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Abstract: During the last 15-20 years the experimental methods for autonomous navigation and
inter-satellite links have been developing rapidly in order to ensure navigation control and data
processing without commands from Earth stations. Inter-satellite links are related to relative ranging
between the satellites from one constellation or different constellations and measuring the distances
between them with the precision of at least 1 um micrometer (=10~% m), which should account for the
bending of the light (radio or laser) signals due to the action of the Earths gravitational field. Thus the
theoretical calculation of the propagation time of a signal should be described in the framework of
General Relativity Theory and the s.c. null cone equation. This review paper summarizes the latest
achievements in calculating the propagation time of a signal, emitted by a GPS satellite, moving along
a plane elliptical orbit or a space-oriented orbit, described by the full set of 6 Kepler parameters. It
has been proved that for the case of plane elliptical orbit the propagation time is expressed by a sum
of elliptic integrals of the first, the second and the third kind, while for the second case (assuming
that only the true anomaly angle is the dynamical parameter) the propagation time is expressed by a
sum of elliptic integrals of the second- and of the fourth- order. For both cases it has been proved that
the propagation time represents a real-valued expression and not an imaginary one, as it should be.
For typical parameters of a GPS orbit, numerical calculations for the first case give acceptable values
of the propagation time and especially for the Shapiro delay term of the order of nanoseconds, thus
confirming that this is a propagation time for the signal and no for the time of motion of the satellite.
Theoretical arguments, related to General Relativity and differential geometry have also been presented
in favour of this conclusion. A new analytical method has been developed for transforming an elliptic
integral in the Legendre form into an integral in the Weierstrass form. Two different representations
have been found, one of them based on the method of four-dimensional uniformization, exposed
in the monograph of Whittaker and Watson. The result of this approach is a new formulae for the
Weierstrass invariants, depending in a complicated manner on the modulus parameter q of the elliptic
integral in the Legendre form.

Keywords: GPS Inter-satellite communications; general relativity; elliptic functions and integrals

1. Introduction

In the past 10 — 15 years the problem about GPS (GPS means Global Positioning System) satellite-
ground station communications has been replaced by the problem about autonomous navigation and
inter-satellite communications (ISC) (links), which has been mentioned yet in 2005 in the monograph
[1]. Autonomous navigation means that satellites should have the capability to transmit data between
them via inter-satellite cross-link ranging [2] and thus, to ensure navigation control and data processing
without commands from Earth stations in the course of six months. It is important that next generation
space missions will attain sub-millimeter precision of measuring distances beyond 10~° meters (1
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micrometer = 1 ym = 10~° m) by means of ultrashort femtosecond pulse lasers. The theoretical
description of such measurements is inevitably related with General Relativity Theory (GRT). This
means that the relative ranging and relative velocity model should account also for the bending of
the transmitting path of the signal, which is significant for such large distances between the satellites
due to the action of the gravitational field. The bending of the light (laser) is related to the important
and fundamental physical fact that due to the action of gravitational field, the signal travels a greater
distance in comparison with the straight path distance in the absence of a gravitational field.

In the book [8] autonomous navigation is defined as referring to “processes in which the spacecraft
without the support from the ground-based TT&C (Telemetry & Tracking Control) system for a long
time, relying on its onboard devices, obtains all kinds of measurement data; determines the navigation
parameters like orbit, time and attitude”. In this monograph DORIS and PRARE navigation systems
are determined as non-autonomous, because “DORIS system can determine the spacecraft’s orbit with
high accuracy, but both need to exchange information with the ground stations”. Thus, the main aim
of autonomous navigation is to reduce the dependence of spacecrafts on the ground TT&C network
and in this way to enhance the capability of the systems anti-jam and autonomous survivability. It is
evident also that the determination of the satellite’s exact location is achieved through the reception,
processing, and transmitting of ranging signals between the different satellites.

Autonomous GPS navigation system is necessary in view of the proposal of researchers from the
University of Texas, Aerospace Corporation, National Bureau of Standards, International Business
Machines Corporation (IBM) and Rockwell Automation Inc. to monitor nuclear explosions, based on
GPS inter-satellite communication link.

The development of inter-satellite laser communication systems in space - orbit technology that
enable super-high-speed data transfers at rates greater than 1 Gbps is widely applied also in.cube-
/nanosatellite platforms such as CubeLCT, AeroCube-7B/C, CLICK, LINCS-A /B, SOCRATES and
LaserCube [9]. However, in order to establish laser communications, high performance of arc-second
level pointing system is required, and this is a difficulty for the nanosatellite platforms. It can be
supposed why there is such a difficulty - since the data-transmission rate of 1Gbps between the two
nanosatellites is at an inter-satellite range of 1000 km, the effects of curving the trajectory of the laser
signal may be considerable. In publications, related to small satellite optical links [10] it has been
admitted that the s.c. "pointing error" arizes not only due to tracking sensors and mechanical vibrations,
but also due to the base motion of the satellite. This fact, together with the ranging of signals and the
pointing error illustrate the assumption that not only the motion of two satellites is important, but
the effect of curving of the signal trajectory. The paper [10] also asserts that for a GPS constellation
with 24 satellites, there are a total of 8 — 16 links - they can be forward and backward links in the same
orbit, but as well as lateral links between adjacent orbits. Moreover, the distance of GPS inter-satellite
crosslink can reach 49 465km.

The establishment of inter-satellite links (ISL) and measurement communications is of primary
importance for the relative ranging and relative velocity determination between the satellites from
one constellation or from different constellations such as the GPS system, the Russian GLONASS,
the European Galileo and the China Beidou second-generation system, all of them considered to be
interoperable with each other.

The theory of inter-satellite communications (ISC) is developed in the series of papers by S.
Turyshev, V. Toth, M. Sazhin [3], [4] and S. Turyshev, N. Yu, V. Toth [5]. The theory in these three
paper concerns the space missions GRAIL (Gravity Recovery and Interior Laboratory) [3], GRACE-
FOLLOW-ON (GRACE-FO - Gravity Recovery and Climate Experiment - Follow On) mission [4]
and the Atomic Clock Ensemble in Space (ACES) experiment [5], [6], [7] on the International Space
Station (ISS). For the second model in [4], the relativistic change of the phase of the signal has been
computed due to the changing (geodesic!) distance between the emitting satellite and the receiving
satellite. The geodesic distance is the real distance, travelled by the light or laser distance and due to
the relativistic effect of the gravitational field to curve the trajectory of the signal, it is greater than
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the Euclidean distance. Because of this effect, in the papers [3], [4] and [5] the difference between the
emitting time and the receiving time is determined to be a relativistic observable, dependent on the
geodesic distance, travelled by light. In such a case this time difference contains also the relativistic
logarithmic correction, typical for the Shapiro delay formulae. This formulae and its application in the
current research shall be outlined further.

It should be stressed also that the above mentioned missions are realized by means of low-orbit
satellites (about 450 km above the Earth) and the distance between the satellites is about 220 km, while
the satellites from the GPS, GLONASS and the Galileo constellations are on a much higher orbit (from
19140 km for GLONASS and ranging to 26560 km for GPS, even higher). Consequently, the distance
between the satellites from one or from different constellations cannot be determined with the accuracy
(1 micrometer), typical for the GRAIL and GRACE missions, accounting also of the relative motion
between the satellites.

2. A Brief Review of the Shapiro Delay Formulae and the Aims of This Paper
2.1. Standard Shapiro Delay Formulae, Derived from the Null Cone Equation

The basic theoretical approach to find the propagation time of signals in the near-Earth space
with account also of the gravitational field and in the framework of General Relativity Theory is based
on the s.c. Shapiro delay formulae, proposed yet in 1964 [12] and frequently used also in VLBI (Very
Large Baseline Interferometry) (see the review article by Sovers, Fanselow, Jacobs [13])

1)

Rap  2GMg ra+ 71+ Rap
Tag = 1 ,
AB c + c3 n ra+71g— Rap

where the coordinates of the emitting and of the receiving satellite are correspondingly | x4 (t4) |= 174
and | xg(tg) |= rp, and Rap = | x4(ta) — xp(tp) | is the Euclidean distance between the signal -
emitting satellite and the signal - receiving satellite. Note that the space points of emission x 4 (f4) and
arrival xg(tg) of the signal are taken at the time 4 of emission and of arrival tg correspondingly. In
(1) Gg Mg is the geocentric gravitational constant, Mg, is the Earth mass and Gg is the gravitational
constant, t =TCG denotes the s.c. Geocentric Coordinate Time (TCG). Further (and also in the above
formulae) we shall denote by T4 = Tp — T4 the signal propagation time and thus we have replaced
the times t4 and tg by T4 and Tp, so that to underline that these are times of emission and reception.
The second term in formulae Eq. (1) is the Shapiro time delay term, accounting for the signal delay
due to the curved space-time.

In order to calculate the propagation time T4p of the signal, it should be remembered that
according to General Relativity (see the book [14]) the emitter of the first satellite emits a signal
propagating on the gravitational null cone after setting up to zero the infinitesimal metric element
ds®> =0

ds?> =0 = goocsz2 + ZngCdexj + gijdxidxj . 2)

For the null-cone equation (2), the solution of this quadratic algebraic equation with respect to the
differential dT can be given as [16],

ar =+ 1 \/(gij + gOing)dxidxf+

C+/—800 —800
1 (g‘”) ax ©)
€\ —&oo0

where the metric tensor components are determined for an Earth Reference System with an origin at
the centre of the Earth.

Further, the propagation time should be found after 1. choosing the metric tensor components
Sijr 80i and goo in the given expression for the zero infinitesimal metric ds?> = 0 (2) and 2. choosing
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the coordinates x* (i, j = 1,2,3) in the metric, which additionally may depend on one, two or more
parameters. Note that we have assumed that x’ = 1. In the present investigation, the coordinates
shall be chosen to be related with the satellites motion along the elliptic orbit. Usually, geostationary
satellites are situated on nearly circular orbits. Satellites from the GPS constellation have a very small
eccentricity of the orbit of the order of e = 0.01, for the Russian constellation GLONASS the eccentricity

is e = 0.02. Let us remind that if 4 and b are respectively the large and the small semi-axis of the ellipse,
VaZ—p?

a
eccentricity measures to what extent the ellipse deviates from the circle. Smaller eccentricity will mean

then by definition e = = ¢ where c is the distance between the foci of the ellipse. Thus the
an ellipse, which is close to the circle, while high eccentricity will be related to strongly elongated
ellipses. For elliptic orbits 0 < e < 1, for e > 1 the orbit will be a hyperbolical one and will not be a
closed trajectory - these are trajectories of satellites and celestial bodies, leaving the Solar system. .

2.2. The Purpose of This Paper and the Relation to the Parametrization of the Coordinates in the Metric Tensor

The main goal of this paper will be the exact analytical calculation of the propagation time of a
signal by using a solution of the null cone equation (2) and the parametrization of the space coordinates
of the satellite for two different cases.

2.2.1. Case A - Plane Elliptical Coordinates of the Satellite

This is the most simple case, when the two-dimensional (x,y) coordinates of the plane elliptical
orbit of the satellite is parametrized in terms of the large semi-major axis a of the ellipse, the eccentricity
e and the eccentric anomaly angle E, which is a dynamical parameter, related to the motion of the
satellite on the orbit. The analytical expression for the parametrization of (x, y) is

x=a(cosE—e) , y=av1—e*sinE (4)

and it is well-known in all basic courses on celestial mechanics see especially [24], [25].The time
coordinate is chosen to be the celestial time t..;, which is related to the eccentric anomaly through the
Kepler equation

E—esinE =n(te —ty,) =M . (5)

In this equation e is the eccentricity of the orbit, n = y/ %VI is the mean motion, M is the mean anomaly

and t, is the time of perigee passage for the satellite. The mean anomaly M is an angular variable,
which increases uniformly with time and changes by 360° during one revolution. The mean motion
n has the following geometrical meaning: this is the motion of the satellite along an elliptical orbit,
projected onto an uniform motion along a circle with a radius equal to the large axis of the ellipse.
Usually M is defined with respect to some reference time - this is the time ¢, of perigee passage, where
the perigee is the point of minimal distance from the foci of the ellipse (the Earth is presumed to be at
the foci). Since the eccentric anomaly angle E will play an important role in the further calculation,
let us also remind how this notion is defined: if from a point on the ellipse a perpendicular is drawn
towards the large axis of the ellipse, then this perpendicular intersects a circle with a centre O at a point
P. Then the eccentric anomaly represents the angle between the joining line OP and the semi-major
axis (the line of perigee passage).

In [28] E is determined as an auxiliary angular variable such that a — r = ae cos E, which has
the following geometrical meaning with respect to the ellipse: if 7, and r, are the corresponding
radius-vectors at the perigee passage and at the apogee, then E = 0 for r = rp and E = 7t for r = 7,.

The first main purpose of this paper will be to solve the equation (3) for dT as differential equation
with respect to the eccentric anomaly angle E , for the given parametrization (4) of the coordinates
(x,y) and for the null-cone metric of the near-Earth in the standard form

ds2 = — 2 (1 + 2;;) (dT)* + (1 - ZC‘Z/) ((dx)? + (@y)? + (d2)?) =0, ©)
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where V = G%ifw@ is the standard gravitational potential of the Earth. No account is taken of any
harmonics due to the spherical form of the Earth since the GPS orbits are situated at a distance more
than 20000 km (considered from the centre of the Earth). In fact, the null-cone metric is the same,
derived from the standard metric for the near-Earth space in basic monographs of gravity theory such
as the one by Fock [29].

2.2.2. First Aim of the Paper - Expressing the Propagation Time in Terms of a Sum of Elliptic Integrals
of Different Kinds (First, Second and Third) for the Case of a Signal Emission by a Satellite on a Plane
Elliptical Orbit

For the first time in [18], [20] and in the review paper [22], the solution for the propagation time
T is found to be expressed in terms of elliptic integrals of zero-order, but of the first , second and of
the third kind. Later it will become clear what is the difference between elliptic integrals of different
orders and kinds. The imaginary unit appears in these elliptic integrals, so it is important to prove that
the integrals are real-valued quantities, since the propagation time T is a real and not an imaginary
quantity. The physical approximation which is used for finding the solution is § = 27\2/ < 1, which
physically is related to the assumption about a weak gravity field. This assumption is consistent with
the experimental data and the calculation of the numerical quantity g = % =033410"7 < 1
by some authors [31] and also with the relativistic effects of the order of ¢~ 2 (further in the text this
accuracy will be denoted as O(c™2)). This is a consequence of the experimental fact that a GPS
constellation has to keep time to an accuracy of about four nanoseconds per day (4 nsec /d = 4 x 1077
sec /d) [31], which is compatible with the fractional time stability of 5 x 10~ 14, maintained by atomic
clocks. Naturally, the fractional stability is constantly improving in the past and present years with the
perspective of becoming smaller and smaller.

Accuracy of the Relativistic Effects and the Possibility to Find the Solution of the Null Cone Equation

The last fact is mentioned due to the following interesting consistency between the experimentally
measured accuracy of relativistic effects and the found solution of the null cone equation (6) for the
propagation time T in terms of the eccentric anomaly angle E As it will be shown, this solution is
possible to be found only under the assumption g = %/ < 1. The necessity to implement such an
assumption, physically expressing the fact about the weak gravitational field, is related also with
the fulfillment of the Equivalence Principle only for weak gravitational fields and slow motions - an
important topic, discussed in the monograph by Fock [29].

2.2.3. Second Aim of the Paper - Theoretical Justification of the Approach from the Viewpoint of
General Relativity Theory and Differential Geometry

The second main purpose of the paper is to justify the theoretical approach and to provide the
reasoning for choosing as parametrization variables in the null cone equation (6) the coordinates
(4), parametrizing the satellites trajectory along the orbit in terms only of three variables - a,e and E,
among which only the eccentric anomaly angle E is the dynamical parameter. The need to justify the
theoretical approach will refer not only for the simplified case of the Kepler coordinates (4), but also
for the next (second) case of a space-oriented orbit, when the disposition of the orbit in space will be
described by 6 Kepler parameters (they will be determined in the next section). From a conceptual
point of view, this is a very non-trivial problem, since the presence of the Kepler coordinates (4) in the
null cone equation (6) may raise the question whether it is correct to use coordinates, not related to the
trajectory of the signal, but to the motion of the satellite. Following such a wrong logic, then it might
turn out that the calculated time T is not a propagation time of a signal, but the time for motion of
a satellite. Fortunately, this line of reasoning is not correct, because the essential fact is the null cone
equation (6) and not the parametrization of the space coordinates x, y or x, y, z. This will be confirmed
by 1. A theorem in the monograph by Fock [29], which further will be formulated in details [22]. 2. A
theorem from differential geometry [30] with a meaning, which is very close to the meaning in the
monograph by Fock (cited also in the papers [22] and [23]).
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In fact, here the problem can be stated in a different way, since the propagation time T will be
found as a solution from the null cone equation (remember also that the Shapiro delay formulae (1)
is also derived from the null cone equation), but it should be found from the null geodesics. So the
question is - should the null geodesic equation be used (which, as known, is difficult to solve exactly)
or one may use instead only the null cone equation? However, the null cone equation is compatible
with the light-like geodesic equation in the sense that each solution of the null cone equation is a
solution also of the light-like geodesic equation according to the theorem in the book by Fock [29], so
it represents a geodesics. But then if it is a light-like geodesics, according to another theorem in [32],
it represents the shortest path (length) from one point of the geodesics to another point on the same
geodesics. This is consistent with the Fermat principle about the propagation of light, asserting that
light travels between two points for a minimal time [33]. Since the light velocity is constant, light will
travel along the shortest path between the two points . In the book by Mishtenko and Fomenko [30]
the theorem is formulated in the sense that each extremal of the null cone functional

E(®) = [ 19°6) 1 ds = [ ()i (5)¢'(s)as @)

is also an extremal of the length functional

Liv() = [ Vgi(x)# 0¥ (s)ds ®

but the statement in the inverse direction is not always fulfilled. This means that the extremals of
the null-cone functional constitute of subset of the extremals of the length functional- see also the
arguments in [22] and [23]. Length functional of the type (8) can be obtained also after the integration
of the null-cone equation (6) for the case when the space coordinates x, y, z are parametrized by several
variables (see the next section) - in differential geometry well-studied are the s.c. first and second
fundamental forms [30], [32]. In subsequent papers this will also be studied in details, but this paper
will focus only on finding the solutions for the propagation time in terms of elliptic integrals.

2.2.4. Third Aim of the Paper- Finding the Solution for the Propagation Time T for the Case of
Space-Distributed Orbits in Terms of Elliptic Integrals of Higher Order (Second and Fourth)

Space-distributed (oriented) orbits are well-known from celestial mechanics (further we shall use
the coordinate representation from the book [25]) and in this case the position of the orbit in space is
characterized by 6 Kepler parameters (f,a_,e,Q,I,w.), which are in fact the orbital coordinates. The
analogue of the coordinate transformation (4) for this case of space-distributed orbits are

_a(l—é€?) } )
X = W[cosﬂcos(w—i-f) —sinQsin(w + f)cosI] , 9)
= M[sin()cos(aH—f) + cos O sin(w + f) cos I] (10)
YT 1y ecos f ’
a(l—e€?) :
z= Thecosf sin(w+ f)sinl (11)
where r = 1’1(16;53 is the radius-vector in the orbital plane, the angle () of the longitude of the right

ascension of the ascending node is the angle between the line of nodes and the direction to the vernal
equinox, the argument of perigee (periapsis) w is the angle within the orbital plane from the ascending
node to the perigee in the direction of the satellite motion (0 < w < 360°), the angle I is the inclination
of the orbit with respect to the equatorial plane.

Very often, instead of the true anomaly angle f, another variable is used - the argument of latitude
u = w + f, being defined as the sum of the argument of perigee w and the true anomaly f and
geometrically representing the angle between the line of nodes and the position vector r. The argument
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of latitude will appear further in the calculation of the propagation time in terms of the celestial
coordinates. A similar additive angular variable is the eccentric longitude F = E + w + Q) (equinoctial
orbital characteristic), representing the sum of the eccentric anomaly angle E, the right ascension of the
ascending node () and the argument of the perigee w.

From celestial mechanics it is also known that there is a relation between the eccentric anomaly
angle E and the true anomaly angle f

f  J14+e E

J1+e E
tani_ 1_e,tan2:>f_2arctanl 1_e.tanz] . (12)

Two Definitions of the True Anomaly Angle

If a satellite moves along an elliptical orbit, then the dynamical parameter, related to the motion
of the satellite is the true anomaly angle f. The true anomaly f is defined as the geometric angle in the
plane of the ellipse between periapsis (the closest approach to the central body) and the position of the
orbiting satellite at any given time [26]. . The vector 7 has an initial point at the centre of the ellipse.

There is also another more "mathematical" definition, which makes use of the s.c. "Runge-Lenz"
(or Laplace) vector Ay [27], which lies in the orbital plane and thus is orthogonal to the angular-
momentum vector | = r x r (called also areal velocity h=rxr=const=])

AL =X (rxf)—G@M@;:'r x]—G@M@; . (13)

Thus, the true anomaly f is the angle between the Runge-Lenz vector A} and the position vector r.
The vector A} appears as an additive constant after integrating the equation

. d/r
hxio dr 14

T GGBM@dt(r) ’ (14
and AA =1 | r x tAt |= } | I | At is the area, swept by radius-vector r during the time At. The square
of the Runge-Lentz-Laplace vector can be calculated to be [27]

A2 = Gy M2 + 2] ) = Ga M2 +2J%F (15)

1.0 G@ M@
71/' —_—

2 r
where [ is the conserved energy per unit mass.

Elliptic Integrals of the Second and of the Fourth Order with an Integration Over the True Anomaly
Angle f

Finding the solutions for the propagation time T of the signal in terms of elliptic integrals of
the second and the fourth order (as shall be explained, the order of the elliptic integral is related
to the order of the polynomial in the nominator) is the third main goal of this paper. Initially it
was performed in the paper [20] and some results have been summarized (with some new small
additions and interpretations) in the review paper [22]. The unusual mathematical properties of the
space-distributed transformations (9) - (11) (they will be clarified in the next sections) make it possible
to define these elliptic integrals in terms of the rapidly changing dynamical parameter during the
motion of the satellite - the true anomaly angle f. In fact, this should be considered as a first step in
expressing the propagation time in terms of all the Kepler parameters (f,a,e,Q, I, w.), characterizing
the transformations (9) - (11). This is a much more complicated problem and for the moment it is
not clear whether the integrals over the other five variables a e, (), I, w. will be elliptic ones or not.
Naturally, during the propagation of the signal from one satellite to another, the true anomaly angle
will be the most rapidly changing and the other five parameters will change very slowly.

