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Abstract: A major challenge in aging research is identifying interventions that can improve lifespan 

and health and minimize toxicity. Clinical studies cannot consider decades‐long follow‐up periods, 

and  therefore,  in‐silico  evaluations using omics‐based  surrogate biomarkers are  emerging as key 

tools. However, many current approaches train predictive models on observational data, rather than 

on  intervention  data, which  can  lead  to  biased  conclusions. Yet,  the  first  classifiers  for  lifespan 

extension by compounds are now available, learned on intervention data. Here, we review evaluation 

methodologies  and we prioritize  training on  intervention data whenever  available, highlight  the 

importance of  safety and  toxicity assessments, discuss  the  role of  standardized benchmarks, and 

present a range of feature processing and predictive modeling approaches. We consider linear and 

non‐linear methods, and automated machine learning workflows. We conclude by emphasizing the 

need  for explainable and reproducible strategies, the integration of safety metrics, and the careful 

validation of predictors based on interventional benchmarks. 

Keywords:  longevity  interventions;  gene  expression;  toxicity/safety;  predictive  modeling; 

interpretable features   

 

Introduction 

Aging  research  increasingly  focuses  on  identifying  and  testing  interventions  — 

pharmacological, genetic, dietary or behavioral — that might slow, stop or reverse aging processes 

and  improve  health  in  later  life  (Lopez‐Otin  et  al.,  2013;  Lopez‐Otin  and  Kroemer,  2021).  Yet, 

demonstrating  long‐term  health  and  lifespan  benefits  and  low  toxicity  in  humans  is  inherently 

challenging, and clinical studies of long‐term health would require to follow participants for decades. 

Surrogate biomarkers, including blood values, gene expression and methylation data, have risen to 

prominence, enabling  the  training of “phenotypic”,  transcriptomic and epigenetic aging clocks  to 

predict intervention effects (Fuellen et al., 2019; Hartmann et al., 2021; Hartmann et al., 2023; Moqri 

et al., 2023; Moqri et al., 2024). However, almost all of these surrogate‐based predictors are established 

exclusively on observational data, not on  interventional outcome data. The resulting domain shift 

can  lead  to misguided predictions  of  intervention  efficacy,  as  already  noted  for  reprogramming 

interventions (Kriukov et al., 2024). Only very recently, (Belikov et al., 2024) published intervention‐

based predictors to identify compounds that may extend the lifespan of mice (see Box 1). 
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Box 1. Predicting Lifespan‐Extending Compounds in Mice. 

Belikov and colleagues (Belikov et al., 2024) used machine learning to identify compounds that can extend 

the lifespan of mice, leveraging murine lifespan data sourced from the DrugAge database. The authors used 

three different kinds of features: (i) direct protein target annotations, capturing gene ontology and pathway 

descriptors of a compound’s protein interactors; (ii) gene expression signatures from the LINCS repository, 

using consolidated expression values for each compound; and (iii) PubChem‐based chemical substructure 

representations. Random Forest models were  trained and  tested via cross‐validation. Both area under  the 

ROC  curve  (AUC)  and  geometric  mean  (GMean)  metrics  were  reported;  the  latter  was  usually  more 

appropriate  because  of  imbalances  in  the  dataset.  The  best  performance  arose  from  the  target‐based 

annotations.  By  contrast,  LINCS  gene  expression  data  and  chemical  substructure  representations 

underperformed, perhaps because no feature extraction/selection was done. Finally, the study used selected 

top models to identify potentially novel lifespan‐extending compounds from DrugBank.   

In this Review, we examine the rapidly evolving field of  in‐silico  intervention analytics, with a 

focus on learning from intervention data rather than observational data whenever possible, see Figure 

1. We also discuss why safety/toxicity considerations are critical in preventive interventions. In depth, 

we highlight  intervention‐based benchmarks that enable the comparison of prediction methodologies, 

see Table 1. We then delineate two steps important for robust predictions — feature selection/extraction 

and predictor learning — and survey a variety of established and emerging approaches, see Figure 2. 

Feature extraction methods such as principal component analysis (PCA) reduce complexity and can 

highlight  biologically  interpretable  signatures;  predictive modeling  approaches  range  from  linear 

regressors and classifiers to non‐linear machine  learning methods such as random forests, gradient‐

boosted trees, and neural networks (Eckhart et al., 2024; Pantazis et al., 2020; Piccolo et al., 2022). Finally, 

we discuss  the  emerging use  of  generative AI  and  large  language models  (LLMs)  in  this  context. 

