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Abstract: Agricultural waste has garnered increasing attention as a promising and sustainable 
feedstock for biodiesel production, offering a pathway to reduce reliance on fossil fuels and address 
environmental challenges. This comprehensive review delves into the potential of utilizing 
agricultural residues such as crop husks, fruit peels, and other organic by-products for biodiesel 
synthesis, emphasizing the transformative role of biochar in this process. The review explores 
advancements in conversion technologies, including pyrolysis and transesterification, which enable 
the effective transformation of agricultural wastes into biodiesel. Biochar's application as a 
heterogeneous catalyst significantly enhances the efficiency and sustainability of these processes, 
offering a cost-effective and environmentally friendly alternative to traditional catalysts. The study 
also examines various modifications of biochar, such as chemical and physical treatments, which 
further optimize its catalytic properties and expand its applications in biodiesel synthesis. In addition 
to technological advancements, this review highlights the socio-economic benefits of leveraging 
agricultural waste and biochar, such as waste valorization, rural economic development, and 
contributions to the circular economy. It also addresses challenges like feedstock variability, 
collection logistics, and the need for robust policy frameworks to support agricultural waste-based 
biodiesel production. By integrating biochar into biodiesel production systems, this review provides 
a comprehensive roadmap for harnessing agricultural waste to achieve renewable energy goals.  

Keywords: biochar; agricultural waste; biodiesel production; sustainability; renewable energy 
 

