

Review

Not peer-reviewed version

Historical Evolution and Modern Advances in Vesicular Nanocarriers

[Ashutosh Sengar](#) *

Posted Date: 31 January 2025

doi: [10.20944/preprints202501.2323.v1](https://doi.org/10.20944/preprints202501.2323.v1)

Keywords: Vesicular nanocarriers; Liposomes; Archaeosomes; Glycerosomes; Targeted drug delivery

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Historical Evolution and Modern Advances in Vesicular Nanocarriers

Ashutosh Sengar

Assistant Professor, Smt. Vidyawati College of Pharmacy, Jhansi (U. P.), 284002, India;
ashutoshsengar26567@gmail.com

Abstract: Vesicular nanocarriers are the new revolutionary drugs delivery system, providing precision and efficiency unparalleled in drug application therapy. In particular, the paper would attempt to trace the historic past of discovering liposomes. Further development was carried out regarding this technology for advanced drug carrying and tackling fundamental steps in bringing drugs to the clinic by commercialization through the translation of their clinical aspect that way; by it, one is underlining a role in contributing to progress in terms of care. Elucidation of emergent systems that include archaeosomes and glycerosomes will involve their structural advantage and versatility to address drug delivery challenges across various dermal, oral, and systemic routes. The paper will then elucidate industrial bottlenecks in terms of manufacturing and scale-up and on the related challenge of quality control in the issue of stability and degradation of these vesicular systems. Thus, hybrid vesicular systems, optimization through AI drives, and innovative sustainable manufacturing approaches are the leading solutions to face these challenges. This article based on synthesizing historical insights in modern innovations covers the current situation and future developments of vesicular drug delivery. The results showed that vesicular nanocarriers have incredible potential to shift towards personalized as well as target-specific therapeutics, opening significant avenues for breaking through nanomedical frontiers.

Keywords: vesicular nanocarriers; liposomes; archaeosomes; glycerosomes; targeted drug delivery

1. Introduction to Vesicular Nanocarriers

The appearance of vesicular nanocarriers is regarded as the most significant breakthrough in developing drug delivery systems. Thus, this will introduce new and innovative ways of overcoming the usual challenges associated with conventional therapeutics. These nanocarriers encapsulate therapeutic agents in a site-specific manner and enhance bioavailability while minimizing systemic toxicity. Nanotechnology has significantly intensified the study of vesicular systems, such as liposomes, archaeosomes, and glycerosomes, owing to their utility and adaptability in drug delivery applications. The section discusses vesicular systems, classification, and tremendous therapeutic potential in advancing personalized medicine.

1.1. Overview of Vesicular Systems: Significance and Mechanisms

Vesicular nanocarriers are small structures that encapsulate drugs in lipid bilayers or aqueous cores with specific objectives, such as targeting drug delivery and controlled release. Bangham and Horne first demonstrated the existence of liposomes in 1964 by the ability to interact with biological membranes [1]. These carriers closely resemble biological membranes and are thus biocompatible and trigger fewer immune responses [3]. For those, the mechanisms of drug delivery are mainly represented by passive targeting based on the EPR effect and active targeting through ligand receptor interaction [26]. Vesicular systems significantly enhance both pharmacokinetics and pharmacodynamics of drugs in the profiles; thus, both hydrophilic and hydrophobic drugs could be a huge promise.

1.2. Definitions and Classifications: Liposomes, Archaeosomes, Glycerosomes

Depending on the origin and structural components, the nanocarriers vesicular contain such as:

1.2.1. Liposomes

Liposomes are small vesicles made of one or more bilayers of phospholipid. They have been an excellent carrier for both hydrophobic and hydrophilic drugs [4]. They are one of the most studied vesicular systems, with flexibility in the size, composition, and surface modification [5].

1.2.2. Archaeosomes:

Ether-linked phospholipids, derived from archaea, provide stability to the molecules of archaeosomes. These are also resistant to oxidative stress and high temperature [6]. Due to its high stability, archaeosomes offer excellent delivery potential for vaccines and drugs under extreme conditions [26].

1.2.3. Glycerosomes:

This is the newest group of vesicular lipid-based carrier systems saturated with glycerol; these are highly utilized in the skin or orally-based delivery system; primarily utilized in delivering hydration capabilities, besides the provision of elastotic effects [25]. Better pharmacokinetics at the level of the interface skin and mucosa; therefore, application using this formulation offers potential to present a superior delivery method via the glycosomes [4].