Although preliminary and often challenging, LLMs could eventually provide excellent assistance  in 

extracting features, building models, and generating mechanistic hypotheses. 

 

Figure 1. Conceptual Illustration of the domain shift between considering observations versus interventions, 

for lifespan extension data. On the left, the decision boundary of a classifier learned on lifespan data is shown; 

on the right the decision boundary is based on data from samples of young versus old tissues or cells. The task 

is to classify a new intervention (marked ?) based on its effect on gene expression. A completely different aspect 

of classifier quality is misclassification due to other errors or noise; one sample each comes from the same domain 

and is misclassified for this reason. 
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Figure 2. Conceptual Illustration of Feature Selection/Extraction and Predictor Learning. Schematic workflow 

illustrating  how  transcriptomic  data  from  intervention  and  control  samples  undergo  feature  selection  or 

extraction (non‐linear or linear, e.g., via MRMR, PCA or based on gene sets), sometimes resulting in interpretable 

feature sets. These features are then used to train predictors (linear or non‐linear, e.g., Logistic Regression, or 

Random Forest) that estimate intervention outcomes (e.g., lifespan extension, toxicity). Shades of green reflect 

that depending on method, we  can  expect  lower or higher  chances of being  able  to  interpret  the  results  in 

biological or biomedical terms. . 

The Challenge of Predicting Intervention Outcomes 

Predictive modeling of intervention outcomes (e.g., lifespan, health, toxicity) is central to aging 

research.  Yet,  most  surrogate‐based  predictors,  known  as  “aging  clocks”,  are  derived  from 

observational  data,  such  as  blood  cell  counts  or  other  laboratory  values,  transcriptomics  or 

methylation  data,  from  individuals  of  varying  age  (Fuellen  et  al.,  2019; Hartmann  et  al.,  2021; 

Hartmann et al., 2023; Moqri et al., 2023; Moqri et al., 2024). Instead, training predictors directly on 

intervention data, when interventions with known outcomes and corresponding omics profiles are 

available, should provide more reliable inference. Why is that so? For a detailed description, let us 

consider the specific example of training on transcriptomic (gene expression) data after compound 

intervention,  to predict health and  lifespan outcomes,  as  compared  to  the  standard use of  aging 

clocks. 

In the conceptual example of Figure 1 left, the decision boundary of a predictor is visualized, 

which was learned to decide between interventions that extend lifespan (+) and interventions that do 

not  (–), where  the  feature  space  is defined by  the  similarity of  the gene expression effects of  the 

interventions. In Figure 1 right, predictor training was instead based on samples of young (+) versus 

old (–) tissues or cells, again in gene expression similarity space. If the predictors are then asked to 

classify a new intervention (marked by ?), the predictor on the right suffers from the domain shift 

from observational to intervention data. Everything else being equal, that is, assuming the same input 

data quality,  etc.,  the domain  shift  is  expected  to  trigger  inferior  results, because  the  similarity  of 

interventions can only be directly measured in the space of intervention effects. This domain shift was very 

recently described for the special case of using aging clocks to assess reprogramming interventions 

(Kriukov et al., 2024), including ample empirical evidence that the use of observational data for the 

interpretation of intervention data may be problematic. Moreover, unlike cancer drug development, 

this  difference  is  not  simply  about  the  control  imposed  by  an  interventional  trial  (optimally  a 

randomised  controlled  clinical  trial),  to  minimise  confounding  factors  and  to  better  establish 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2025 doi:10.20944/preprints202501.1834.v1

https://doi.org/10.20944/preprints202501.1834.v1


  4  of  11 

 

causality. Judging longevity interventions by standard aging clocks is a unique situation in that the 

clocks themselves rely solely on observational data; the only “intervention” is the passage of time. Of 

note, moving from the classification task considered in Figure 1 to the analogous regression task, the 

scenario on the right corresponds to the standard way of using observational data for learning aging 

clocks that are then used to assess intervention effects.   

Use of intervention training data is conceptually straightforward as visualized in Figure 1, but 

practically challenging: high‐quality  interventional datasets with paired phenotypic outcome data 

are  scarce.  Yet,  resources  are  improving.  For  long‐term  health,  studies  that  associate  lifespan 

outcomes  in model  organisms with  intervention‐induced  omics  changes  have  begun  to  appear 

(Belikov et al., 2024), see Box 1. It thus becomes easier to train predictors directly on intervention data, 

producing models  that  are  expected  to  generalize  better  to  new  interventions  and  reduce  the 

uncertainty arising from the conceptual domain shift from observational to interventional data. For 

toxicity, where the use of intervention data is standard, these are now consolidated in repositories 

like TOXRIC, which provide large‐scale transcriptomic data and well‐defined toxicity outcomes (Wu 

et al., 2023), see Box 2. Toxicology  is not  just a role model  for predictor  learning,  though;  it  is an 

important and sometimes overlooked aspect of assessing any aging‐related intervention. 