The motivation for searching of such solutions is important due to several reasons.
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Motivation for Finding the Solutions for the Propagation Time from the Point of View of the Satellite
Laser Communications

A. One of the essential ingredients of the mentioned concept about the autonomous navigation
[8] is the laser optical communications between the satellites [10], in which the relative ranging and
the relative velocity between the satellites depend on their base motion. If we take as an example the
nanosatellites, the s.c. FSO (Free Space Optical Communications) [11], [9] permit a narrow signal beam
divergence and a satellite system with a smaller antenna in comparison with the RF (Radio Frequency)
satellite system. So if two satellites move on two different space-oriented orbits and they communicate
between each other, the propagation time for the (laser) signal, send by the signal-emitting satellite
and the second signal-receiving satellite should take into account the motion of both satellites and the
curving of the signal trajectory, so that the signal is received at the exact proper space-point. So in fact,
there will be no ideal "narrow beam divergence", if the effects of General Relativity Theory are taken
into account. Unfortunately, it was not the goal in the cited references [8], [10], [11], [9] to account for
these relativistic effects of signal propagation.

The problem here is that the application of General Relativity Theory in (primarily) satellite-
ground stations communications began in the pioneering papers of Neil Ashby [34], [37], but the
investigations concerned perturbations of orbital elements (including the ones in the transformations
(9) - (11), see [34]), frequency shifts, gravitational redshifts, first-order Dopler effect. In all these
references there was no need to consider propagation time for signals between moving satellites in
space with respect to one another.

Yet in 2002 Neil Ashby in the paper [35] formulated the following interesting problem (it concerns
however not the propagation times, but the atomic times): what will be the synchronization error
between the atomic clocks, situated on a rapidly moving GPS-transmitter at about x = 20 000 km
above the surface of the Earth and a receiver in low orbit around the Earth? If the receiver is moving
with a velocity v = 7.6 km/ sec, the estimated synchronization error between the atomic clocks was
estimated to be 1.7 y sec (micro-seconds, 1 ysec = 10° sec) according to the simple formulae - Now
the problem can be formulated in another way: will there be a synchronization error between moving
with respect to one another satellites on two different space-oriented orbits?

Motivation for Finding the Solutions for the Propagation Time for Satellites on Space-Oriented Orbits
from the Point of View of the Method of Two Intersecting Null Cones

B. In order to account for the General Relativity effects on the signal trajectory between moving
satellites, in the papers [18], [19] and [22] a new theoretical method was proposed, called "the method
of intersecting null cones". The idea of this mathematical method is that at the signal-emitting satellite
with coordinates (x1,y1,z1) and at the signal-receiving satellite with coordinates (x2,y2,z2) two null
cones are situated, which intersect each other. The first null cone is

2V
ds} = 0= — (2 4+2V) (@T1)? + (1= S51) ((dx1)? + (dy1)? + (d20)?) (16)
and the second null cone is
d 2 — 0= — 2 d 2 _ % d 2 d 2 d 2
53 = 0= —(c"+2V2)(dT2)" + (1 = —57) ((dx2)" + (dy2)” + (dz2)7) (17)

The changing positions (Euclidean distance) between the satellites mean that the two four-dimensional
null cones have to be additionally intersected with the six-dimensional hyperplane in terms of the
variables dx1, dyy, dz1, dxa, dy, dzp, which is obtained after taking the differential of the formulae for
the Euclidean distance

Rip = (x1 —x2)*+ (11 —y2)* + (21 — 22)* . (18)

and thus the hyperplane equation in terms of the differentials is

dR%‘B = 2()(1 — xz)d(x1 — XZ) + 2(}/1 — yz)d(yl — yz) + 2(21 — Zz)d(Zl — Zz) . (19)
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Thus the condition of signal exchange and finding the propagation times T; and T, mathematically is
equivalent to finding dT; and dT, as solutions for the intersecting variety of the two null cones (16)
and (17) with the hyperplane (19). Essentially, this is a problem, related to algebraic geometry. In [18],
[19] and [22] this has been performed for the case of a plane elliptical orbit, when there is no z variable
in the corresponding equations. Now it remains to substitute in the equations (16), (17) and (19) the
expressions for T; and T,, which will be found for the case of space-oriented orbits. However, since
the implementation of the mathematical formalism, related to elliptic integrals in the formalism of two
null intersecting cones is very complicated and requires the use of algebraic geometry, it this paper
we shall restrict mainly to elliptic functions and integrals in the framework only of the one null cone
approach. It is evident, however, that finding the propagation time in terms of elliptic functions is the
first step towards implementing the obtained formulaes in the approach of two null intersecting cones.

The necessity to perform such calculations is determined also from some new physical notions,
defined in [18], [19] and [22] for the case of plane elliptical orbits, given by the transformations (4). The
solution of the equation in differentials for the null cone enabled to define the space-time distance,
which was proved to have the property to be less than zero, equal to zero or greater than zero. If the
space-time distance is assumed to be comparable to the Euclidean distance, then the s.c. ""compatibility
condition for inter-satellite communications" is obtained. If substituted in the expression for the
space-time distance, geodesic distance is obtained, which is only positive, and this has been proved to
be valid in the cited papers for all the cases.

The null-cone equations (16) and (17) may be considered as a generalization of the null cones

|r—ri|=c(t—t) i=1,23,4, (20)

proposed in [35], [36] for the case of a flat space-time and a responder with coordinates (¢,r) (t is the
time of reception) and four transmitters (with synchronized atomic clocks) with coordinates (t;, ;).
From the nonlinear system (20) of four equations the coordinates (t,) of the reception event have to
be found. In our case of only two null cones, the two propagation times T and T, have to be found,
and also the variable space-time distance from the additional hyperplane equation.

However, in order to be able to consider the above theoretical scheme to be of a general character,
it has to be proved also for the more complicated case of space-oriented orbits.

Some Unusual and General Mathematical Properties of the Space-Oriented Transformations (9) - (11)

The transformations (9) - (11) have some unusual mathematical properties, which make it possible
to express the propagation time in terms of elliptic integrals in terms of the true anomaly angle. The
transformation (4) for the case of the plane elliptic orbit in matrix notations can be written as

X —ae a 0 cos E
<y>:<0>+<0 am)(_gm,;)/ (21)

which represents a simple mapping f : (a,¢,E) — (x,y), where the semi-major axis a and the
eccentricity are kept constant. So this is a simple function f(E).

The situation for the space-oriented transformations (9) - (11) is quite different, since if all the six
Kepler parameters (f,,a,,e,Q,1,w.) are taken into consideration, it represents a nontrivial mapping

F:M(f,a,e,Q,I,w)— N(x,y,z) (22)

from a manifold with n; = 6 dimensions to a manifold with n, = 3 < n; dimensions. Such a mapping
of a manifold of more dimensions than the dimensions #; of the image manifold is called a submersion
[39]. Some aspects of such a more general theory are considered in the recent paper [23]. Also, if
one would like to find the propagation time of the signal, sent from one satellite on a space-oriented
orbit with Kepler parameters f1,a1,e1,Q1, I1,. w1 to another satellite on another orbit with parame-
ters fo,az,e2, o, I, wy, then two manifolds M (f1,a1,e1,Q1, L1, wi.) and Ma(f2,a2,€2, 0, I, w>.)
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should be defined, given by two sets of space-oriented celestial transformations (9) - (11), written for
the two indices " 1" and "2". A basic problem is whether a mapping can be defined with respect to all
the variables from the two sets of the Kepler parameters [23]

Fl : Ml (fl/ ai,e1., QlJ Il/ wl/er ap, ez, QZ./ 12./ (UZ.) — Nl (xll V1,21, %2, Y2, ZZ) (23)

and where (x1,¥1,21) and (x, Y2, 22) are the corresponding Cartesian coordinates of the two satellites.
Such a mapping again will be a submersion of a 12 dimensional manifold M; into the manifold N7,
defined on the two sets of Cartesian coordinates for the two satellites (x1,y1,21,X2,Y2,22) . Such a
possibility exists due to the Whitney theorem [39], according to which each connected smooth and

closed n-dimensional manifold can be smoothly embedded in an R?**!

—dimensional Euclidean space
or it can be immersed in an R?"—dimensional Euclidean space. In the given case, the 6—dimensional
manifold M (f1,a1,e1, 1, 1, wp) and the 6— dimensional manifold

Ni(f2,a2,€2,0, >, wy.) can be either embedded in an R?x6+1 — RI13 Eyclidean manifold of 13
dimensions (both sets of the Kepler parameters plus one more parameter s) or immersed in an
R?*6 = R!2_dimensional Euclidean space. In particular, the validity of the Whitney theorem for this
general case, which will not be considered in this paper, justifies the implementation of the approach of
two null intersecting cones, based on the equations (16), (17) and (19). So this approach will be correct
even when the initial propagation time T; is calculated only in terms of the first set of coordinates
(f1,a1,e1,M, 1, w1) or (x1,1,21) and the final propagation time T is calculated only in terms of the
second set of coordinates (f2,a2,¢e2, 0, Io, w2.) or (x2,Y2,22).

General Mathematical Properties of the Space-Oriented Transformations (9) - (11) with Only the True
Anomaly Angle f as the Dynamical Variable

Unlike the simplified transformation (21), the space-oriented transformations (9)-(11) [41] [40]

x rcos f
y | = R:A(—=Q)Rx(-I)R;(—w)| rsinf , (24)
z 0

is more complicated. The meaning of the above formulae is that expressions (9) - (11) can be obtained
after performing three successive rotations R, (—w), Ryx(—I) and R, (—Q) with respect to the orbital
vector (rcos f, rcos f,0)T (the transponed vector to the vector-column in (24)), where R, (—w) is the
matrix of rotation at an angle (—w) in the counterclockwise direction around the z axis, Ry(—1I) is the
matrix of rotation at an angle (—I) around the x—axis (again counterclockwise), R, (—2) is the matrix
of rotation at an angle (—()) around the z—axis [42], [43]. Again, it is reminded that the x—axis is
defined to have the direction of the vernal equinox and along the line of intersection of the equatorial
plane of the Earth and the orbital plane of the Earth (i.e. the ecliptics).

In [41] the corresponding matrices R, (—Q), Ry(—I) and R, (—w) have been denoted as P3, P, and
P;. They have the following explicit forms

cosw —sinw 0 1 0 0
P(w):=| sinw cosw 0 , P(I):= 0 cosI —sinl |, (25)
0 0 1 0 sinlI cosl

cos) —sinQ) 0
P3(Q):=| sinQ cosQ 0 . (26)
0 0 1
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Since the above matrices do not depend on the true anomaly angle f, from the equation in matrix
notations (24)

x rcos f
y | =PBQ)PR()P(w)| rsinf (27)
z 0

the expression ((dx)? + (dy)? + (dz)?) in the null cone equation (6) can be found for the case when
the orbital coordinates (x,y,z) contain only the true anomaly f as the dynamical variable. For that
purpose, the derivative of the vector-column

5[ * rcos f
sl v ] = P3(Q)P2(I)P1(w)g rsin f (28)
z 0

can be calculated, but it will not be necessary. The interesting fact is that the right-hand side contains
the true anomaly f only in the vector-column and the angles (), ] and w in the 3 X 3 matrix A :=
P3(Q) P, (I)P;(w), but the square of the radius-vector x? + y? + z? will not contain any of the angles
O, I, w. In fact, it can easily be calculated from the expressions (9) - (11) for x, y, z that

a(l —é?)

2 2 2 2
+2+22 =72, where r = -2
X y Z r where r 1 BCOSf

(29)

and also -
i — a(l—e%)e sm2f . (30)
(I1+ecosf)
Thus, by its construction r is a radius- vector in the orbital plane, depending only on f as a dynamical
variable. This made possible the calculation of the elliptic integral for the propagation time T in terms

only of the variable f.

The Celestial Time and its Relation to the Eccentric Anomaly Angle E and to the True Anomaly Angle
f

There is one more physical reason for the propagation time to be expressed only through the
dynamical variable f. As shall be shown further, for the plane elliptical orbit finding the propagation
time T as a function of the eccentric anomaly E is physically justifiable because the eccentric anomaly
E is related to the celestial time ¢, through the Kepler equation (5) E — esinE = n(f,; — tp) = M.
Similarly for space-oriented orbits, such a celestial time can be introduced by means of the expression

1 (1- ez)%
=— | —=—df .
teel 0 / (1 1 ecos f)z f (31)

Thus, in both cases there is a correspondence E < f.; and f = f.,. For the first case the correspondence
is "two way", because for given t.,; or M, the eccentric anomaly E can also be found as a solution of
the transcendental Kepler equation. For the second case, the correspondence is "one-way", because the
integral (31) can be solved analytically, although in some monographs on celestial mechanics it was
claimed that only a numerical solution exists. The analytical solution of the integral (31) is

V1—é? sin f

fa = —, [_6(1 +ecosf)

2 5. f
+m arctan <cot an tan 2> | (32)

d0i:10.20944/preprints202501.0333.v1
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where ¢ is the following numerical parameter, depending on the eccentricity of the orbit
6 = arccose . (33)

However, an approximate correspondence t.,; = f in this case cannot be established since f cannot
be expressed from (32) if t..; is known. In this paper the solutions for the propagation time will be
expressed through complicated elliptic integrals, depending on the eccentric anomaly E or on the
true anomaly f. However, the above formulaes show that there is such a possibility to express the
propagation time as complicated functions of the celestial time f.,; by means of the Kepler equation (5)
or the formulaes (32) and (33). This shall not be performed in this paper. If v is the celestial velocity
and df.; -the infinitesimal celestial time, then vdt,; can be replaced by

dx \? dy 2 dz \?
vdtcel,—dtcez\/<dtm> +<dtcel) +(dtce,>
dx 2 dy 2 dz 2
i dy BN e 34
¢<w> #(a) + (a7) =0 -

vf = /1+4e€? +2ecos f (35)

is the velocity, associated with the true anomaly angle f. Note also that the above expression will be

where

correct if it (32) has no critical points, i.e. aaiff # 0. This shall not be investigated in this paper.

2.2.5. Fourth Aim of the Paper-Finding New Analytical Methods for Expressing Elliptic Integrals of
the Second and of the Fourth Order

Essentially, in view of the application of elliptic integrals in GPS inter-satellite communications
and also in several other areas of physics (cosmology, nonlinear equations and etc.), in the paper [21]
general types of elliptic integrals were considered

W) = [ L
Vaoy* + dayyB + 6ayy? +dazy +ay
(3) x"dx
xX) = 36
Jn” (%) Vax3 +bx2 +cx +d (36)

and some more general types of transformations

x=2 10 (37)

Y2

were applied so that a and b represent complicated functions of the modulus of the elliptic integrals.
The transformation (37) has been applied only with respect to a special type of elliptic integrals - the
s.c. elliptic integrals of zero order (i.e. n = 0) and in the Legendre form - this is the left integral in (38).
The advantage of such an approach is that there is no restriction for the modulus of the elliptic integral
to be small. Also, the theory of elliptic functions uses the standard parametrization of an elliptic curve
of the type y? = 4x> — gox — g3 in terms of the Weierstrass function and its derivative, meaning that
the function x = p(z) and y = p'(2) satisfy the above equation.

In this paper it will be proved that the propagation time T will be expressed by means of elliptic
integrals of the types (with some coefficients in front)

dy y*dy 28
/Wl—yz)(l—tﬂyz) ' /¢(1—y2)(1—q2y2) ' ©8)

d0i:10.20944/preprints202501.0333.v1
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Since it is known that integrals in the Weierstrass form [ ——4X_ can be solved analytically,

V48 —gax—g3

it is evident that the transformation (37) can be used to find analytical expressions for the first integral
in (38), which is called an elliptic integral of the first kind and of zero order in the Legendre form.

The second integral in (38) can also be solved analytically due to the recurrent chain of elliptic
integrals of different orders, which usually is written as [44]

Y'Z = ag(n+2)Juq3 +2a1(2n +3) Ju42

+6az(n +1) +2a3(2n + 1) ], +nagJ, 1, (39)

where Z denotes the square of the fourth degree polynomial in the integral ],54) (y) in (36)

Z = \/a0y4 +4ayy® + 6ayy? +4dazy +ay . (40)

Another important approach in the paper [21] is that one and the same integral can be repre-
sented by means of the transformation (37) in two different forms ]7(14) (y) and ]7(13) (x). Comparing the
coefficient in the under-integral expressions in the denominators, the analytical expressions for the
Weierstrass invariants g, and g3 can be found.

3. Propagation Time for the Case of a Signal-Emitting Satellite, Moving along a
Plane Elliptical Orbit

3.1. Propagation Time Without Any Approximations

As mentioned in the introduction of the paper, the null-cone metric is taken in the standard form
© 2V 2V
ds® = —c2<1 -+ c2> (dT)* + (1 —~ 62) ((dx)2 + (dy)* + (dz>2) =0,

where V = % is the standard gravitational potential of the Earth. No account is taken of any
harmonics due to the spherical form of the Earth since the GPS orbits are situated at a distance more
than 20000 km (considered from the centre of the Earth). The Kepler parametrization of the space
coordinates x = x(a,¢,E) and y = y(a, ¢, E) for the plane elliptical satellite orbit is (4) x = a(cos E — e)
, Yy =av1—e2sinE, where a is the semi-major axis of the orbit, ¢ is the eccentricity and E is the
eccentric anomaly angle, related to the motion of the satellite along the plane elliptical orbit.

If the right-hand side of Eq. (6) is divided and multiplied by (dt)?, where t = t.,; is the celestial
time from the Kepler equation E — esinE = n(t,; — tp) (t, is the time of perigee passage), one can
obtain oV

(2 +2V)(dT)* = (1— CT)VZ , (41)

where v? is the square of the satellite velocity along the orbit

dx\?  [dy\?
v2—0§+v§—(£> —i—((;;) . (42)

Taking into account the Kepler parametrization Eq. (4), the above expression for the velocity for the
case of plane motion can be rewritten as

v:,/v,zc—i—vﬁ:(Lvl—e%oszE (43)

1—ecosE)

./ Ge Mg
a3
of E from the Kepler equation and performing the integration over the eccentric anomaly angle E, one

and n = is the mean motion. Expressing dT from (41), finding the celestial time ¢.,; in terms

can obtain the expression for the propagation time (for the case of no restrictions imposed)
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T = /X : M dE+C
) e\ (e +2v)

(1—e? cosZE )[a(1—ecosE) — B]
E 44
/\/ [a(1 —ecosE) + B dE+C )

The constant § is determined as
2GMg
= . 4

p="5 (45)

The other constant C can be determined as a result of the integration of the null cone equation from
some initial condition - for example, the propagation time T should be equal to zero, when E = 0 (if
Einir = 0). Further, making the substitution

_ _ Y
l1-ecosE=y = dE_esinE (46)
in the integral (44) and denoting B = £, one can represent (44) as
T:g/‘ y(}—y>(y—ﬁ)2dy ‘ (47)
I\ +B) |- -y)
This integral is of the form
= E / . u1y3 + a2y2 + azy dy (48)
c biy3 + by +bsy+ by 7

where the numerical constants a1, a4, a3, by, by, bs, by can easily be calculated. Their analytical
expressions are not given here, because the above expression will not be used further.

3.1.1. Is the Integral (48) an Abelian One?

If the square root, representing an irrational function of the variable y, is denoted as

| my® + axy* + azy .
= = P 7 49
\/b1y3 + byy? + b3y + by ) “9)

then the integral

/ xdy = / \‘/?y)dy (50)

is a partial case of a class of integrals (often denoted in mathematical literature as [ R(x,y)dy). In case
P(y) is an algebraic polynomial, integrals [ v/P(y)dy are known in mathematics as abelian integrals
(see the monograph by Prasolov and Solovyev [44]), related to the curve

F(x,y) :==x>*—P(y) =0 . (51)

Since in the case of the expression (49) P(y) is a complicated irrational function of an rational expression
of y, the integral (48) is not an abelian one. Further the expression Eq. (44) will not be used, because a
justifiable and reasonable physical approximation shall be applied, which will enable us to express the
solution in terms of elliptic integrals. Nevertheless, in view of the constantly improving accuracy for
measuring the propagation time, this might represent an interesting problem for future mathematical
research. In the next sections, when defining the elliptic integrals for the more general case of arbitrary
polynomials of third- and fourth- degree in the denominator, it will be explained in details why
integrals of the form (48) cannot belong to the class of abelian integrals.
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3.2. The Useful Approximation for a Small Gravitational Potential, Compared to the Square of the Velocity of
Light

Further we shall be interested in the case

2V 2GgMg
— — 1, 52
P=a="2a, < (52)

which can be assumed to be fulfilled. For the parameters of the GPS orbit - a = 26561 [km] , in the
review paper [31] the constant B can exactly be calculated to be 0.334 x 10~?, with the velocity of
light taken to be ¢ = 299792458 [ ]. The geocentric gravitational constant Go Mg, (obtained from
the analysis of laser distance measurements of artificial Earth satellites) can be taken to be equal
to Ga Mg = (3986004.405 + 1) x 108 [ ] but the value of Gg Mg can vary also in another range

from Ga Mg = 3986056.75236 x 108 (25 ] to the value Go, M, = 3987999.07898 x 10° (2 ] due to
the uncertainties in measuring the Newton gravitational constant Gg. The mass of the Earth can be
taken approximately to be Mg ~ 5.97 x 10%* [kg]. One of the latest values for G, from deep space
experiments was reported in the paper [62] to be (6.674 + 0.0003).10~ 1! | m ]. The latest value for G

kg.sec

from Encyclopedia Britanica (updated 23 September 2024) is 6.67 & 0.00015 x 1011 [ k;zz} .

3.3. Derivation of the Propagation Time Under the Approximation = 2712/ < 1 and Physical Justification of
the Obtained Result

After decomposing the under-integral expression with the square root in Eq. (48) and leaving

2V

only the first-order term in <5, one can obtain

T:/% u+

:53/\/1—e2am2EdE-—2G@A%B/}/1+{COSEdE . (54)
c c3 1—ecosE

This expression is consistent from a physical point of view due to the following reasons:

mN/ 1———ﬂfh+bf (53)

1. The coefficient ¢ as a ratio of the large semi-major axis of the orbit and the velocity of light
c = 299792458 [Z] w111 have a dimension [m/ 2]

: m—3] = [sec|, which clearly proves that formulae Eq. (54)

sec? ' sec3

= [sec], as it should be. The second coefficient
ZG@M‘H has a corresponding dimension [
has the proper dimensions.

