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Article 

Lagrangian for Real Systems Instead of Entropy for Ideal 

Isolated Systems 

Nikolai M. Kocherginsky 

909 E. Sunnycrest Drive, Urbana, IL 61801, USA; nm_koch@yahoo.com 

Abstract: The Second Law of Thermodynamics states that entropy S increases in a spontaneous 

process in an ideal isothermal and isolated system, which characterizes the direction of evolution. 

Real systems are not isolated. They are influenced by external forces and fields. One of these fields is 

the temperature field. Here we suggest the description of progress in non-isolated and influenced by 

external fields system. In this case, only entropy is not enough, and we suggest using a new function 

Ls, which is analogous to the Lagrangian in classical mechanics. As before, it includes total potential 

energy but instead of mechanical kinetic energy, Ls includes the product ST, and the system always 

evolves towards increasing this modified Lagrangian. It reaches an equilibrium when the gradient of 

a total potential force is balanced by both the gradients of entropic and thermal forces. For isolated 

systems the description is reduced to Second Law and Clausius inequality. Our approach does not 

need a gradient of chemical potential, and it has several advantages compared to Onsager’s non-

equilibrium thermodynamics. It easily explains the basic aspects of diffusion, Dufour effect and Soret 

thermodiffusion. The combination of electric, thermal, and entropic forces explains thermoelectric 

phenomena in non-isothermal and non-isolated systems, including Peltier-Seebeck and Thomson 

(Lord Kelvin) effects. Gravitational and entropic forces together inside a black hole may lead to a 

steady state or the black hole evaporation. They are also involved in influenced by Sun atmospheric 

processes. 

Keywords: Second Law of Thermodynamics; non-isolated systems; non-isothermal systems; 

thermodiffusion; thermoelectric phenomena; black holes; Onsager linear thermodynamics; 

physicochemical mechanics 

 

1. Introduction 

In 2024 it has been 200 years since Sadi Carnot published his “Reflections on the Motive Power 

of Heat”. Since that time Clausius, Kelvin, Maxwell, Boltzmann, Gibbs, and many other physicists 

and chemists have been working on entropy-based formulation and development of the Second Law 

of Thermodynamics for isolated systems. There are many ways to formulate the Second Law of 

Thermodynamics. For example, one of the axiomatic statements is: “There exists for every 

thermodynamic system in equilibrium an extensive scalar property called the entropy S , such that 

in an infinitesimal reversible change of state of the system, /dS dQ T= , where T is the absolute 

temperature and dQ is the amount of heat received by the system. The entropy of a thermally 

insulated system cannot decrease and is constant only if all processes are reversible” [1]. The purpose 

of this paper is to consider a more realistic case when non-isothermal systems are influenced by 

external fields. 

Here we should remind that equilibrium Gibbs thermodynamics has three major laws, and it 

answers the question “How much?”, but not “How fast?”. Newtonian mechanics also is based on 

three laws. It answers the question “How fast?”. Indeed, the Second Law is F/ m=a , where 

acceleration a is proportional to the acting force F . 

2. Methods 
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Figure 1 shows an isolated system (a); and influenced by an external force non-isolated system 

(b). If there are several forces, we should use 
jF . Of course, the isolated system is an idealization 

valid for a vacuum or a planetary system. In real systems, we should add a friction force, which is 

proportional to velocity, but has an opposite direction. 

 

Figure 1. (a) Chaotic Brownian motion of a molecule in an isolated system; (b) Chaotic Brownian motion of a 

molecule in a non-isolated system, influenced by an external force. 

Very soon it becomes equal to the total of all applied forces. As a result, they balance each other, 

and transport reaches a steady state when the acceleration vanishes. After substitution it is the 

velocity and not acceleration, which becomes proportional to the total of all acting forces. In 

hydrodynamics, this is known as a Stokes’ equation. Instead of coefficient 1/ m  proportionality 

coefficient is 1/ , where   is proportional to the solution friction and depends on the particle 

shape [2]. To describe Brownian motion and diffusion of molecules Einstein suggested using 

molecular mobilityU , which is 1/U =  and is velocity per unit of acting molar force with units 

(cm/sec)/(newton/mol) [3]. For transport of each component, we usually need the flux Ji per unit of 

perpendicular area, which is proportional to the product of velocity 
i ji

j

U F  by concentration, i.e., 

i i i ji

j

J U c F=  . If we deal with an ionic flux, the major driving force is the negative gradient of 

electric potential, multiplied by molar charge, e
ei i

d
F q

dx


= − , leading to Faraday’s law 

i i i i

d
J U c z F

dx


= . Here F is the Faraday constant and iz  is an elementary ion charge. The product 

of Ji and a molar charge gives electric current, i.e., Ohm’s law, and electric conductivity is 
2

i i iU c q . 

