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Abstract: A major challenge in aging research is identifying interventions that can improve lifespan
and health and minimize toxicity. Clinical studies cannot consider decades-long follow-up periods,
and therefore, in-silico evaluations using omics-based surrogate biomarkers are emerging as key
tools. However, many current approaches train predictive models on observational data, rather than
on intervention data, which can lead to biased conclusions. Yet, the first classifiers for lifespan
extension by compounds are now available, learned on intervention data. Here, we review evaluation
methodologies and we prioritize training on intervention data whenever available, highlight the
importance of safety and toxicity assessments, discuss the role of standardized benchmarks, and
present a range of feature processing and predictive modeling approaches. We consider linear and
non-linear methods, and automated machine learning workflows. We conclude by emphasizing the
need for explainable and reproducible strategies, the integration of safety metrics, and the careful
validation of predictors based on interventional benchmarks.

Keywords: longevity interventions; gene expression; toxicity/safety; predictive modeling;
interpretable features

Introduction

Aging research increasingly focuses on identifying and testing interventions —
pharmacological, genetic, dietary or behavioral — that might slow, stop or reverse aging processes
and improve health in later life (Lopez-Otin et al.,, 2013; Lopez-Otin and Kroemer, 2021). Yet,
demonstrating long-term health and lifespan benefits and low toxicity in humans is inherently
challenging, and clinical studies of long-term health would require to follow participants for decades.
Surrogate biomarkers, including blood values, gene expression and methylation data, have risen to
prominence, enabling the training of “phenotypic”, transcriptomic and epigenetic aging clocks to
predict intervention effects (Fuellen et al., 2019; Hartmann et al., 2021; Hartmann et al., 2023; Moqri
etal., 2023; Moqri et al., 2024). However, almost all of these surrogate-based predictors are established
exclusively on observational data, not on interventional outcome data. The resulting domain shift
can lead to misguided predictions of intervention efficacy, as already noted for reprogramming
interventions (Kriukov et al., 2024). Only very recently, (Belikov et al., 2024) published intervention-
based predictors to identify compounds that may extend the lifespan of mice (see Box 1).
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Box 1. Predicting Lifespan-Extending Compounds in Mice.

Belikov and colleagues (Belikov et al., 2024) used machine learning to identify compounds that can extend
the lifespan of mice, leveraging murine lifespan data sourced from the DrugAge database. The authors used
three different kinds of features: (i) direct protein target annotations, capturing gene ontology and pathway
descriptors of a compound’s protein interactors; (ii) gene expression signatures from the LINCS repository,
using consolidated expression values for each compound; and (iii) PubChem-based chemical substructure
representations. Random Forest models were trained and tested via cross-validation. Both area under the
ROC curve (AUC) and geometric mean (GMean) metrics were reported; the latter was usually more
appropriate because of imbalances in the dataset. The best performance arose from the target-based
annotations. By contrast, LINCS gene expression data and chemical substructure representations
underperformed, perhaps because no feature extraction/selection was done. Finally, the study used selected

top models to identify potentially novel lifespan-extending compounds from DrugBank.

In this Review, we examine the rapidly evolving field of in-silico intervention analytics, with a
focus on learning from intervention data rather than observational data whenever possible, see Figure
1. We also discuss why safety/toxicity considerations are critical in preventive interventions. In depth,
we highlight intervention-based benchmarks that enable the comparison of prediction methodologies,
see Table 1. We then delineate two steps important for robust predictions — feature selection/extraction
and predictor learning — and survey a variety of established and emerging approaches, see Figure 2.
Feature extraction methods such as principal component analysis (PCA) reduce complexity and can
highlight biologically interpretable signatures; predictive modeling approaches range from linear
regressors and classifiers to non-linear machine learning methods such as random forests, gradient-
boosted trees, and neural networks (Eckhart et al., 2024; Pantazis et al., 2020; Piccolo et al., 2022). Finally,
we discuss the emerging use of generative Al and large language models (LLMs) in this context.
Although preliminary and often challenging, LLMs could eventually provide excellent assistance in
extracting features, building models, and generating mechanistic hypotheses.