2. The formulae in fact gives the propagation time T of the signal, emitted by the satellite at some
initial position (given by the eccentric anomaly angle E;;;;), and the final point (given by Ef;,,) on the
trajectory of the signal. However, there is no real transmission of signals, because the final point E;y,
should be given. Let us clarify this moment-if there is a transmission of signals (emission+reception)
the point of reception should be determined, depending on the equations for the two null cones in
the framework of the two intersecting null cones, which was briefly outlined in the Introduction. In
this sense, the integrals (53) and (54) represent curvilinear integrals (depending on the determined in
advance initial and final points of integration), derived after the application of the null-cone equation
(in a general form written as F = g, l;alx”‘dx/8 = 0). This propagation time in fact can be found from
the expression (3) after expressing the differentials dT and dx; by means of the differential dE of the
eccentric anomaly angle E. Thus from (3) it is obtained for the propagation time T after integration

gOng] di@
Pt [ i (s S8 e

80] dx]
e /< 800) ' =
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In the same manner, the space variables x' can be parametrized by some other variable. For example,
in the next section by using the celestial transformations (9) - (11) for the case of space-oriented orbits,
the true anomaly angle f will be used and the formulae for T will be the same as in (55) but with
the eccentric anomaly E replaced by the true anomaly f, i.e. E — f. This case will be investigated
in the next sections. In order to obtain the propagation time T in the form of the expression (54), the
additional assumption g = 27‘2/ < 1 has to be taken into account, when transforming expression (55).

3. The expression for the propagation time T (54) establishes the relation between the eccentric
anomaly angle E and the propagation time T— E = T. Since T will be expressed through elliptic
integrals and their analytical solutions will be complicated, it might turn out to be impossible to
establish the correspondence in the other direction T = E, as was in the case of the "dual" correspon-
dence t.,; < E. The meaning of the correspondence E = T is the following: if some initial and
final eccentric anomaly angles E;;;; and Ey;, for the position of the satellite are given, to them will
correspond a propagation time of the signal, found as the definite integral

a [Efin 2 o2
AT:TfZ-n—Tmit:E/E 1= e cos? E dE

init

2GeMea [Efin |1+ ecosE
- | —dE .
c3 /E,.m., 1—ecosE (56)

This expression establishes the correspondence (Ejyj1, Efin) = T, due to the curved signal trajectory
and the fact that there is no real transmission of the signal, this does not mean that the final point of
propagation of the signal should lie necessarily on the orbit.

4. It should be stressed that T was found as a solution of the null cone equation (6) and because
of that, it is the time for propagation of the signal and definitely not related to the real motion of the
satellite. This statement is also confirmed by the fact the null cone equation F = 0 is proved to be
compatible with the geodesic equation [29] for light-like geodesics

d?x,  _, dx*dxP
a2 e grar =0 (57)

where T is the proper time along the light ray and v, «, = 0, 1,2, 3. In other words, the zero-length
(light-like) geodesics (representing the trajectory of the signal) are determined also by the null cone
equation gaﬁdx“dxﬁ = 0, because the null cone equation is a first integral of the geodesic equation Eq.
(57). This point will be clarified in more details in a separate chapter, since it is confirmed also by a
theorem in differential geometry [30], [32]. This was explained also in the introduction of this paper
and also in the recent paper [23].

5. Let now x, y, z be the space coordinates, reached by the signal after it has been emitted. From
the null cone equation (6), after using the approximation § = 2712/ < 1, it can be obtained

((dx)2 + (dy)? + (dz)2) ~ c? [1 + 4;2/} (dT)? < 3c¢*(dT)? . (58)

Since cdT is the infinitesimal distance, travelled by the light signal, the above inequality means that
the distance travelled by light is much greater than the Euclidean distance. In other words, the light
trajectory signal is a curved one, in accord with the meaning of the Shapiro delay formulae (1) about
the delay of the signal under the action of the gravitational field.

6. The trigonometric function cos? E has the same values for E = « and E = 180 — «a, so the
correspondence eccentric anomaly angle E and the propagation time T is not reliable for angles
in the second quadrant. The same refers for values of E in the first and the fourth quadrant since
cos E = cos(360 — E).

7. The propagation time T Eq. (54) should be a real-valued expression, since time cannot be
complex. This fact is not evident from the beginning of the calculations, but will be proved in the next
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subsections. Remarkably, this important property will turn out to be valid also for the next case of a
signal, emitted and percepted by satellites on a space-oriented orbits.
8. The expressions for T (53) and (54) under the approximation § = %/ < 1 with account of the
vector r in the orbital plane is
2V 2GgMg

= eV g
c2 c2a(1—ecosE)<< ’ 9

which can be assumed to be fulfilled, because g = % < 1. For the parameters of a GPS orbit,
the constant  can exactly be calculated to be 0.33.10~7, which justifies the above strong inequality.
In the strict mathematical sense and for the given case, the above inequality (59) takes place when
cosE < % - %. This is always fulfilled for the case of the small eccentricity of the GPS orbits
(e = 0.01323881349526), because the first term will be a large number of the order 11—3.103, while the
second term is a very small number of the order 1.4.10~8. Another values for the parameter 8 have
been obtained in the literature. For example, in the review article by J. Pascual Sanchez [31], it was
obtained for the approximate radius of the satellite orbit r; = 26561 [km]

Go Mg
rsC2

=0.167.1077 . (60)

If multiplied by 2 (in order to obtain the constant f = ZGS)%), this will give 0.334.10~%, which is in
full accord (up to the second digit) with the estimate in this paper g = 0.33.10~°.

4. Mathematical Structure of the Expression for the Propagation Time (Signal,
Emitted by a Satellite on a Plane Elliptical Orbit), Related to Zero-Order Elliptic
Integrals of the First, Second and of the Third Rank

The first term in expression (54) after performing the simple transformation 5 — E = E can be
brought to the following form

E E
T = /\'/1 — e2cos? EdE = /\/1 — 2 sinz(g — E)dE
0 0

= /1 — e2sin® EJE . (61)

B

This represents an elliptic integral of the second kind. Note that the s.c.modulus of the elliptic integral
is equal to the eccentricity e of the orbit.
The second term in Eq. (54) after performing the substitution

J1+ecosE  _
Vi—ecosE Y (62)

and introducing the notations

~ 1—e Yy 7\ 2 - - ~
k2=1+e=q ,%zy , (%) =91, j1=—Y (63)

can be written as a sum of two integrals

2Gg Mg / /1+ecosE A) (B)
T, =— E=I"4+1 . 4
2 3 V [—eccosE” 22 (64)

d0i:10.20944/preprints202501.0333.v1
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l1—e _
I4+e =

/g, since 0 < 1= T¢ < 1 (the eccentricity of the orbit e is always less than one, 0 < e < 1). We shall call
this second part (64) of the expression for the propagation time the O(c~?) correction.

It should be noted that k in eq. (63) is simply a notation, representing the real expression k =

4.1. Mathematical Proof of the Real-Valuedness of the Separate Expressions for the Propagation Time for the
Case of Plane Elliptic Orbits

4.1.1. The First Real-Valued Elliptic Integral IEA) of the First Kind in the Weierstrass Form in the
O(c~3) Correction of the Propagation Time

(4)

Using this notation, the first term I," in eq. (64) can be represented as

i =AM _ / (65)
c k\/ez—l
% ]/1 yl—l)
In terms of the variable
-~ (1+e 1+ ecosE 66)
1=\1=¢) \1-ccosE ) ’

the integral (65) represents an elliptic integral of zero order and of the first kind, written in the
Weierstrass form (i.e. a polynomial of third order under the square root in the denominator). Due to
the presence of the v/e? — 1 term in the denominator (again, 0 < e < 1), it might seem that expression
(65) is imaginary. However, this is not true, because it can be rewritten as

(A) _ 4GM

PNV W S
2 T8 kAo (i) \'/?(?“)(?Wi)

thus representing an elliptic integral of zero order and of the first kind. The classification of elliptic

(67)

integrals, depending on the degree of the polynomial in the denominator is given in the monographs
[44], [63] and [64]. Since k is real-valued expression, the two imaginary units i in the denominator

appear from v/e2 — 1 = iv/1 — ¢2 and also from the square root, after performing the variable transfor-
mation from 7; to yin (]71 - %4) (71 — 1) in eq. (65). As a result, a factor \/(—1)3 = Vi = 8 = —i
will appear in the denominator of eq. (67). The whole expression eq. (67) turns out to be a real-valued
one and with a negative sign, because dij; = —dy . Since this expression is a part of the expression for
the propagation time, this is physically reasonable.

4.1.2. The Second Real-Valued Elliptic Integral IZ(B) of the Third Kind
(B)

The second term I,
should be

in Eq. (64) can also be written in the form of a real-valued expression, as it

B _ 4GM 1 di

2 T T35 ~ — = = :
CEVI=) (= D@+ D@+ )

This is an elliptic integral of the third kind. Consequently, the whole expression for the propagation

(68)

time can be represented as a sum of elliptic integrals of the second, of the first and of the third kind
[44].

5. Propagation Time for a Signal, Emitted and Intercepted by Satellites on a
Space-Oriented Orbit

5.1. Three-Dimensional Orbit Parametrization and the General Formulae for the Orbit Parametrization

The formulaes for the three-dimensional parametrization of space-oriented orbits previously
were given by the expressions (9) - (11). Again, after using the null-cone equation (53) T =
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1-2Y
Iy E " % ; dt = [¥(1- zc—‘zl)dt, remembering relation (34) vdt.,) = vfdf and also expression (35)

v = \/%\/ 14 €2 +2ecos f for the velocity vy, associated with the true anomaly angle f, the

following expression can be obtained for the propagation time T for the three-dimensional case

— v 2V ~ =~ 1 2
We denote the propagation time for the three-dimensional case (9) - (11) by T, in order to distinguish it
from the propagation time T for the case of a satellite, moving along a plane elliptical orbit.

5.2. Analytical Calculation of the First Elliptic Integral (First O(%) Correction) Without the Use of Elliptic
Integrals

We shall present a calculation, which shows that some integrals can be calculated both analytically,
and also by the use of elliptic integrals. Although the theory of elliptic integrals is considered to be
well-developed, there are problems, not well studied. One such problem, as it will be demonstrated
further is that after performing some variable transformations, the elliptic integrals will be possible to
be solved analytically, while after some other transformations, this will not be possible.

Let us take the first O(%) propagation time correction

~ _1 _ na ) _ na  =(1)
T = C/vfdf— 7Cm/\/1+e +2ecos faf = — T (70)

and let us perform the series of six subsequent variable transformations

Jite@t2ecosf=y , j=(e+12-4 , (71)

— 2
1_y]—/fB1:Z' 2=z ,1—21:m,ﬁzm—%. (72)

The first transformation /1 + 2 + 2e cos f = y in (71) will be used only in this paragraph, further

another transformation j(1 4 ¢) = /1 + €2 + 2e cos f will be applied.
After applying the sequence of transformations (71) and (72), the following sum of two integrals

for T will be obtained

(73)

T — nai / dm +/ dm ’
VA=) (m-g)\fm- % (m+§)\/ﬂ

where again the notation g = 1=¢ has been used and each of the integrals inside the square bracket
g 9= 17e g q

will be denoted correspondingly as Tl(l) and Tl(Z). Making use of the analytically calculated integral

from the book [66]
/ dx
(x + p)vVa+2bx + cx?
2 2
- 1 1l Vat2bx+ex? +/ag2bp+ep N bFcp , 78)
\aF2bp + cp? xtp \aF2bp + cp?

one can derive for the second integral Tl(Z) in Eq. (73) the following expression

F2) _ na(1+e)v/2
1 cV/1 —Ezﬂ\/3€2+2€—|—3

\ﬁml(fb;rb)Jr%mz(fb;fb)) m3(fa;7a) ]
(ﬁml(fa;rm;mz(fu;ra) <m3<fh;rb>) 7)
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and my (f;r), ma(f;r), ma(f;r) are expressions, written in terms either of the initial and final true
anomaly angles f, and f; or, of the initial distance r, (at which the emission of the signal takes place)
and the final point r, of reception, corresponding to the propagation time Tl(Z). The first integral Tl(l)
can be calculated analogously. It should be noted that both Tl(l) and T1(2) are real-valued expressions
and moreover, the logarithmic term is again present, as in the original Shapiro delay formulae (1).

Further this analytical method will not be used because a transformation will be proposed,
enabling to find analytical expressions for zero-order elliptic integrals in the Weierstrass or in the
Legendre form.

5.3. Analytical Calculation of the First O(L1) Correction by Means of Elliptic Integrals
1+ e +2ecos f

Let us calculate the integral (70) T} = - \/’le
substitution

1(1+ecosE) 1—e

q(1—ecosE) ’ =11

(76)

and also of the well-known relation from celestial mechanics between the eccentric anomaly angle E
and the true anomaly angle f [25]

f 1—cosf [1+e E
tanZ = = tan = . 77
g 1+ cos f T—e 2 @7)

Then we can write the integral T; in the form of an elliptic integral of the second order and of the first

kind in the Legendre form

a 3
=221y (v;q) - 78)

Thus the integral (70) is very interesting from a mathematical point of view, because it becomes evident
that it is an elliptic one after performing the transformations (76) and (77). The integral f(24) (y;9) in (78)
can also be represented as

/\/ 2)1—qy) 7)

(80)

/x/l— 2)1—qy /\/1— - %y?)

= [\J1= sin? d +7/ dy . (81)

’72/ A N (R
The first integral in Eq. (81) is an elliptic integral of the second kind (denoted usually by E(¢) =
J/1—¢? sin® pdp, where x = sin ¢). So we obtain a relation between the second-order elliptic

integral 7(24) (y;q) of the first kind in the Legendre form, the zero-order elliptic integral of the first

kind in the Legendre form 764) (v;9) (the second integral in (81)) and the elliptic integral E(¢) (see the
monograph [44])

1 1 +a)
q) = / = —oE@)+ =l (vq) - (82)
Va-P-a) P 9
Since in the preceding section an analytical expression was obtained for T; without the use of any
elliptic functions, the obtained result in Eq. (81) means that for the investigated case, elliptic integrals
of second order can be expressed through elementary functions.
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Using the relation between the eccentric anomaly angle E and the true anomaly angle f (derived
from Eq. (77) ), it is interesting to express the first (O(1)) propagation time correction Eq. (78) also in

na 1+ecosE
\/1— 1/ dE .
/ 1fecosE 1—ecosE (83)

This integral resembles the second integral — ZGGCBSMG [/ L GE in the O(C%) time correction Eq.
(54) for the case of plane elliptical orbit, but in the case the integral is with another coefficient and is

terms of the variable E

modified with the term 0 multiplying the square root.

1
1—ecosE)”’
5.4. Second Analytical Calculation of the First Time O(%) Correction in Terms of Second-Order Elliptic
Integrals and Proof of the Real-Valuedness of the O(%) Correction

This second calculation will not make any use of the eccentric anomaly angle variable E. The

main purpose of this second analytical calculation will be prove the real-valuedness of the expression
2 dy

(78) Ty = —2i14 q’fm

integral in the Legendre form should be 1mag1nary—valued.

g H ]2 ( ¥,q), which means that the second-order elliptic

Let us apply the variable transformation

2
-~ \/1+42ecosf+e (84)

y= 1+e

in expression (70) for Ty, after which the integral T; acquires the form

~ na
T :7/ 142 4+ 2ecos fd 85
o al v Jaf %)

y2dy

Zna (1+e) / y-dy
cq\/l —¢2 ) 7
\/ Y (1 qz)
_ 2na(l+e) / y2dy (86)
cq\/l—e2 \/ 92 7 _1>
2na(1+e) y2dy 2na(l1+e 1
Iy — y = 220 g (87)
ch\/l—e 72) 72 icgvl—e q
\/ ) 7)

Note that the coefficient in front of the integral is modified in comparison with the one in Eq. (78).
More importantly, the resulting expression is again a real-valued one due to the property of the elliptic
y2dy
— : (88)
-7)(

_ /\/ =

which is easily established after comparing expressions (86) and (87). So it can be concluded that T}in

integral

fact is expressed in two different variables - the first one is (78)

I’lll3

2
Fo_ y-dy o na 3y,
Ty = —2i— = —2i—q¢> )
i—q? /\/(1_y2)(1_q2y2) i—a%);" (y;q)

(I+ecosE)

where the variable y is expressed as (76) y = %m

terms of the variable (84) y = 7%25‘1432

,q= 1— and the second one is (86) in
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Formulae (88) also is valid, because due to the inequality cos f < 1 and the choice of the variable
y in Eq. (84), it can easily be proved that

o (1-9%) de
F<1,01-72>0, 1-L > - : 89)
I / q? q? (1—-¢)?
Consequently, since 1 — q—z can take negative values (note that g> = (%) < 1) and thus 0 < >—-1<
(1;2'7 ), the representation (88) gives a real-valued integral [ dy and thus an imaginary

1

Ja ;)( -1)

Let us present another more elegant and simple proof (see also the review paper [22]) that

integral E4) (¥, ) is obtained.

the inequalities (89) are fulfilled. Inverting the sign of the last inequality in (89), it means that the

inequality
72
y 4e
—-1<
RS .
should be proved. Keeping in mind the definition for the variable ¥ (84) y = 7%?](# and also for
7%, the inequality (90) is transformed to
(1+2ecosf+e*) (1—e)?
(1+e)? (1+e)?
4e 5 4e
< = 91
ST ~+er oh
From here it follows
14 2ecosf+e? <de+ (1—e)*> =2ecosf <2e , (92)

which is fulfilled for all eccentricities e, because of the simple trigonometric inequality cos f <1 for
the function cos and also because 0 < e < 1. ,
The other case, which has to be considered is when 1 — Z—z takes only positive values

2
202_@ 7°)

7 (93)

H
QN\“&

~2
and consequently Z—Z — 1 < 0. However, in view of the future calculations, we will be interested in the

case when the transformation g — % is applied in (88), so that the integral f§4) (¥,9) is obtained. Then

from (93) after the transformation g — % it follows that 72> — 1 < 0 or 1 —y2g? > 0. Thus one will
have the integral transformation

/-\.2 o~
vy , (94)

y2dy q—
/W_ y_ >:>/\/(1—?2)(1—¢7292)

where the integral in the right is real-valued. Multiplying both integrals by % and remembering the
definition (38) for J1*) (7 1), one obtains

B )= /W— — (%5)
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which means that 754) (¥,9) is imaginary valued. After presenting the calculation for the second
O(c~3) propagation time correction in the next sections, it will become clear that due to the important
transformation (95) it will be possible to prove the real-valuedness of terms with second-order elliptic
integrals in the final expression for the propagation time for the case of space-oriented orbits.

Since in this final expression there will be also a term with a fourth-order elliptic integral, first
some basic definitions and facts will be presented about higher-order elliptic integrals.

6. Definitions of Elliptic Integrals of Higher Order and Comparison with Some
Statements from Standard Textbooks

6.1. Higher-Order Elliptic Integrals - Basic Definitions

This definition is necessary to be given because further, when calculating the second part of the
propagation time, we shall encounter elliptic integrals of the fourth-order.
According to the general definition, elliptic integrals are of the type

| R /Gy or [ R(x,\/Px)ix %)

where R(y,y) and R(X, x) are rational functions of the variables j, y or X, xand y = /G(y), X = \/P(x)
are square roots of the arbitrary polynomials G(y) and P(x) of the fourth or of the third degree
respectively. In accord with the notations in the monograph [44], the fourth-order and the third-order
polynomials will be of the form

]72 =G(y) = a0y4 + 4u1y3 + 6a2y2 +4azy+ay ,
P2 =P(x)=ax® +bx* +cx+d . (97)

So in the general case, elliptic integrals of the n—th order and of the first kind are defined as

(v) = / y'dy
Vaoy* + 4ayy3 + 6axy? + dazy + ay

I

(3) x"dx
X) =
) Vax3 +bx2+cx+d
Elliptic integrals of the n—th order and of the third kind are defined as

HY ) = [ i
(y — c1)"\/agy* + 4a1y3 + 6ary? + dazy + a4

(98)

(3) _/ dx
H;  (x) =
() (x —ca)"Vax3 +bx2 +cx +d

In the above definitions, the upper indices "(3)" or "(4)" denote the order of the algebraic polynomial

(99)

under the square root in the denominator, while the lower indice "n" denotes the order of the elliptic

nn nn

integral, related to the "y"" or "x"" terms in the nominator of (98) and in the denominator of (99) (for
n-th order elliptic integrals of the third kind).

6.2. Comparison with Some Definitions from Standard Textbooks

In the textbook [65] a statement is expressed (although without any proof) that "higher-order
elliptic integrals in the Legendre form can be expressed by means of the three standard integrals

/ dy , / y*dy
V=21 - ?y?) V(=21 - ?y?)
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dy
/ A+h2)/A-y)1- 22 (100)

where the parameter / can be also a complex number". As asserted in [65], these integrals "cannot

be expressed through elementary functions". This assertion is not precise, because in the preceding
sections an example was found, when the second integral in (100) in fact can be expressed through
an elementary function - for this case, by the logarithmic term in Eq. (75). A similar statement to
the one in [65] is given also in the monograph [64]: "Integrals of the type (96) [ R(y, \/G(y))dy and
[ R(x,+/P(x))dx cannot be expressed by elementary functions in their final form, even if an extended
understanding of this notion is considered."

In the contemporary monograph [44] a statement is expressed in a correct and precise manner,
namely: "Every elliptic integral can be represented in the form of a linear combination of a rational
function of the variables y and y, integrals of a rational function of the variable y and also the integrals

/ ydy
/ zdy / _Cdy (101)

In this statement it is not mentioned that elliptic 1ntegrals cannot be expressed by elementary

functions. One new analytical algorithm for expressing elliptic integrals in the Legendre form will
be proposed in the next sections. Since the monographs [65] and [64] are older monographs, this
example clearly shows that some basic facts about elliptic functions and integrals cannot be considered
to be established forever and the theory may change in time. One basic and contemporary monograph
on elliptic functions is [67] (see especially ch. 8, dedicated to elliptic integrals). A short summary of
the various types of elliptic integrals and functions is given in Appendix A of the book [68], as well as
applications of elliptic functions in some problems of biophysics.