The same approach may be used for other fluxes and driving forces. To calculate any transport 

coefficient, we need only mobility and conjugated molar properties, such as molar charge, molar 

volume, etc. Based on the same mobility method is valid for major colloid and surface transport 

processes [4]. 

This approach [5,6], which we call physicochemical mechanics, allows systematic derivation of 

all major transport laws and their equilibrium relations. We described the rates of transport processes 
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in non-isolated systems, influenced by external fields and how they reach equilibrium. For seven 

major driving factors, we suggested a Table with more than 7x7 transport laws and their equilibrium 

relations [7]. The typical value of these driving factors decreases from the left to the right column, 

and from the upper to the lower horizontal line. The Table may grow further if we add new driving 

factors, including mechanical deformations of solids or even optical trapping of single molecules [6]. 

Recalling that based on his Periodic Table of elements D. Mendeleev predicted properties of four 

yet unknown elements [8], we predicted one new phenomenon, which we called magneto tension 

[7]. In this case deformation of the liquid surface by a magnetic field is observed. Later, it was 

confirmed in experiments, and now it is called the Moses effect [9], reminding the description in the 

Old Testament of crossing of the Red Sea by Jews led by Moses. 

3. Results 

3.1. General Equation 

Previously to describe transport of a chemical component i in isothermal and not isolated 

systems we suggested using a new general physicochemical potential, gi , where 

1 1

1

gi i j j

j

   − −

−

= + . Here, 0 lni i iRT c = +  is the traditional chemical potential of this 

component. 1( )j x − is the local field potential, and 1j − is the conjugated molar property. For 

example, for electric field e  e  is the molar charge and ei i ei e   = +  is known as an 

electrochemical potential. The negative gradient gid dx− gives the total local force leading to 

transport of i. This potential-based conservative force does not depend on velocity [5]. Without 

external potential fields or for isolated systems it is reduced to traditional chemical potential, which 

is molar isobaric-isothermal Gibbs energy. 

Chemical energy in transport processes dissipates into heat. Now, if local temperature also 

changes in the system, instead of used for isothermal processes gradient of chemical potential 

id dx− , because of energy dissipation into heat we suggest using 

( )i i i idq d sT Tds s dT

dx dx dx dx
= = +         (1) 

Here is is the local molar entropy of i-th component and qi is its local molar heat (not charge!). Both 

terms iTds

dx
 and is dT

dx
 have units of molar force and may be called the entropic and thermal forces. 

They have positive signs, reflecting, for example, that at constant temperature the process is directed 

to the increase of entropy (the Second Law). Another typical situation is when the elementary process, 

such as movement of a piston, is isothermal, and 0is dT

dx
= . 

Here it makes sense to recall the well-known phrase by J.W. Gibbs: “If we wish to find in rational 

mechanics an a priory foundation for the principles of thermodynamics, we must seek mechanical 

definition of temperature and entropy” [10]. Each conservative potential force jiF  is proportional 

to the space gradient of its potential with a minus sign and it should be counteracting entropic force, 

i.e., an increase of entropy due to dissipation. In the steady state the total of the external forces minus 

thermal and entropic forces is balanced by friction forces and the directed mass transport reaches 

constant velocity. In equilibrium the total acting force minus thermal and entropic forces is zero, the 

total flux vanishes, and no directed friction counterforces are formed. According to the Second Law, 

the entropy of a closed isolated system in a spontaneous process increases and at equilibrium it 

reaches maximum. Now it is clear that this maximum is determined by the balance of entropic and 

other internal forces. At equilibrium only without external forces local temperature and entropy are 
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constant and do not depend on x, giving suggested by Clausius /i ids dq T= . For the whole 

Universe, this imaginary state is known as the heat death of the Universe. 

In the presence of external forces, we have a general equation 

( )i i
i i i ji

j

s dT Tds
J U c F

dx dx
= + +        (2) 

3.2. Clausius Inequality, Fokker-Planck-Smoluchowski, Nernst and Van’t Hoff Laws 

To understand this equation better, as usual, we will start with an ideal gas. It is known that at 

equilibrium molar entropy of an ideal gas per unit volume is vs =s ln lno R c C T− + [11], where vC

is heat capacity. This expression should also be valid for local entropy in transport processes. Without 

ji

j

F  

0
vi

( )
(s ln ln ) ( )i i i i Vi

oi i

i

dq d sT ds dc CdT R dT
R c C T T

dx dx dx dx c dx T dx
= = − + + − +

 

After simplification, it is reduced to 

vi(s ln ln )i
i oi i

dq dT
ds R c C T

T T
= − − +

 

This leads to the well-known Clausius inequality i
i

dq
ds

T
 . In addition, when internal heat is used 

by gas to move a piston without equilibrium, the gas temperature decreases. 