1. Introduction 

The global demand for energy continues to rise, driven by population growth and 
industrialization. Fossil fuels, which dominate the energy sector, are associated with greenhouse gas 
emissions, environmental degradation, and resource depletion. Biodiesel, a renewable energy source 
derived from organic materials, has gained significant attention as a sustainable alternative. While 
traditional biodiesel feedstocks, such as edible oils, pose concerns of food versus fuel competition, 
agricultural waste offers an untapped resource for biodiesel production. Agricultural waste 
comprises a wide range of residues generated during crop cultivation, harvesting, and processing. 
These include lignocellulosic biomass, fruit and vegetable peels, seed husks, and animal by-products. 
Utilizing these materials not only mitigates waste disposal issues but also contributes to circular 
economy principles by converting waste into value-added products. This paper aims to provide a 
comprehensive overview of the processes, challenges, and potential of using agricultural waste for 
biodiesel production. Energy plays a critical role in meeting the demands of the world and its 
inhabitants ((Kusuma et al., 2024, Gielen et al., 2019). The global energy landscape continues to rely 
heavily on fossil fuels such as crude oil, natural gas, and coal (Awogbemi and Von Kallon, 2023a). 
Despite their environmental drawbacks and diminishing reserves, fossil fuels remain dominant in 
the energy sector (Gielen et al., 2019). These resources, being finite, have been central to industrialized 
economies since the 1920s, with oil particularly serving as their backbone ((Kusuma et al., 2024, 
Guliyev and Mustafayev, 2022). As a result, research and development in sustainable renewable 
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energy sources have become an urgent priority (Li et al., 2023). Renewable energy innovations are 
increasingly recognized as essential for addressing both energy shortages and global warming (Xu 
and Lin, 2023). Efforts to solve energy and environmental challenges are closely tied to the issue of 
underutilized agricultural waste (Babu et al., 2022). Agricultural waste can be transformed into 
renewable energy through methods like gasification, fermentation, and pyrolysis (Mlonka-Mędrala 
et al., 2021; Wang and Cheng, 2024). Among the various types of agricultural waste, rice straw waste 
is particularly notable. Rice, a staple food globally, is predominantly cultivated in Asia, which 
accounts for over 90% of the world's production. Southeast Asian countries, including Thailand, 
Myanmar, Vietnam, and Indonesia, contribute nearly 85% of the annual rice output (Silva et al., 2022). 
Indonesia, as one of the top three rice producers globally, has recently come close to achieving self-
sufficiency in rice production (Agus et al., 2019). The cultivation of rice generates approximately 700 
million tons of rice straw annually, posing challenges for its effective management (Siluk et al., 2023). 
Often, rice straw is burned as a method of disposal, but this practice creates significant environmental 
issues ((Kusuma et al., 2024, Propper et al., 2023; Singh et al., 2024). Biodiesel has emerged as a 
promising alternative fuel, recognized for its technological advancements in mitigating the 
environmental impacts associated with non-renewable energy production (Reshad et al., 2017). The 
dwindling supply of fossil fuels and their adverse environmental effects underscore the urgent need 
for renewable and eco-friendly energy solutions (Parida et al., 2022). Biodiesel, in particular, is 
gaining widespread acceptance as a sustainable and environmentally friendly fuel alternative (Jung 
et al., 2018). Many nations have introduced biofuel policies aimed at fostering environmental 
sustainability, which is critical for scaling up large-scale biodiesel production (Siddique, 2008; Yadav 
et al., 2023). In modern society, addressing the dual challenge of clean energy demand and global 
waste management requires innovative strategies. Access to energy is a key development indicator 
and significantly influences quality of life (Awogbemi and Von Kallon, 2023a). However, reliance on 
fossil fuels continues to harm ecosystems by releasing harmful atmospheric emissions (Pourhashem 
et al., 2019). Biochar, a carbon-rich solid material, has emerged as a valuable catalyst for enhancing 
biodiesel production efficiency (Velusamy et al., 2021). Utilizing biochar as a catalyst offers multiple 
advantages, including cost-effectiveness, sustainability, and environmental benefits (Wang et al., 
2019). Biochar-based heterogeneous catalysts can be classified into acid and alkaline categories, 
providing diverse applications in biodiesel production (Rajendran et al., 2022). Despite its potential, 
there is limited awareness regarding the use of agricultural waste for biochar production and its 
benefits in biodiesel production. To bridge this knowledge gap, bibliometric analysis is being 
employed to explore research trends in biochar applications for biodiesel production from 2009 to 
March 12, 2024. This analysis aims to highlight the importance of converting agricultural waste into 
sustainable energy sources. It also investigates global research trends, country-level contributions, 
and collaborative research patterns in this vital field. The global demand for energy continues to rise, 
driven by population growth and industrialization. Fossil fuels, which dominate the energy sector, 
are associated with greenhouse gas emissions, environmental degradation, and resource depletion. 
Biodiesel, a renewable energy source derived from organic materials, has gained significant attention 
as a sustainable alternative. While traditional biodiesel feedstocks, such as edible oils, pose concerns 
of food versus fuel competition, agricultural waste offers an untapped resource for biodiesel 
production. Agricultural waste comprises a wide range of residues generated during crop 
cultivation, harvesting, and processing. These include lignocellulosic biomass, fruit and vegetable 
peels, seed husks, and animal by-products. Utilizing these materials not only mitigates waste disposal 
issues but also contributes to circular economy principles by converting waste into value-added 
products. This paper aims to provide a comprehensive overview of the processes, challenges, and 
potential of using agricultural waste for biodiesel production. 