1.3. Therapeutic Applications and Potential: Progress Toward Personalized Medicine

The vesicular nanocarriers contain tremendous therapeutic value and transform the existing scope of personalized medicine. Drug delivery through a tailored pathway towards targeted tissues or condition-based diseases reduces side effects by targeting drugs at proper areas [7].

Liposomes have been highly successful in oncology. For instance, an FDA-approved formulation Doxil [®] has also proven to have better targeting towards the tumor [21]. Archaeosomes appear promising as vaccine adjuvants in delivering vaccines and give very strong immune responses [26]. Glycerosomes with versatility open up noninvasive avenues for therapeutic application, especially through dermal and mucosal routes [25].

Vesicular nanocarriers have been found to be very pivotal in filling some of the unmet clinical needs, notably chronic diseases, infectious diseases, and cancer therapy, through the history of the development of the field. They hold different types of therapeutic agents and a potential integration with advanced diagnostic tools, making them very promising in achieving the objectives of personalized and precision medicine [26].

2. Historical Development

Modern drug delivery can be said to be founded upon the development of vesicular nanocarriers, especially liposomes. The current chapter deals with the discovery of liposomes—from basic research to clinical applications—based on key milestones that marked the commercialization and therapeutic use of liposomes.

2.1. Discovery and Foundational Evolution of Liposomes

Alec D. Bangham and R.W. Horne reported in 1964 the discovery of liposomes. It marked the beginning of a new class of drug delivery systems. Their pioneering work established that phospholipids can self-assemble into bilayered vesicles under aqueous conditions, establishing the resemblance with biological membranes [1]. This established the potential for using liposomes as biocompatible carriers for encapsulating both hydrophilic and lipophilic molecules.

In the early 1970s, Gregory Gregoriadis extended the usage of liposomes further, and indeed proved they could improve the pharmacokinetics of therapeutic agents [2]. This work therefore establishes the liposome scheme for drug carrier based on the functionality of improving drug stability and targeted drug delivery. This meant the early pioneering studies were able to highlight the flexibility of liposomes in delivering drugs, peptides, and even genetic material, thus paving a way for further and more advanced developments [7].

The addition of PEG to stealth liposomes discovered in the early 1980s and the late 1990s has further enhanced the circulatory half-life of such liposomes with reduced immunogenicity [26]. All of these developments spilled over into preclinical and clinical work and thrust liposomes into the very forefront of nanomedicine research.

2.2. *Markers of Early Commercialization and Clinical Translation*

Several landmarks mark the commercialization of liposomes from a lab curiosity to a clinical success. The first FDA approval of a liposomal drug came in 1995—that of Doxil® (liposomal doxorubicin) [8], ushering a new era into cancer therapy [9]. The several advantages seen with Doxil® were reduced cardiotoxicity and an enhanced tumor targeting via the EPR effect, that is, passive drug targeting [9].

Shortly, many more liposomal formulations were discovered and concentrated on quite other different therapeutic applications. For instance, AmBisome or liposomal amphotericin B totally revolutionized antifungal therapy as it completely relieved the nephrotoxic side effects associated with the standard amphotericin B preparation [26]. Indeed, all the results above justified the use of liposomes as well safe and strong drug delivery systems.

Early advances in manufacturing technologies greatly helped to scale up the manufacture of liposomes on a quality and consistent basis. Scale-up of industrially significant manufacture of liposomes was achieved through the introduction of the extrusion as well as freeze-thaw methods combined with strict quality control measures [25].

Liposomes have been known since 2000 as a clinically relevant platform with enough preclinical data and regulatory approval. The same milestones included big strides forward and demand underlining versatility but open a way toward developing next-generation vesicular systems [26].

3. Modern Advances in Liposomes

Over the years, liposomal formulations have emerged as a significant requirement in comparison with earlier demands on therapeutic efficiency and drug delivery systems with patient-centric orientation. Further, it discusses the current directions of liposome design and summary of FDA-approved drugs that basically changed clinical practice.

3.1. *Advances in Liposomal Formulations: Strategies and Outcomes*

The major advances in liposomal formulations are towards efficiency of drug encapsulation, specificity of targeting, and stability. Surface modifications with polyethylene glycol (PEG) have been among the most effective strategies. PEGylation produces "stealth" liposomes that avoid detection by the mononuclear phagocyte system (MPS), thus prolonging circulation time and improving biodistribution [3].