The flux becomes 

0
vi v[ ( ) (s ln ln ) ]i i i

i i i i i oi i i

i

dq ds dcR dT
J U c U c T R c C T C

dx dx c dx dx
= = − + − + +   (3) 

Some simplifications are interesting: 

• Both i  and is have the term Rlnc but with opposite signs. In the homogeneous and isothermal 

system 0 0ids

dx
=  and 0

dT

dx
= , leading to Fick’s law of diffusion 

i i
i i i

dc dc
J RTU D

dx dx
= − = − and Fokker-Einstein relation i iD RTU= . Mass conservation law 

dc dJ

dt dx
= −  in the presence of fields leads to the Fokker-Planck-Smoluchowski equation

[ ]j

j

c
U RT F c

dt x x

  
= −

 
  [12]. Without external fields it is reduced to the Second Fick’s law 

of diffusion: 

 

• When diffusion-driven ion flux is balanced by an electric field-driven flux in the opposite 

direction, in equilibrium Fick FaradayJ J= −  and i
i i i i

dc d
RTU U c z F

dx dx


− = . After integration it 

gives the Nernst law: 1

2

ln
i

cRT

z F c
 = . For pressure we have 1

2

ln
v v

cRT RT
P c

c
 =  . Thus, 

𝜕𝑐

𝜕𝑡
= 𝑅𝑇𝑈

𝜕2𝑐

𝜕𝑥2
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for small c we have Van’t Hoff law for osmotic pressure [11]. Instead of logarithmic 

dependences for concentrations, for the balance of electric field- and pressure-driven fluxes we 

have 
v

i

d
const

dP z F


= − = . Similar types of equilibrium relations should be valid for other 

potential-based forces at constant temperature. 

3.3. Thermodiffusion. Soret and Dufour Effects 

If the initial concentration is constant, and we have only a temperature gradient along the space 

coordinate x as a driving factor, the process is called thermodiffusion or the Soret effect. The flux 

should be 

v v( ln ln )i i i i oi i i Ti i

dT dT
J U c C s R c C T D c

dx dx
= + − + = −    (4) 

with thermodiffusion coefficient TiD . The Soret coefficient is the ratio ST=DTi/D. The signs in front of 

terms with lnc and lnT are different, and we have two possible situations: 

v (1 ln )
. If ln oi i

i

s C T
a c

R

+ +
 , the temperature-driven flux is positive and directed to the hot 

side. 

v (1 ln )
. If ln oi i

i

s C T
b c

R

+ +
 , the flux is negative and directed to the cold side. 

For ion transport through polymer membranes, the effect depends on both polymer and ion. For 

example, with 1 mM KCl solution at temperatures below 311K the direction of flux through the 

phenolsulfonic acid membrane was from the hot to the cold side, and at higher temperatures the flux 

was from the cold to the hot side [13]. It is possible to estimate at what concentration the flux should 

change its direction. Assuming that iJ = 0, 0ois = , and T=300K, and using that for one degree of 

freedom v / 2iC R= , we get c=28.5 mol/m3 or 28.5 mM. Thus, our physicochemical mechanics 

approach leads to simple explanation why the flux changes its direction as the result of minor changes 

of temperature and concentration. 

With time concentration gradient will be formed. In equilibrium of two driving factors, 

assuming for simplicity that 0 0ids

dx
= , v ln 0iC T = , and ln 0iR c = . 

0 v v[ ( ) ( ln ) ] 0i
i i i i i i

i

dcR dT
J U c T s C C T

c dx dx
= − + + + =  

0 v( ) ln lni i is C d T Rd c+ =  

Further, using that established temperature difference is also small, after simplifications 

1 0 v 1

i

i i i

cT R

T s C c



+
 

Usually, 0 v 1i is C

R

+
 , and if 2 1i ic c , we have 2 1T T . Thus, the concentration gradient leads to 

small temperature gradient (known as the Dufour effect), and in considered conditions the higher 

temperature is in the area with higher concentration. The situation is different if ln iR c  is large. In 

this case using equation (3) in equilibrium and neglecting ois and two terms with viC  

ln ln
lni

i

d c d T
R R c

dx dx
= − . 
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After integration 21

2 1

ln
ln ln

ln

i

i

cT

T c
=  or 21

2 1

ln

ln

i

i

cT

T c
= . Now, if 2 1i ic c , T2 is less than T1. Thus, if the 

concentration is large, and the process is driven by diffusion, we have well-known in molecular 

physics situation when a substance is accumulated in a colder area. Evidently, there should be 

conditions (concentration and temperature) when the process changes its direction. 