Box 2. The TOXRIC Database. 

TOXRIC (TOxicology Resources for Intelligent Computation) (Wu et al., 2023) is a large‐scale database aimed 

at supporting the development and benchmarking of toxicity prediction models. At time of publication,  it 

contained more  than 113,000  compounds,  spanning 13  toxicity  categories  (e.g., acute  toxicity, ecotoxicity, 

hepatotoxicity, endocrine disruption) and 1,474 in vivo or in vitro endpoints.    A key strength of TOXRIC is 

its “ML‐ready” focus: the database provides curated, standardized toxicity labels and up to 39 feature types 

(e.g., molecular fingerprints, transcriptomic profiles, target annotations), so that these can be used directly as 

input  (features)  or  output  (labels)  for machine  learning.  For  instance,  the database  offers  transcriptomic 

readouts  from  LINCS, Open  TG‐GATEs,  and DrugMatrix,  providing  high‐dimensional  gene  expression 

information  after  compound  exposure.  Structural  descriptors  and  target  protein  annotations  are  also 

included,  broadening  the  scope  of  potential modeling  strategies.  Benchmarking  plays  a  central  role  in 

TOXRIC. Multiple classification and regression tasks are established (e.g., predicting toxic vs. non‐toxic status 

or estimating LD50), and performance metrics are reported for four “baseline” algorithms frequently used in 

toxicity modeling—eXtreme Gradient Boosting, Random Forest, Support Vector Machine, and Deep Neural 

Network. Researchers can quickly compare how different feature types or model classes perform for each 

endpoint, and then download the corresponding data subsets for further experiments; the website also offers 

a  range  of  results,  visualized  appropriately.  In  the  context  of  in‐silico  intervention  analytics,  TOXRIC’s 

standardized datasets and benchmark results offer a comprehensive source of toxicity information that can 

be leveraged to train or validate predictive models focused on toxic effects. 

 

The Importance of Safety and Toxicity Assessments 

In the context of promoting aging‐related interventions, especially in healthy individuals, safety 

is paramount. Unlike interventions in severely ill patients where some toxicity might be acceptable if 

the  therapeutic benefit  is high, preventive  aging‐related  interventions must meet  a much higher 

safety  threshold.  Predictive modeling  efforts must  therefore  emphasize  toxicity  and  side‐effect 

prediction  (Janssens and Houtkooper, 2020; Uner et al., 2023; Wang et al., 2016; Wu et al., 2023). 

Moreover,  safety/toxicity considerations can specifically  influence  the  selection of  the  features on 
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which to focus in the intervention analysis pipeline. For example, when using gene expression data 

to establish predictors, features may be specifically selected or extracted with toxicity in mind, based 

on genes known to be involved in toxicity‐related processes and pathways (Saarimaki et al., 2023a; 

Saarimaki et al., 2023b), see also below. 

Establishing Benchmarks for Model Comparison 

Rigorous  benchmarking  is  essential  for  progress. Without  standardized  benchmarks,  it  is 

difficult to compare methods or assess generalizability. Benchmark datasets should represent various 

intervention types (e.g., drug treatments, dietary changes) and outcomes (e.g., lifespan, toxicity), and 

include both successful and neutral or harmful  interventions. Table 1 outlines our suggestions for 

such intervention‐based benchmarks. For toxicity, TOXRIC provides large‐scale transcriptomic data 

linked to various toxicity endpoints (Wu et al., 2023), see also Box 2. For lifespan extension, data from 

DrugAge and the Interventions Testing Program (ITP) (Nadon et al., 2008) have recently been curated 

and connected to LINCS gene expression profiles (Belikov et al., 2024), see also Box 1. Side‐effect data 

(Kuhn et al., 2016) were also connected to LINCS (Uner et al., 2023; Wang et al., 2016). Integrative 

datasets, featuring aging‐related interventions with functional outcomes and gene expression data, 

are  becoming  available  (Tyshkovskiy  et  al.,  2024),  also,  for  example,  with  a  focus  on  partial 

reprogramming (Browder et al., 2022; Hishida et al., 2022; Sarkar et al., 2020). Additional benchmarks 

can be constructed for senotherapeutics (Smer‐Barreto et al., 2023), nutritional interventions (Ford et 

al., 2023), and for in‐vivo rat toxicity (Gwinn et al., 2020). Using these benchmarks, researchers can 

systematically compare feature extraction and predictor learning pipelines and monitor performance 

improvements. 

