real-world software development scenarios.The preprocessing phase involved several
critical steps to ensure data quality and model performance. Initially, we conducted thorough data
cleaning by removing null values and duplicate entries. Outlier detection and removal employed the
Interquartile Range (IQR) method, identifying and filtering extreme values that could potentially
skew the model's learning process. Feature scaling was implemented using Min-Max normalization
to bring all metrics within a comparable range, crucial for the neural network's training stability.To
address the inherent class imbalance, we employed the Synthetic Minority Over-sampling Technique
(SMOTE). This approach generates synthetic examples of the minority class (defective instances) to
achieve a more balanced distribution. Additionally, we incorporated class weights in the model's loss
function to further mitigate the impact of imbalanced data during training.
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5.1. Implementation Details and Environment

The implementation leverages state-of-the-art deep learning frameworks and tools. PyTorch
Geometric (PyG) version 2.4.0 serves as the primary framework for implementing the graph neural
network architecture. Supporting libraries include NumPy (1.21.5) for numerical computations,
Pandas (1.4.4) for data manipulation, and Scikit-learn (1.0.2) for traditional machine learning
baselines and evaluation metrics.Our experimental environment consists of high-performance
computing resources to handle the computational demands of training graph neural networks. The
hardware configuration includes an Intel Xeon E5-2680 v4 processor operating at 2.40GHz, 64GB of
DDR4 RAM, with16GB memory.

5.2. Evaluation Metrics and Baseline Models

The evaluation framework encompasses a comprehensive set of performance metrics to assess
model effectiveness from multiple perspectives. Primary metrics include accuracy, precision, recall,
F1-score, and Area Under the Receiver Operating Characteristic Curve (AUC-ROC). Given the class
imbalance in the dataset, we particularly emphasize the Fl-score and AUC-ROC as they provide
more balanced assessments of model performance. Additionally, we compute the Matthews
Correlation Coefficient (MCC) to obtain a more nuanced understanding of the model's predictive
capabilities. The formal for metrics for evaluating the model performance are as follows:

.. TP
Precision = ———
TP +FP

Recall = L

TP+ FN

PrecisionxRecall
Precision+Recall
TPTN-FP FN
\/(l'P + FP)(TP + EN)(TN+ FP)(TN-+FN)
AUC = j LTPR(FPR(x))dx
Whereas, TP (True Positives): Correctly identified defective modules, TN (True Negatives):

F1=2x

MCC =

Correctly identified non-defective modules, FP (False Positives): Non-defective modules incorrectly
identified as defective, FN (False Negatives): Defective modules incorrectly identified as non-
defectiveFor comparative analysis, we implemented several baseline models representing both
traditional machine learning and deep learning approaches. The traditional baselines include
Random Forest, Support Vector Machine (SVM), XGBoost, and LightGBM, each optimized through
hyperparameter tuning. Deep learning baselines comprise a standard Deep Neural Network (DNN),
a Convolutional Neural Network (CNN) adapted for code analysis, and a basic Graph Neural
Network (GNN) implementation. These baselines provide a comprehensive benchmark for
evaluating our proposed approach.

5.3. Experimental Protocol and Statistical Analysis

Our experimental protocol follows a rigorous cross-validation strategy to ensure reliable
performance estimation. We implemented a 5-fold stratified cross-validation scheme, repeated three
times with different random seeds to account for statistical variations. The stratification ensures that
each fold maintains the original class distribution, crucial for handling imbalanced datasets.
Additionally, we employed a time-based split (70% training, 15% validation, 15% testing) to evaluate
the model's performance in a more realistic scenario where future defects are predicted based on
historical data.Statistical validation of results employs a comprehensive suite of tests. Initial
assessment of result distributions uses the Shapiro-Wilk test for normality. Based on these results, we
apply either parametric (paired t-test) or non-parametric (Wilcoxon signed-rank test) methods for
comparing model performances. For multiple model comparisons, we utilize the Friedman test
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followed by post-hoc analysis. Effect size measurements include Cohen's d for parametric
comparisons and Cliff's delta for non-parametric cases, providing quantitative measures of
improvement magnitudes.To ensure reproducibility, we maintain strict version control of both code
and data. All random seeds are explicitly set and documented, and we provide comprehensive
configuration files specifying all hyperparameters and environmental settings. Resource utilization
is monitored and logged throughout the experiments, with training times averaging 45 seconds per
epoch and total training completion in approximately 6 hours on our hardware configuration.