‘ New aging-related intervention, located in gene expression space: Does it extend Iifespan?‘

boundary defined by / boundary defined by \
Intervention-specific = / o= = anything influencing \ = & = =
causal effects on lifespan ’ aging/mortality ? - - - _
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Figure 1. Conceptual Illustration of the domain shift between considering observations versus interventions,
for lifespan extension data. On the left, the decision boundary of a classifier learned on lifespan data is shown;
on the right the decision boundary is based on data from samples of young versus old tissues or cells. The task
is to classify a new intervention (marked ?) based on its effect on gene expression. A completely different aspect
of classifier quality is misclassification due to other errors or noise; one sample each comes from the same domain
and is misclassified for this reason.
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Figure 2. Conceptual Illustration of Feature Selection/Extraction and Predictor Learning. Schematic workflow
illustrating how transcriptomic data from intervention and control samples undergo feature selection or
extraction (non-linear or linear, e.g., via MRMR, PCA or based on gene sets), sometimes resulting in interpretable
feature sets. These features are then used to train predictors (linear or non-linear, e.g., Logistic Regression, or
Random Forest) that estimate intervention outcomes (e.g., lifespan extension, toxicity). Shades of green reflect
that depending on method, we can expect lower or higher chances of being able to interpret the results in

biological or biomedical terms. .

The Challenge of Predicting Intervention Outcomes

Predictive modeling of intervention outcomes (e.g., lifespan, health, toxicity) is central to aging
research. Yet, most surrogate-based predictors, known as “aging clocks”, are derived from
observational data, such as blood cell counts or other laboratory values, transcriptomics or
methylation data, from individuals of varying age (Fuellen et al., 2019; Hartmann et al., 2021;
Hartmann et al., 2023; Moqri et al., 2023; Moqri et al., 2024). Instead, training predictors directly on
intervention data, when interventions with known outcomes and corresponding omics profiles are
available, should provide more reliable inference. Why is that so? For a detailed description, let us
consider the specific example of training on transcriptomic (gene expression) data after compound
intervention, to predict health and lifespan outcomes, as compared to the standard use of aging
clocks.

In the conceptual example of Figure 1 left, the decision boundary of a predictor is visualized,
which was learned to decide between interventions that extend lifespan (+) and interventions that do
not (-), where the feature space is defined by the similarity of the gene expression effects of the
interventions. In Figure 1 right, predictor training was instead based on samples of young (+) versus
old (-) tissues or cells, again in gene expression similarity space. If the predictors are then asked to
classify a new intervention (marked by ?), the predictor on the right suffers from the domain shift
from observational to intervention data. Everything else being equal, that is, assuming the same input
data quality, etc., the domain shift is expected to trigger inferior results, because the similarity of
interventions can only be directly measured in the space of intervention effects. This domain shift was very
recently described for the special case of using aging clocks to assess reprogramming interventions
(Kriukov et al., 2024), including ample empirical evidence that the use of observational data for the
interpretation of intervention data may be problematic. Moreover, unlike cancer drug development,
this difference is not simply about the control imposed by an interventional trial (optimally a
randomised controlled clinical trial), to minimise confounding factors and to better establish
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causality. Judging longevity interventions by standard aging clocks is a unique situation in that the
clocks themselves rely solely on observational data; the only “intervention” is the passage of time. Of
note, moving from the classification task considered in Figure 1 to the analogous regression task, the
scenario on the right corresponds to the standard way of using observational data for learning aging
clocks that are then used to assess intervention effects.

Use of intervention training data is conceptually straightforward as visualized in Figure 1, but
practically challenging: high-quality interventional datasets with paired phenotypic outcome data
are scarce. Yet, resources are improving. For long-term health, studies that associate lifespan
outcomes in model organisms with intervention-induced omics changes have begun to appear
(Belikov et al., 2024), see Box 1. It thus becomes easier to train predictors directly on intervention data,
producing models that are expected to generalize better to new interventions and reduce the
uncertainty arising from the conceptual domain shift from observational to interventional data. For
toxicity, where the use of intervention data is standard, these are now consolidated in repositories
like TOXRIC, which provide large-scale transcriptomic data and well-defined toxicity outcomes (Wu
et al., 2023), see Box 2. Toxicology is not just a role model for predictor learning, though; it is an
important and sometimes overlooked aspect of assessing any aging-related intervention.