6.3. Elliptic Integrals Versus Abelian Integrals

The contemporary definition of the elliptic integrals (98) for ],(14) (y) and ],@(x) and (99) for
H,(14) (y) and H,(13) (x) in the monograph [44] is fully consistent with the definition in older monographs,
such as [45]. The elliptic integrals (98) and (99) cannot be considered to be a generalization of the s.c.
abelian integrals, defined in the monograph [64] as

/R(x ax +p /R Va4 bxto)dx (102)

'yx+(5

The reason, according to the definition in [64] is that the integrals (102) are considered to be related to
algebraic curves of the type

(yx+0)y" —(ax+p)=0 , (103)
y? — (ax?* +bx+c)=0 , (104)

obtained after setting up

N v e (105)

yx+6

It has been pointed out in [64] that abelian integrals of the type

Adx

/ __Pdx / , (106)
Vax? +bx+c (x —a)kvax? + bx +c
/ (Mx + N)dx (107)
(x2 4 px+g)"™Vax2 +bx +c

d0i:10.20944/preprints202501.0333.v1
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(P(x)-polynomial, A, M, N-numerical constants ) can be treated analytically, the second integral for
example by means of the known Euler substitutions. Evidently, this is possible since the degree of the
polynomial under the square root in the denominator of these integrals is two.

Now let us define the elliptic integrals of the first-, second- and the third- kind and of the zero -
order (see ch. 8 of the monograph by Armitage and Eberlein [67] and also [44]), which are partial cases
of the already defined integrals (98) and (99)

(108)

o
dx d¢
= = F ’ ’
/i/(l_xz)(l_qzxz) O/y/l—qzsinz(p (0.9)
/ v 11_‘7xx2 dx = / J1— g2 sin? pdp = E(q,4) (109)

dx d¢
_ —T(q,¢) .  (110)
/ (1+ nx2)y/(1 — x2)(1 — g2x2) / (1+nsin®$)y/1 — g2sin® ¢ 9

In (108) F(g,¢) is the commonly accepted notation for an elliptic integral of the first kind, in (109)
E(q, ¢) is the notation for an elliptic integral of the second kind and in (110) I1(g, ¢) is the notation for
the elliptic integral of the third kind. In the above equalities the transformation x = sin ¢ has been
used.

In the same way as with the algebraic curves (103) and (104) and setting up

/1 — 2 x2
V=" A-2 (111)
y=01+ nx2)\/(1 —x2)(1—qg%x2) (112)

it is easily seen that these algebraic curves are different from the curves (103) and (104), consequently
the elliptic integrals (108), (109), (110) are not abelian integrals. Similarly, it can be proved that the

_ g/ | my? +ay? +azy p
c b1y + byy? + b3y + by 4

is not also an abelian integral. It remains also to find the corresponding integral for the case of

found integral (48)

space-oriented orbits and without the approximation g = %/ <L

6.4. An Earlier Example for an Elliptic Integral, Expressed Also Analytically

However, from the formulaes in the preceding section it cannot be concluded that only abelian
integrals can be treated analytically (in the sense of being expressed by elementary functions) and
the elliptic integrals cannot be expressed by analytical functions. A typical example was given earlier,
related with the calculation of the integral (70)

~ na
Tzi/ 1462 4 2ecos fdf ,
1= ==/ V fdf

which was proved also to be the elliptic integral (86) Ty = 2"'\1/(11% J 7y - of second order in
Jo-mi(a)
the Legendre form in terms of the variable (84) y = 7%251(#
Also, in terms of the variables (76)
| (1+ecosE) ( _1—6)
y= q(1—ecosE)’ 1= 11
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and (77)

i_{l—cosf_,l-i—e E
tany = 1+cosf_\/1—etan2

the integral T; was expressed as an elliptic integral of the second order and in the Legendre form (78)

~ na 3 2d
le—zzcﬁ/\/ 7 = 27§(,)

Earlier by means of the transformations (71) and (72) it was proved that the same integral can be
expressed analytically by means of the integrals (73)

Fo__ nai / +/
! c/(1—e2)q (ﬁ q 2|

2

which can be integrated. Thus it can be concluded that when expressed in two different variables i and
m, one and the same integral (70) can be considered to be an elliptic one, but also it can be written in
another form and even calculated exactly. From the transformations (71) and (72) the relation between
the variables f and 7 can be found to be

1 (2m + ¢*)By

=1+ — 11
cosf =1+ 2% @i =) (113a)
If account is taken also of (84) for y, the relation between the variables iy and 71 is calculated to be a

quadratic algebraic curve with respect to the variable i

1 (2m+4¢%)B;

~
A WS e 7 ey

(114)

Then if the integral (70) in terms of the variable 7 can be integrated, it can be asked if there is any
motivation for the assertion in the monographs [65], [64], [67] that elliptic integrals cannot be integrated
in elementary functions? Further it shall be proved that analytical formulaes can be found for the
determination of the s.c. Weierstrass invariants g» and g3, depending on complicated polynomials
of the modulus g of the elliptic integral in the Legendre form. But then the s.c."four-dimensional
parametrization” of an elliptic curve will allow the parametrization of an fourth-order polynomial

in terms of expressions, depending ot the Weierstrass function p(z) and its derivative d‘;(zz) , which
of course are not elementary functions. This will be proved further, but evidently depending on the
variables used in the calculations, a certain elliptic integral can be expressed analytically in elementary
functions, but also can be expressed in an analytical form, containing non-elementary functions.

7. Fourth-Order Elliptic Integrals and the Second O(C%) Correction for the
Propagation Time for the Case of a Space-Oriented Orbit

Taking into account the general equality Eq. (69) T = T + T, = 1 [odt — C% [ vVt , the second
O(C%) correction can be written as

7o v 2V o _ZG@M@ 'Ui
T, — /E.?dt_ e / Lag (115)

where the radius-vector r in the orbital plane, the velocity vy, associated with the true anomaly angle f
and the potential V of the gravitational field around the Earth are defined in the usual way

1—62)
y/142 2
vf = \/_76 +2ecosf+e 1+ecosf
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. a(liez)(1+ecosf).

The final integral for the second correction is of the form

~ 2GpMg  na _ 71, 72
B= g [0 el o daf =1 7Y

where

2Ga M n
T = _22eMe / 1+ 2ecos f + e2d
{ g [ Vs s

2G@M@ n =~
=288 5Ty
S -y

and T is the previously calculated integral T
second correction T is

2
T2(2):_ G®3M®, ne §/cosf 1+ 2ecos f + e2df
c (1—e2)2

ZG@M@ ne T(z)

- a3 (1—62)% z

7(2)

where T, is the notation for the more complicated integral

Tz(z) :/cosf 1+ 2ecos f + e2df .
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(116)

(117)

(118)

= [ \/1+2ecos f + e%df . The second term T2(2) in the

(119)

(120)

7.1. The Second Part of the Second O(c%) Correction, Expressed in Terms of Elliptic Integrals of the Second and

Fourth Order
It can be proved that
2Ga M ne ~
T2(2) _ @3 ) . T2(2)
S -
= —ing? =552 (14 )] (7,0)
2G@M@(1+€)~()~
+ingt 2 L T @)
where o
)~ \ y-dy
L (79 =
? / VA=) (1)
Zd 3
y _ 9 74)
/V}/ oy 2" (%.9)

(121)

(122)

(123)

is an elliptic integral of the second order in the Legendre form and ¥ is the notation for the variable

V= Z The last formulae can also be compared to (88). Analogously, the formulae for the fourth-order

elliptic integral i 4 ( q) can be written as

@ P y'dy
J4 ,q) = i /\/@2_1)(1—112?2)

(124)
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7.2. Relation Between the Fourth-Order and the Second-Order Elliptic Integrals in the Expression for Tz(z)

It can very easily be proved that
/\/ )(1 - ?P)dy = %7(4)

P G W A= (125)

We have already proved that E4) can be expressed in elementary functions, but yet we do not know

whether 7(()4) or the second-rank integral

[Va-Pa- gy (126)

can also be expressed through elementary functions. This will be proved further.
Calculating the derivatives

F(Vo-pa-em) amd L(n/a-ma-em) (127)

integrating the resulting equations from ¥ to ¥/1, and combining all the three equations, the following

two equations can be derived for 714) (y,9) and jy) (¥,9):

00 = o [0 -0 -] 10
2 1
A G - 521G (128)
H4) o oy L 2 7= (1+q)
BG0) = 5 [P0 -7 | 115, + i (129)
ny yln

In expressions (125) - (129) the symbol means that the corresponding expression is taken at the
value i = 17 of the upper boundary and from it the value of the expression at i = yo(the value at the
lower boundary) is substracted.

We should also add to this system of equations the earlier derived equation for fy)

~2
o /\/1— dy R

1 "
~ZE0)+ ;784) q) - (130)

The second equation (129) for 7;)4) clearly suggests that 7§4) is expressed in elementary functions
ydy

V(1=92)(1-%7)

because the first-order elliptic integral T1(4) = can be analytically calculated after

performing the Euler substitution

o (144 1 .
\/y4_(qzq>gz+qz:u+y2 , (131)

The result is

1 1 N 1+ 2 =
1 = gl a-pa-ep -7+ P as2)
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Note that the variable i is not related to any elliptic function! Concerning the fourth-order elliptic

integral ﬁ@, taking into account the already proved fact that 7?) can be expressed in elementary

functions, it would follow that 714) can also be expressed by elementary functions, but it is necessary

to prove that the zero-order elliptic integral 7((]4) can be expressed in elementary functions. In another
publication, it will be proved that the integral can be expressed by an analytical formulae, but also
it can be numerically calculated, since the modulus of the elliptic integral is equal to the eccentricity
e = 0.01323881349526 of the GPS orbit, which is exactly known [72]. The general mathematical theory
for the recurrent relations between n—th order elliptic integrals of any kind and the lower-order elliptic
integrals has been developed in the monographs [44], [63] and [64].

7.3. The General Expression for the Propagation Time for the Case of Space-Oriented Orbits

Now we shall collect all the separate terms, which constitute the expression for the propagation
time T. These terms are (86), earlier proved to be a real-valued integral

y2dy

7 2na(l+e / y
1= Cq\/l — 62 \/ 7 1) 4
the expression (118) for T2(1)
2GgM n ~
) = ke T,
S 1-e)
expression (122) for Tz(z)
Y = —in 07(1 +e)Y (7,9)

expression (123) for E4) (v, 9)

V=) ==

~L

=f/ TR T
P vEea-em i

expression (124) for ff) (V,9)

_ / “@
V@ -1)(1 - ¢%9?)

Note that this expression for 7}‘4) (,9) resembles the previous expression 7(24) (¥,9), since both of them

have one and the same denominators /(2 — 1)(1 — g232), which determine whether both formulaes
are imaginary— or real- valued. Earlier by formulaes (85) - (89) and (93), (94), (95) it was proved that
]2 ( q) is an imaginary-valued expression. Consequently, it can be concluded that expression (124)
for ]4 ( ¥, q) is also imaginary-valued.

This conclusion can be made also from the chain of elliptic integrals, establishing the relation
between elliptic integrals of zero-, second- and forth- order (128)

10 = 5 [ a-ma—e)| 1
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2(14¢%) +4

+3l7

1 +a)
B aah

If the integrals ]2 ( q) and ]0 ( q) are imaginary-valued, then since this is related to the imaginary
-valuedness of the expression /(1 — 72)(1 — ¢25?) (the first term 1n (128)) then the left-hand side of
(128) will also be imaginary valued. ThlS precludes the proof that ] 4 ( q) is also 1mag1nary—valued.

Note also that if the variable y in ]2 ( g) and ﬁ )( q) is replaced by y, the integrals ]2 ( gq) and

] h ( q) will also be imaginary valued.

7.3.1. The Entire Expression for the Propagation Time of the Signal for the Case of Space-Oriented
Orbits

Making use of all the above mentioned formulaes, the total propagation time (both the O(%) and
O(C%) corrections) can be written as

To | 2igt 4 CeMera 3150, oy
c C4(1—€2)

ZG@M@WW (1+€?) ~a4

795, ) 1 12CaMent} (1+&) 5
c3 g

Sle ) (133)

where all the integrals 7§4)( q), ]2 ( q) and ] 4 ( q) (76), written in terms of the variable

1 (14+ecosE) or (84) 7 = \/142ecos f+¢2

¥y = q (1—ecosE) 1+e
the proof that the propagation time T is a real-valued expression, because all the imaginary-valued

are proved to be imaginary-valued. This precludes

integrals are multiplied by imaginary coefficients.

7.4. Real-Valuedness and Complex-Valuedness of Elliptic Integrals of Zero - Order in the Legendre Form - Basic
Knowledge about the Christoffel-Schwartz Integral from Complex Analyses

It has been proved that the properties of higher-order elliptic integrals (especially of the second-
and of the fourth- order) are very important in order to find analytically the propagation time for
a signal, emitted by satellites and influenced by the gravitational field of the Earth. At the same
time, as already mentioned, higher-order integrals are investigated only in the monographs [44], [63]
and [64] and are neglected in many other monographs. For the moment, what is known for such
integrals is that they are obtained from the recurrent chain of elliptic integrals (39) and (40), in which
the zero-order elliptic integral 73 )( q) participates. So whether the fourth-order 1ntegra1 ]4 ( 7,9)
(previously written in formulaes (125) and (128)) and the second-order integral ]2 ( ¥,q) (written in
formulae (130)) are real-valued or imaginary-valued will depend also on the properties of 734) (v,9),
because it can be real- or imaginary- valued.

Zero-order elliptic integrals in the Legendre form such as ]0 vq) = [ —1) are
Y
analyzed by means of the well-known Christoffel - Schwartz integral (see especially [69], [70], [63],

[71], but also many other monographs on analytical functions)
c/ Ya-1(s — )21 (s —ay) s+ Cp (134)

which represents a conformal mapping of the upper complex half-plane onto the inner part of an
n—polygon. In the last formulae a1, ay,......a, are points on the real axis and a1, «y....a;, denote the inner
angles, represented by real numbers. Each one of these numbers is not greater than 2 and for them the
following equality

o+t ta,=n—2 (135)


https://doi.org/10.20944/preprints202501.0333.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2025 d0i:10.20944/preprints202501.0333.v1

310f72

is fulfilled. For the four-dimensional case of the zero-order integral ](54) (y,9), formulae (134) represents
a mapping of the upper complex half-plane onto the rectangle (i.e. the 4—polygon, which for the
case turns out to be the rectangle). So the integral J(y, q) is a partial case of the integral (134) for the
following values of the parameters «;, a4, and the constants C; and C:

1 1
061=062=0é3=064=§,ﬂ1=—§,azz—1, (136)
1 1
03:1,614:E,C1:O,C:§. (137)
Therefore, the integral ]84) (y,9) can be represented in the form of the following Christoffel-Schwartz
integral
(4) 1 i 1 -1 14 1.4 1 31
Wen=fo= [(v+7) w0 e-0(i-2) o . e
0

At the points a1, a3, a3, a4 the under-integral function in the integral ][()4) (y,9) (similarly - also in the
integral (134)) is a branching multi-valued function, which maps the points on the real axis onto the
points on the segments of the rectangle, situated on the complex plane. Each expression (s — ;)% ! in
(134) should be interpreted as the branch of the multi-valued function which on the real axis (when
z = s > ay) takes real positive values. Indeed, if s belongs to the segment [0, 1], then the function f(z)
in (138) takes values from zero to the value of the elliptic integral of the first kind:

/ ds

K=

/a1 )
In fact, this is an equivalent formulation of the period of the elliptic integral K = F(%,e) =

f _. Since the function (1 —s?) (1 — ¢°s) is a two-valued function at the branching points
Vi1- ez sin?

s==1 and s== %, one has to choose the under-integral function so that to ensure the continuity of

this function, when 1 < s < % This means that for this case it should be written as [69]

1
i/ - D(1 - #5)

the function w = f(z) (138) maps the interval [1, %] into the interval

(140)

Consequently, for s C [1, q}

[K, K + iK'] on the complex plane, where

ds

—_
ey

K = 141
@17 ey
and K is the integral (139). Then the integral in (138) can be written as:
y
ds ~
= K+iK = 142
| Ao ()

7 ds

1
ds .
:0/\'/(1—52)(1—q252) +11/\'/(sz—1)(1_q252) ' (143)
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In the same way,similarly the analysis can be performed for the other intervals on the real axis.
Thus the following theorem about the Christoffel-Schwartz integral can be proved.

Theorem 1. The intervals [0,1], [1, %], [%, +00) on the real axis are mapped by the Christoffell - Schwarz
integral (138) onto the rectangle with endpoints correspondingly (0,0), (K,0), (K,K +iK"), (0,iK") on the
complex plane, where K- is represented by the integral (141) and K is the integral (139).

The first significance of this theorem is that since the mentioned points are the points of a
rectangle, it gives the opportunity to predict when the integral (138) is real-valued or imaginary.

Secondly, it may be noted that the Christoffel-Schwarz theorem is not formulated for elliptic
integrals of higher than zero order. So taking into account the results of the theorem for the zero-order
integral f(()4) (¥,9) and combining the higher-order integrals (125), (128) for the integral E4) (¥,9) and for

the integral (130) E‘U (¥, q) respectively from the recurrent system of equations, it may be established
in another way whether these integrals are real-valued or complex-valued and how the interval [0, 1],
11, %], [%, +o0) is mapped by higher-order integrals. This is a problem, not solved for the moment in
the theory of elliptic functions. Another problem, not solved is: how to find the period of an elliptic

integral of higher order?

8. Numerical Calculation of the Propagation Time of a Signal, Emitted by a
Satellite on a Plane Elliptical Orbit

8.1. Numerical Calculation of the First Six Iterations of the Eccentric Anomaly Angle E

We shall perform some numerical calculations of the propagation time, based on the derived
formulae (54). The numerical data about the parameters of the GPS orbit are taken from the PhD
dissertation [72] and are known with great precision. From all the parameters, listed below only the
first three will be used in the calculation, performed by the online program web2.0 scientific calculator
[74]

semi-major axis a 26560.25169632944 [km]
eccentricity e 0.01323881349526 ,
mean anomaly M —0.3134513508155 [rad]
inclination [ 0.9614884100802 [rad] ,
longitude of the ascending node —0.4495096737336 [rad] ,
argument of perigee w —3.001488651204  [rad]

In the following numerical calculations we shall use only the first three parameters a,e and M, but
in other publications the approach will be extended and it will be required to find the propagation time
dependent on the full set of 6 Kepler parameters (a,¢, M, I, (), w). Instead of M, either the eccentric
anomaly angle E will be used or the true anomaly angle f. In fact, all the Kepler parameters might be
used for finding the propagation time, and this is a problem to be solved in future.

For finding the propagation time for the case of a signal, emitted by a satellite, moving along
a plane elliptical orbit with an eccentricity e, most important is to find the eccentric anomaly angle
E from the Kepler equation M = E — esin E. The calculation will be based on formulaes (2.54) and
(2.55) in Ch. 2 of the monograph [41].

The iterative sequence of the formulaes are

E(i+1) = M +esin E(Z) ’ i= 0, 1,2, ..... ’ (144)

where for the first approximation it is assumed Eg = M = —0.3134513508155 [rad] The first three
iterative solutions are given according to the following formulaes:

Eqy=M+esinM (145)

Epy=M+esinEy) = M +esin(M +esinM) (146)

d0i:10.20944/preprints202501.0333.v1
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Egy =M +esinEp) = M +esin[M +esin(M +esin M)] . (147)
Thus from the formulaes for E3), E(5) and Eg) the following numerical values can be found
Ez) = M +esinE(;) = —0.31758547588467897473 [rad] (148)
E4) = M +esinE(3) = —0.31758548401096719083 [rad] , (149)
Eisy = M +esinE(y) = —0.31758548411317083102 [rad] , (150)
E) = M +esinE(5) = —0.31758548411445499592 [rad] . (151)

The approximation E5) up to the ninth digit is identical with E(4) and E ) up to the eleventh digit is
identical with E5). The approximation E g also up to the seventh digit is identical with E3), given by
(148). However, if the approximate value for E 3) is compared with the value for E(4) , the coincidence
is only up to the fifth digit.

It is therefore necessary to check what is the impact of the approximations in the eccentric
anomaly E on the approximations of the time of propagation of the signal.

8.2. Numerical Calculation of the First O(L) Correction in the Propagation Time

The corresponding elliptic integral (61) of the second kind for the eccentric anomaly approximation
E)is
®)

Es)
{5 — / /1 — €2 cos? EdE = —0.317557268125933936045 . (152)
0

If we compare this value with the value (148) E3) = —0.31758547588467897473 [rad] , then it can be
noted that the integration changes the value of E3) after the fourth digit after the decimal dot.
The same integral with E ) as an upper integration limit is

EG)
T{Fe) = / V1 — 2 cos? EdE = —0.317558568963886638536 . (153)
0

This value is different from the value (152) after the fifth digit, so it is a better approximation. However,
if compared with Eg) = —0.317585484114454995929 [rad], the integration in (153) changes the value of
E(¢) after the fourth digit after the decimal dot.

The calculation of the first O(%) time correction? Ty for the values of the GPS orbit and for the
eccentric anomaly E 3) gives the following numerical value

%T{E“ — —0.0281341332790419 [sec] . (154)

Correspondingly, the first O(%) time correction %Tl(Eé) for the eccentric anomaly Eg) is
4 (Es)
ETl = —0.0281342485273829 [sec| . (155)

So the two O(%) time corrections (154) and (155) are identical up to the sixth digit after the decimal
dot. Consequently, the important conclusion is that the eccentric anomaly at the sixth approximation
level can ensure microsecond stability of the O(%) time correction. This means also that the third
approximation E 3 can be reliably used, at least at the microsecond level.

d0i:10.20944/preprints202501.0333.v1
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One more argument in support of the microsecond approximation is that for a satellite, moving
along circular orbit (when e = 0) the above expression acquires the form:

4 ,(E3)
¢ circular)

= %E(5) = —0.028136517830159266 [sec]
C

= —28136.517830159266 [y sec| . (156)

Evidently, the coordinate time for the circular orbit differs from the coordinate time for the GPS elliptic
orbit only after the fifth digit after the decimal dot. This is however a clear proof that in order to
account for changes in the propagation time in the micro- (1) and the nano-range, the ellipticity of the
orbit should be accounted in the calculation of the propagation time according to

8.3. Numerical Calculation of the Shapiro Delay Term (the O(C%) Time Correction)

Now let us calculate numerically the whole under-integral expression in formulae (54) for the
propagation time, taking into account the 25—th digit after the decimal dot

2GM /1+ecosE
E\/1 —e2cos?E — ‘ ®)
c 3 |/ 1—ecosE s

= —0.0885884561709019072629880 — 0.0000000000299618094618168 (157)

= —0.0885884562008637167248048 . (158)

The second Shapiro delay term contains ten zeroes after the decimal dot, so the overall result of the
calculation of both terms in (157) is changed by the Shapiro term at and after the nanosecond level
(1 nsec = 107 sec). Here it should be clarified that the calculation in (157) and in (158) is of an
approximate value because one should take the numerical values for T after performing the integration
of the elliptic integral, which as already mentioned changes the result after the fourth number after the
decimal dot. For the moment, we do not have a numerical estimation of the second integral term in
(54), consequently we take the whole under-integral expression.