5.4. Model Training and Optimization

The training process incorporates several optimization strategies to enhance model performance
and training stability. We implement a learning rate scheduler with warm-up periods and cosine
annealing to optimize the training trajectory. Gradient clipping prevents exploding gradients, while
batch normalization layers help maintain stable training dynamics. Early stopping based on
validation performance prevents overfitting, with a patience period of 10 epochs.The hyperparameter
optimization process follows a systematic approach combining grid search for critical parameters
and Bayesian optimization for exploring the broader parameter space. Key hyperparameters
including learning rate, number of GNN layers, attention heads, and dropout rates are tuned using
this hybrid approach. The final model configuration is selected based on validation set performance,
considering both prediction accuracy and computational efficiency.

6. Performance Comparison

Our proposed Hierarchical Attention-based Graph Neural Network (HAG-SDP) demonstrates
significant improvements over existing approaches in software defect prediction. The model achieves
an overall accuracy of 87.3% on the JM1 dataset, representing a 5.2% improvement over the best-
performing baseline model. More importantly, considering the class imbalance nature of the
problem, our model shows substantial improvements in precision and recall metrics, achieving 83.6%
and 81.9% respectively. The Fl-score of 82.7% particularly highlights the model's balanced
performance in handling both defective and non-defective cases.The ROC curve analysis provides
further evidence of our model's robust performance. The AUC-ROC value of 0.891 indicates strong
discriminative ability across different classification thresholds. Compared to traditional approaches,
our model shows better performance particularly in the high-recall region of the ROC curve,
suggesting improved capability in identifying defective modules while maintaining acceptable false
positive rates. The performance comparison with traditional machine learning models are presented
in Table 1. The performance comparison with deep learning models are presented in Table 2. This
characteristic is particularly valuable in practical software development scenarios where missing
defective modules (false negatives) can be more costly than false alarms. Figure 4 shows the
performance comparison with deep learning models. Figure 5 shows the ROC curves comparison
with deep learning models. Figure 6 shows the performance comparison with all the models.

Table 1. Performance Comparison with Traditional Machine Learning models.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) MCC

Random Forest 79.2 75.4 74.8 75.1 81.5 0.512
SVM 77.8 73.6 729 73.2 79.8 0.485
XGBoost 80.1 76.2 75.7 759 82.3 0.527
LightGBM 80.4 76.8 76.1 76.4 82.7 0.534

Table 2. Performance Comparison with Deep Learning models.
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Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) MCC

DNN 81.2 774 76.8 77.1 83.5 0.548
CNN 82.5 78.8 779 78.3 84.7 0.569

Basic GNN 84.1 80.4 79.2 79.8 86.3 0.592
HAG-SDP (Ours) 87.3 83.6 81.9 82.7 89.1 0.634

Performance Comparison of Different Models

Figure 4. Performance comparison with deep learning models.

ROC Curves Comparison
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Figure 5. ROC curves comparison with deep learning models.
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Figure 6. Performance comparison with all the models.

6.1. Ablation Studies

To understand the contribution of different components in our architecture, we conducted
comprehensive ablation studies. The hierarchical structure proves to be crucial, with its removal
leading to a 4.7% drop in Fl-score. The attention mechanism's impact is particularly significant in
handling complex code structures, contributing to a 3.8% improvement in precision. Our novel edge
feature incorporation shows a 2.9% improvement in overall accuracy, validating the importance of
capturing diverse code relationships.The experiments with different feature combinations reveal that
combining static code metrics with semantic features yields the best results. Historical features, while
useful, show diminishing returns when combined with our rich graph-based representation. The
ablation studies also demonstrate that the model's performance is robust across different
hyperparameter settings, suggesting good stability and generalization capabilities.

7. Conclusion

This research introduces HAG-SDP, a novel hierarchical attention-based graph neural network
approach for software defect prediction. Our work addresses several crucial challenges in the field of
automated software quality assurance. The primary contributions of this research are threefold:First,
we developed a novel graph-based representation of source code that effectively captures both
structural and semantic relationships. This hierarchical representation enables the model to
understand code at multiple levels of abstraction, from individual statements to entire modules. The
experimental results demonstrate that this multi-level approach significantly improves prediction
accuracy compared to traditional methods.Second, our attention-based mechanism successfully
identifies and weights the most relevant code patterns for defect prediction. The model achieved an
accuracy of 87.3% and an Fl-score of 82.7% on the JM1 dataset, surpassing both traditional machine
learning approaches and existing deep learning models. This improvement is particularly significant
given the challenging nature of defect prediction in real-world software systems.Third, we provided
comprehensive empirical evidence of our model's effectiveness through extensive experiments and
ablation studies. The results show that our approach not only improves prediction accuracy but also
offers better interpretability through attention visualization, making it more practical for real-world
software development scenarios.
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