Submitted:
06 January 2025
Posted:
07 January 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Computational Details
2.2. Experimental
2.2.1. Materials
2.2.2. Methods
3. Results
3.1. The Conformational Analysis
3.2. FT-IR Analysis
3.3. DSC/TG Thermal Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trovato, V.; Sfameni, S.; Rando, G.; Rosace, G.; Libertino, S.; Ferri, A.; Plutino, M.R. A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective. Molecules 2022, 27, 5709. [Google Scholar] [CrossRef]
- Sciortino, A.; Marino, E.; Van Dam, B.; Schall, P.; Cannas, M.; Messina, F. Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots. J. Phys. Chem. Lett. 2016, 7, 3419–3423. [Google Scholar] [CrossRef] [PubMed]
- Homocianu, M. Exploring solvatochromism: A comprehensive analysis of research data. Microchem. J. 2024, 198, 110166. [Google Scholar] [CrossRef]
- Karimipour, K.; Keyvan, R.J.; Ghomi, A.; Salehi-Mobarakeh, H.; Mahdavian, A. Hydrochromic and photoswitchable polyacrylic nanofibers containing spiropyran in eco-friendly ink-free rewriteable sheets with responsivity to humidity. Dyes Pigm. 2020, 175, 108185. [Google Scholar] [CrossRef]
- Martins, C.T.; Lima, M.S.; Seoud, O.A. Thermosolvatochromism of merocyanine polarity indicators in pure and aqueous solvents: relevance of solvent lipophilicity. J. Org. Chem. 2006, 71, 9068–9079. [Google Scholar] [CrossRef]
- Fedorov, Y.V.; Shepel, N.E.; Peregudov, A.S.; Fedorova, O.A.; Deligeorgiev, T.; Minkovska, S. Modulation of photochromic properties of spirooxazine bearing sulfobutyl substituent by metal ions. J. Photochem. Photobiol. A: Chem. 2019, 371, 453–460. [Google Scholar] [CrossRef]
- Roohi, H.; Rostami, T. Mechanism of the photo triggered ring-opening reaction of spiropyran derivatives (SP-X1-7; X1-7 = H, NO2, CF3, CN, OH, OMe and NMе2) in the gas phase and various solvent media: A GD3-TD-DFT approach. J. Photochem. Photobiol. A: Chem. 2020, 392, 112410. [Google Scholar] [CrossRef]
- Minkovska, S.; Hadjichristov, G.B.; Neacsu, A.; Chihaia, V.; Fedorov, Y.V. Photoswitchable Photochromic Chelating Spironaphthoxazines: Synthesis, Photophysical Properties, Quantum-Chemical Calculations, and Complexation Ability. ACS Omega 2024, 9, 4144–4161. [Google Scholar] [CrossRef] [PubMed]
- Farrell, E.B.; Redmond, G.; Johnson, R.P. Monitoring spirooxazine–merocyanine photoisomerization with ion-current rectifying quartz nanopipettes. Electrochem. Commun. 2024, 168, 107820. [Google Scholar] [CrossRef]
- Zeng, W.; Yue, D.; Wang, X.; Li, H.; Kong, X. Synthesis, structural, spectroscopic investigation, Hirshfeld surface analysis and DFT calculation of a new spiro compound including 4-nitroaniline moiety. J. Mol. Struct. 2025, 1322(Part 1), 140371. [Google Scholar] [CrossRef]
- Manzoni, V.; Coutinho, K.; Canuto, S. An insightful approach for understanding solvatochromic reversal. Chem. Phys. Lett. 2016, 655-656, 30–34. [Google Scholar] [CrossRef]
- Du, D.; Ren, G.-B.; Qi, M.-H.; Li, Z.; Xu, X.-Y. Solvent-Mediated Polymorphic Transformation of Famoxadone from Form II to Form I in Several Mixed Solvent Systems. Crystals 2019, 9, 161. [Google Scholar] [CrossRef]