It should be noted also that in the previous calculations of the iterations E3) and E(4) of the
eccentric anomaly angle it was taken with a negative sign, due to the accepted convention. After
obtaining the result of the calculation of Tl(E3 ) and Tl(E6) from the integrals (152) and (153), they were
with a negative sign. This means that after integrating of the first term in (157), there will be a negative

sign before the first number in (157) and the negative sign of the second term in (158) remains. This is

. 1+ E . . ...
so because after calculating 2%\4 : %:Eg’ the obtained number is positive. Thus, the two numbers

in (157) and (158) should be added, giving a total number —0.0885884562008637167248048, greater
than the first number in (157) after the ninth digit after the decimal dot.

Although approximate, this result, based on the simple application of the celestial mechanics
approach in the calculation of the propagation time is interesting, if compared with the calculations,
based on the formulae (1) T = % +2 G@CQAE ln(:ﬁﬂﬁfﬁgg . From the literature it can be seen that
relativistic effects on light propagation from Satellite Laser Ranging (SLR) data are measured with an

accuracy of 1 um (1 micrometer), which corresponds to 0.01 p sec (see also paper [17]). The relativistic
observables, defined for the GRAIL mission in [3] are also accurate to 1 ym. No doubt that the
numerical calculation of the integral over the Shapiro delay term in (157) will give a more realistic
result.

8.4. Propagation Time of the Signal Compared to the Celestial Time - Consistency of the Numerical Calculation

Let us compare the calculated propagation time of the signal with the celestial time ¢.,;, which
can be calculated from M = n(t — tp) (M is the mean anomaly, given in the numerical data), where tp
is the initial time of perigee passage. The idea is to calculate the celestial time of motion for the given
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value M of the mean anomaly and thus to compare the distance, travelled by the satellite with the
distance, travelled by the light (laser or radio) signal. Since this calculation also will be approximate,

for the propagation time we have taken only the value Tl(Eﬁ) for the propagation time from the integral
(153) and (155)
Ee)
T(F) = % / V1 — €2 cos? EdE = —0.0281342485273829 [sec]
0

which does not account for the second term, responsible for the Shapiro delay. Let us take the ratio of
the propagation time to the celestial time

propagation time for electromagnetic signals  0.0281342485273829[sec]
celestial time from the Kepler equation ~ 37.508256148]sec]

(159)

= (0.0007500814864964887 . (160)

In other words, the propagation time for the signal is about 10 times smaller than the celestial time,
which will mean that for this celestial time 37.5082561sec] the satellite moves 145.125[km] (the velocity
of the satellite is taken to be vg = 3.874 [km / sec]) and the light signal will move at a distance

26558.1510169176263505735093268096 [km] . (161)

This value is obtained after multiplying the light velocity ¢ = 299792.458 [Km] with the calculated

sec
propagation time, taking into account the sixth iteration Tl(E(’)

according to (155).

It is interesting to compare this value for the distance, travelled by the signal with the value, ob-
tained after taking only the first term in (157) for the propagation time, where the term 2+/1 — ¢? cos? E
has not been integrated. This term does not account for the second term for the Shapiro delay, which
contained ten zeroes after the decimal dot and was of the order 0.299 n sec (nanoseconds). The result
will be

26558.151025899950855259224944504 [km] . (162)

This number is greater (after the fourth digit after the decimal dot) than the preceding number (161),
so the integration of the expression (155)

E
a (6)\'/ 1 —e2cos? EdE
co

in fact diminishes the propagation time (only the first O(1) correction) in comparison with the first
term 21/1 — ¢2 cos? E in the expression (157). The difference between the numbers (162) and (161) is

0.0000089823245046857156176944 [km] ~ 0.898[cm]| == 8.98 [mm] . (163)

In both cases of the numerical calculation of the numbers (161) and (162), the numerical result confirms
that the distance, travelled by the light signal (numbers (161) and (162)) is much greater than the
distance of 145.125[km], travelled by the satellite. Respectively, for the calculated propagation time
0.0281342485273829 [sec| (only the first O(%) correction T1(6) (155)) the satellite will move at a distance

145.125km]

m x 0.0281342485273829]sec] (164)

= 0.1088555758671073849925 [km] . (165)
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This distance is considerably smaller than the distance, travelled by the signal. In fact, it is about 108.8
meters, which is 0.000004098763343794755826290507 ~ 0.409 x 10~° times smaller than the distance,
given by the number (161)

26558.151016917626350573509326809 [km] ,

travelled by the light or radio signal for the calculated propagation time of 0.0281342485273829 [sec].

8.5. Comparison of the Result in Formulae (163) With A Result in Other Papers. Approximations in the
Calculations of the Shapiro Delay Term

The result of 8.98 [mm] in (163) was obtained by substracting the propagation distance, obtained
from the first term in the formula (54), first by taking into account the integrated term and afterwards -
by calculating the numerical value only for the under-integral expression (see also (157)).

However, in the known review article by Ashby [34] it was proved that at the level of several
millimeters, spatial curvature effects have to be considered, which is evident from the simple equality

GME - GME ry
/dr[1+ Czr]wrz—rl—i— i (166)

In this paper the second term was estimated to be 4.43 x In(4.2) ~ 6.3 mm. It might be concluded
that yet in the first term in (163) spatial curvature effects are important and have to be included.
Since in the Shapiro formulae the first term is the Euclidean distance, divided by the light velocity

and from a formal point of view it might be believed that the first terms 2v/1 — e? cos? E in (157) and
E
(6)
4 [ V1 —e? cos? EdE in (155) should correspond to the first term % in the Shapiro formulae. Therefore,
0

since it might be suspected that curvature effects may appear yet in these formulaes, it is not quite

Ee)
correct to consider any correspondence %v/1—e2cos?E = R or ¢ [ v/1—e2cos? EdE = &.Inview
0

of this, in a recent paper [23] a new modification of the Shapiro formulae has been proposed, where

the first term & is replaced by the term 1 [ \/ (5()2 + (y)z + (Z)zds. In this term s is some parameter,
path
which parametrizes some curve, for example the space curve, determining the space coordinates on

the satellite orbit.
It should be reminded also that the integration in formulae (166) is of approximate character. The
reason is that some approximations are made when calculating the second Shapiro delay term in (1)

T:RAB+2G@ME1H ra+rp+ Rap
c c3 ra+rg— Rap

For example, in the thesis [73] the approximation

cdt = <1+ G];/IE> | dr | (167)
cer

has been used, where the infinitesimal vector dr is not related to the signal trajectory. The vector 7 in
. - —

(167) is related to the vector R = r

emission and 7’ - with the position of a space point in a Geocentric Reference Frame. In other words,

-7 A, Where 7 A is the vector, associated with the position of

the integration is not along || dR ||, because the approximation || dR ||=|| dr || has been assumed and
thus the integration is along dr. A similar approximation has been used in the PhD thesis [72].

That is why, in the papers [19], [20], [21], [22] and [23] it has been asserted that the derivation of
the Shapiro formulae should start from the null cone equation.
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8.6. Comparison of the Propagation Time with the Atomic Time of the Atomic Clocks of the Satellites in the
Near-Earth Space - Consistency of the Results

Now let us point out one another numerical fact, which is interesting, because it confirms the
consistency of the approach of calculating the propagation time on the base of using the parametrization
of the satellite orbit. In the book [38] it was pointed out that at an altitude of 20184 km, due to the
difference in the gravitational potential, the atomic time of the satellite clock runs faster by 45 y sec /d
(microseconds per day, 1 psec = 107® sec). Consequently, for one second the atomic time will
run faster by 0.5208333.10~° [sec]. In the preceding sections it was proved that the dominant part
in the propagation time dT (i.e. the part without the Shapiro delay term, which is very small) is
dT = 0.0281341332790419 [sec|, given by the number (155). The corresponding to this propagation
time interval dT atomic time is dT = 0.0146531934.10~? [sec] and can easily be found from 45 i sec /d
(keeping in mind how many seconds are contained in 24 hours, i.e. 1 day). The ratio of the two time
intervals is equal to

dt 0.0146531934.10°

i _ -9
AT — 0.028134248527382 0.520831163687866092.10~ " . (168)

The very small atomic time interval compared to the propagation interval means that the atomic time
can serve as a standard for measuring the propagation time, because it will be able to detect changes
even at the nanosecond level.

It should be noted that this value is of the order of 10~7, but it is a little greater than the value
p=2y =0334x107°.

Similarly, if a clock on an orbit is compared to a clock on the Earths surface, due to the net effect

of time dilation and gravitational redshift the satellite clock will appear to run fast by 38 psec /d [38],
which also is considered to be an enormous difference for an atomic clock with precision of a few
nanoseconds. So for this value, a similar number will be obtained for the ratio %' again confirming
that this nanosecond (10~ sec) precision of the atomic clock (no matter whether it is on the Earths
surface or on a satellite in a near-Earth orbit) is sufficient for measuring the propagation time T of the
signal.

9. Justification of the Theoretical Approach in This Paper from the Viewpoint of
General Relativity Theory and Differential Geometry

As mentioned in the Introduction, the basic approach of calculation of the propagation time in
this paper is based on finding the solution for the propagation time from the null cone equation
and parametrizing the space coordinates for both cases, considered of plane elliptical orbits or space-
oriented orbits by the orbital coordinates. So in fact, the light-like geodesics are not used in this
approach. In the previous chapter, it was demonstrated that the solution for the propagation time
does not give any time, related to the motion of the satellite, but the calculated propagation time is
of the order of microseconds (1 ysec = 10~° sec) or nanoseconds (1 nsec = 10~? sec), which is the
"starting" sensitivity of the atomic clocks. This is the first fact in favour of the correctness of using
the approach of the null cone equation. The second fact is related to the proper dimension of seconds
of the expression for the propagation time for the case of a signal, emitted by a satellite on a plane
elliptical orbit. The third fact is very important, in view of the application of elliptic integrals of the
first-, second and the third kind (for the case of a satellite on a plane elliptical orbit) or elliptic integrals
of the first-, second- and the fourth- order (for the case of a satellite on a space-distributed orbit).

Now we shall present the fourth argument, related to a theorem, proved in the book on General
Relativity Theory by Fock [29], which turns out to be related with known theorems from basic
textbooks on differential geometry [32] and [30]. Let us first begin with the theorem in [29]
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Theorem 2. Let F = 5 g,XB do” d;: , F = 0 is the null cone equation and the extremum of the integral

s = f Lds is searched (L = /2F), then the Lagrange equation of motion will give

51

dP d BF aF

From the last equation the geodesic equations («, B,v =0,1,2,3)

d%x, v dxadx,g

ds? “B ds ds (170)

can be obtained. Since the constant in (169) can be set up to zero, this would mean that the geodesic equation
dx® dxﬁ

(170) is compatible with the null-cone equation F = 5 ga/g— &= =0.

It is important to acquire the proper understanding of this statement - it means that every solution
of the null equation (including in the proper parametrization of the differentials, related to the trajectory
of motion of the satellite) is also a solution of the light-like geodesic equation (170). In the "backward
direction”, however the statement is not true, meaning that there might be another solutions of the
geodesic equation, which are not solutions of the null-cone equation.

The meaning of the geodesic as the shortest path, joining two given points (but only in the local
sense, i.e a sufficiently short part of the geodesics) is confirmed also by the following theorem in the
monograph by Prasolov [32]. Let us present the exact formulation of this theorem:

Theorem 3. Any point p on a surface S has a neighborhood U such that the length of a geodesic y going from
the point p to some point q and lying entirely in the neighborhood U does not exceed the length of any curve a
on S, joining the points p and q. Moreover, if the lengths of the curves vy and a are equal, then <y and w coincide
as non-parametrizable curves.

In fact, what does it mean that "the length of the geodesics from point p to point g does not exceed
the length of any other curve" (but only locally, i.e. in the vicinity of the given neighborhood)? This
means that this geodesic line is minimal. So this confirms the theorem in another, third well-known
book on differential geometry by Mishtenko and Fomenko [30]:

Theorem 4. The geodesic line vy : [a,b] — M" is minimal if it is not longer than any smooth path, joining the
endpoints y(a) and v (b).

So if we have for example the functional E(y(s)) = [ | P (s) | ds = f 8ij(x ( )ds for the
null cone equation, and we are searching for the extremals, these extremals will be derlved from the
geodesics - the multitude of the solutions for the extremals from the geodesics turns out to be larger
in comparison with the one for the other local curves in the vicinity, in particular for the functional
E(7(s)) for the null-cone equation.

On the base of combining the results in the previously mentioned monographs by Fock [29] and
[32], one easily establishes the validity of the following theorem in [30]:

Theorem 5. The extremals of the length functional L(-y = [/gij(x s)ds are smooth functions,
derived from the geodeszcs (by means of smooth change of the pammeter along the curve) Then each extremal
of the functional E(vy =[] 'y ) | ds = f Sij(x (s)x! (s)ds (called also action functional of the
trajectory) is also an extremal of the functional L(7y(s)) = f \/ 8ij(x s)ds. However, each extremal of

the functional L(7y(s)) is not necessarily an extremal of the functzonal E ( ( )

d0i:10.20944/preprints202501.0333.v1
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There is a simple inequality L2(7(s)) < E(y(s)) [30] in confirmation of the above theorem, which
can be immediately proved by means of the Schwartz inequality

1 1 1
f(s)g(s)ds | < f2<s>ds)( g2<s>ds) (171a)
[[reosom) = ([ o)/

for the following functions [30]
fls)=1 g(s) =[7(s) | - (172)

It should be noted that the parameter s in the book [29] is defined simply as a "space parameter
along a curved line". In the above formulaes, s is also a space parameter. But as noted in [30], when
g(s) = const, i.e. y(s) = const and the parameter s is proportional to the length of the arc of the
curved line, an equality can be derived L?(y(s)) = E(7(s)). Thus, every solution of the null cone
equation gij(x)jcl (s)%'(s) = 0 (i.e. a zero-extremal of E(7(s))) will also be a zero extremal of L2(7y(s)).
As clarified in the introduction, if this zero-extremal corresponds to the propagation of the signal
along the geodesics of the minimal length, the propagation time will satisfy the Fermats principle
about the least time of propagation of light between two space points. Consequently, even if there are
other extremals for the length functional, of interest are only those, related to the minimal geodesics,
obtained from the action functional E(7(s)) = [ gi]-(x)jcl (s)x’ (s)ds, which ensure the fulfillment of the
Fermat principle.

10. New Approach for Analytical Calculation of Elliptic Integrals. Analytic
Relation Between Elliptic Integrals in the Weierstrass and in the Legendre Form

In this section some new analytical algorithms for calculation of elliptic integrals will be presented,
which have been published in the paper [21]. The main advantage of the theoretical method is that 1.
It will be applicable for various values of the modulus g of the elliptic integral, no matter whether g is
a small or a big number. 2. The integrals, encountered in the calculation of the propagation time in the
preceding sections were in the Legendre form, which contains the specific fourth-order polynomial
(1 —y?)(1 — g*y?). However, in previous sections the definition for elliptic integrals with arbitrary
polynomials of the third and of the fourth degree were given. Such integrals are very often encountered
in cosmology, nonlinear evolution equations, black hole physics and etc. For example, in the definition
for the luminocity in cosmology the more general polynomial of the fourth degree under the square
root in the denominator will be used. Also, there is an interesting interplay between the methods of the
standard three-dimensional uniformization and of the four-dimensional uniformization, described in
the monograph by Whittaker and Watson [60]. This method will be exposed in details further and will
allow not only the analytical computation of the Weierstrass invariants g and g3 for four-dimensional
elliptic integrals of the type ],(14) (v) , but also the comparison of elliptic integrals in the Weierstrass
form ],(13) (x), both of them defined by formulaes (96), (97), (98), (99) in section "Higher-order Elliptic
Integrals-Basic Definitions".

Some physical applications of elliptic integrals were presented in the paper [21].

10.1. Transforming an Elliptic Integral in the Legendre Form into an Elliptic Integral in the Weierstrass Form

The purpose of this section will be to propose a transformation, which will transform the elliptic

integral
4) dy
o=/ (173)
’ V=) (- a2
in the Legendre form into an elliptic integral in the Weierstrass form
dx
e =—va [ —= . (174)
VAxX° — gox — g3
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For the purpose, the transformation
x=-—5+b (175)

shall be applied. It is possible to calculate the parameters a and b, so that the integral (174) is satisfied.
These parameters represent complicated functions of the modulus parameter g of the integral

0= k() (176)
2
__4 2y _ 383
b=—30+7) =" K@) (177)

and K(q) is a rational function, depending on the modulus parameter g of the elliptic integral in the
Legendre form
7 —q*+1

2q* — 542 +2 (178)

K(q) =

However, g, and g3 remain undetermined. This will turn out to be an advantage of the applied
formalism, since further another representation of the integral in the Weierstrass form shall be found
with different Weierstrass invariants g, and g5, which will depend explicitly on the modulus parameter
g. Then by comparing both representations in the Weierstrass form and proving a new theorem, g,
and g3 will be expressed through g, and g5 in a complicated way.

Further the following important property will be very important.

Corollary 1. The parameter b satisfies the cubic equation, i.e.
b3 - gzb — 83 = 0. (179)

The proof is straightforward, if the expressions for g» and g3 are expressed from (176) and (177)
and are substituted into the above cubic equation.

10.2. Equivalence Between a Formulae from Integral Calculus and the Recurrent System of Equations for the
Elliptic Integral in Terms of the y— Variable

Due to the property (179), the elliptic integral (174) can be represented in the equivalent way

H3) =y _ VA dx
) = - [ — , (180)
’ 2 /xz\/x2+3bx+(b2%f)

where ¥ = x — b. Such integrals in the monograph by Timofeev [66] are analytically computed
according to the formulae

~ 2n—1
pu \/(a+ 2bf+5§2) "
—~ 1 _ 1)ae"!
xm\/(a+ 2bf+672) " (m —1)ax
(Zm +2n - dx

/ 2n+1
-1 a+2bx+cx )

(m—+2n-—2 dx

m—1)a / 2n+1
( ) ’"2\/ a—|—2bx—|—cx)n

Since this is a formulae from integral calculus, it is interesting to prove the following theorem, which

(181)

most surprisingly establishes the equivalence between the above relation from integral calculus
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with some of the recurrent system of equations for the case of a fourth-degree polynomial in the
denominator of the elliptic integral [44]. The recurrent system for the case of a cubic polynomial under
the square root has been investigated in the monographs of Fichtenholz [64] and Smirnov [63]. Below
the formulation of the newly proved theorem is given.

Theorem 6. The integral (181) is equivalent to the second equation
zZ=3Y @ +4 1Y@+’ @) . (182)

from the recurrent system of equations

27 = (m+2)T 0 @) + m+ 126 1 @) +magl (@) (183)
where the fourth-degree polynomial Z. is defined as
7% = apz* + 4m1Z° + 6027° + 4asZ + ag . (184)
The coefficients in the above polynomial have the values

aO:c,a1:0,6a2:2E,a3:0,a4:E. (185)

The corresponding elliptic integrals of the first kind and of the third kind and of the n—th order are

—n =N 3=
1) = z iz — Zdz , (186)
2 A
a-+2bz% + cz+ \~/Z4+3b22+(3b2—%2)
R [ a—— = (187
EN T =N N = e ey

Due to the established equivalence, it can be concluded that the integral (181) cannot be used
for the calculation of the zero-order elliptic integral in the Legendre form (173), because the recurrent
relation (182) contains also the higher-order elliptic integrals ]2(4) (z) and ]i4) (Z).

10.3. A New Theorem, Concerning the Equivalence between Some of the Equations in the Recurrent System

Theorem 7. From (183), the corresponding equation for m = —3
5= ) + 20+ ) ) -3 ) (188)
can be transformed into the equation for m =1

yi' = Jo(y) —2(1+ ) 12 (y) + 3% Ja(y) (189)

by means of the transformation y = % and the simple relations (for the concrete case for m = 2)

1 1
Hyu(y) = —q"Ju(—) , Hu(—)=—9"Tm 190
(v) q"]. (qy> (qy) q" Im(y) (190)

In such a way, only one independent equation can be obtained from the 4D recurrent system of equations

21+ ) 15" (y) = 341" (y) + 1§ () — y7 . (191)
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10.4. Relations Between the Recurrent System of Equations in Terms of the y and x Variables
10.4.1. The Recurrent System of Equations in Terms of the x Variable
Now we shall write the recurrent system of equations for the elliptic integrals
3) x) = / x™Mdx
4x3 — gox — g3
d a ~
¥ (x) = / a , =240, (192)
"\/4x3 — gox — g3 y

as this has been performed in the monographs [64] and [63]. Generally, the polynomial of a fourth-
order under the square root is denoted as

Y? = a0y4 + 4a1y3 + 6a2y2 +4azy+ayg , (193)
but for the concrete case of the integrals (192), the coefficients will be given by

a0:0,a1:1,a2:0,a3:—‘%2,a4:—g3. (194)
For this choice of the coefficients due to ap = 0 the polynomial becomes cubic, so we change the
variables in (193) from (Y,y) to (X, x), i.e. X? = 4x3 — gox — g3, where the Weierstrass invariants
(coefficients) go and g3 will be defined in the next sections.