Box 2. The TOXRIC Database.

TOXRIC (TOxicology Resources for Intelligent Computation) (Wu et al., 2023) is a large-scale database aimed
at supporting the development and benchmarking of toxicity prediction models. At time of publication, it
contained more than 113,000 compounds, spanning 13 toxicity categories (e.g., acute toxicity, ecotoxicity,
hepatotoxicity, endocrine disruption) and 1,474 in vivo or in vitro endpoints. A key strength of TOXRIC is
its “ML-ready” focus: the database provides curated, standardized toxicity labels and up to 39 feature types
(e.g., molecular fingerprints, transcriptomic profiles, target annotations), so that these can be used directly as
input (features) or output (labels) for machine learning. For instance, the database offers transcriptomic
readouts from LINCS, Open TG-GATEs, and DrugMatrix, providing high-dimensional gene expression
information after compound exposure. Structural descriptors and target protein annotations are also
included, broadening the scope of potential modeling strategies. Benchmarking plays a central role in
TOXRIC. Multiple classification and regression tasks are established (e.g., predicting toxic vs. non-toxic status
or estimating LD50), and performance metrics are reported for four “baseline” algorithms frequently used in
toxicity modeling —eXtreme Gradient Boosting, Random Forest, Support Vector Machine, and Deep Neural
Network. Researchers can quickly compare how different feature types or model classes perform for each
endpoint, and then download the corresponding data subsets for further experiments; the website also offers
a range of results, visualized appropriately. In the context of in-silico intervention analytics, TOXRIC's
standardized datasets and benchmark results offer a comprehensive source of toxicity information that can

be leveraged to train or validate predictive models focused on toxic effects.

The Importance of Safety and Toxicity Assessments

In the context of promoting aging-related interventions, especially in healthy individuals, safety
is paramount. Unlike interventions in severely ill patients where some toxicity might be acceptable if
the therapeutic benefit is high, preventive aging-related interventions must meet a much higher
safety threshold. Predictive modeling efforts must therefore emphasize toxicity and side-effect
prediction (Janssens and Houtkooper, 2020; Uner et al., 2023; Wang et al., 2016; Wu et al., 2023).
Moreover, safety/toxicity considerations can specifically influence the selection of the features on
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which to focus in the intervention analysis pipeline. For example, when using gene expression data
to establish predictors, features may be specifically selected or extracted with toxicity in mind, based
on genes known to be involved in toxicity-related processes and pathways (Saarimaki et al., 2023a;
Saarimaki et al., 2023b), see also below.

Establishing Benchmarks for Model Comparison

Rigorous benchmarking is essential for progress. Without standardized benchmarks, it is
difficult to compare methods or assess generalizability. Benchmark datasets should represent various
intervention types (e.g., drug treatments, dietary changes) and outcomes (e.g., lifespan, toxicity), and
include both successful and neutral or harmful interventions. Table 1 outlines our suggestions for
such intervention-based benchmarks. For toxicity, TOXRIC provides large-scale transcriptomic data
linked to various toxicity endpoints (Wu et al., 2023), see also Box 2. For lifespan extension, data from
DrugAge and the Interventions Testing Program (ITP) (Nadon et al., 2008) have recently been curated
and connected to LINCS gene expression profiles (Belikov et al., 2024), see also Box 1. Side-effect data
(Kuhn et al., 2016) were also connected to LINCS (Uner et al., 2023; Wang et al., 2016). Integrative
datasets, featuring aging-related interventions with functional outcomes and gene expression data,
are becoming available (Tyshkovskiy et al.,, 2024), also, for example, with a focus on partial
reprogramming (Browder et al., 2022; Hishida et al., 2022; Sarkar et al., 2020). Additional benchmarks
can be constructed for senotherapeutics (Smer-Barreto et al., 2023), nutritional interventions (Ford et
al,, 2023), and for in-vivo rat toxicity (Gwinn et al., 2020). Using these benchmarks, researchers can
systematically compare feature extraction and predictor learning pipelines and monitor performance