Another significant advancement is stimuli-sensitive liposomes such that the systems can release from the payloads due to particular environmental stimuli, pH, temperature, or enzymatic activity to achieve site specificity as well as avoid off-target effects [10]. The drug formulations have already proved quite promising, especially for tumour therapy since the acidic microtumour environment may help facilitate drug release.

Another emerging frontier is that of targeted liposomes, engineered with ligands such as antibodies, peptides, or aptamers. These functionally modified vesicles attach themselves through

specific receptors overexpressed on diseased tissues, leading to improved precision and therapeutic potency [24].

In addition, the new manufacturing technologies of microfluidics and high-pressure extrusion improve size uniformity, enhancing drug loading efficiency for their mass production in good quality [25]. Taken together, all these advances address the traditional concerns of stability, scalability, and cost-effectiveness for clinical applications.

3.2. FDA-Approved Liposomal Drugs: Clinical Implications

The major advances in liposomal formulations are towards efficiency of drug encapsulation, specificity of targeting, and stability. Surface modifications with polyethylene glycol (PEG) have been among the most effective strategies. PEGylation produces "stealth" liposomes that avoid detection by the mononuclear phagocyte system (MPS), thus prolonging circulation time and improving biodistribution [3].

Another significant advancement is stimuli-sensitive liposomes such that the systems can release from the payloads due to particular environmental stimuli, pH, temperature, or enzymatic activity to achieve site specificity as well as avoid off-target effects [10]. The drug formulations have already proved quite promising, specially for tumor therapy since the acidic microtumor environment may help facilitate drug release.

Another emerging frontier is that of targeted liposomes, engineered with ligands such as antibodies, peptides, or aptamers. These functionally modified vesicles attach themselves through specific receptors overexpressed on diseased tissues, leading to improved precision and therapeutic potency [24].

In addition, the new manufacturing technologies of microfluidics and high-pressure extrusion improve size uniformity, enhancing drug loading efficiency for their mass production in good quality [25]. Taken together, all these advances address the traditional concerns of stability, scalability, and cost-effectiveness for clinical applications.

4. Emerging Vesicular Systems

Though liposomes have dominated the science of vesicular drug delivery, new systems, such as archaeosomes and glycerosomes, have extended the scope of potential therapeutic opportunities of vesicular nanocarriers. Advanced formulations possess a number of benefits, including enhanced stability, biocompatibility, and targeted delivery capability.

4.1. Archaeosomes: Structure, Properties, and Therapeutic Scope

Derived from the ether-linked lipids of archaea, archaeosomes are a novel and stable class of vesicular systems. It is their unique lipid composition due to a glycerol backbone that is bridged through ether bonds to the isoprenoid chains which gives these exceptional stability towards oxidative stress, a high temperature condition, and acid environment [12]. Such stability would naturally be making archaeosomes much more efficient than liposomes.

Archaeosomes are bilayer vesicles, and they can encapsulate hydrophilic as well as lipophilic therapeutic agents. The stability of the archaeosomes improves long circulation times with minimal drug leakage early in circulation [26]. Archaeosomes inherently possess immunostimulatory activity because of the lipid nature of archaeosomes, and hence it is good for vaccine delivery. Antigen delivery with archaeosomes has been proven to cause very strong and long-lasting immune responses [15].

Therapeutically, archaeosomes have been applied for the delivery of anticancer drugs, immunotherapies, and vaccines. Archaeosomes survive in extreme biological environments due to which they are more suitable for oral and parenteral administration. Biocompatibility with the lipids of archaea ensures minimum toxicity and, thus, renders them ideal as next-generation drug carriers [17].

4.2. Glycerosomes: Advantages in Dermal and Oral Drug Delivery Systems

The glycerosomes are called a new vesicular system, rich in glycerol for enhancing hydration and elasticity of the lipid bilayer. This peculiar property helps the glycerosomes be applied in dermal as well as mucosal drug delivery applications [13].

Glycerosomes could penetrate and persist in the dermal skin a lot better when compared to their conventional liposomally as the addition of glycerol increases the lipid bilayer fluidity, as therapeutic agents will pierce through deeper layers of the stratum corneum 22 that holds very useful applications by delivering the products directly to the stratum corneum for anti-inflammatories, antifungals, and cosmetics.

Therefore, in the case of oral drug delivery, glycerosomes provide several benefits of protecting internalized drugs within the gastrointestinal tract from degradations. These have been shown to be extremely useful in improving bioavailability for oral formulations especially for poorly water-soluble drugs [26]. In addition, glycerosomes are versatile carriers for proteins and peptides to ensure effective delivery across mucosal barriers [27].