(3))

The recurrent system of equations is easily found to be (omitting the upper indice "(3)" in I,

82 (on+ 1)1y — ngslu_y . (195)

XX =202+ 3) 2 —

It should be noted also that the variable transformation x = ;N—% + by in (192) contains another parame-

ters a, and 52, which are different from the parameters 4, and b, in the transformation (175). Now we
shall transform the three-degree polynomials under the square root in (192) into the known four-degree
polynomials for the elliptic integral in the Legendre form. The transformation x = y% + by (as well
as the previously applied transformation (175) x = y—z + b) are generalizations of the transformation

M in the paper [59], where e, e, e3 are constant roots of a cubic polynomial The trans-

dx f
)(x—ea)(x— e3) \/61 e \/(1-y (1 2’
_ (ea—e3)

where g% = [CESE Under another transformation y = ~y the x—variable will transform as

x=-e3+

into the integral —

formation transforms the integral f N
xX—e1

X=mkyv+b, (196)

where a new variable X has been introduced. The two recurrent system of equations (183) (written
in terms of the y—variable) and the recurrent system (195) for the x—variable are not independent
because

(q)
@, Joy) _ 2a
&) (x) = (Oﬁ)q o J0w (197)

where k is determined so that 4x3 — g(g)x — g3(q) is transformed into the expression (1 — y2)(1—
k?y?). Consequently, the last expression is satisfied if k is defined as

=~ 6o . 7 @3, _ @)
k:—l—% , & = by is a root of 4b§—g2q bz—gsﬂ =0,
I T e e
azz 73 = . (198)
V4 3g§q)
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Two central problems remain to be solved:
1. How to combine the derived equations in terms of the x variable with the found relation (191)?

2. How to estimate the parameter g, in Eq. (198)? In fact, further in the next sections it will
be proved that g = ggq) = g(q) and g3 = géq) = g3(q) will depend in a complicated way on the
modulus parameter g, but this dependence will be found from another Weierstrass representation
of the integral ]54) (v) (173). This new representation will not contain the conformal factor y/a in Eq.

(174), but instead will be characterized by different Weierstrass invariants gg‘” and gé")

, which will
be explicitly determined by the method of the s.c. "fourth-degree polynomial uniformization". This

algebraic method will be considered in details in the following sections.

10.4.2. Combining the Two Recurrent System of Equations

From the two recurrent system of equations in terms of the y—variable and the x—variable, the
following equation can be obtained

X0 = N1(52152/7€)I§%) (y) + Nz(ﬁz,gzl%)]é%) (y) + N3 (@, by k) = (199)
NI+ N - 1w+ 200
where -
Ni (@2, bp, k) = NV = 8BI2(1 + 12) + 2483062 (201)
Na(@2bo k) = NP = 120,02 — ( 52;)2(51) — 433k (202)
Na(@, b k) = N = 4k 2y (203)

and X0 =433 — ggk)f - gék). The notations gék) and ggk) mean that these Weierstrass invariants are
expressed as complicated functions of the parameter k.
Now it can be noted that if it is possible to make the replacement k <= g, then another equation
will be obtained
X(q) — Nl(q)jéq) (y) + NZ(W)](g'J) (y) + N:g‘l) (204)

and in this way, the equations Eq. (200) and Eq. (204) will give the following solution for the zero-order
elliptic integral in the Legendre form

(9) . 2}2(‘7) _ M
\3/§N2(q) NZ(q)
VX0 (V2 -2nT) NP (2% - 72Ny
N2(q) (\3@ _ 2) Nz(q) 2

As a consequence of the replacement k <= g, one also has the following equality, which follows from
the defining relations (198)

(205)

B-P+1 -2 +1

_ 206
3¢ (k) 382(9) (206)

If this is a quite a general condition (not imposing any restrictions), then the replacement k= g will

be justified. Evidently this will depend on the determination of ggq) = g2(g), which will be given in

the next sections.
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10.5. Another Integral in the Weierstrass Form After Applying the Four-dimensional Uniformization

Further by "four-dimensional uniformization" it shall be meant that the polynomial of the fourth
degree under the square root in the denominator of the elliptic integral shall be "uniformized" by
introducing complicated functions, depending on the Weierstrass function and its derivative, which
represent functions of the complex variable z. The term "uniformization" shall be clarified in the next
section.

10.5.1. The Standard Method for 3D Uniformization in Elliptic Functions Theory - Reminder of the
Basic Facts

Let in accord with the standard notions in elliptic functions theory [44] and [46], the s.c. "funda-
mental parallelogram" is defined on the two-periodic lattice (see also the monograph [47])

AE{Wq+m@;OgmglﬁgnglJmC?>>O}. (207)
2

The two periods w; and w, constitute the basis on the complex plane and thus each complex number
can be represented as z = mw1 + nw,. Then the Weierstrass function

1 1 1
=52 ap ) 09
and its first derivative 5 1

satisfy the parametrizable form of the cubic algebraic equation
Y =4 —gpx—g3 e x=p(z) , y= pl (z) , (210)

where the functions p(z) and p, (z) are called also uniformization functions for the above cubic algebraic
curve y* = 4x% — gox — g3. The summation in the defining formulaes (208) for the Weierstrass function
p(z) is over all points on the two-dimensional lattice on the complex plane, i.e. on all possible numbers
m and n. The coefficient functions g, and g3 are the s.c. "invariants of the Weierstrass function" p(z)

'1 1
&zm@:wzﬂ,&:mmfﬂmzﬁ, (211)

n/n

defined as infinite convergent sums over the period w of the two-periodic lattice. The prime """ above

the two sums means that the period w = 0 is excluded from the summation, so that the expressions
would not tend to infinity.

10.6. Application of the Weierstrass Integral and of the Weierstrass Elliptic Curve in the Parametrizable Form

This section has the purpose to clarify the importance of finding the Weierstrass invariants g, and

dx
\Ax3—grx—g3 '

on the base of the methods for four-dimensional uniformization, a primary goal will be to find the

g3 for the calculation of an elliptic integral in the Weierstrass form [ In the next sections

Weierstrass invariants g and g3 not only for integrals in the Weierstrass form, but also for integrals in
the Legendre form and also for more general integrals (98) (for n = 0)

dy
)= / Vaoy* + dayyB + 6asy? +dazy +ay

19y

with an arbitrary polynomial of the fourth-degree under the square in the denominator. Here it shall
be clarified that finding the Weierstrass invariants will be possible after transforming the initially
given integral in the Legendre form into an integral in the Weierstrass form, and in such a way the
Weierstrass invariants g and g3 will depend in a complicated manner on the modulus g of the integral
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in the Legendre form. Thus, as it will be demonstrated by a theorem in the monograph by [48], for
known g, and g3 the solution (and the roots) of the cubic equation y? = 4x3 — ¢»x — g3 will be possible
to be determined. Then, the periods w; and w; of the two-dimensional lattice of the fundamental
parallelogram (207) can be calculated.

Let us first note that finding a solution z — zg of the integral [ in the Weierstrass form

dx
V4x®—grx—g3

is equivalent to knowing the roots of the cubic polynomial y?> = 4x> — g>x — g3. This "equivalency"
can be written as [71]

X
z—zoz/ < dx sy =4 —gpx—g; . (212)
A 4x° — gox — g3

In fact, the equality x = p(z) is a solution also of the elliptic integral in (212) and this is the known
problem of "inversion" for elliptic integrals. In (210) p(z) is the Weierstrass function [71]

p(z)Ezlz+Z((Z_1a})2—1>:1+gzzz+(g3z4+ ..... (213)

From the second representation for the Weierstrass function p(z) it becomes clear why in the literature
it is denoted by p(z; g2, ¢3).The following theorem, proved in Ch. 6 of the monograph by Knapp
[48] allows us to understand how the result of integration for the elliptic integral (173) f(()q) (y) =

dy
J vV (1=y?) (1-4%y?)

after calculating the Weierstrass invariants g, and g3 by means of the method of four-dimensional

can be represented in an analytical form by means of the Weierstrass integral,

uniformization. This method will be presented in the next sections.
10.7. A Theorem about the Unique Correspondence Between the Periods wi and wy on the Two-Dimensional
Complex Lattice and the Weierstrass Invariants (g2, g3) for Elliptic Integrals in the Weierstrass Form

Theorem 8. [48] There exists an unique correspondence (g2(A),g3(A)) < A between the lattices A on
the complex plane C and the pair (g2, 83) of the complex numbers, the Weierstrass invariants such that the
discriminant A = g3 — 27¢3 of the cubic polynomial 4x® — gox — g3 = 0 is different from zero. If ey, ey, 3 are
the roots of the above polynomial, i. e.

4% —gx—gs=4(z—e1)(z—e)(z —e3) , (214)

then the periods (w1, wy) on the complex lattice A (207) can be found from the following integrals

— dz
w1 _1“[ 2\/(2 — 61)(2 — 32)(2 _ 63) 4 (215)

dz
cU2:r{2\/(2—61)(2'—62)(2—@3) ' (216)

In the first integral the unique branch I'y of the square root is chosen with cuts from eq to ey and from e3 to co
and in the second integral the branch I'y is with cuts from ey to e3 and from eq to co.

Moreover, for every lattice A on the complex plane, defined according to (207), a biholomorphic
mapping is determined as ¢ : C/A +— E(C), where E(C) denotes the elliptic curve y* = 4x3 —
22(A)x — g3(A). The mapping ¢ is defined by means of the Weierstrass elliptic function p(z) and its
derivative p'(z) and the inverse mapping - by the corresponding elliptic integral.

Since p(z) and p'(z) are uniformization functions, they will satisfy the cubic polynomial [44]

(F(@) = 40@) —e)(p(2) ~ e2)(p(2) ~e5) e17)


https://doi.org/10.20944/preprints202501.0333.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2025 d0i:10.20944/preprints202501.0333.v1

46 of 72

from where the following relations are easily derived [44], following from the algebraic properties of
the roots of a cubic equation

e1+ex+e3 =0, erer +eres+e1e3 = —‘%2 , e16263 = % . (218)

Now it may easily be calculated that
85 — 2785 = 16(e1 — e2)* (e — e3)*(e1 — e3)* . (219)

If the discriminant A = g% — 27g§ (a well known notion from higher algebra) is different from zero,
then the cubic equation 4x3 — ¢>(A)x — g3(A) = 0 will not have coinciding roots, i.e.

e1 #ex £ e3 (220)

This property is very important also for the theory of elliptic curves (see also the monograph [49])
since if the property g3 — 27¢3 # 0 is fulfilled then a lattice A on the complex plane exists, so that the
Weierstrass invariants g» and g3 can be defined as (211)

"1 1
g2:60G4:6OZE , g3:140G6:14OZE )

At this point it becomes clear why the correspondence (g2(A),g3(A)) < A in the cited monograph
[48] is in both directions - previously we proved that if the lattice A is given, then the Weierstrass
invariants ¢, and g3 can be defined, i.e. A = (g2(A), g3(A)).

10.7.1. The Consistency Problem for a Non-Zero Discriminant for the Case, When the Invariants in the
Weierstrass Integrals are Expressed Through the Modulus Parameter g of the Integral in the Legendre
Form

Now the statement is proved in the opposite directions - if the Weierstrass invariants are given,
then a complex lattice can be defined (g2(A), g3(A)) = A. Note that this statement is not trivial and it
can be reformulated in the following way: if g» and g3 are given (real or complex) numbers or even
functions of some parameter (such examples will be shown further), then a two-dimensional lattice A
on the complex plane with periods w; and w, can be defined, so that the sums in the defining equalities
for g» and g3 in (211) will be convergent. This is also a problem, which needs further investigation.

Further it shall be understood why this is important in view of the fact that an elliptic integral
in the Legendre form (with a modulus parameter g) shall be transformed to an elliptic integral in the

dx
VAad—gox—g3’

which shall be expressed by complicated polynomials, depending on the modulus parameter g, i.e.

Weierstrass form [ The Weierstrass integral is characterized by invariants g> and g3,

g2 = g2(9) and g3 = g3(g). So a natural question arizes: will the integral in the Weierstrass form with
the calculated values for the Weierstrass invariants g, and g3 be correctly defined? The answer will be
affirmative, because from the above correspondence it will follow that the lattice A can be defined.
However, if ¢» and g3 are defined as g» = ¢»(q) and g3 = g3(q), then the condition A = g5 —27¢% # 0
for the discriminant should also be fulfilled, which in fact will mean that the higher-order g3 — 272
polynomial of g4 should have no zeroes! Further in the section for four-dimensional uniformization,
we shall obtain the parametrization for g» and g3 (254) in the form of the following higher-order
polynomials of the modulus parameter g of the elliptic integral (173) in the Legendre form

_(12) _ 1
% =P+ 51+ >0

and (255) (the notation in both equalities will be g, and g5)
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Then will the higher-order polynomial gg 12) _ 27§§ 12) have the property to be without any roots?
The same question appears with respect to the found second pair of Weierstrass invariants (268) (the

same as (254)
1
- 2 2\2
= —(1
§=0+3;,(1+4)° >0
and also (269)
s 15 2y, (1+4%)°
8= g0 (l+q) + 5
In view of the theorems, which have been proved it follow that in both cases the higher-order polyno-
(L2) _ 27§§ (1.2) 12) _ 27§§ (12) depend
on higher degrees of g, which is defined for 0 < g < 1 it is known from higher algebra that there are

mial gg should have no roots! Since both the polynomials gg
many theorems [53], [56], investigating the case when an arbitrary polynomial of the n—th order will
have (or will not have) roots in the circle g < 1. One such theorem, formulated in the monograph
by Obreshkoff [53], is the theorem by Schur [55], published yet in 1918. The concrete application of
this theorem requires cumbersome analytic calculations, because it should be applied to a chain of
algebraic equations of diminishing degrees. For example, for the case of the polynomials (268) and
(12) _ 27§§ (12) will be of the 12—th degree! For polynomials of the fourth
degree, the Schur theorem has been applied several times in the papers [18] and [19] and the results

(269), the polynomial gg

have shown excellent consistency with the physical content, implied in these polynomials. Moreover,
in [18] it has been demonstrated that the Schur theorem can be used for the both cases of proving that
a certain polynomial has roots in the circle 4 < 1 or does not have such roots. In the next sections, we

shall give only the formulation of this theorem.

(1,2) (1,2)

- 27,
there are roots, then this will mean that either the corresponding parametrization should be rejected,

On the other hand, if in one of the cases for the polynomial gﬁ it is proved that

or that the elliptic integral in the Legendre form is not defined for the values of g, satisfying the above

12) _ 27§§ (12) — 0. In standard monographs on elliptic functions and integrals, this

polynomial gg
interesting problem is not investigated.

Now it remains to prove that the three roots ej, e, e3 are different and they will correspond to
three different values for.the Weierstrass function p(z1), p(z2), p(z1 + z2), corresponding to the values

21:%,22:% , z1—0—22:%—|—% . (221)

The proof is standard but since it contains some nontrivial facts, related to functions on the complex
plane, it shall be given below.

A detailed study whether the periods (w7, w») are real and imaginary depending on the roots of
the polynomial 4x® — ¢x — ¢3 = 0 and on the properties of the integrals (215) and (216) is given in Ch.
6.5 of the known monograph [69].

10.8. Definition for an Elliptic Function. A Proof that the Three Roots of the Cubic Equation
4x3 — gpx — g3 = 0 are Different
10.8.1. Defining Properties of the Weierstrass Function as an Elliptic Function

This section does not contain any new material, but the properties of the Weierstrass function are
important in view of the definition of a new problem for uniformization of higher order (higher than
four) algebraic equations by means of complicated functions, depending on the Weierstrass function
and its derivative.

Let us give first the definition for an elliptic function f(z). By definition, f(z) is an elliptic function
if it is meromorphic and doubly periodic. The last means that the equality

f(z+ nwy + mwy) = f(z) (222)

is fulfilled, where n and m are integer numbers.

d0i:10.20944/preprints202501.0333.v1
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The Weierstrass function (208), defined by the equality

is an example for an elliptic function. This definition is related to the definition of the notion of
elliptic integral in the sense that x = p(z) is a solution of the integral in the Weierstrass form (212)

f \ /4x3 —goX—g3
are different
First, the notion of a meromorphic function should be clarified: a function is meromorphic, if it

z—2z0 = . However, the two definitions for an elliptic integral and for an elliptic function

does not have singular points other than poles [44]. Singular points in complex analyses and for the
function f(z) of a complex variable can be of three different kinds [71]:

1. Removable singular points (one of them for example can be denoted as a), for which lim, ,, f(z)
exists and is finite. This means also that | f(z) |< M (M is a constant), consequently the Laurent
expansion around the point a is

f(z) =co+ci(z—a)+ ... +cen(z—a)! :>l1g}f( z) = (223)
and does not contain a main part, i.e. these are terms with poles in the Laurent decomposition. The
constant M because of the Cauchy inequalities can be chosen as | ¢, |< Mp~" and since p can be
chosen to be very small, this would mean that all coefficients ¢, with negative indices will be zero.

2. Essentially singular points - these are points for which lim,_,, f(z) does not exist. For this
case the Sohotsky theorem is valid, according to which if 4 is an essentially singular point, then for
every complex number A there exists a sequence of points z;y — a, for which lim;_,, f(z) = A. The
difference of this case from the previous one is that in the previous case the limit point was only one,
while here there is an infinite amount of limit points. Note also that the infinite point A — oo can also
be a limit point for the sequence, since if it was only finite, then one can take the function g(z) = ﬁ,
for which lim,_., g(z) = 0, consequently z; — a will be a removable singular point (but with many
limit points for the sequence). Also, a point is essentially singular if and only if the main part in the
Laurent decomposition contains infinitely many terms.

Consequently, the two cases cases can be united by writing the Laurent decomposition in the form

f(2) = fi(z) + falz Z‘, cn(z—a)", (224)
n=-—c0
where . A0z
C":%/W (= 0,41, £2 £ 11, ....) (225)
v
and the integration is performed over the circle ¢ :| z —a |= p . For n with plus signs and for

n — oo there will be infinitely many positive terms in the decomposition (223) - this is the first case of
removable singular points. For n with a negative sign there will be infinitely many terms in the main
part of the decomposition - the second case of essentially singular points.

3. The third case is the case with poles, for which lim,_,, f(z) = oo, which means that the point a
is a pole if and only if the main part (these are the pole terms) in the Laurent decomposition contains a
finite number of pole terms [71]:

C_n Cfl

P + ick(z—a)k . (226)

k=0
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Proof that the Weierstrass Function is Meromorphic

Since the case with poles is characteristic for the Weierstrass function, we have to prove that the
pole terms are finite. Since the fundamental parallelogram covers the entire complex plane and for
the pole terms we have lim,_,, f(z) = oo, we have to establish that this property is valid for arbitrary
poles, even for those periods w; and w», tending to infinity. Let us take the term inside the brackets in
the defining equality (208) for the Weierstrass function and calculate the limit when w — oo [44]

11 2w-22 w227 (227)
(z-w)? w? W2(zw1-1)2 w?@W?(zw1-1)2 "
When the number | w | tends to infinity, the term
27 — 2, ,—1
ETEW s (228)

W2 (zw1-1)2 "~

This means that when z — oo, the term (

z%w)z - ﬁ is infinite, i.e. this is a pole term. Now it remains to

prove that although every term (27%)2 - % is infinite, the sum of all these terms is finite, corresponding

to the finite number of pole terms in the decomposition (226). From (227) and (228) and when | w |— oo

it can be obtained that [44]
1 1 C

‘(z—w)z_ﬁ‘ |w 3 (229)

It can be checked that the sum ) “;% is convergent (see also [47]). It can be represented in the form

/1 [« )
ZW =) ). | prowy + pawn | 7°< Y 8n(nh) 3, (230)

n=1max(|pi|,|pa|)=n n=1

where £ is the smaller height of the fundamental parallelogram. Thus, since the sum }, % is
n=1

convergent, the sum Z( 0 L — ﬁ) of the infinite number of pole terms in the defining equality (208)

z—w)?
for p(z) is finite.

A Proof that the Weierstrass Function is Doubly-Periodic For the proof of the double-
periodicity of p(z), one has to take its derivative (209), written as p'(z) = —2)% ﬁ, where the
summation includes also the zero-points of the lattice A. Since the derivative is also a doubly-periodic

function, the difference
pl (z+wj) — p/ (z) =0= p(z+ w;) —p(z) = C (C = const) (231)
will be zero - a translation of z with a period w; of the lattice will not change p, (z) because

—322w; + 3zw? + w3
l _ 1 _ 2°w; + 3zw; + w; (232)
B (z-w)? (z —wi)?

and in the sum Y (21—3 — ﬁ) all the terms in the nominator —3z2w; + 3zwi2 + w? will cancel. The

first term —3z%w; and the third term w? will cancel because w; can be both positive and negative, the
second term 3zw? will become zero, because z = mw; + nw; also can be both positive and negative.
(w1, wy can be positive and negative, but the numbers m and n according to the definition (207) are
0<m<1,0<n<1). Settingupz = — % and taking into account that p(z) is an even function, it is
easily obtained [49]

Wi

p(5)—p(=5)=C=0 . (233)
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The function p(z) has at the points of the lattice double poles, no other singular points. According
to a theorem from complex analysis, the sum of the poles and of the zeroes inside a closed contour
(in the case this is the fundamental parallelogram) should be comparable to zero. This means that
inside the fundamental parallelogram there are two zeroes 1 and v with a sum, comparable to zero by
the module of the lattice, i.e. u + v = 0 (modA) [44]. For every constant C the poles of the function
p(z) — C coincide with the poles of p(z). Consequently, there are only two points p(u) = p(v) = C,
for which u + v = 0 (modA). At the points, for which u = —u (modA) and these two points coincide,
the function p(u) — C takes twice the value z = 1 and the derivative pl (z) is zero. Then inside the
fundamental parallelogram there are four points, for which the equality u = —u (modA) is fulfilled
- the pole zp = 0 of the function p(z), the other two points z; = %! and z, = “? are zeroes of the
derivative p, (z). Because of the equality (217) [44]

, 2
(0'(2))" = 4(o(z) = e)(p(z) — e2) (p(2) —e3)
this means that the roots ey, e5, e3 are

er = (D) = plz1), e2 = (L) = p(z2) | es = p( %) = p(z2) (239

A Differential Equation for the Weierstrass Function as a Consequence of the Group-Theoretical Law
for Summing up Points on the Cubic Curve

Since the group law for summing up points on the cubic curve and the resulting differential
equation will be applied further for finding another formulaes for the Weierstrass invariants g, and g3
in (270), we shall review briefly the derivation of this equation, given in [44].