2. Historical Development  

The concept of harnessing agricultural waste for sustainable biodiesel production has evolved 
significantly over the years, driven by the need for alternative energy sources and effective waste 
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management. Early research in the mid-20th century focused primarily on exploring renewable 
energy sources to reduce dependence on fossil fuels. However, the utilization of agricultural waste 
as a raw material for biodiesel production gained momentum in the late 20th century, with 
advancements in biomass conversion technologies such as pyrolysis and transesterification. These 
techniques laid the foundation for transforming agricultural residues, like rice husks, corn cobs, and 
wheat straw, into value-added products, addressing both energy and environmental challenges .By 
the early 2000s, the integration of biochar as a catalyst in biodiesel production emerged as a 
breakthrough innovation. This shift was fueled by the recognition of biochar’s high porosity, large 
surface area, and catalytic efficiency, which enhanced biodiesel yields while promoting sustainability 
(Borthakur et al., 2021). Concurrently, the development of heterogeneous catalysts derived from 
agricultural waste introduced new possibilities for cost-effective and environmentally friendly 
biodiesel production (Borthakur & Medhi, 2023). Governments and industries began implementing 
biofuel policies, providing subsidies and incentives to foster the use of agricultural residues as 
feedstocks. In recent decades, technological advancements have refined the processes of agricultural 
waste conversion and biodiesel synthesis. Biochar modifications, including surface and chemical 
enhancements, have significantly improved its catalytic properties, making biodiesel production 
more efficient (Borthakur et al., 2022). Furthermore, integrated biorefineries have emerged, enabling 
the simultaneous production of biodiesel and other bio-based products, thus enhancing economic 
feasibility. Today, the field is characterized by a strong focus on sustainability, with research 
emphasizing the dual benefits of mitigating agricultural waste management issues and reducing 
greenhouse gas emissions (Saikia et al., 2024). Global collaborations, policy interventions, and 
community engagement are driving the adoption of these technologies at scale, positioning 
agricultural waste as a cornerstone of the renewable energy revolution and a viable pathway toward 
a sustainable future 

3. Production of Biochar 

3.1. Agricultural Waste 

Agricultural waste refers to the byproducts generated through various agricultural processes 
(Nagendran, 2011). These wastes include a wide array of organic materials such as plant residues, 
animal waste, and other agro-industrial byproducts. Examples include crop residues, forestry 
residues, logging remains, animal waste, jute fiber, bagasse, straw, chaff, and agricultural wastewater 
(Khedulkar et al., 2023; Periyasamy et al., 2024; Gontard et al., 2018). Table 3 categorizes these waste 
types in detail. The composition of agricultural waste varies, with starch accounting for the largest 
share at approximately 38%, followed by shells and husks (23%), wood (18%), grass (3%), mixed 
residues (6%), and other types (12%) (Karim et al., 2022). Annually, agricultural waste is estimated to 
reach about 998 million tons globally and is expected to increase due to insufficient waste 
management practices (Bhuvaneshwari et al., 2019; Obi et al., 2016). Major contributors include rice 
husks (100–120 million tons), corn cobs (200–230 million tons), bagasse (279–300 million tons), and 
wheat straw (400–529 million tons) (Periyasamy et al., 2024). Inefficient management practices, such 
as open-field burning, exacerbate environmental degradation and health risks (Patel and Panwar, 
2023; Phiri et al., 2024). Furthermore, the lack of advanced waste management technologies 
compounds the problem. To mitigate these impacts, converting agricultural waste into useful 
products like biochar has emerged as a sustainable and economical solution (Koul et al., 2022; 
Ouyang et al., 2023). Biochar is a carbon-rich material produced through the thermal decomposition 
of organic matter under anaerobic conditions (Bian et al., 2024). The process is simple, cost-effective, 
and does not require complex infrastructure (Awogbemi and Von Kallon, 2023a). The resulting 
biochar possesses properties like high porosity and surface area, making it useful in applications such 
as agriculture, soil restoration, and waste management (Yu et al., 2023). Moreover, biochar exhibits 
significant adsorption capabilities, effectively removing contaminants from wastewater and 
mitigating greenhouse gas emissions (Awogbemi and Von Kallon, 2023b; Wang et al., 2023a). 
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3.2. Characterization of Biochar Produced and Methods Used 

The composition and characteristics of biochar depend significantly on the raw materials and 
production methods utilized (Ottani et al., 2023; Thakur et al., 2023). Agricultural waste composition 
influences the quality, cost, and efficiency of biochar production. Table 4 highlights various 
agricultural wastes analyzed for their biochar characteristics using diverse methods. One of the most 
common methods for biochar production is pyrolysis, where organic material is thermally 
decomposed in the absence of oxygen. This method, studied extensively by researchers such as Geng 
et al. (2021), Quesada et al. (2021), and Sreenivas et al. (2014), involves heating biomass at 
temperatures ranging from 300 to 800 °C under anaerobic conditions. For example, walnut shells 
subjected to pyrolysis at 500 °C with a heating rate of 8 °C per minute demonstrated the efficiency of 
this technique (Geng et al., 2021; Lin et al., 2024). Table 5 provides a detailed classification of pyrolysis 
technologies used in biochar production. In conclusion, sustainable management of agricultural 
waste through biochar production offers a promising solution to environmental and waste 
management challenges. The pyrolysis method, among other techniques, holds great potential for 
converting agricultural residues into valuable resources, contributing to a more sustainable and 
environmentally friendly future. Further optimization of processes and innovative technologies will 
be key to maximizing the benefits of biochar production. 