- Jha, K.; Kumar, A.; Munshi, P. Solvatochromism and Reversible Solvent Exchange Phenomena in Solvatomorphic Organic Chromophore Crystals. Cryst. Growth Des. 2023, 23, 2922–2931. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An ab Initio Forcefield Optimized for Condensed-Phase Applications - Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in 't Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; Shan, R.; Stevens, M.J.; Tranchida, J.; Trott, C.; Plimpton, S.J. LAMMPS - a flexible simulation tool for parti-cle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 2022, 271, 10817. [Google Scholar] [CrossRef]
- Robinson, R.L.M.; Geatches, D.; Morris, C.; Mackenzie, R.; Maloney, A.G.P.; Roberts, K.J.; Moldovan, A.; Chow, E.; Pencheva, K.; Vatvani, D.R.M. Evaluation of Force-Field Calculations of Lattice Energies on a Large Public Dataset, Assessment of Pharmaceutical Relevance, and Comparison to Density Functional Theory. J. Chem. Inf. Model. 2019, 59, 4778–4792. [Google Scholar] [CrossRef] [PubMed]
- Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Molec. Sci. 2022, 12, e1606, Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar]
- Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 1998, 109, 1223–1229. [Google Scholar] [CrossRef]
- Nordin, R.; Lazim, A.M.; Rohadi, A.; Hasbullah, S.A. Preparation and Activation of Spiropyran-Merocyanine System. Malay. J. Anal. Sci. 2013, 17, 422–429. [Google Scholar]
- Todorova, M.; Bakalska, R. Syntheses and vibrational spectroscopic characteristics of series ionic merocyanine dyes. Bulg. Chem. Commun. 2018, 50, 156–164. [Google Scholar]
- Gegiou, D.; Lambi, E.; Hadjoudis, E. Solvatochromism in N-(2-Hydroxybenzylidene)aniline, N-(2-Hydroxybenzylidene)benzylamine, and N-(2-Hydroxybenzylidene)-2-phenylethylamine. J. Phys. Chem. 1996, 100, 17762–17765. [Google Scholar] [CrossRef]
- Basu, K.; Brielle, E.S.; Arkin, I.T. Hydrogen Bond Strengthens Acceptor Group: The Curious Case of the C–H···O=C Bond. Int. J. Mol. Sci. 2024, 25, 8606. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, G.J.; Newberry, R.W.; VanVeller, B.; Raines, R.T.; Woolfson, D.N. Interplay of hydrogen bonds and n→π* interactions in proteins. J. Am. Chem Soc. 2013, 135, 18682–18688. [Google Scholar] [CrossRef] [PubMed]
- Arnaudov, M.G. The influence of the medium on the infrared spectrum of self-associated systems. A structural analysis. Int. J. Vib. Spectrosc. 2001, 5, 5. [Google Scholar]
- Rojek, B.; Bartyzel, A.; Sawicki, W.; Plenis, A. DSC, TGA-FTIR and FTIR Assisted by Chemometric Factor Analysis and PXRD, in Assessing the Incompatibility of the Antiviral Drug Arbidol Hydrochloride with Pharmaceutical Excipients. Molecules 2024, 29, 264. [Google Scholar] [CrossRef]
- Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J. Biomol. Tech. 2010, 21, 167–93. [Google Scholar]
- Leyva-Porras, C.; Cruz-Alcantar, P.; Espinosa-Solís, V.; Martínez-Guerra, E.; Piñón-Balderrama, C.I.; Martínez, I.C.; Saavedra-Leos, M.Z. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers 2020, 12, 5. [Google Scholar] [CrossRef]
- Arneri, G.; Sauer, J.A. Study of overlapping transitions in polymers by combined differential scanning calorimetry and thermal optical analysis methods. Thermochim. Acta 1976, 15, 29–41. [Google Scholar] [CrossRef]