Given the fact that such vesicles are easily scalable and can be altered for a variety of pharmaceutical and cosmeceutical applications, glycerosomes are of interest. In this regard, it has additional possibilities to fill unmet needs in non-invasive drug delivery that may be possible through glycerosomes.

5. Challenges and Innovations

The field of vesicular nanocarriers has made tremendous progress, but the process remains challenging in its manufacturing, scale-up, and quality control. Such challenges demand newer solutions to help vesicular drug delivery systems go more mainstream and be widely commercialized.

5.1. Manufacturing Challenges and Scalability: Industrial Bottlenecks

Large-scale production, from laboratory scale development of vesicular systems suffers from a host of technical and economic problems. The most major problem in this regard is uniformity of size distribution and the reproducibility over a very large batch size. Size and PDI, therefore, exert an influence over the pharmacokinetics and therefore the therapeutic efficacy of the drug-loaded vesicles, making their production highly regulated [5].

Scalable techniques of high-pressure extrusion and microfluidics can be used to produce liposomes and other vesicles, which leads to consistent size and encapsulation efficiency. The methods are normally cost-intensive, requiring specialized equipment that is inaccessible to small manufacturers [6].

Another major challenge that occurs during the production is encapsulation efficiency and stability of APIs. Production protocols have to be customized in cases of hydrophilic drugs vs. hydrophobic drugs as well as when solubility requirements, amongst other factors. Also, lipid oxidation and aggregation that may develop during storage and processing are, as of this moment, very important problems [15].

Industrial scalability does have regulatory compliance limits also. The GMP requirement of robust and validated processes heightens the rigor as well as expense for the pipeline of production processes. This way, innovation in matters of automated manufacturing systems as well as even affordable manufacturing sites [26] [27], among others, can be instrumental in alleviating them.

5.2. Quality Control: Overcoming Stability and Degradation Issues

The main challenge for vesicular systems is the stability of the system throughout the shelf life. Vesicles, especially liposomes, are highly susceptible to degradation through lipid oxidation, hydrolysis, and aggregation, thus affecting their efficacy and safety profiles [14].

Measures of QC must address size, charge, and encapsulation efficiencies by employing up-to-date analytic techniques. Wide usage of methodologies such as DLS, differential scanning calorimetry (DSC), cryo-transmission electron microscopy cryo-TEM is used as a tool of assessing the level of vesicles integrity and its stability [16]. However such methods are far too expensive with a complexity and cannot be utilised in common industrial practice routine.

Storage conditions optimization is yet another very critical aspect of QC. For example, many liposomal formulations exhibit stringent ranges for temperature and pH stability of their preparations; hence their storage and distribution become even more difficult [19]. Recent work on freeze-dried or lyophilized vesicular system finds promising in shelf life extension but still requires refinement in maintaining the activity of the drug [25].

Some innovation in the lipid composition, such as the use of synthetic or hybrid lipids that are more stable, would solve the problem presented with degradation issues. An indication of the implementation of real-time monitoring systems in manufacturing processes may be used to provide consistent quality without problems arising from the challenges of stability [28, 30, 31].

6. Synthesis of Insights and Future Directions

6.1. Historical Insights to Modern Innovation: A Continuum of Progress

The story of vesicular systems is one of gradual work with great discoveries and technological breakthroughs. The seminal work Bangham and Horne developed in 1964 [1] about the structural properties of phospholipid bilayers commenced the field of liposomal drug delivery. The work was the first ideas about lipid-based vesicles but presented it to further studies of biomedical applications.

The advancements introduced into encapsulation methods and targeting approaches motivated subsequent liposomal drug formulations [3, 35, 36]. Historic concepts, including PEGylated liposomes, stimuli-responsive systems, and ligand-functionalized vesicles, proved that historic concepts can be adapted to meet modern-day needs for therapeutics [26, 29, 30, 34].

For example, the introduction of liposomal drugs in clinical practice, representing vesicular systems, is such as Doxil® and AmBisome®, from the basic knowledge was transformed into applied health care solutions [21]. Such milestones demand more incorporation of the basic sciences with translational and clinical science to create momentum in the field.

The constant interplay between insights acquired from history and modern innovation has not only provided greater scope for the application of liposomes but also sparked their role as innovation for novel systems such as archaeosomes and glycerosomes. This spectrum of progress represents the dynamic and continually evolving state of vesicular drug delivery systems [18].