Table 1. Representative Benchmarks for Intervention Analytics. 

Benchmark 

source 
Data Type  Intervention Examples  Outcomes  Reference 

TOXRIC 
Transcriptomics + 

toxicity data 

~2,800 compounds from 

LINCS/ DrugMatrix/TG‐

GATEs 

Toxicity (acute 

toxicity such as 

LD50; 

genotoxicity such 

as mutagenicity) 

(Wu et al., 

2023) 

DrugAge‐based 

Gene expression 

(LINCS) + drug 

annotations 

56 compounds 

Lifespan 

extension (mouse 

data) 

(Belikov et 

al., 2024) 

SIDER‐based 

Transcriptomics 

(LINCS) + side 

effects 

251 compounds  Drug side effects 

(Kuhn et al., 

2016; Uner et 

al., 2023; 

Wang et al., 

2016) 

Tyshkovskiy 
Transcriptomics + 

lifespan 

40 interventions in mice, 

from ITP and Gene 

Expression Omnibus 

Lifespan effects 

(extension or 

shortening) 

(Tyshkovskiy 

et al., 2024) 

Reprogramming 

data 

Human or mouse 

data, partial 

reprogramming 

Various partial 

reprogramming protocols 

Various health‐

related outcomes 

(Browder et 

al., 2022; 

Hishida et 

al., 2022; 

Sarkar et al., 

2020) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2025 doi:10.20944/preprints202501.1834.v1

https://doi.org/10.20944/preprints202501.1834.v1


  6  of  11 

 

Seno‐ therapeutic 

data 

Cellular and 

organismal 

senotherapy data 

Various senotherapeutic/ 

senolytic compounds 

Seno‐ therapeutic/ 

senolytic action 

(Smer‐

Barreto et al., 

2023) 

Nutritional 

interventions 

Nutritional data

   

Various nutritional 

interventions with mild 

effects 

Various health‐

related outcomes 

(Ford et al., 

2023) 

Gwinn 
Rat in‐vivo 

intervention data 

Toxic (and non‐toxic) 

compounds 
Toxicity outcomes 

(Gwinn et al., 

2020) 

Feature Selection/Extraction and Predictor Learning 

A pipeline for the interpretable machine learning of intervention effects is described in Figure 2, 

consolidating existing approaches already described in (Wu et al., 2023) and (Belikov et al., 2024), and 

taking inspiration from machine learning of cancer drug sensitivity and cancer type (Eckhart et al., 

2024; Pantazis et al., 2020; Piccolo et al., 2022; Smith et al., 2020), in a single unified scheme. In the 

next sections, the various steps of the pipeline will be discussed in more detail. In our case, the input 

is  high‐dimensional  high‐throughput molecular  data,  which  may,  e.g.,  be  the  gene  expression 

(transcriptomics), protein abundance (proteomics) or methylation data (epigenomics) measured in 

control versus  intervention samples. These data are  frequently undergoing  feature processing, by 

selection (keeping features as they are) or by extraction (calculating new features based on formulas). 

The consequent reduction of the feature space can avoid overfitting (see below). Training, testing and 

validation of predictors is then performed based on these features, using the labels associated with 

the  samples,  such  as  lifespan  extension  or  toxicity  for  classification.  Predictors  can  also  employ 

regression, learning numerical labels. Training/testing refers to the (automated) machine learning of 

predictors (see below), and validation to the use of the learned predictors on new but similar data, 

testing their generalizability. (In the literature, the term “testing” sometimes refers to what we call 

“validation”,  and  vice  versa.)  Method  choice  can  strongly  influence  the  ability  to  assign 

biological/biomedical meaning  to  the  features underlying  the prediction  results, enabling various 

grades of interpretability, which may be intrinsic to the method, but can also be offered by post‐hoc 

analyses, see Figure 2. 

Feature Selection/Extraction 

Omics data, particularly transcriptomics, often measure thousands of genes. Directly applying 

machine learning on these high‐dimensional, noisy data can lead to overfitting (Eckhart et al., 2024; 

Smith et al., 2020). Feature selection/extraction simplifies the feature space, generating a smaller set 

of features. 