3.4. Thermoelectric Peltier-Seebeck and Thomson Effects 

Further, it is easy to add electric forces and describe different thermoelectric effects, including 

Peltier-Seebeck and Thomson effects. For metals electron concentration is high. Because of that 

concentration gradient is low and the Peltier effect for electrons (the charge 1z = − ) is described by 

curs when a temperature difference is created between the metal junctions by applying a voltage 

difference across the terminals. For electrons element

v v( ln ln )T i i i oi i i i i

dT d
J U c C s R c C T J U c zF

dx dx



= + − + = − = −  

Finally,   v vln lni oi i i

F
T

C s R c C T
 = − 

+ − +
 

Temperature should be higher in the point with lower voltage. Nevertheless, as it was with 

thermodiffusion, changes of material properties may increase role of entropic force and 

concentration gradient, and may even change the sign of temperature dependence on voltage. 

In its turn, the Seebeck effect is the voltage, generated by temperature difference. The voltage is 

proportional to the temperature difference between the two junctions. The proportionality constant 

is known as the Seebeck coefficient. By convention, its sign is the sign of the potential of the cold end 

with respect to the hot end. Seeback coefficient is not a constant and depends on temperature. The 

temperature dependence of a commercial thermocouple is usually expressed as an empirical 

polynomial function in powers of temperature. Now we have a unified approach to describe both 

thermodiffusion and thermoelectric effects. 

Before the equilibrium is reached, the heat absorbed or created is proportional to the electrical 

current. The proportionality constant is known as the Peltier coefficient. In the Thomson (Lord 

Kelvin) effect, heat is absorbed or produced when current flows in a material with a temperature 

gradient. Similar to chemical or electron flux the heat should be proportional to both the electric 

current and the temperature gradient. Not surprisingly, the proportionality constant, known as the 

Thomson coefficient, is related to the Seebeck coefficient. We discussed here the simplest situation, 

but modern thermoelectric energy converters are based on semiconducting materials where voltage 

is generated at the contact area, and heat conductivity may be influenced by mobility of electrons, 

ions, and molecules, multiplied by their concentrations and molar heats carried by each of these 

components. 

4. Discussion 

The flux of each component is proportional to the difference of its molar potential forces and 

heat-based forces (v )i i

d
Ts

dx
− − . Instead of total kinetic energy in mechanics, we are using the heat 

content of each component. For influenced by external fields systems we can suggest a new equation 

( )
0

i id TS VdL

dt dt

−
= 

 
,     (5) 
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where the new Lagrangian )i iL TS V= −   is the difference between total heat and total 

potential energy of all components. As a result of any transport processes the total potential energy 

iV decreases, dissipating in heat. The heat increases, so that L always increases. /dL dt  is zero 

when potential energy balances heat, reminding the equipartition theorem in statistical physics. For 

constant temperature and without external fields this again leads to entropy increasing with time, 

i.e., to the valid for isolated systems second Law of Thermodynamics. 

The different signs in (5) remind minus in Onsager-Casimir reciprocal relations for magnetic 

field-driven transport [14,15]. The simple explanation is that both the magnetic forces and molar heat 

are related to velocity. Nevertheless, physicochemical mechanics and Onsager’s linear 

nonequilibrium thermodynamics are different. Traditional linear thermodynamics assumes that the 

flux is described by 
k ik j

j

J L F= . jF here are not physical forces per mol, but so-called 

thermodynamic forces. To find these thermodynamic forces one must use the rate of entropy 

production, 
,

,

k k k j j k

k j k

dS
J F L F F

dt
= =  . For example, for energy transport, the thermodynamic 

force has units of 1/T. For mass transport definition of thermodynamic force is not unique, and it may 

be 
T


−  or 

T


− . Linear dependence for flux is possible because the system is near equilibrium. 

In physicochemical mechanics, all molar forces have the same newton/mol units and may be added. 

In equilibrium, two forces balance each other, which leads to the well-known equilibrium laws [6,7]. 