The third root e in (234) follows from the property (218) e; + e, +e3 = 0 (modA) of the
cubic equation andthe fact that the Weierstrass function is an even function, which means that
es = p(— W)
quence from the following well-known theorem in complex analysis, according to which the sum

= p(%) The property (218) is not only an algebraic one, but also a conse-

of the residues for the singular points (situated inside the fundamental parallelogram) of an elliptic
function is equal to zero. This can be proved by taking the residues for the function g(z)

) resg(z) = ﬁ/g(z)dz , (235)
n all

where IT denotes the fundamental parallelogram, dIT is the boundary contour and the function g(z) is

taken in the form g(z) = % Also, if a; are zeroes and poles of an elliptic function and r; are their
orders (positive for the zeroes and negative for the poles), then it can easily be proved that

Yori=0,Y raj=0 . (236)

The three roots e1, ey, e3 mean that if a straight line y = fx + & (f, h are coefficients) intersects the cubic
curve y? = 4x3 — gox — g3, then from the cubic equation

(fx+h)? =42 —gox—g3 , (237)
also from the Wiets formulae for the roots and from the equalities (234) for the three values of the
Weierstrass function at the points z = z1, z = z; and z = z3, it follows [44]

2

p(z1) +p(z2) +p(z1 +22) = fz . (238)

d0i:10.20944/preprints202501.0333.v1
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Since x = p(z) and y = p'(z) are uniformization functions for the cubic curve and also for the straight
line y = fx + h, let us write it in terms of the Weierstrass function

p(z1) = fo(z1) +h , p(z2) = fo(z) + 1 . (239)

Expressing from here the coefficient f as

_p(z1) —p(22)
f = @) o) (240)

and substituting into the cubic equation (237), the following differential equation is obtained, which is
a consequence from the group-theoretic law for summing up points on a cubic curve

’ ’ 2
p(z1+22) = p(z1) +p(22) +1<W> : (241)

Closely related with the group theoretical law on elliptic curves is the problem about rational points
on elliptic curves. Both topics are extensively discussed in the monographs [44], [50] and [51].

10.9. Uniformization of Fourth-Degree Algebraic Equations and Application to the Theory of Elliptic Integrals.
Another Representation of an Integral in the Legendre Form as an Integral in the Weierstrass Form

The derivation of the second representation of the elliptic integral in the Weierstrass form is based
on the following theorem, proved in the monograph by Whittaker and Watson [60].

Theorem 9. Let

dy (242)

1) = /
Vaoy* + 4ayy3 + 6ayy? + dazy + ay

is a zero-order elliptic integral with the fourth-degree polynomial under the square root in the denominator
Y = f(y) = aoy* + 4ary® + 6ayy* +4dazy +ay , f(yo) =0 . (243)
Then after the variable changes

1 1
oc—5A —5A

1 = 2772 , 1 = ST 2% (244)

t—vo As Y—Yo Az

the integral can be rewritten as

1) (x) = / ) a0 , (245)
VA ARl T
where the Weierstrass invariants g, and g, can be exactly calculated as
T, =3A3 —4A1A; ; 33 =2A1A2A5 — A} — ApA} (246)
and Ao, A1, Ay, Az are the introduced notations for the polynomial expressions
Av=ay , Ay =aoyo+m (247)

Ay = agy% +2myo+ay , Az = aoyg + 3a1y% +3axyo +az . (248)
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It can easily be verified that if the expressions (247) and (248) for Ay, A1, Ay, A3 are used, then the
invariant g, in (246) can be calculated as

S, = apay — 4ayaz + 3a% . (249)

Later in the other formulation of the theorem in the next paragraph this formulae will be used, but it
will be taken from the theorem in the monograph [60]. Note that under the changes in the coefficients

4a1 - a1, 6ay —ay , 4az —az , a4 —>ay (250)

in the fourth-degree polynomial (243) the invariant g, changes as

2

_ ajaz  a;
= agay — -2 4 -2 251
8y = apay 1 + B (251)

Technically, the calculation of the invariant g, is more difficult.

10.9.1. Four-Dimensional Uniformization of the (Zero-Order) Elliptic Integral in the Legendre Form
and its Representation as an Integral in the Weierstrass Form

First we shall clarify that the application of the above formulaes (244) - (248) to the elliptic integral
(242) with a polynomial of the fourth degree in the square root and transforming it to the elliptic integral
183) (x) (245) will be called a "four-dimensional uniformization”. If the fourth-degree polynomial (243)

Y=f(y) = a0y4 +4a1y3 + 6a2y2 +4azy+as , f(yo) =0 .

is represented in a parametrizable form by functions y and Y, expressed in a complicated way by
functions, depending on the Weierstrass function p(z) and its derivative p'(z), then this will be
called "an uniformization of the fourth-degree polynomial (243) with the uniformization functions
v =v(y0,20(2),0(z)) and Y = Y(yo,2,0(2),0 (2)). Further these uniformization functions will be
shown.

In the concrete case for the polynomial in the Legendre form

f)=0-v¥)A-¢*) =1- 1+ +v* , (252)

(12) (12)

one can compute g, ' and §31'2 for the roots of the polynomial f(y) (243) y1» = +£1and y34 = :I:%
and also for the coefficients ag, a1, a3, a3, a4, taking into account the identity of the polynomials (243)

and (252) .
a05a15a350,a25—6(1+q2),a451. (253)

The two pairs of coefficient functions gél’z) and ggl'z), calculated according to the formulaes (246) -

(248) and depending on functions of the modulus parameter g are

1
B =+ 142 >0 (254)
6 4 2
L0249 4 5 1., 13
8 T4 6 12 6 [5”7 1} (255)

15\ , 1
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Similar expressions for §£3’4) and §§3’4) can also be written, but they will not be given here. Here the

important fact, related to the theory of elliptic functions is that if ggl’z), gél’z) or §§3’4), §§3’4) are known,
then from the theorem in the monograph [48] it will follow that the Weierstrass function p(z;g,,33) is

uniquely determined.

10.9.2. Another Formulation of the Theorem for the Uniformization of Algebraic Equations of the
Fourth-Order and Application to the Theory of Elliptic Integrals

Theorem 10. If the Weierstrass elliptic function is defined as o0(z; §2,§3), then the two variables

f ’(yo) (257)

1
y=yo+y :
055,80 — A f )]

_%; f(y0)e(2:3,,83) i (258)
{p(z;§2,§3) - ﬁf(yo)}

define an unique parametrization of the 4D algebraic curve (243)

Y=f(y) = a0y4 +4a1y3 + 6a2y2 +4asy+as , f(yo) =0 .

Consequently, the method for "four-dimensional uniformization" can be considered to be the
analogue of the known "three-dimensional uniformization", given by (210).

In the above formulaes the point yg is a root of the quartic polynomial (243), but this requirement
can be relaxed and yy = a can be an arbitrary constant. The polynomial f(y) is supposed not to
have multiple roots. Then the uniformization function y can be represented in the form, given in the
monograph [60] (the formulaes are shown as a part of two problems, after the formulation of the
theorem for the two uniformization functions (257) and (258)

Fl (yOIZ)
ot , 259
Yy Yo FZ(yO/Z) ( )

where F (o, z) and F,(yo, z) are the expressions

NI—

Filo,2) = [F0) (58, 8) + 5 f 00102782, 85)

) 3
~5if 0+ 5 fon S Iy, (260)

2
Fa(y0,2) = 2|0(582.8) — 55/ (0)| — 3£ 00)F" wo) - (261)

If again y is supposed to be a root of the algebraic equation f(y) = 0 and the Weierstrass function
p(2;3,,83) is known, then every other value of the polynomial f(y) can be found by means of the
following concise formulae ([60], also formulated as a separate problem)

1 f(y0)p(2:32,33)
FlE = - - e
/ 4[(’(2}?2/?3) - 21*4f(y0)}

The formulaes (260), (261) and (262) will not be used further in this paper, but probably the interested
reader can find some application of these expressions.
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10.9.3. Second Formulation of the Theorem for Four-Dimensional Uniformization

This theorem is also exposed in the monograph by E.T. Whittaker and G. N.Watson [60]. We shall
review the corresponding theorem by making a slight modification in the fourth-degree polynomial
(243)- the numbers 4, 6 and 4 in the coefficients are removed.

Theorem 11. If f(s) is a fourth-order polynomial

f(y) = aoy* + a1y® + azy® + azy + a4 (263)

and the variable transformation z = f \/7 is performed in the 4D elliptic integral

dy , (264)

1) = /
0 \/aoy4 + my® + ay? + azy + ag

then the Weierstrass invariants g, and g, in the integral (245) I f m are uniquely
calculated as 1
s _ _ 2
82 = fos — ;0143 + 5 12 , (265)
_ 1 g 1
33 = 8a0a2a4 + T —a1a0a3 — & 16 — (agaz + a1a4) . (266)

One may note that in this formulation of the theorem, the Weierstrass invariants g, and g5 do not
depend on any root y of the polynomial (263).

10.9.4. Four-Dimensional Uniformization of the Elliptic Integral in the Legendre Form and its

Representation in the Weierstrass Form - Another Calculation by Using the Second Formulation of the
Theorem

Let us take as an example, which will be used further, the polynomial

f)=0-v¥HA-gy?) =1- 1+ +v* . (267)

The two Weierstrass invariants are calculated to be

1
H=0+50+7)? >0, (268)

_ 1 1+¢°

g3:_6‘12(1+42)+% : (269)

Clearly, the result for g, in inequality (268) coincides with the result for gél’ ) = =P+ % (1 +4%)% >

0 in (254), but formulae (269) for g, is quite different from formulaes (255) and (256) for gé ?) The

same refers also to the formulae for §§3’4), not presented here.

Important consequences: 1. For this case there is only one pair of Weierstrass invariants g, and g,
instead of the two pairs gé ), ggl 2 and §§3’4), §é3’4) for the previous case, considered in the preceding
section 10.9.

2. The expression for g, (268) coincides with the expression for 37&1’2) in (254), but expression g5 in

(269) is different from expression (255) for ggl'z). It is not clear whether this will be so for the case of an
elliptic integral with an arbitrary polynomial in the denominator.
3. The two invariants g, and g, are symmetric with respect to the interchanges ap = a4 and also

a1 = a3. The polynomial f(y) is also invariant with respect to these changes.
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10.10. Comparison of Elliptic Integrals in Different Variables and with Different Weierstrass Invariants

In this section the method for calculating the Weierstrass invariants g, and g3 will be presented,
which is based on the combination of two approaches. In the first approach (see section "Transforming
an Elliptic Integral in the Legendre Form into an Elliptic Integral in the Weierstrass Form") the
initial integral f(()q) (y) was brought to the Weierstrass form (174) (multiplied by the conformal factor

_ [ (gi-r+1)
va = 82 " (29*—5¢2+2)
integral acquires the form (174). We shall call this representation "equation A".

) by means of the transformation (175) x = ﬁ + b, as a result of which the

The second approach is based on the method of "four-dimensional uniformization", as a result of

. . . . (3) oo do o .
which the integral is brought to the second representation (245) I;™ (x) = [ Vi s equation
B". As a result of the two representations, the following two equalities can be written

79 () = dy _ dx
W=/ ~—va [ 70)
’ V=) (1 - g3?) 4% —gox — g

(271)

_/ do
\/40° — 3,0 — 33

Now we shall use the following theorem, proved in the monograph by Hancock [61] in order to
transform the integral (270).

Theorem 12. The elliptic integral in the Weierstrass representation (174) (equation (A) in (270) in terms of the

”

x"-variable) can be written in terms of the variable o as

/ dx _ / do 272)
VAXS — gox — g3 V403 — g0 — g3
after performing the variable transformation
X =%+ (x1 — x0)(x2 — %) (273)
g —Xo
where x(, x1 and x; are the roots of the cubic polynomial 4x3 — gox —g3=0.
In the original formulation of the theorem in [61] (page 29) the transformation t = e +

dt
t—e1)(t—ep)(t—e3)
in front of the right term in Eq. (272), which is important and can easily be confirmed by a direct

(ex—eq)(e3—e1)
s—eq

has been applied to the integral [ 7 . Note however the minus sign

calculation. Applying again the above theorem with respect to equation (B) in (271) and also Eq. (245),
the equality (272) can be written as

[ - —\31[ / “ , (274)
407 =820 =8 ERRVE TR ST
where the variable transformation o = 3%/577 has been performed and the notations
~ = 2
D =g0% ,83=g34 (275)
are introduced. From equation (A) (272) and equation (B) (274) (combined with (245), we obtain
/ do -1 / o (276)
Va3 —go—g3  Val \J4o3 — G0 — 33

Note the important peculiarity of eq. (276): the Weierstrass invariants in the left-hand side of (276) are
g2, 83, while in the right-hand side they are g, = gza% , 83 = g3
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10.10.1. Algebraic Roots of the Cubic Equations and Comparison of the Weierstrass Invariants - the
Case of Positive Discriminant

From the Cardano formulae, we have for the roots of the cubic polynomial 40> — g0 — g3 = 0
(i = 1,2,3) the following formulae (see the monographs [53] and [54])

2
+ilg3_1 8 _ 1.5 277)

This is only the first root of the cubic equation 40® — g, — g3 = 0. Further we shall investigate the

case of a positive discriminant A = é + g—; > 0 for the cubic equation x3 + px + g = 0 [53]. For the
given cubic equation 40° — g0 — g3 = 0 with the first root (277), the discriminant is

A8 a8 1

1
3 21 3
1 274 1 1882”0 T8> % (278)

Let us assume that the roots of this polynomial are &1, 81,1 and the roots of the polynomial

403 — 220 — g = 0 are ay, By, 72. Then the other two roots B1,y1 can be found if the formulae for the
s.c. n—th root of the number 1 is taken into account This simple formulae is

n 2 L. 2
\ﬁ:%:cos%—i—lsm% ) (279)

For n = 3 and by means of the formulae

2 2 1w
\Sﬁ:%:cos?n—i-isin?n:—cos60+isin60:—§+§ , (280)
the roots 1, y1 can be expressed as
1 /3
B1 = Are+ Bie® = Ay (—= +l\£)
2 2
1 V3, (A1+B) V3
+Bl(7§717) == 7# +17(A17B1)/ (281)
1 /3
Y1 = A1€2 + Bie = Al(_* - l\L)
2 2
1 V3 A1 +B /3

From the denominators of the two integrals in (276) we should have the equality of two cubic poly-
nomials under a square root, the first expression for the polynomial obtained from the square of the
second cubic polynomial, multiplied by +/a

\/403 — g0 — g3 = Vay /403 — 50— 35 . (283)

This expression can be written in the form

(0 —a1) (0 = B1) (0 —m) = (Va)* (e — a2) (0 — B2) (0 — 72)

= (a%cr—a%ocz)(a%cr—a%ﬁz)(aéa—a%'yz) . (284)
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The first root a9 ay of the cubic equation in the right-hand side of (284), analogously to the Cardano
formulae (277) for the previous equation, can be expressed as

2 3093 1 /82 1
ﬂ9lX2:A2+BZI\Ig83+4 %_mg%

NG 181
+\l 8 4\l 4 274% (285)

2
9

From here, after multiplication of the right-hand side of (285) with a~9, only the root a, can be

expressed as

2 o3 7;(@73 1 ,iggiifl&%
wy =a 9(A2+Bz)—J“ “°g +4\/a 4 274" &
3 Q- 1 32 1 ~
+\la227%_4\/a217%43_27. TIE 250

Now it is important to note that a; is not another root of the cubic equation (284)

0=(0—a1)(o—pB1)(o—m) = (Va)(c —a2) (0 — B2) (0 —72)

If one assumes that «; is another root (different from the roots a1, B1, 1), then this would mean that
the polynomial in the left-hand side of (284) should be of the fourth degree, which evidently will be a
contradiction. Consequently, the root a; should coincide with one of the roots a1, 81, v1. Let us first
assume that ay = 7. From the comparison of the corresponding expressions under the cubic and
square roots of (277) and (286) it follows that the equality is fulfilled when the following relations
between the Weierstrass invariants g», g3 and g, g3 are fulfilled

G=a TG, G=a TG . (287)

The last relation can be rewritten, expressing the dependance of g, 33 on ¢, ¢3

~ 1 1

PB=avg3 , H=asg . (288)

It can be noted that these relations are different from the ones, obtained in a previous paper [21]
B=08 . H=-03 . (289)

In fact, the correct relations are (287) and (288) (and not (289), which are wrong), because they are
obtained from the relation for the roots (284). This relation takes into account the multiplication
both of the roots and the variables in (284) with the conformal factor a% and not with (00,01,02) =
va(0p, 01,07), as this is applied in the paper [21].

10.10.2. Finding the Relation Between the Other Two Roots (B2, 72) and (B1,v1) for the Case When
ay = i — the Case of Positive Discriminant

The other two roots (82,72) of the second equation (283) 46> — g0 — g3 = 0 can be written
similarly to the expressions (281) and (282) for ;1 and 71, but with indices ”2”

(A2+By) V3

A3
Bo = Aze + Bye® = — 7 Tim (A =By, (290)
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Ar + B V3
Y2 = A2€2 + Bzé". = —% - 1\7[(142 - Bz) . (291)
Taking into account that a1 = ay and also the equality (286), it can be obtained
Ay +By=ad (A +By) = Ay — By =a%(A; — By) . (292)

If substituted in the formulaes (290) and (291) for B, and 7», the following relations are found between
the roots (B2, 72) and (B1,71) ; )
Ba=a’Br , m=a’1, (293)

where (B1,71) are the complex roots, given by the formulaes (281) and (282).

10.10.3. Expressing the Ratio of the Weierstrass Invariants g and g3 as a Rational Function of
Higher-Power Polynomials, Depending on the Modulus Parameter g of the Elliptic Integral in the
Legendre Form- the Case of Positive Discriminant

Finding the relation between the Weierstrass invariants g», g3 and g2, g3 in (287) and (288) is rather
insufficient and does not give any valuable information because of the following two reasons:
A. The variable 7 is not just a parameter, but represents a complicated function, depending on

the ratio g—i and on the rational function K(g) and is determined in (176) as a = %K (q), where (178)
4_ 2
_ q—q°+1
K(q) = 55273 -
B. The invariants g, g3 do not contain any useful information - they appeared after the variable
change (275)

2
3

=803 ,83 =830,

when the equality of the two integrals (276)

do 1 do
/\/40’3—g20’—g3_%/\/403—§20—§3 .
was obtained. Although we found the relation between the roots of the polynomials in both sides
of (276), it is more important to find the dependance of the invariants g5, g3 on the invariants g,, g5,
expressed through polynomials of the modulus g and calculated in the process of the four-dimensional
uniformization, presented in the previous sections.
That is why, now we shall combine the transformations (287) and (275). We obtain

_1 -1

g3=a 217§3 =a 27§3g = g% gS , (294)
Q= (a_%)%g\z = a_%gzg% = g,a81 . (295)

Taking into account (176) for a = %K(q) with (178) for K(gq) = qzljijl and substituting in the above

= 24 54742
equalities, it follows that
26
_ 2 z
n=moka)¥(2)" (296)
82
%
_ 33
o= HOK@)F(2)" o97)
82
Dividing the above two equalities, it can be obtained
33 g [263 53] 33 [%6_%]
8 _ &3 gk (g))lF3 - # () . (298)
@ 82( (@) =

After some transformations the ratio g—z can be expressed as a function of powers of the ratio % (which
is a rational function of polynomials of the modulus parameter g- see (173) and (255)) and powers
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of (9K(gq)), which is also a rational function of higher-order polynomials in the nominator and in the
denominator according to (178)

_ o8
83 _ (83)56 oK () B (299)
D= (2) ok
This is an important formulae, enabling to express g3 as a linear function of g, and a complicated
function N(q)
81
S\ 8 "
n-gN@ N (2) oxg)F 300
2

In such a way, substituting the above expression in formulae (277) for the (real-valued) first root
= A + By of the cubic polynomial 40° — gy0 — g3 = 0, one can obtain

1./~
w = A1+ B = Y| F(g) + VA

+9/F( f [Al + Bl] ) (301)

where F(g) and A (obtained from the discriminant formulae (278) A = % - % > 0) denote the
following functions

1/ % 51
F) = 5(2) " ok = gne) (302
L 1(%)\® z 1
Bim g (2) ok - e (03)

In (301) the following new notations were introduced

= {/E( 1f F(g) — VA . (304)

Since the "modified" discriminant A (303) is linearly dependant on the Weierstrass invariant gy, it is

evident that g, can be found if the ratio % is known. This will be used in the next sections.
1

10.10.4. A Simple Proof for the Positivity of the Weierstrass invariants g, for the One Pair of
Weierstrass Invariants g, (268) and g5 (269)

From (303) the condition for a non-zero discriminant can be written as

81
0, 28
o2 27(£) okan® . (305)
82

Now we shall prove that this expression is different from zero and also is positive. The nominator

4
of the expression for (178) K(q) = % and also the expression for g5 (269)

B 1 1+ 2\3
g3=*5q2(1+q2)+7( 63‘7)

are different from zero. For the nominator of K(¢) the positivity is easily established, because it
can be represented in the form

P —P+1=¢"-2¢+1=(*-1)>+4*>0, (306)

which evidently is greater than zero.
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Consequently, whether g, will be positive depends on the ratio % The invariant g, (268)
Ga= (1P >0
2 12
evidently is positive.
Let us check the sign of expression (269) for g5, which can be rewritten as
2
_ +1 3.17
5= & gt —2= 7+ 1) (307)
(@[, 3172 3172

This expression will be positive when the inequalities

317 V/6.172 -4
6]2>T+f >0 , (309)

and also
> 317 V6172 —-4
G- > - ——— >0
2 2
are fulfilled. The first case (309) should be disregarded, because it means that 4 > 6.804, which is
impossible because g should be in the range 0 < g < 1.
The second expression (310) is positive when g > 2.168, which is also impossible. Consequently,

(310)

the expression in the square brackets in (308) cannot be positive when g > 6.804 and q > 2.168.
However, when g < 6.804 and g < 2.168 (always fulfilled since 0 < g < 1), the expression is
positive, because

2 2

. 2 ; 2 _
<q2 317 m) <q2_ 3-217+\/6-1;74> -0 (311)

both expressions in the round brackets are negative and (311) is with a plus sign.
Therefore, we proved that for all values of g the invariant g, (305) is positive and from the
assumption for the positivity of the discriminant (278)

2
8 1 3 > 1 3
A:7—7 PR
4 10882>0 :>g3>2782

3
it follows also that | g3 |> 3\1—@ | g3 |-

10.10.5. The Possibility for a positive and Real Invariant g», Complex Invariant g3 and a Negative
Discriminant- A Theorem in [49]

Formally, it may seem that if g3 is negative but the condition for the moduli is fulfilled, then the
discriminant A will be positive. In fact, here we may have the case, when g, is positive, but g3 can
be even complex. This problem is not investigated in the mathematical literature, but it is important
that the possibility for g3 to be complex does not contradict a theorem in problem 12, paragraph 6 of
chapter 1 in the monograph by Koblitz [49]:

Theorem 13. The roots ey, es, e3 of the polynomial 4x3 — gox — g3 = 0 are all real one if and only if the
invariants g and g3 are all real ones and the discriminant A = g3 — 273 > 0 is positive.