Linear Methods: MRMR,  PCA  and  Contrastive  PCA.  A  wide  variety  of  feature  selection 

methods are available, exemplified here by Maximum Relevance Minimum Redundancy (MRMR), 

which is often highlighted for its strong empirical performance and its theoretical appeal, as it aims 

for features strongly dependent on the outcome but weakly dependent on one another, see (Eckhart 

et al., 2024). This principle can be implemented in a linear way based on correlation as well as in a 

non‐linear way  based  on mutual  information. A popular  linear method  for  feature  extraction  is 

principal component analysis (PCA), which produces features as  linear combinations of genes  (or 

other molecular variables) that explain the greatest variance in the data (Ringner, 2008). On that basis, 

PCA  can  separate  samples  by  intervention  type  or  outcome  and  reveal  underlying  biological 

processes. Because PCA features are linear, they are often easier to interpret biologically. For instance, 

certain  principal  components may  correspond  to  activation  of  proliferative  pathways  or  stress 

responses. However,  PCA may  also  capture  confounders  such  as  batch  effects  or  differences  in 

experimental conditions. Contrastive PCA  (cPCA)  is a variant  that uses “background” or control 

datasets to highlight features specific to the intervention condition (Abid et al., 2018; Boileau et al., 
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2020; de Oliveira et al., 2024). This may be particularly valuable in aging‐related intervention studies, 

where differences in age, species, or tissue can obscure the signal of interest. cPCA may help isolate 

the molecular signatures of the interventions beyond baseline variability (Iturria‐Medina et al., 2022), 

but this conjecture lacks confirmation for aging‐related interventions. 

Linear Methods: Gene Set Approaches. Interpretable features can also be derived from annotated 

gene sets, including biological pathways or processes, and specifically hallmarks of aging, or adverse 

outcome pathways (Basili et al., 2022; Pun et al., 2022; Saarimaki et al., 2023a; Saarimaki et al., 2023b; 

Subramanian  et  al.,  2005).  Such  gene  sets may  simply  define  the  features  to  be  selected. More 

frequently,  by  summarizing  expression  levels  for  sets  of  genes with  shared  biological meaning, 

highlighted by their significant up‐ or downregulation, one obtains “enrichment features” that reflect 

the activity of entire pathways or processes. Tools like gene set enrichment analysis (GSEA), single‐

sample GSEA, and gene set variation analysis (Hanzelmann et al., 2013; Subramanian et al., 2005) can 

therefore  translate gene expression  into biologically  interpretable pathway or process enrichment 

scores, enabling more meaningful comparisons between  interventions. Enrichment‐based  features 

can also reduce dimensionality and mitigate the risk of overfitting. These gene‐set–based features can 

be  visualized  in  low‐dimensional  embeddings  and  network maps,  helping  researchers  identify 

clusters of interventions that share similar mechanistic signatures (Merico et al., 2010; Nguyen et al., 

2021). Such visualization can guide the generation of mechanistic hypotheses and highlight potential 

safety concerns if certain pathways are associated with toxicity. 

Non‐linear Dimensionality Reduction. Non‐linear methods for feature processing can be based, 

e.g., on Neural Networks (incl. Autoencoders) (Eckhart et al., 2024). Moreover, non‐linear alternatives 

to PCA, such as UMAP or t‐SNE can be used to represent samples in lower‐dimensional spaces (Yang 

et al., 2021), and these representations can be used to define features. While powerful for visualizing 

complex  relationships  and  subgroups,  the  results  of  these  methods  are  harder  to  interpret 

biologically. Since interpretability is crucial in preventive health interventions,    linear or gene set–

based approaches may be preferable. 

Predictor Learning 

Once features are defined, the next step is to train and test predictive models. Such predictors 

then estimate intervention outcomes (e.g., lifespan extension, toxicity) from the extracted (or selected) 

features. However, feature processing is an optional step, and generally, predictors can be given all 

features as‐is, even if these are high‐dimensional, potentially at the risk of overfitting; some methods 

can also combine feature selection and predictor definition into a single formula.   

Linear  Predictors.  Linear  predictors,  including  logistic  regression  or  elastic  nets,  can  be 

combined with PCA‐based or gene set–based features to produce interpretable models (Eckhart et 

al., 2024). The weights assigned to each feature can then highlight biologically meaningful signals 

and simplify the interpretation of predictions. However, purely linear models may not fully capture 

the non‐linear relationships between gene expression changes and the outcome phenotype. 

