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Abstract: Microsystems have been developed for a wide range of applications, including medical, 

military, and industrial maintenance, driven by advancements in actuating and measuring systems. 

Fluidic actuators, known for their compactness, low cost, and energy efficiency, are increasingly 

recognized for their potential in cutting-edge industrial and medical microsystems. This study 

explores the transition from traditional actuators to innovative mono-stable oscillators designed 

specifically for flow regulation. Mono-stable oscillators have long been acknowledged as effective 

tools for controlling fluidic logic. These devices provide a control solution without movable 

components, though they exhibit non-zero reverse output flow—a limitation consistently observed 

in prior research. Passive solutions, such as Tesla diodes or convergent-divergent conduits, have 

proven insufficient to address this issue. In this work, we propose a novel approach to eliminate 

reverse flow by introducing a moving object within the outlet oscillator. Through simulation, we 

demonstrate that this method effectively mitigates recirculation, offering a significant improvement 

over existing designs. This study provides a promising solution to enhance the performance of fluidic 

actuators in microfluidic systems. 

Keywords: microsystems; fluidic actuators; mono-stable oscillators; flow regulation; reverse flow; 

recirculation control; simulation modeling; fluidic logic; passive solutions; actuator design 

 

1. Introduction 

Microfluidic technologies have experienced significant growth and development in recent years, 

emerging as one of the most rapidly advancing fields in scientific research. Among these 

technologies, microactuators have garnered considerable attention due to their critical role in 

regulating and manipulating various processes. The development of microactuators dates back to the 

late 1970s, and since then, there have been substantial advancements in the field of Micro-Electro-

Mechanical Systems (MEMS) actuators, particularly in terms of efficiency, power, and force output. 

These advancements have made microactuators indispensable in emerging industrial and medical 

applications, where compact, cost-effective, and high-performance devices are increasingly sought 

after [1]. 

Fluidic microactuators, which utilize pressurized fluids—either gases (pneumatic) or liquids 

(hydraulic)—to induce motion through the deformation of inflatable chambers, have demonstrated 

exceptional power and force densities at the microscale [2]. Their notable durability and resistance to 

environmental factors further enhance their appeal. Despite these advantages, fluidic microactuators 

often receive less attention compared to other MEMS technologies, leaving significant potential for 

further exploration and innovation. 

This study focuses on fluidic actuators, with particular emphasis on their operational principles, 

classifications, and characteristics. Fluidic actuators enable fluid motion through two primary 

mechanisms: (1) direct peristaltic motion induced by actuated solid membranes, or (2) indirect 

motion driven by hydrodynamic or osmotic effects. These mechanisms facilitate rotational, 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2025 doi:10.20944/preprints202501.2201.v1

©  2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202501.2201.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 11 

 

translational, and deflection motions, making fluidic actuators versatile tools for a wide range of 

applications. 

One notable category of fluidic actuators is the amplifier fluidic actuator, which operates based 

on the Coanda effect. This effect ensures the attachment of the main jet from the supply flow to the 

wall, producing an output flow at the device's end. By altering the control flow or pressure, the main 

jet can be redirected to another output, achieving stable functionality. However, the process of jet 

attachment and switching is complex and has been the subject of extensive research [4,5]. These 

fluidic elements perform functions analogous to electronic systems, offering unique advantages in 

microfluidic applications. 

Despite their potential, fluidic actuators face challenges, particularly in controlling reversible 

outlet flow in mono-stable oscillators. This study addresses this issue by proposing a novel approach 

to reduce reversible outlet flow, thereby enhancing the performance and reliability of microfluidic 

systems. The general design for a fluidic element from this category is presented in Figure 1 

 

Figure 1. geometrical form of micro actuators. 

This overview primarily examines fluidic actuators, with a particular emphasis on their 

operational principles, classifications (see Table 1), and distinguishing features. 

Table 1. Relevant work on micro actuators. 

reference First Author Year 

 

Actuation 

Type 

Size L*w*h 

(in µm) 

Operating 

Conditions 

[36] Chi S.P. 1997 Electro thermal 1000*700*3 15V         2,8µN 

      