4. Biodiesel Production from Biochar 

Technological advancements and efficient utilization of resources have paved the way for 
innovative applications of biochar. Its unique properties, including chemical inertness, high 
functionality, structural stability, mechanical robustness, and thermal resistance, make biochar a 
versatile material (Awogbemi and Kallon, 2024; Melo et al., 2024). Additionally, biochar's high 
porosity, large specific surface area, and negative charge contribute to its effectiveness in diverse 
applications (Balajii and Niju, 2019). Beyond its environmental benefits and availability, biochar has 
been utilized as a catalyst, catalyst support material (Melo et al., 2024), electrode material in 
supercapacitors (Yusuff and Owolabi, 2019), adsorbent in carbon sequestration and storage (Melo et 
al., 2024), and a remediation agent for water and soil (Balajii and Niju, 2019). 

One of the most promising applications of biochar is as a catalyst in the transesterification 
reaction for biodiesel production. Researchers have successfully modified biochar to function as an 
effective heterogeneous acid catalyst, enhancing biodiesel synthesis (Dehkhoda et al., 2010). Biochar-
derived catalyst supports are cost-effective, environmentally friendly, and readily available, 
contributing to increased efficiency in biodiesel production. Key factors such as catalyst type, 
concentration, and reaction conditions significantly influence biodiesel yield (Awogbemi and Von 
Kallon, 2023a, 2023b). Heterogeneous catalysts, which are easier to separate and reusable, offer 
distinct advantages over homogeneous catalysts in biodiesel production. Specifically, metal oxide-
based catalysts like CaO, MgO, ZnO, and CaZrO₃ derived from agricultural waste and crop residues 
have shown promising results (Awogbemi and Von Kallon, 2023a, 2023b). Furthermore, biochar 
modifications—including surface modification, porosity enhancement, chemical treatment, and 
physical alterations—have been employed to optimize its catalytic properties for biodiesel synthesis. 
Table 7 highlights the work of various researchers who have leveraged biochar as a catalyst in 
biodiesel production. The biodiesel yield generally increases with extended reaction times, although 
the optimal duration varies based on factors such as feedstock type, catalyst characteristics, and 
concentration (Salam et al., 2016). Nanoparticle properties, including activity, also play a crucial role 
in determining biodiesel production efficiency. This demonstrates the potential of biochar as a 
sustainable and economically viable catalyst for biodiesel synthesis, aligning with global efforts to 
develop renewable energy solutions and reduce dependency on fossil fuels. Further research and 
innovation in biochar applications are essential to fully realize its potential in biodiesel production 

5. Feedstock for Biodiesel Production 
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Agricultural residues offer an abundant and diverse pool of raw materials for biodiesel 
synthesis. Common agricultural waste materials include: 

1. Crop Residues: Straw, stalks, and husks from crops like wheat, rice, and corn are rich in 
lignocellulosic biomass, which can be processed into biofuels. 

2. Fruit and Vegetable Waste: Peels, seeds, and pomace from fruits such as oranges, bananas, and 
tomatoes are rich in lipids and other bioactive compounds suitable for biodiesel production. 

3. Animal Waste: Fats and oils derived from slaughterhouse by-products provide high lipid 
content for biodiesel synthesis. 

4. Non-Edible Oilseeds: Jatropha, Pongamia, and other non-edible seeds offer potential for 
biodiesel production without affecting food security. 
The variability in composition and availability of these feedstocks necessitates tailored 

approaches to optimize their conversion into biodiesel. 