improvements.
Table 1. Representative Benchmarks for Intervention Analytics.
Benchmark
enchmar Data Type Intervention Examples Outcomes Reference
source
Toxicity (acute
. . ~2,800 compounds from toxicity such as
T L.
TOXRIC Tanscriptomics * -y 1\ Cs/ DrugMatrix/TG- | LD50; (Wu etal,
toxicity data . 2023)
GATEs genotoxicity such
as mutagenicity)
Gene expression Lifespan .
Belikov et
DrugAge-based (LINCS) + drug 56 compounds extension (mouse 211 ¢ 21 ng)e
annotations data) 7
(Kuhn et al.,
Transcriptomics 2016; Uner et
SIDER-based (LINCS) + side 251 compounds Drug side effects al., 2023;
effects Wang et al.,
2016)
40 int tions in mi Lif ffect
. Transcriptomics + (0 interventions in mice, i espa.n effects (Tyshkovskiy
Tyshkovskiy . from ITP and Gene (extension or
lifespan . . ) et al., 2024)
Expression Omnibus shortening)
(Browder et
Human or mouse al,, 2022;
Reprogramming data. partial Various partial Various health- Hishida et
data P . reprogramming protocols | related outcomes | al., 2022;
reprogramming
Sarkar et al.,
2020)
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. Cellular and . . . Smer-

Seno- therapeutic . Various senotherapeutic/ | Seno- therapeutic/ (

organismal R R R Barreto et al.,
data senolytic compounds senolytic action

senotherapy data 2023)

.. . Various nutritional .
Nutritional Nutritional data . . . . Various health- (Ford et al.,
. . interventions with mild
interventions related outcomes | 2023)
effects
. Rat in-vivo Toxic (and non-toxic) .. (Gwinn et al.,

Gwinn . . Toxicity outcomes

intervention data compounds 2020)

Feature Selection/Extraction and Predictor Learning

A pipeline for the interpretable machine learning of intervention effects is described in Figure 2,
consolidating existing approaches already described in (Wu et al., 2023) and (Belikov et al., 2024), and
taking inspiration from machine learning of cancer drug sensitivity and cancer type (Eckhart et al.,
2024; Pantazis et al., 2020; Piccolo et al., 2022; Smith et al., 2020), in a single unified scheme. In the
next sections, the various steps of the pipeline will be discussed in more detail. In our case, the input
is high-dimensional high-throughput molecular data, which may, e.g., be the gene expression
(transcriptomics), protein abundance (proteomics) or methylation data (epigenomics) measured in
control versus intervention samples. These data are frequently undergoing feature processing, by
selection (keeping features as they are) or by extraction (calculating new features based on formulas).
The consequent reduction of the feature space can avoid overfitting (see below). Training, testing and
validation of predictors is then performed based on these features, using the labels associated with
the samples, such as lifespan extension or toxicity for classification. Predictors can also employ
regression, learning numerical labels. Training/testing refers to the (automated) machine learning of
predictors (see below), and validation to the use of the learned predictors on new but similar data,
testing their generalizability. (In the literature, the term “testing” sometimes refers to what we call
“validation”, and vice versa.) Method choice can strongly influence the ability to assign
biological/biomedical meaning to the features underlying the prediction results, enabling various
grades of interpretability, which may be intrinsic to the method, but can also be offered by post-hoc
analyses, see Figure 2.

Feature Selection/Extraction

Omics data, particularly transcriptomics, often measure thousands of genes. Directly applying
machine learning on these high-dimensional, noisy data can lead to overfitting (Eckhart et al., 2024;
Smith et al., 2020). Feature selection/extraction simplifies the feature space, generating a smaller set
of features.