Non‐linear Machine Learning Models. Non‐linear models like random forests, gradient boosting 

(e.g., XGBoost), and neural networks can often but not always yield better predictive performance 

(Eckhart et al., 2024; Pantazis et al., 2020; Piccolo et al., 2022). In particular, gradient boosting methods 

have shown strong performance on toxicity benchmarks    (Wu et al., 2023) Nevertheless, non‐linear 

models  tend  to be  less  interpretable. Techniques  like LIME or Shapley values  can offer post‐hoc 

explanations  (Ortigossa et al., 2024). Random  forests also provide variable  importance scores  that 

indicate which features are most influential, fostering interpretability. However, balancing accuracy 

with  interpretability  remains  a  challenge.  Since  safety  and  transparency  are  vital,  especially  for 

interventions in healthy individuals, simple but interpretable models may sometimes be preferred 

over complex black‐box models. 

Automated Machine Learning (AutoML) and Model Ensembles. Given the complexity of feature 

extraction  and  the  multitude  of  available  predictors,  automated  machine  learning  (AutoML) 

frameworks can expedite the search for optimal intervention analysis pipelines (Tsamardinos et al., 
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2022). These frameworks systematically test different feature extraction methods, prediction model 

types,  and  hyperparameters.  Furthermore,  ensemble  strategies  that  combine multiple  prediction 

models  can  yield  more  robust  predictions  (Campager  et  al.,  2023).  Incorporating  uncertainty 

estimates  as  suggested by  (Kriukov  et  al.,  2024)  can  further  increase  the  reliability  and  safety of 

intervention recommendations. 

Early Experiences with Generative AI and LLMs 

Large  language  models  and  related  AI  techniques  hold  promise  for  integrating  disparate 

knowledge sources and generating new hypotheses (Joachimiak et al., 2024; Liu et al., 2024; Pickard 

et al., 2024; Simm et al., 2024; Tang et al., 2024; Wang et al., 2024; Xin et al., 2024; Zhou et al., 2024). 

They could assist with data preprocessing,  identifying confounders, or proposing candidate gene 

sets. However, early attempts have shown limitations — such as difficulties in handling complex, 

messy  biological datasets  and  improper  statistical  analyses  (Joachimiak  et  al.,  2024).  In  the  near 

future, LLMs might help design improved intervention analysis pipelines, facilitate interpretability, 

or assist in evaluating interventions against curated benchmarks. At present, generative AI is best 

viewed  as  a  coding  assistant  or  brainstorming  partner  rather  than  a  fully  autonomous  analyst. 

Ensuring correctness and interpretability remains a major challenge (Fuellen et al., 2024). As such, 

LLMs should be integrated cautiously, with human oversight and rigorous validation. 

Perspectives and Future Directions 

As the field advances, several key priorities emerge. First, expanding and refining high‐quality 

intervention datasets, both in model organisms and in humans, will improve training and testing of 

predictive  models.  Notably,  large‐scale  multi‐intervention  trials  for  mice  are  being  run  with 

increasing size and sophistication, e.g.  the Robust Mouse Rejuvenation  trials  (Lewis and de Grey, 

2024), and the same holds for human intervention trials, such as DO‐Health (Kistler‐Fischbacher et 

al., 2024), CALERIE (Ryan et al., 2024) and Cosmos (Vyas et al., 2024). Second, developing methods 

that integrate safety and efficacy predictions simultaneously is paramount; aging interventions must 

be safe if they are to be recommended for healthy individuals. Third, consistent benchmarking and 

publication of standardized protocols will foster reproducibility and progress. Fourth, the  tension 

between model  complexity  and  interpretability  will  continue  to  shape methodological  choices. 

Achieving explainability without sacrificing accuracy, and providing robust uncertainty estimates to 

guard against overconfident predictions, will be crucial. Finally, incorporating generative AI tools in 

a transparent and carefully monitored manner may lead to innovative modeling strategies and new 

insights. 

Conclusions 

Validated  and  explainable  predictive models  for  intervention  outcomes would  profoundly 

enhance our ability to identify strategies that extend lifespan and reduce disease and dysfunction. By 

prioritizing  training  on  intervention data,  consideration  of  safety/toxicity,  and  embracing  robust 

benchmarks, we can better predict real‐world outcomes, optimally with strong interpretability. As 

the  available  datasets  and  computational  tools  improve,  in‐silico  evaluation  can  become  an 

indispensable asset for aging‐related intervention research, complementing experimental studies and 

ultimately informing clinical and public health decisions. 
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