In this paper, we are not investigating the case when all the roots of the polynomial 4x> — gx —
g3 = 0 are real, we deal with the case when only the first root a1 is a real one and the other two roots
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B1 and 7y are imaginary. Consequently, it is not obligatory that the invariants g, and g3 should be real
ones. We obtained that the invariant g, is positive, but let us remember that for the invariant g3 we
found the formulae (300)

83 =&N(q) , N(q):= (g?’)e(%(q))%?g

We already proved that the ratio % is positive and real, also we proved that the nominator of the

4_ 2
function (178) K(q) = % is positive. The denominator can be decomposed as

2q4—5q2+2=2[(q2—2) (f—é)] . (312)

Now if one assumes that this expression is positive,then this is possible only when the following
inequalities are simultaneously fulfilled

1
g<V2m~141 ,g< 5~ 0.707106 . (313)

The other two inequalities with the positive sign should be discarded because 0 < g < 1. But if the
inequalities (313) are fulfilled and K(gq), N(g) and g3 are positive, then from the real-valuedness of ¢,
and g, and also the positivity and real-valuedness of the discriminant A = gg — 27g§ > 0 from the
theorem in [49] it should follow that the roots e, e, e3 of the polynomial 4x3 — g2x — g3 = 0 should all
be real. But this will be in contradiction to the case, investigated in this paper of one real root and two
imaginary roots.

Consequently, an important conclusion can be made that there can be two cases:

1-st case. Positive invariant g, imaginary g3 (or both imaginary invariants g, and g3) and positive
discriminant A = g3 — 27¢3 > 0- then not all the roots should be real ones (the presently investigated
case).

2-nd case. Real roots a1, B1, Y1 (the case not investigated in this paper).Then the invariants g
and g3 should be real and the discriminant A should be negative. From the point of view of practical
applications for the inter-satellite communications, it is evident that the case of a negative discriminant
and modulus parameter g < % ~ 0.707106 (remember that for a GPS orbit e ~ 0.01 and q = %—12 ),
such a case seems to be realistic and should be investigated.

Note that in the strict mathematical sense, the theorem in the monograph by Koblitz [49] should
be reformulated and proved.

The case of a negative discriminant for a general cubic equation x> + px + § = 0 is investigated
in details in the monograph by Obreshkoff [53] and the roots have been expressed by the concise

2
Xo12 = 2,/—§cos 9”37](” . k=0,1,2 (314)

and the angular variable ¢ is given by the formulae

formulae

tgp = ——— . (315)

We have not investigated the case of the other pair of invariants (254) ggl’z) (identical with the

invariant (268)) and (256) gél’z), when the second invariant is given by a polynomial of the sixth degree
and depending on its roots, it can be either positive or negative.
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10.11. Finding the Weierstrass Function p(z) and the Weierstrass invariant g, From the Known Roots of the
Cubic Equation and the Group-Theoretical Law for Summing up of Points on the Cubic Curve

The main goal of every investigation, related to the cubic algebraic equation in its parametrizable
form is to find the expression for the Weierstrass function. p(z) by known Weierstrass invariants g,
and g3. Since we started from a Weierstrass integral, derived from an elliptic integral in the Legendre
form, previously we found how the invariant g3 can be expressed through the other invariant g, (300)

g3 =%N(q) , N(q):= (g‘"’>(91<(q))56'-

Now it remains to find the other Weierstrass invariant g» and the Weierstrass function itself. This
shall be performed by using the found roots &1, 81, ¥1 for the case of a positive discriminant (278)

A= %3 — 54185 > 0, the relation (234) between these roots with the values of the Weierstrass function

at the points on the complex plane w1y, wy, w3 = wy + w» (for convenience we omit the factor J 5 in the
argument of the Weierstrass function p(z))

er=p(w) =a1, ea=p(wz) =P1, e3=p(wr +w2) =71 . (316)

and also the group-theoretical law for summation of the points w1, wy, w3 = wy + wy on the elliptic
curve, expressed analytically by the formulae (241)

/ ’ 2

p(z1)

Taking into account (316), let us take the ratio 2 o) of the Weierstrass function at the two different

values z;1 = wq and z; = w; and also the ratio pg 1; at the two values z; = wj and z3 = w3 = Wy + Wy

plz) _m p(z1) _ a
p(z2)  p1 " p(z) m

(317)

where the root a1 = A; + Bj is given by formulae (277) and the complex roots B and -y; are given by
formulaes (281) and (282) respectively. Since 1 is a complex root, the Weierstrass function p(zp) = p1
is also a complex function and can be represented as p(zz) = p1(z2) + i20(z2), where p1(z;) is the real
part of p(z2) and p»(z) is the imaginary part.

10.11.1. The First Equation

The first equation in (317) can be written as

o(z1) _ A1+ By _ (318)
p1(z2) +ipa(z2)  —(AEB) 4 584, — By)
Denoting N
me=21"8 (319)
A1+ By
the above equation can be represented as
z 3 )
7P.(21) —p1(z2) + l\LP (z1)m —ip2(22) =0 . (320)

Setting up equal to zero the real and imaginary part, one can obtain

puze) = =22 o) = Lo e 21)

d0i:10.20944/preprints202501.0333.v1
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10.11.2. The Second Equation

Let us now make use of the second equation in (317), which can be written as

p(z1) A1+ By
= ' . (322)
P-(Z3) 7(1412481)—1'?(141*31)

Using the group-theoretical law for summing up of points, represented by formulae (241) for expressing
p.(z3) = p.(z1 + z), the above equation can be written as

= (323)

Using the two equalities in (321), the equation (323) can be represented as Q1 + iQ» = 0, where the
real part Q7 and the complex part Q, are

Q1= =3 (2) (5 +3) = 5 (¢ (21)2(1 - 3?)

3 om dq 3 ' om dq
+Zp(zl)$.$ + Ep(zl)p (zl)ma—q.E =0 , (324)
om 9q] _
dq 9z |

Since the equation Q; +iQ, = 0 is fulfilled when the real and imaginary part are equal to zero, we

Q= (z)m(? 1)+ 30 (z1) o () + p(21) (325)

have to set up Q1 = 0 and Qo = 0. Also, we have assumed that the modulus parameter g of the elliptic

integral in the Legendre form might depend on the complex coordinate z, on which by definition

depends the Weierstrass function p(z). However, in view of the complexity of the equations, for now
. . .p 9 _

we shall consider the simplified case 5; = 0.

10.11.3. First Way for Representation of m2 and of (p'(z1))?

Further, from the second equation (325) for Q,, one may express the ratio (319) m? := (2:1121 )
1 1

as

2 PP(z) = 3o (21))?

T 520

Substituting m2 from (326) in the first equation (324) for Q1 and denoting (p'(z1))? := X, one obtains
the following quadratic equation with respect to the variable X

9X? —18.80%(z1)X +720%(z1) = 0 . (327)

It is known that the roots of the simple quadratic equation x2 + px + g = 0 are found from the formulae
[53]
2
x=-PiP (328)

Consequently, the roots of the quadratic equation (327) are

(0 (z1))% := X = 18.4p%(z1) & \'/(18'8)1"6(21) —72 . (329)
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This relation can be substituted in formulae (326) for m? and for the moment investigating only the
case of a positive sign in front of the square root, m? can be written as

m* = —35—3,[122 — p6(221) ) (330)

Respectively, the solution (329) for (o' (z1))? can be represented as

(0 (20))? = 720 (21) + 6% (z1)y 122 — 2

_ 331
5z (33D

The last two relations are the first way for representing m? and (o (z1))2. Now it shall be proved that
there is a second way for representing these expressions.

10.11.4. Second Way for Representation of m2 and of (p'(z;))?

The second way is based on the standard formulae for the parametrizable form of a cubic curve

(0'(z1))? = 40°(21) — gop(z1) — g5 - (332)

Substituting into (326) for m?, we obtain the second representation

1 1
mr=—p48 _ - 3 . 333
2 ) T2 P (333)

Next we shall use also expression (300) for g3 through g»

81
&\* 2.
=N N = (£) ek
Taking this equality into account and also that according to (302) N(g) = 8F(g), the second representa-
tion (333) for m? can be written also in the form

, P+ [+ 4R ()| -
" ) | 3

Setting up equal the two representations (330) and (333) for m?, one can obtain

2

—3403 — 1303 1122 —
34p (Zl) 3p (Zl) 12 P6(Zl)

= Lo(z1) +8F(g) (335)

10.11.5. Another Interpretation of the Equation (335) for the Equality of the Two Representations of m?.
A Theorem from Higher Algebra for Investigating Whether There are Roots of an Algebraic
Polynomial

After some transformations, the above equation can be represented in the form of a sixth-order
algebraic equation with respect to p(z1)

19.122] p°(21) — 34g2p* (21) — 68.4F (q)0° (z1)

g3 [P2(z1) — 4F(q)p(z1) + 16F%(9)| =0 . (336)
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This equation of the 6—th degree is interesting, because it does not always have roots. It will, however,
have roots for certain values of the invariant g,. Thus, the values of p(z;) are interrelated to the values
of g». Itis interesting to investigate the following problem: according to (335), for a given function p(z1)
there should be only one value of g. However, the algebraic equation (336), if solved as a quadratic
equation with respect to ¢» and for a given function p(z;), should have two roots with respect to g7,
which will contradict the unique expression of g» from (335).

Now let us give the formulation of the theorem of Schur from higher algebra, which gives the
possibility to establish whether a polynomial has roots. The formulation of the theorem, originally
published by Schur [55] yet in 1918, is taken from the monograph [53], where many other theorems,
concerning roots of polynomials can be found. The theorem of Schur has been applied in the paper
[18] for establishing whether two different algebraic equations of the fourth degree have roots.

The first of these equations was related to the introduced in [18] physical notion of "space-time
interval", which for a particular case was proved to be positive, negative or even equal to zero. By
means of the Schur theorem, it was proved that the corresponding algebraic equation has roots.

The second equation was related to the notion of "geodesic distance", which is related to the prop-
agation of a light or radio signal in a gravitational field and therefore, should be positive. Respectively,
again by applying the Schur theorem it was proved that the corresponding algebraic equation does
not have roots. The confirmation of the physical definitions has been commented in the paper [19] and
also the review paper [22]. This consistency between the mathematical results and the corresponding
physical definitions give some grounds to believe that the Schurs theorem is a reliable mathematical
tool for investigation also of equation (336).

Theorem 14. ([55]) The necessary and sufficient conditions for the polynomial of n—th degree
f(y) = agy" + a1y + o+ ay_2y* +a,_1y + an (337)

to have roots only in the circle | y | < 1 are the following ones:
1. The fulfillment of the inequality
| ag [>|an| - (338)

2. The roots of the polynomial of (n — 1) degree

fily) = ;[uof(l/) — af*(y)] (339)

should be contained in the circle | y |< 1, where f*(y) is the s.c. "inverse polynomial”, defined as
fy) = ynf(;) = any" +ap 1y A a2yt Fay +ag (340)
In the case of fulfillment of the inverse inequality
lag [<|an| , (341)

the (n — 1) degree polynomial f1(y) (again with the requirement the roots to remain within the circle | y |< 1)
is given by the expression

fily) =anf(y) —aof*(y) - (342)

In the paper [18] the Schur theorem has been generalized for a "chain" of algebraic equations,
when it is applied to a chain of algebraic equations with diminishing degrees. Many other theorems
for investigating when a polynomial has roots or does not have can be found also in the contemporary
monograph [57].
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10.12. Finding the Weierstrass Function p(z1) and the Invariant g,

Equation (335) further will play an important role, since it allows expressing the invariant g, as a
function of the Weierstrass function p(z;). More importantly, it shows that for a given function p(z1),
there is only one value of g;.

Yet, eq. (335) is not sufficient for finding both the Weierstrass invariant g» and the Weierstrass
function p(z1). We need one more equation and for the purpose we will use the defining equality for

m (319) m := 1’%17;?, where gl and B; were previously defined by the formulaes (304)
1 1

A= {[F@) + VR, Br={[Fg) - VA .

Thus it can easily be obtained that % = H and also, with account of (304) that
1
Fg) + WA (1+m)

Flg) -3 (mm?

(343)

where A has been defined by the equality (303)

81
~._1/8\% z 1

Denoting the first term in the above equality as A; := % (3—3)
equality (302)

F) = 5(2) " ox)¥ = gne)

one can obtain the simple equality

B (B (B —
5 =2(2) ok < 16rg) (344)

Consequently, the discriminant A (303) can be represented as

~ ~ 1 1

e Ag — oy — 200) — —
Making use of (343), one can find an expression for VA
Yo 1+m)?—(1—m)’
VA = 4F(q) (1 m)” — (1= m)] (346)

[(1T+m)3 4 (1 —m)3]

Transforming this equality and using (345), one obtains the final formulae for A, from where g, can be
expressed and m? can be expressed by two different ways

1 16F%(q)m?(3 4 m?)?

a1
A =16F() = 578 (1+3m2)2

(347)

In this formulae we substitute m?, expressed in (333) through the Weierstrass invariant ¢, and higher
powers of the Weierstrass function p(z). After some long calculations, the following complicated
expression is obtained

1o 16F2(q)p°(21) Pr(p(21),9)
12782 = 16F(q) + P Palpla)a) (348)
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"non

whereP; (p(z1),9) and P>(p(z1),q) are the expressions (note that everywhere the dot "." means multi-
plication, for example 35.322 = 35 x 322)

Pi(p(z1),9) := —35.32%0%(z1) + 32.3060°(21) 1/ 12206 (21 ) — 2
+(99.9)0%(z1) (122p6 (z1) — 2) +27(1220%(z1) —2)% (349)

Py(p(z1),q) := 104%0%(z1) + (104.18)p°(21)1/120%(21) — 2
+81(120%(z1) —2) . (350)

This equation and also eq. (335)

2

—3403 — 303 122 - =
34p (Zl) 3p (Zl) 12 P6(Zl)

= 2 (0(z1) +8F(q))

can be considered as a system of two equations with respect to g» and p(z1). If from (335) the
Weierstrass invariant g, and is expressed and then substituted into (348), then a complicated equation
is obtained only with respect to p(z1). It is not clear how to find its roots (and also how many are they),
but if p(z1) is found, then g is uniquely expressed from (335).

There is one more possibility, namely- to use the second representation for m? by formulae (334),
which is to be substituted in equation (347) for A. We shall not present here this method, which is more
complicated and will lead to the derivation of a cubic equation with respect to g, which after solving
has to be substituted in the earlier derived algebraic equation (336) of sixth order with respect to p(z1).
However, again a higher-orded algebraic equation has to be solved, so this method is not effective.

11. Discussion

In this paper the propagation time of a signal was analytically calculated by making us of the null
cone equation from the metric element for the near-Earth space. Two different cases were considered,
corresponding to two different parametrizations of the satellite orbit: the first parametrization is in
terms of the eccentric anomaly angle E, which is the dynamical parameter for the case of a plane
elliptic orbit and the second parametrization in terms of all the 6 Kepler parameters (f,,a,e,Q,1,w.)
for the case of space-oriented orbit with only the true anomaly angle f considered to be the dynamical
parameter, associated with the motion of the satellite. The propagation time in the second case is
expressed in more complicated elliptic integrals of the second- and of the fourth- order, but in both
cases, the sum of the O(c~!) and O(c~?) propagation time corrections are real-valued expressions. This
proves the correctness of the theoretical approach of parametrizing the space coordinates x,y or x,y, z
in the null cone equation with the orbital coordinates, known from celestial mechanics. Numerical
calculations for the propagation time for the first case of plane elliptical orbit confirm that during the
propagation time the signal travels much greater distance than the distance travelled by the satellite.
It turned out also that theorems form General Relativity Theory [29] and from differential geometry
[32], [30] confirm the conclusion that various parametrizations of the space coordinates, related to the
orbital motion of the satellite can be used.

It is important to clarify that the calculated propagation time gives the correspondence between
the initial and final values of the dynamical parameter (the eccentric anomaly angle E or the true
anomaly angle f) and the initial Tj,;; and final Tg;, moments of propagation of the signal. However,
in such a theoretical set-up Tj,; and Tf;,, are not related to any real processes of transmission of
signals between satellites on one and the same orbit or on different space-oriented orbits. In such
a modified setting, the initial position of the signal-emitting satellite and the final position of the
signal-receiving satellite have to be given and they will correspond to the initial T;,;; and final Ty;y,
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moments of propagation of the signal. They have to be calculated in view of the fact that the trajectory
of the signal is curved due to the action of the gravitational field. Due to this, the propagation time
will not be the (presumed to be known at each moment of time) Euclidean distance between the
satellites, divided by the velocity of light. The nontrivial moment in such a problem is that both
satellites are moving (at the moments of emission and receiving of the signal and also during the time
of propagation of the signal) so that the moments of emission and reception of the signal (they are
denoted by T7 and T3) should incorporate these important peculiarities. In other words, the curvature
of the signal trajectory will have to be such, that at a certain space point of the second satellite the
signal will be intercepted, provided also that the signal is emitted at the proper position by the first
(signal emitting) satellite.

In the papers [18], [19] and the review paper [22] it was suggested that T; and T, should be
related to one another in the framework of a more general model, called "the two intersecting null
cones model". In the Introduction of this paper a short summary is given of this formalism, based
on algebraic geometry and elliptic functions and integrals. However, this paper concentrates only on
the methods for calculation of the propagation time (related to elliptic functions and integrals) and
not on the two null cones formalism. This is the first step for creating the theoretical formalism in a
more general setting with the purpose to establish whether the introduced in the papers [18] and [19]
physical notions of "space-time distance", "condition for inter-satellite communications" and "geodesic
distance" will be valid also for the more general case of space-oriented orbits.

The last section, named "New Approach for Analytical Calculation of Elliptic Integrals. Analytic
Relation Between Elliptic Integrals in the Weierstrass and in the Legendre Form" is dedicated to
finding new solutions of elliptic integrals in the Legendre form by means of transforming them to
elliptic integrals in the Weierstrass form, which after inversion have as solution the Weierstrass elliptic
function. The necessity to study (in the pure mathematical aspect) such integrals is dictated not only
by their important application in GPS inter-satellite communications with account also of the General
Relativity effects, but also by the wide application of elliptic integrals in various problems of mechanics,
cosmology, black hole physic,integrable systems and etc. A short review of these different applications
has been given in the paper [21].

In this paper (as well in [21]) the representation of the integral in two different ways is exposed,
one of them is based on the transformation x = % + b (a, b are proved to be functions of the modulus
parameter g of the integral in the Legendre form), and the second method is related to the s.c. "four-
dimensional uniformization", exposed in the monograph by Whittaker, Watson. [60]. After comparison
of the Weierstrass invariants in the two representations, the main result is the representation (299) for

_ 81
83_(&) OK(a)) B
e \g) OK@*,

the ratio of the two invariants

where K(g) is the function (178) K(g) = %, 8, and g5 are the Weierstrass invariants, obtained
after the four-dimensional uniformization [60]. This result is not trivial and previously not investigated
in the monographs on elliptic functions. Further it was proved also that the Weierstrass invariant g»
and the Weierstrass function p(z) can be found from a complicated system of two nonlinear equations.

Another interesting result was obtained in this paper, suggested by a theorem in the monograph
by Koblitz [49]. If > is a real number (or a real and positive function) and there are one real root and
two imaginary ones for the cubic polynomial 4x> — gox — g3 (the case investigated in this paper), then
the other invariant g3 should be imaginary and the discriminant A = g3 — 27¢3 should be negative (a
case not investigated in this paper). It should be kept in mind also that the case "negative discriminant
and imaginary g3" does not follow directly from the formulation of the theorem, but rather than from
the "non-fulfillment" of the theorem, which is an unusual moment. No doubt, more strict mathematical
treatment is necessary.

The case of a negative discriminant would correspond to three real roots of the cubic polynomial
(see [53] and [54]) and this case needs a separate investigation. However, the theorem in [49] has a
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very specific and intricate formulation: from it, for example follows that for a positive discriminant
one may have also a case with three real roots of the polynomial (contrary to the standard case in the
algebraic books [53] and [54]), but then the invariants ¢, and g3 should also be real! So the interesting
fact is that the Weierstrass invariants g, and g3 have a purely "algebraic" meaning whether the roots
are only real or one real and two complex. Consequently, the theorem in [49] should be reformulated
for all the possible cases and investigated again.

Transformations of the elliptic integral with a general fourth-order polynomial under the root
in the denominator into an integral in the Legendre form have been studied also in the monograph
[52] (also in [67]), but in [52] transformation to an integral in the Weierstrass form has not been
performed. However, in [67] the inverse transformation from an integral in the Weierstrass form with
the polynomial

Y2 = (x —a)(x = B)(x —7) (351)

to the integral in the Legendre form [67]

dx 2dy
Jamye = , (32)
Y o A=y -3%2)
where the transformation ( ) 5
a—Py
X—0 =" (353)
(1-y?)

has been applied and the modulus of the elliptic integral 7 in the Legendre form was determined by
the formulae p
2 -
=— . 354
7= (354)
An interesting problem for future research is the following: the ratio (299) of the invariants g, and g3
can be used for calculating the roots «, §, y. The resulting expressions will depend on the invariant g,
and can be substituted in the formulae (354) for 2. Then it is interesting to see whether the invariant
g> can be determined in such a way that the calculated 42 modulus according to (354) will coincide
with the initially given g in the integral W
—y7)U=q7y
There are also another problems, related to the implementation of the Schur theorem from higher
algebra. Besides the ratio (299), another ratio

£ — (%) oxig)”

=

: (355)

can be obtained, if assumed that not the roots &1 and «; coincide ( &1 = &), but the roots 1 and »
coincide, i.e. B1 = B> This case also is not considered in this paper, but the investigation should be
performed in the same manner.

Also, an important problem for further investigation is the algebraic treatment of the higher-order
algebraic equation for the discriminant (278) A = % - ﬁ g5 of the cubic polynomial in the Weierstrass
elliptic integral, which in this investigation was assumed to be positive.
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