Conversion Technologies 

The transformation of agricultural waste into biodiesel involves several key processes, each with 
its technological advancements and challenges: 

1. Lipid Extraction: Efficient extraction of lipids from agricultural waste is crucial. Methods 
include: 

o Mechanical Extraction: Simple and cost-effective but may result in lower yields. 
o Chemical Solvent Extraction: Utilizes solvents like hexane to achieve higher lipid recovery 

but raises concerns of toxicity and cost. 
o Green Extraction Techniques: Innovations like supercritical CO2 and ultrasonic-assisted 

extraction offer eco-friendly alternatives. 

2. Transesterification: The extracted lipids undergo transesterification, where triglycerides react 
with alcohol (e.g., methanol) in the presence of a catalyst to produce biodiesel. Catalysts include: 

o Homogeneous Catalysts: Widely used but require rigorous purification processes. 
o Heterogeneous Catalysts: Easier to separate and recycle, contributing to cleaner 

production. 
o Enzymatic Catalysis: Offers high specificity and milder reaction conditions, though costs 

remain a limitation. 

3. Pretreatment of Feedstock: Agricultural waste often contains impurities and water content that 
can inhibit biodiesel production. Pretreatment methods, such as drying, grinding, and chemical 
treatments, are employed to enhance feedstock quality. 

4. Biochemical Conversion: Advanced processes, such as microbial fermentation and enzymatic 
hydrolysis, convert lignocellulosic biomass into biodiesel precursors. This approach is 
particularly suitable for non-lipid-rich feedstocks. 

Environmental and Socio-Economic Impacts 

Utilizing agricultural waste for biodiesel production offers numerous environmental and socio-
economic benefits: 

1. Waste Management: By diverting agricultural residues from landfills and open burning, this 
approach reduces air pollution and greenhouse gas emissions. 

2. Renewable Energy Generation: Biodiesel derived from agricultural waste contributes to the 
global transition towards renewable energy sources, reducing dependence on fossil fuels. 

3. Rural Development: Establishing biodiesel production units in rural areas promotes local 
employment and economic growth by creating value-added products from waste. 

4. Carbon Footprint Reduction: Life cycle assessments indicate that biodiesel from agricultural 
waste has a significantly lower carbon footprint compared to petroleum-based fuels. 
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5. Energy Security: Diversifying energy sources enhances national energy security, particularly in 
regions reliant on energy imports. 

Challenges and Limitations 

Despite its potential, agricultural waste-based biodiesel production faces several challenges: 

1. Feedstock Collection and Logistics: Agricultural waste is often dispersed across large areas, 
complicating its collection and transportation. 

2. Technological Barriers: High costs of advanced extraction and conversion technologies hinder 
widespread adoption. 

3. Economic Viability: Fluctuations in feedstock availability and market prices for biodiesel affect 
profitability. 

4. Policy and Regulatory Support: Lack of supportive policies and incentives limits investment in 
biodiesel projects. 

5. Quality Standards: Ensuring consistent quality of biodiesel derived from heterogeneous 
feedstocks remains a challenge( Borthakur & Sarmah, 2013; Sarmah & Borthakur, 2013).. 