Linear Methods: MRMR, PCA and Contrastive PCA. A wide variety of feature selection
methods are available, exemplified here by Maximum Relevance Minimum Redundancy (MRMR),
which is often highlighted for its strong empirical performance and its theoretical appeal, as it aims
for features strongly dependent on the outcome but weakly dependent on one another, see (Eckhart
et al.,, 2024). This principle can be implemented in a linear way based on correlation as well as in a
non-linear way based on mutual information. A popular linear method for feature extraction is
principal component analysis (PCA), which produces features as linear combinations of genes (or
other molecular variables) that explain the greatest variance in the data (Ringner, 2008). On that basis,
PCA can separate samples by intervention type or outcome and reveal underlying biological
processes. Because PCA features are linear, they are often easier to interpret biologically. For instance,
certain principal components may correspond to activation of proliferative pathways or stress
responses. However, PCA may also capture confounders such as batch effects or differences in
experimental conditions. Contrastive PCA (cPCA) is a variant that uses “background” or control
datasets to highlight features specific to the intervention condition (Abid et al., 2018; Boileau et al.,
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2020; de Oliveira et al., 2024). This may be particularly valuable in aging-related intervention studies,
where differences in age, species, or tissue can obscure the signal of interest. c?°CA may help isolate
the molecular signatures of the interventions beyond baseline variability (Iturria-Medina et al., 2022),
but this conjecture lacks confirmation for aging-related interventions.

Linear Methods: Gene Set Approaches. Interpretable features can also be derived from annotated
gene sets, including biological pathways or processes, and specifically hallmarks of aging, or adverse
outcome pathways (Basili et al., 2022; Pun et al., 2022; Saarimaki et al., 2023a; Saarimaki et al., 2023b;
Subramanian et al.,, 2005). Such gene sets may simply define the features to be selected. More
frequently, by summarizing expression levels for sets of genes with shared biological meaning,
highlighted by their significant up- or downregulation, one obtains “enrichment features” that reflect
the activity of entire pathways or processes. Tools like gene set enrichment analysis (GSEA), single-
sample GSEA, and gene set variation analysis (Hanzelmann et al., 2013; Subramanian et al., 2005) can
therefore translate gene expression into biologically interpretable pathway or process enrichment
scores, enabling more meaningful comparisons between interventions. Enrichment-based features
can also reduce dimensionality and mitigate the risk of overfitting. These gene-set-based features can
be visualized in low-dimensional embeddings and network maps, helping researchers identify
clusters of interventions that share similar mechanistic signatures (Merico et al., 2010; Nguyen et al.,
2021). Such visualization can guide the generation of mechanistic hypotheses and highlight potential
safety concerns if certain pathways are associated with toxicity.

Non-linear Dimensionality Reduction. Non-linear methods for feature processing can be based,
e.g., on Neural Networks (incl. Autoencoders) (Eckhart et al., 2024). Moreover, non-linear alternatives
to PCA, such as UMAP or t-SNE can be used to represent samples in lower-dimensional spaces (Yang
et al., 2021), and these representations can be used to define features. While powerful for visualizing
complex relationships and subgroups, the results of these methods are harder to interpret
biologically. Since interpretability is crucial in preventive health interventions, linear or gene set—
based approaches may be preferable.

Predictor Learning

Once features are defined, the next step is to train and test predictive models. Such predictors
then estimate intervention outcomes (e.g., lifespan extension, toxicity) from the extracted (or selected)
features. However, feature processing is an optional step, and generally, predictors can be given all
features as-is, even if these are high-dimensional, potentially at the risk of overfitting; some methods
can also combine feature selection and predictor definition into a single formula.

Linear Predictors. Linear predictors, including logistic regression or elastic nets, can be
combined with PCA-based or gene set-based features to produce interpretable models (Eckhart et
al., 2024). The weights assigned to each feature can then highlight biologically meaningful signals
and simplify the interpretation of predictions. However, purely linear models may not fully capture
the non-linear relationships between gene expression changes and the outcome phenotype.