6.2. Future Opportunities in Vesicular Drug Delivery

As the field of vesicular drug delivery is moving forward, there are many opportunities to meet unmet medical needs and improve the therapeutic specificity of vesicular drug delivery. Beyond current state-of-the-art vesicular systems, next-generation systems will likely be designed to be multi-functional and target complex pathophysiological conditions [32, 33].

One promising area is the creation of hybrid vesicular systems combining the stability provided by archaeosomes with the flexibility of liposomes. Hybrid carriers could provide better durability, targeted delivery, and payload capacity than their monomeric counterparts [20].

The third place is where the innovation will be done - coupling nanotechnology and artificial intelligence. AI-based predictive modeling may make the design of vesicles more efficient by simulating encapsulation, release kinetics, and biodistribution profiles [23]. Innovations here will not only reduce the development time but also fine-tune the drug delivery process.

General speaking, vesicular systems offer bright promise for biologics delivery, which comprises proteins, peptides, and nucleic acids. The employment of glycerosomes and other advanced vesicles comes to represent a very promising research area concerning overcoming the difficulties inherent in oral and mucosal delivery of such macromolecules [24].

This brings in the final dimension: sustainability and scalability in manufacturing processes. A cost-effective means of manufacturing will make vesicular systems more generally available around the world, along with environmentally friendly sources of lipids [25]. Academia, industry, and regulatory agencies are going to need to work hand in hand as they address such challenges to the full realization of vesicular drug delivery systems.

7. Conclusions

Starting from its invention to modern use, the history of the vesicular nanocarrier portrays the ethos of incessant innovation and advancement in science. As the pioneers of the vesicular system, liposomes have given birth to archaeosomes and glycosomes that are engineered with specific advantages tailored to specific therapy needs. The scalability and quality control issues faced by these nanocarriers have posed the questions of incorporation of advanced technologies and creative solutions. The ultimate outcome of these efforts has been that vesicular systems have become integral tools in drug delivery, used for targeting, controlling, and efficiently providing therapeutic outputs. Further down the road, the interface of advanced technologies such as artificial intelligence and nanotechnology with vesicular systems is bound to change the face of drug delivery even further into something that is personal, sustainable, and accessible for everyone. It underlines the collaboration to be done, bridging the research into clinical application. The road paves to the next generation of therapeutic innovation.

References

1. Bangham, A. D., & Horne, R. W. (1964). Negative staining of phospholipids and their structural modification by surface-active agents. *Journal of Molecular Biology*, 8(5), 660–668.
2. Gregoriadis, G. (1973). Liposome as drug carriers. *Biochemical Society Transactions*, 1(5), 787-789.
3. Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. *Advanced Drug Delivery Reviews*, 65(1), 36-48.
4. Sengar, A. (2023). Targeting methods: A short review including rationale, goal, causes, strategies for targeting. *International Journal of Research Publication and Reviews*, 4(8), 1379-1384.
5. Akbarzadeh, A., et al. (2013). Liposome: Classification, preparation, and applications. *Nanoscale Research Letters*, 8(1), 1-9.
6. Zhu, Q., Chen, Z., Paul, P. K., & Wu, W. (2021). Oral delivery of proteins and peptides. *Acta Pharmaceutica Sinica B*, 11(8), 2396–2412.
7. Jagrati, K. M., & Sengar, A. (2024). Liposomal vesicular delivery system: An innovative nano carrier. *World Journal of Pharmaceutical Research*, 13(13), 1155-1169.
8. Prajapati, R. N., Jagrati, K., Sengar, A., & Prajapati, S. K. (2024). Nanoparticles: Pioneering the future of drug delivery and beyond. *World Journal of Pharmaceutical Research*, 13(13), 1243-1262.
9. Torchilin, V. P. (2005). Recent advances in liposomes. *Nature Reviews Drug Discovery*, 4(2), 145–160.
10. Has, C., & Sunthar, P. (2020). Preparation techniques of liposomes. *Journal of Liposome Research*, 30(4), 336–365.
11. Šturm, L., & Poklar Ulrich, N. (2021). Methods for studying liposomes. *International Journal of Molecular Sciences*, 22(12), 6547.
12. Sengar, A., Saha, S., Sharma, L., et al. (2024). Fundamentals of proniosomes. *World Journal of Pharmaceutical Research*, 13(21), 1063-1071.
13. Puglia, C., et al. (2004). Anti-inflammatory activity from liposomal vesicles. *Journal of Pharmacy and Pharmacology*, 56(10), 1225–1232.
14. Sengar, A., Yadav, S., & Niranjan, S. K. (2024). Formulation and evaluation of mouth-dissolving films. *World Journal of Pharmaceutical Research*, 13(16), 850-861.
15. Large, D. E., et al. (2021). Liposome composition in drug delivery. *Advanced Drug Delivery Reviews*, 176, 113851.