[37] Neils T. 1998 Electrostatic 200*100*0,5 40V 

[38] Just E. 1999 SMA 2000*3900*100 22mW     17mN 

[39] Bhailis D. 2000 Electromagnetic 5000*5000*2000 1A           15mN 

[05] Volland B.E. 2001 Electrostatic 3300*1250*5 80V    170µm Ø 

[40] Fuller, S.B. 2002 Electro thermal / 300 °C          5V 

[41] Abadie J. 2002 SMA 3000*800*200 0,8A             68° 

[25] Bordatchev E.V. 2003 Electro thermal 2800*1400*12,5 1,9V 

[42] Olivier. M 2004 Electrostatic 1200*800*10 75V 

[43] Yang J. 2004 Piezoelectric 1200*320*1,5 15V    16,67kHz 

[44] Vitorio. A 2004 Electrostatic / 400V 

[33] Zhang H. 2004 SMA 4000*3000*290 1A        81µm Ø 

[45] Ahn 2004 Electromagnetic 3500*3500 20mA      920Hz 

[46] Fu 2004 SMA 2200*2200 5V           30mA 

[02] D.Piyabongkarn 2005 Electrostatic 3200*3000*50 10V 

[29] C.T. Pan 2005 Electromagnetic 1000*1000*10 5V             17,5° 

[31] D.H. Kim 2005 Electromagnetic 15500*5220*500 8V           18mN 

[47] Mitsui 2006 Electromagnetic 7400*9800 4.6mA    80,5Hz 

[13] S.K.Nah 2007 Piezoelectric 36000*30000*3 0-100V 

[06] Felix. B 2007 Electrostatic 7700*5600*50 150V  100µm Ø 

[48] Liu X. 2007 Electrostatic 4000*4000 30V 
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[49] Young-ho C. 2007 Electromagnetic 4000*4000*570 27mA      11kHz 

[50] Andrew C. 2007 Electromagnetic 200*2*3.5 4V          200µN 

[51] Kim 2007 Electromagnetic 2400*2900 3V           350Hz 

[52] Vagia. M 2008 Electrostatic 400*400 / 

[07] Chen. T 2008 Electrostatic 6200*3500*50 30V    150µm Ø 

[53] Gustavo.A. 2008 Electro thermal 500*500*30 

1000*1000*30 

70mW 

79mW 

[54] Guo S. 2008 SMA 45000*30000*30000 1000µL    50 Hz 

[55] P. M. Nieva 2008 Electro thermal 200*25*2 10V 3.7-13.3µm 

[08] Varona. J 2009 Electrostatic 100*100*3,5 45V 

[56] Jia 2009 Electro thermal 1000*1000 8V           336Hz 

[57] Micky.R. 2010 Piezoelectric 15000*2000*300 100V       15mN 

[58] Zhu 2011 Piezoelectric 2000*2000 2V           316Hz 

[16] Koh 2011 Piezoelectric 5000*5000 9V           30Hz 

[59] Lan C.C. 2011 SMA 45000*70000*20500 3.6 V     490mN 

[60] Liu 2012 Electro thermal 2000*2000 0,6V        197Hz 

[09] Jia. Y 2013 Electrostatic 6900*6500*50 120V 

[61] Q. Xu 2013 Piezoelectric 26000*5000*860 2V           500Hz 

[62] Park, E.S. 2013 Electrostatic 650*90*2.25 200°C         10Ω 

[63] Ren-Jung Chang 2013 SMA 937*477 50mA         3V 

[64] Bessonov, A. 2014 Piezoelectric 25000*1000*6.6 / 

[65] A. Sharma 2015 Piezoelectric 7100*2300*566 114Hz     54nW 

[66] Salem Saadon 2015 Piezoelectric 2450*780*512 0,4V      6,8µW 

[67] Hussein hussein 2015 Electro thermal 3200*400*100 15V   18V 

[68] Marija Cauchi 2016 Electro thermal 411*45*4 0,22V     9µm Ø 

[69] Bruno Andò 2016 Electromagnetic 95000*20000*140 4.1 Hz  37.1 mT 

[70] Yuki Yamamoto 2016 Electrostatic 10000*10000*38 38mg 

[71] Haijun Zhang 2017 Electro thermal 580*105 13.7 µm     2 Hz 

[72] Achraf Kachroudi 2017 Piezoelectric 20000*20000*150 d33=750 at 25°C 

[73] Yingxiang Liu 2018 Piezoelectric  80800*48000*24000 427 mm/s 

[27] Marija Cauchi 2018 Electro thermal  606*169*28 3V      (5-9)µm 

[74] Ying Wu 2019 Piezoelectric  12000*10000*8000 5.86 x 105 µrad/s 

[28] Rolend Elsen  2019 Electro thermal  / 1V   (55-110) µm 

     [75] Palak Bhushan 2020 Electromagnetic 

Actuator 

4cm and weighs 133 

mil-gr 

voltage (<3 V) 

[76] Fan, J. 2020 Pneumatic actuator  175000 × 100000 × 

60000  

0.01 to 0.09 

[77] Nader A. Mansour 2021 Electromagnetic 

Actuator 

15000 × 15000 × 40 000 0 to 100 mA 

[78] Cheng, P. 2021 Vacuum buckling 220000 −0.002 to −0.1 MPA 

0.6 to 2 HZ 

[79] Saurabh .Jadhav 2023 Pneumatic actuators 60000 x60000   

2. Simulation of Fluidic Actuation with Mobile Object 

The increasing demand for microsystems in medical and military applications has driven the 

development of advanced actuation systems. In this study, we simulate mono-stable fluidic systems 

incorporating mobile components to manipulate the shape and output chamber of the moving object, 

thereby optimizing actuator performance. 

Description of the Geometrical Model (Combination of Oscillator and Actuator) 

A fluidic actuator measuring 5 × 15 mm² was designed for numerical simulation using FLUENT. 