- Mudalip, S.K.A.; Bakar, M.R.A.; Jamal, P.; Adam, F.; Man, R.C.; Sulaiman, S.Z.; Arshad, Z.I.M.; Shaarani, S.M. Effects of Solvents on Polymorphism and Shape of Mefenamic Acid Crystals. Proc. MATEC Web Conf. (MUCET2017) 2018, 150, 02004. [Google Scholar] [CrossRef]
- Villanueva, M.; Vallet, P.; Teijeira, T.; Santiago, A.A.; Amigo, A.; Tojo, E.; Varela, L.; Parajó, J.; Salgado, J. Effect of alkyl chain length on the thermal properties and toxicity of n-alkyl-ammonium nitrate ionic liquids (n = 2, 3, 4, 5, 6, 8) for energy applications. J. Therm. Anal. Calorim. 2024. [Google Scholar] [CrossRef]
- Jeong, E.; Ito, T.; Takahashi, K.; Koganezawa, T.; Hayashi, H.; Aratani, N.; Suzuki, M.; Yamada, H. Exploration of Alkyl Group Effects on the Molecular Packing of 5,15-Disubstituted Tetrabenzoporphyrins toward Efficient Charge-Carrier Transport. ACS Appl. Mater. Interfaces 2022, 14, 32319–32329. [Google Scholar] [CrossRef] [PubMed]
- Sai, R.; Hirata, S.; Tsutsumi, H.; Katayama, Y. Effect of Alkyl Side Chain Length on the Lithium-Ion Conductivity for Polyether Electrolytes. Front Chem. 2022, 14, 943224. [Google Scholar] [CrossRef]
- Kulinich, A.V.; Ishchenko, A. Merocyanine dyes: synthesis, structure, properties and applications. Russ. Chem. Rev. 2009, 78, 141–164. [Google Scholar] [CrossRef]
- Abeyrathna, N.; Liao, Yi. Stability of merocyanine-type photoacids in aqueous solutions. J. Phys. Org. Chem. 2017, 30, e3664. [Google Scholar] [CrossRef]
- Zhang, Y.; Maginn, E.J. Molecular dynamics study of the effect of alkyl chain length on melting points of [CnMIM][PF6] ionic liquids. Phys. Chem. Chem. Phys. 2014, 16, 13489–13499. [Google Scholar] [CrossRef] [PubMed]
- The peaks deconvolution was done by OriginPro 9.0.0, OriginLab Corporation, Massachusetts, USA. https://www.originlab.com.
- Kvamme, B.; Wei, N.; Zhao, J.; Zhou, S.; Zhang, L.; Sun, W.; Saeidi, N. Alcohols for hydrate inhibition - Different alcohols and different mechanisms. Petroleum 2022, 8, 1–16. [Google Scholar] [CrossRef]
- Xin, L.; Wang, N.; Jinyue, Y.; Huang, Y.; Ji, X.; Huang, X.; Wang, T.; Wang, H.; Hao, H. Molecular conformational evolution mechanism during nucleation of crystals in solution. IUCrJ. 2020, 7, 542–556. [Google Scholar]
- Hernández-Lima, J.; Ramírez-Gualito, K.; Quiroz-García, B.; Silva-Portillo, A.L.; Carrillo-Nava, E.; Cortés-Guzmán, F. How solvent determines the molecular reactive conformation and the selectivity: Solvation spheres and energy. Front. Chem. 2022, 10, 1012769. [Google Scholar] [CrossRef]





| Solvent | State | dmin [Å] |
Density [g/cm3] |
Box Volume [Å3] |
Free Volume [Å3] |
Formation Energy per MC Molecule [kcal/mol] |
|---|---|---|---|---|---|---|
| Acetonitrile | MCA | 5.73 | 1.110 | 13622.4 | 0.0 | -164.8 |
| MC(A) | 5.47 | 1.226 | 6671.7 | 1.1 | -51.8 | |
| Ethanol | MCE | 7.14 | 1.126 | 14173.1 | 3.9 | -164.4 |
| MC(E) | 6.37 | 1.211 | 6443.6 | 62.3 | -53.0 | |
| Methanol | MCM | 5.13 | 1.142 | 11938.2 | 0.3 | -57.2 |
| MC(M) | 4.74 | 1.290 | 6566.8 | 1.8 | -53.2 | |
| Water | MCW | 6.47 | 1.203 | 9394.1 | 1.1 | -56.3 |
| MC(W) | 7.15 | 1.281 | 6486.7 | 5.1 | -44.2 |
| Solvent (Solv) | State | Hydrogen Bonds (Donor→Acceptor) | ||||
| Intra-MC | Inter-MC | MC→Solv | Solv→MC | Solv→Solv | ||
| Acetonitrile | MCA | 2 | 7 | 0 | 0 | 0 |
| MC(A) | 0 | 15 | - | - | - | |
| Ethanol | MCE | 0 | 2 | 0 | 29 | 69 |