This cannot be done for thermodynamic forces, and Onsager’s nonequilibrium thermodynamics is 

not reduced to equilibrium thermodynamics. Transport coefficients kjL in general are not known, 

and all we know is that for correctly found thermodynamic forces kj jkL L= [15]. Physicochemical 

mechanics easily leads to these relations, but it also shows that they are not valid for multicomponent 

diffusion because mobilities are different for different independent components [16]. 

If all physical forces are known, and the purpose is to find the rate of chemical transport, it is not 

necessary to calculate the rate of entropy production anymore. We also do not need, for example, 

Helmholtz’s free energy with its temperature and volume as natural variables. Simultaneously the 

same mobility may be used not only for three-dimensional media, but also for surfaces [4]. Chemical 

reactions are different, and we need mobility along the fourth, chemical reaction coordinate [21]. 

Chemical reactions usually are conducted at independent and constant temperature and pressure as 

variables, which leads to the Gibbs-Duhem equation,
i i

i

N d SdT VdP =− + . For chemical 

transport both temperature and pressure may be driving factors, and now 

i i

i

dN TdS PdV =− +  [6]. For steam engines, maximum Carnot’s efficiency near equilibrium is 

1 2 1( ) /T T T− , but important for biology voltage-driven transmembrane ion transport does not need 

changes of temperature. At the steady state and constant temperature this process because of the 

balance of electric and friction forces has a thermodynamic efficiency 50% [6]. 

Mechanical models and entropy of black holes attract the attention of theoreticians for more than 

50 years [17,18]. Physicochemical mechanics gives an interesting prediction for black holes as non-

isolated systems with gravitational forces. In strong gravitational fields not only a coordinate, but 

also gravitational acceleration, g, may increase towards the inner part of the hole. If x also increases 

towards the inner area of the hole, 0
dg

dx
 . In this case, g-based potential increases inside the hole, 

and the g-based forces and mass transport is also directed outside. The total flux is determined by 

balance of two driving factors, 
( ) ( )

[ ]i i
i i i

d M gh d sT
J U c

dx dx
= − + . Like heat-driven processes where 
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we need two partial derivatives, for gravity we also need two partial derivatives. One is ( )h const

g

x
=





, and another one is ( ) 1g const

h

x
=


=


. As long as the temperature is small and positive, the final flux 

will be determined by the balance of three driving forces, due to g, h, and is . The steady state is 

possible if for some reason these three forces balance each other. In the situation, when the entropy 

decreases inside the black hole due to gravity-induced ordering, this may lead to flux towards 

entropy increase and black hole evaporation with time. 

We do not know much about black holes, but for the Earth atmosphere we must add terms 

related to the Sun light. Absorbed by the Earth surface solar radiation leads to atmosphere heating 

from one side. In addition, light absorption by air molecules leads to photoreactions and we can 

expect that transport of ion-radicals will be influenced by electromagnetic field, reminding 

mentioned above thermoelectric effects. The whole process may be called 

gravitothermoelectrodiffusion. 

Thus, the number of terms is increased, but the general principle is still the same: we should add 

all energy- and entropy-related terms with proper signs. After that the total derivative along the space 

coordinate will give the total acting force, and the final steady state transport velocity or flux in the 

real media with friction will be proportional to this force. Note that we did not discuss here 

convection. Instead of molecular transport, it is based on movement of macroscopic fragments of gas 

or liquid, and it may be a dominant transport process because friction is important in this case only 

at the surface of this fragment. 

We should also mention that a quite different approach is under development in quantum 

mechanics. For example, entropy and information flow were discussed for quantum systems strongly 

coupled to baths [19]. Usually, these systems include electrons with spin and their entanglement, but 

it is not clear what the space coordinate, local temperature and its gradients are in this case, which 

makes derivation of classical chemical transport laws describing diffusion, thermodiffusion, 

comparison with Onsager’s theory in nonequilibrium thermodynamics, and others at least not easy. 

5. Conclusion 

It is known that Einstein argued that the accepted formulation of quantum mechanics must be 

incomplete. Einstein also modestly wrote about the role of his relativity theory in physics: “It has not 

appreciably altered the predictions of theory, but it has considerably simplified the theoretical 

structure, i.e., derivation of laws, and – what is incomparably more important - it has considerably 

reduced the number of independent hypotheses forming the basis of theory” [20]. Our purpose here 

was to show that physicochemical mechanics with its reduced number of hypotheses does something 

similar for driven simultaneously by entropy, temperature, and external forces linear chemical 

transport and equilibria [21] as well as for exponential kinetics of elementary reactions [22]. Note that 

it is possible to derive Schrödinger equation based only on ideas from classical mechanics together 

with motion of spin [23]. 
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