The actuator features a moving part with two inlets and one outlet. To evaluate the system's behavior 
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and optimize performance, the moving part was modeled in three distinct shapes: sphere, square, 

and H-shaped, each with dimensions of 4.8 mm. 

The simulation process involved the following steps: 

1-Geometrical Modeling: The actuator and oscillator were combined into a single model. 

2-Mesh Generation: A triangular mesh was created, consisting of 166,782 nodes, to ensure 

accurate simulation results. 

3-Dynamic Mesh Model: A dynamic mesh model was employed to track the movement of the 

mobile object under fluid forces. 

4-The geometry of the actuator was modified to ensure convergence at the two inlets, aligning 

with the oscillator's outlet dimensions. This configuration is illustrated in Figure 2 

 

Figure 2. Geometrical form and meshing prototype. 

The second part of this study constitutes its core contribution. It involves the integration of the 

ball actuator with the fluidic oscillator to enhance the oscillator's performance by minimizing reverse 

fluid flow through the right and left outlet holes, as well as the oscillator itself. To achieve this, the 

actuator's geometry was modified to ensure convergence at the two inlets, aligning it with the 

oscillator's outlet dimensions. This modified geometry is illustrated in Figure 3 

 

Figure 3. The geometry representing the combination of the actuator and the oscillator. 

To accommodate the new geometry, several modifications were made to the mesh. The primary 

objective was to achieve a mesh with a low maximum aspect ratio and minimal asymmetry. The final 

mesh used in the FLUENT simulations, presented in Figure 4, consists of a triangular structure 

comprising 166,782 nodes. To ensure optimal balance between result accuracy and computational 

efficiency, additional meshes with varying densities (41,000 nodes and 442,986 nodes) were also 

generated and evaluated. 

As the moving part (the sphere) shifts in response to fluid forces acting on its boundaries, the 

mesh boundaries must adapt accordingly. To address this, a dynamic mesh model was employed. 

The dynamic mesh capabilities of FLUENT, combined with a user-defined function, were utilized to 

accurately track the movement of the sphere throughout the simulation. 
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Figure 4. The mesh used for the simulations of geometry in Fluent. 

3. Simulation Results 

The mass flow rate at the exit of the actuator, corresponding to the geometry of case (b), is 

depicted in Figure 5. This figure illustrates the mass flow rate under a pressure variation of P = 3 bar 

during both the forward and return motion of the spherical mobile object Figure 6.. 

 

Figure 5. Mass flow rate signal as a function of time (s) at the output and for a ΔP = 3 bar at the output of the 

actuator for the circular-shaped mobile. 

 

Mobile Forward phase 
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Mobile return phase 

Figure 6. Contour plots of the velocity Position of the ball at different times. 

3.1. Evolution of Mass Flow at the Left and Right Outputs of the Oscillator-Actuator Combination 

Figure 7 depicts the mass flow rate as a function of time at the actuator's output under applied 

pressures of 2 bar and 2.5 bar, respectively. The results indicate that the return flow at both the left 

and right outputs of the oscillator is nearly negligible. 

 

Figure 7. Mass Flow Rate Signal as a Function of Time at the Right and Left Outlets for the Oscillator-Actuator 

Combination Subjected to Pressures of 2 Bars and 2.5 Bars. 

3.2. Evolution of Mobile Velocity 

Figure 8 illustrates the axial velocity profiles of the sphere's motion for supply pressures of 

P=1.5 bar and P=2 bar at the oscillator inlet. The profiles exhibit a distinct sawtooth pattern, with the 

velocity reaching a peak of 10 m/s at a pressure of 2 bar. 
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Figure 8. Axial Velocity Profile as a Function of Time for Pressures P=1.5 barP = 1.5 \, \text{bar}. 

3.3. Trend Curve 

The fluid oscillator frequency at the millimeter scale was simulated using CFD. The initial 

numerical results indicate that the fluid oscillator frequency increases with an increasing ΔP/P ratio, 

within a pressure range of 1.5 to 3 bars Figure 9. 

 

Figure 9. Trend Curve Representing the Oscillation Frequency as a Function of the (ΔP/P). 

5. Conclusions 

The performance and compactness of microfluidic actuators have been significantly enhanced 

through the implementation of various mechanisms and innovative combinations. High-

performance actuators, characterized by their elevated force and power density alongside minimal 

power consumption, are in great demand for a wide range of applications, including minimally 

invasive surgical procedures and micro-robotic systems. 

Numerical simulations have been conducted to assess the efficiency of these microactuators, 

with particular attention given to the internal channel length scale and the diameter of the digital 

flow. However, accurately modeling the complexity of the diode geometry remains challenging due 

to the involvement of high-pressure conditions. 

This study has proven to be instrumental in addressing several challenges faced by our team. 

Notably, it has provided effective solutions to the backflow issues encountered with mini-injectors, 

as reported in previous works in literature. 
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