16. Gregoriadis, G., & Florence, A. T. (1993). Liposomes in drug delivery. *Drug Development and Industrial Pharmacy*, 19(6), 785-794.
17. Yáñez-Mó, M., et al. (2015). Biological properties of extracellular vesicles. *Journal of Extracellular Vesicles*, 4(1), 27066.
18. Wang, J., et al. (2024). Extracellular vesicles for cancer therapy. *Pharmaceutics*, 16(8), 1029.
19. Sengar, A., Tile, S. A., et al. (2024). Effervescent tablets explored. *World Journal of Pharmaceutical Research*, 13(18), 1424-1435.
20. Chonn, A., et al. (1992). Blood protein association with liposomes. *Journal of Biological Chemistry*, 267(26), 18759-18765.
21. Sengar, A., Vashisth, H., et al. (2024). From concept to consumption: A comprehensive review of chewable tablets. *World Journal of Pharmaceutical Research*, 13(16), 176-189.
22. Alavi, M., et al. (2017). Application of various types of liposomes in drug delivery systems. *Advanced Pharmaceutical Bulletin*, 7(1), 3-9.
23. Akhter, S., et al. (2013). Advances in liposomal drug delivery. *Current Drug Delivery*, 10(5), 546-561.
24. Tseu, G. Y., & Kamaruzaman, K. A. (2023). A review of different types of liposomes. *Molecules*, 28(3), 1498.
25. Sengar, A., Jagrati, K., & Khatri, S. (2024). Enhancing therapeutics: A comprehensive review on naso-pulmonary drug delivery systems. *World Journal of Pharmaceutical Research*, 13(13), 1112-1140.
26. Sengar, A. (2024). *Liposomes and Beyond: Pioneering Vesicular Systems for Drug Delivery*. Preprints. <https://doi.org/10.20944/preprints202412.2230.v1>
27. Sengar, A. (2024). *Precision in Practice: Nanotechnology and Targeted Therapies for Personalized Care*. Preprints. <https://doi.org/10.20944/preprints202412.0019.v1>
28. Sengar, A. (2024). Precision in practice: Nanotechnology and targeted therapies for personalized care. *International Journal of Advanced Nano Computing and Analytics*, 3(2), 56-67.
29. Sengar, A. (2025). *Innovations and Mechanisms in Liposomal Drug Delivery: A Comprehensive Introduction*. Preprints. <https://doi.org/10.20944/preprints202501.0206.v1>
30. Sengar, A. (2025). "Liposomal Drug Delivery Systems: An Intro as a Primer for Advanced Therapeutics." Preprints. <https://doi.org/10.20944/preprints202501.0398.v1>
31. Sengar, A. (2025). *Targeting Strategies in Liposomal Drug Delivery*. Preprints. <https://doi.org/10.20944/preprints202501.0866.v1>
32. Sengar, A., Chatekar, V. K., Andhare, S. B., & Sharma, L. (2025). Clinical pharmacology of antibiotics: Mechanisms, therapeutic uses, and resistance patterns. *World Journal of Pharmaceutical Research*, 14(1), 1531-1545. <https://doi.org/10.20959/wjpr20251-35216>
33. Sengar, A. et al. (2025). Advancing urolithiasis treatment through herbal medicine: A focus on *Tribulus terrestris* fruits. *World Journal of Pharmaceutical Research*, 14(2), 91-105.
34. Sengar, A. (2025). Innovations and mechanisms in liposomal drug delivery: A comprehensive introduction. *Journal of Emergency Medicine Open Access (J Emerg Med OA)*, 3(1), 01-05.
35. Sengar, A. (2025). Next-generation liposomal drug delivery systems: Core principles, innovations, and targeting strategies. Preprints. <https://doi.org/10.20944/preprints202501.1875.v1>
36. Sengar, A. (2025). Advanced Targeting Strategies and Applications of Liposomal Drug Delivery Systems. Preprints. <https://doi.org/10.20944/preprints202501.2091.v1>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.