Non-linear Machine Learning Models. Non-linear models like random forests, gradient boosting
(e.g., XGBoost), and neural networks can often but not always yield better predictive performance
(Eckhart et al., 2024; Pantazis et al., 2020; Piccolo et al., 2022). In particular, gradient boosting methods
have shown strong performance on toxicity benchmarks (Wu et al., 2023) Nevertheless, non-linear
models tend to be less interpretable. Techniques like LIME or Shapley values can offer post-hoc
explanations (Ortigossa et al., 2024). Random forests also provide variable importance scores that
indicate which features are most influential, fostering interpretability. However, balancing accuracy
with interpretability remains a challenge. Since safety and transparency are vital, especially for
interventions in healthy individuals, simple but interpretable models may sometimes be preferred
over complex black-box models.

Automated Machine Learning (AutoML) and Model Ensembles. Given the complexity of feature
extraction and the multitude of available predictors, automated machine learning (AutoML)
frameworks can expedite the search for optimal intervention analysis pipelines (Tsamardinos et al.,
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2022). These frameworks systematically test different feature extraction methods, prediction model
types, and hyperparameters. Furthermore, ensemble strategies that combine multiple prediction
models can yield more robust predictions (Campager et al, 2023). Incorporating uncertainty
estimates as suggested by (Kriukov et al., 2024) can further increase the reliability and safety of
intervention recommendations.

Early Experiences with Generative Al and LLMs

Large language models and related Al techniques hold promise for integrating disparate
knowledge sources and generating new hypotheses (Joachimiak et al., 2024; Liu et al., 2024; Pickard
et al,, 2024; Simm et al., 2024; Tang et al., 2024; Wang et al., 2024; Xin et al., 2024; Zhou et al., 2024).
They could assist with data preprocessing, identifying confounders, or proposing candidate gene
sets. However, early attempts have shown limitations — such as difficulties in handling complex,
messy biological datasets and improper statistical analyses (Joachimiak et al., 2024). In the near
future, LLMs might help design improved intervention analysis pipelines, facilitate interpretability,
or assist in evaluating interventions against curated benchmarks. At present, generative Al is best
viewed as a coding assistant or brainstorming partner rather than a fully autonomous analyst.
Ensuring correctness and interpretability remains a major challenge (Fuellen et al., 2024). As such,
LLMs should be integrated cautiously, with human oversight and rigorous validation.

Perspectives and Future Directions

As the field advances, several key priorities emerge. First, expanding and refining high-quality
intervention datasets, both in model organisms and in humans, will improve training and testing of
predictive models. Notably, large-scale multi-intervention trials for mice are being run with
increasing size and sophistication, e.g. the Robust Mouse Rejuvenation trials (Lewis and de Grey,
2024), and the same holds for human intervention trials, such as DO-Health (Kistler-Fischbacher et
al., 2024), CALERIE (Ryan et al., 2024) and Cosmos (Vyas et al., 2024). Second, developing methods
that integrate safety and efficacy predictions simultaneously is paramount; aging interventions must
be safe if they are to be recommended for healthy individuals. Third, consistent benchmarking and
publication of standardized protocols will foster reproducibility and progress. Fourth, the tension
between model complexity and interpretability will continue to shape methodological choices.
Achieving explainability without sacrificing accuracy, and providing robust uncertainty estimates to
guard against overconfident predictions, will be crucial. Finally, incorporating generative Al tools in
a transparent and carefully monitored manner may lead to innovative modeling strategies and new
insights.

Conclusions

Validated and explainable predictive models for intervention outcomes would profoundly
enhance our ability to identify strategies that extend lifespan and reduce disease and dysfunction. By
prioritizing training on intervention data, consideration of safety/toxicity, and embracing robust
benchmarks, we can better predict real-world outcomes, optimally with strong interpretability. As
the available datasets and computational tools improve, in-silico evaluation can become an
indispensable asset for aging-related intervention research, complementing experimental studies and
ultimately informing clinical and public health decisions.
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