| MC(E) | 0 | 10 | - | - | - | |
| Methanol | MCM | 0 | 4 | 0 | 28 | 76 |
| MC(M) | 8 | 4 | - | - | - | |
| Water | MCW | 0 | 2 | 0 | 69 | 173 |
| MC(W) | 1 | 11 | - | - | - | |
| MC(A) | MC(E) | MC(M) | MC(W) | Band Assignment |
|---|---|---|---|---|
| 3399 3052 2964 2929 2868 2705 2507 - 1769 - - 1621 1591 1574 1518 1459 1440 1386 1349 - 1268 1248 1168 1148 1080 1033 999 972 862 809 781 744 681 |
3400 3052 2961 2925 2854 2706 2506 - 1769 - - 1621 1591 1574 1518 1459 1440 1386 1350 - 1269 1249 1168 1148 1080 1033 999 972 863 810 781 745 682 |
3402 3051 2964 2929 2868 2702 2507 - 1769 - - 1621 1591 1574 1519 1459 1440 1386 1350 - 1269 1248 1168 1148 1080 1033 999 972 862 810 781 745 681 |
3400 3055 2967 2929 2869 2709 - 2524 1765 1688 1646 1623 1591 1580 1520 1471 1445 1386 1349 1288 1270 1249 1168 1148 1080 1036 - 969 862 809 785 743 684 |
O-H bending vibrations mode of H-O-H С–Н stretching of the methylene group; (sp2, stretch) С–Н stretching of the methyl group; (sp3, stretch) С–Н stretching of the methylene group; (sp2, stretch) С–Н stretching of the methyl group; (sp3, stretch) (CO)-H stretch C-O stretching in presence of H-O-H C-O stretching in presence of H-O-H C=O stretching - oxygen atom conjugated with aromatic C=O stretch for conjugation with aromatic double bond C=O bending mode in presence of H-O-H C=O in quinone structure; amide I -C=N- in open-chain imino; C=C in aromatic structure C=N in aromatic structure C=N vibrations in presence of CO C=N vibrations; C-C in aromatic structure C=N trans aromatic; C=C in aromatic structure; CH bend C-H in gem-dimethyl C-N stretching vibration C-N stretching vibration C-O deformation vibration in presence of -SO3- S-O stretching deformation in presence of C-O C-O stretching combined with CH3 rocking vibration S=O stretching in C-SO2-OH -SO3- sulfonate ion S=O symmetric stretching in sulfonate CH3 rocking vibration; -CH2- group C-O stretching and C-N stretching vibrations C-O stretching; cyclohexene derivative aromatic C-H out-of-plane bending, -CH2- rocking C-H out-of-plane; polynuclear aromatic compounds C-C in aromatic compounds; C-N in ring C-S stretching vibration in CH2-S-, C-H bending |
| MC(A) | MC(E) | MC(M) | MC(W) | ||||
|---|---|---|---|---|---|---|---|
| ∆T[°C] | ∆m[%] | ∆T [°C] | ∆m [%] | ∆T [°C] | ∆m [%] | ∆T [°C] | ∆m [%] |
| 25-107.5 107.5-159.8 159.8-247.5 247.5-305.7 305.7-379.7 379.7-437.9 437.9-599.5 |
2.03 0.64 11.62 19.38 23.81 9.45 5.52 |
25-164.1 168.1-237.9 237.9-321.6 321.6-372.8 372.8-405.9 405.9-476.9 476.9-599.8 |
3.56 10.5 25.8 14.7 6.1 8.8 2.67 |
25-167.8 167.8-247.4 247.4-324.9 324.7-413.8 413.8-599.0 |
2.11 11.23 25.07 20.69 9.45 |
25-151.5 152.6-314.9 314.9-403.5 403.5-539.5 539.5-598.9 |
4.59 19.18 12.09 24.61 1.40 |
| Sample | Ton [°C] | Tm [°C] | Toff [°C] | ∆H [J/g] |
|---|---|---|---|---|
| MC(A) | 31.08 51.22 107.61 137.36 |
36.71 79.30 113.78 140.87 |
49.08 107.80 118.80 150.22 |
3.25 30.49 0.18 0.70 |
| MC(E) | 22.63 109.53 |
38.90 137.98 |
109.94 163.5 |
45.73 11.38 |
| MC(M) | 25.0 45.86 149.85 |
30.96 67.95 175.19 |
41.77 96.45 195.70 |
17.74 27.98 37.59 |
| MC(W) | 30.83 68.43 152.94 |
37.06 85.77 163.02 |
43.48 98.12 175.31 |
3.48 6.38 8.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