6. Future Perspectives 

To effectively address the challenges and fully harness the potential of agricultural waste for 
biodiesel production, a multifaceted approach is essential. Technological innovation stands at the 
forefront, with a pressing need for research and development of cost-effective and efficient 
conversion technologies. Advancements in pyrolysis, fermentation, and catalytic processes are 
crucial to optimizing the transformation of agricultural residues into biochar and biodiesel. 
Simultaneously, the establishment of integrated biorefineries offers a promising avenue to improve 
economic feasibility. By producing multiple products such as biodiesel, bioethanol, and biogas within 
a single facility, biorefineries can diversify revenue streams and increase the overall efficiency of 
resource utilization. Public-private partnerships can serve as a powerful driver of progress by 
fostering collaboration between governments, industries, and research institutions. These alliances 
can stimulate investments, expedite the development of cutting-edge technologies, and bridge the 
gap between research outcomes and large-scale commercial applications. Complementing these 
efforts, policy interventions by governments can create a conducive environment for waste-based 
biodiesel production. Offering tax incentives, subsidies, and grants for innovative waste-to-energy 
projects can motivate stakeholders to invest in and adopt sustainable practices. Equally important is 
community engagement, which involves educating farmers and local populations about the 
environmental and economic benefits of utilizing agricultural waste. Awareness campaigns, training 
programs, and financial incentives can encourage the collection and supply of agricultural residues 
as feedstock for biodiesel production. A bibliometric study analyzing publication trends, global 
research contributions, keyword usage, and authorship networks highlights the evolving research 
landscape of biochar and its role in biodiesel production. Biochar derived from agricultural biomass 
has gained significant attention for its versatility, particularly as a catalyst in biodiesel production 
(Thakur et al., 2023). The production process involves the pyrolysis and activation of biochar under 
controlled conditions, with recent research focusing on developing biochar-based catalysts for this 
application (Jayaraju et al., 2022). Looking forward, utilizing agricultural waste for biochar 
production in biodiesel manufacturing holds substantial promise. Agricultural residues, such as rice 
husks and sugarcane by-products, can be transformed into biochar, providing both economic benefits 
and opportunities for sustainable energy development. Technological advancements in this field are 
expected to further improve the efficiency and sustainability of biodiesel production, making the 
process more environmentally friendly (Babadi et al., 2022). Using biochar as a renewable catalyst 
not only reduces greenhouse gas emissions and mitigates climate change impacts but also lowers the 
carbon footprint associated with biodiesel production (Zhang et al., 2019b). Moreover, the integration 
of biochar into biodiesel manufacturing decreases reliance on finite fossil resources and addresses 
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agricultural waste management challenges, transforming waste into a valuable resource (Patel and 
Panwar, 2023). 

Despite the evident benefits and potential applications, further research is essential to optimize 
biochar production processes and fully realize its potential in biodiesel production. As research 
progresses, the future of biochar utilization in biodiesel production appears both promising and 
impactful. 

7. Conclusions 

Harnessing agricultural waste for biodiesel production presents a sustainable and innovative 
solution to address global energy demands, environmental challenges, and waste management 
issues. This approach leverages the abundant availability of agricultural residues, such as crop husks, 
fruit peels, and other organic by-products, to produce renewable energy, aligning with global efforts 
to reduce reliance on fossil fuels and mitigate climate change. Central to this strategy is the use of 
biochar, a carbon-rich material derived from biomass, which serves as a highly efficient and 
environmentally friendly catalyst in biodiesel production. The unique properties of biochar, 
including its high porosity, large surface area, and chemical stability, make it an invaluable resource 
in enhancing the efficiency and sustainability of biodiesel synthesis processes. This review 
underscores the socio-economic benefits of agricultural waste utilization, including waste 
valorization, rural development, and contributions to the circular economy. Furthermore, integrating 
biochar into these systems provides a dual advantage of improving biodiesel production efficiency 
and offering practical solutions for waste management. Despite these benefits, challenges remain, 
including feedstock variability, logistics of agricultural waste collection, and the need for 
technological and economic optimization of biochar production and modification processes. 

Policy interventions, such as subsidies, tax incentives, and research funding, are essential to 
create an enabling environment for large-scale adoption of agricultural waste-based biodiesel 
production. Community engagement and awareness campaigns are equally critical to mobilize 
farmers and local stakeholders in providing reliable feedstock supplies. In conclusion, the integration 
of agricultural waste and biochar into biodiesel production systems offers a promising pathway 
toward a sustainable energy future. With continued advancements in technology, supportive policy 
frameworks, and global collaborations, this approach has the potential to significantly reduce 
environmental impacts, enhance energy security, and contribute to the achievement of sustainable 
development goals. The future of biodiesel production lies in unlocking the full potential of 
agricultural waste and biochar as key resources. 
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