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Abstract: The Serial Peripheral Interface (SPI) protocol plays a crucial role in wearable and IoT
devices, enabling high-speed communication between microcontrollers and peripherals such as sensors,
displays, and connectivity modules. With the increasing complexity of modern devices and System-
on-Chip (SoC) designs, robust verification methods are essential to ensure functionality and reliability.
This paper utilizes Universal Verification Methodology (UVM) to develop a scalable and reusable
testbench for SPI verification. The process encompasses test planning, simulation, emulation, and
top-level verification to validate scenarios like multi-slave coordination and error handling. The results
demonstrate the critical importance of UVM in ensuring the performance and dependability of SPI in
advanced electronics, contributing to the reliable integration of the protocol in future devices.
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devices; system-on-chip

1. Introduction

The Serial Peripheral Interface (SPI) protocol is a cornerstone of modern electronic systems,
widely used in wearable devices and IoT applications[1] due to its high-speed, full-duplex com-
munication capabilities[2]. Its architecture offers simplicity and flexibility, enabling seamless data
exchange between microcontrollers and peripherals such as sensors, displays, and memory modules.
In wearable gadgets like smartwatches and fitness trackers, SPI facilitates integration with heart rate
sensors, accelerometers, and gyroscopes, allowing real-time data acquisition and GUI interactions[3].
The protocol’s configurability, combined with its ability to support multiple slave devices, makes it
indispensable in IoT applications, including home automation systems[4], where it manages communi-
cation between microcontrollers, environmental sensors, and connectivity modules such as Zigbee or
Wi-Fi[5,6].

As electronic products become increasingly complex, the SPI protocol’s role extends beyond
simple device interconnectivity. It is now integral to highly sophisticated systems on chips (S0Cs)[8]
that power advanced wearable and IoT devices. The SPI protocol is a widely adopted synchronous
communication standard, particularly in embedded systems, wearables, and IoT devices. It offers
several advantages, such as full-duplex communication, a flexible data transfer width (up to 128
bits), and configurable clock edge timing for data transfer, making it well-suited for low to medium
throughput applications[9]. SPI operates at lower speeds than high-bandwidth protocols like HDMI
or DisplayPort[10], which are typically used for tasks requiring high data throughput, such as video
streaming. SPI’s strengths lie in its ability to efficiently handle communication between a master
device and multiple slave devices, making it ideal for simpler systems where high-speed video or
audio transfer is not required. It can interface with storage devices (e.g., flash memory) and sensors,
providing a reliable link for low-bandwidth data exchange. In the context of wearable devices and IoT
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systems, SPI facilitates communication between microcontrollers and peripherals, including sensors,
displays, and wireless modules. While SPI is not suitable for high-throughput video transmission, it
is commonly used for smaller displays in wearables and for transferring data to and from memory
modules that may handle encryption internally. Thus, SPI continues to be a fundamental protocol for
low-power, cost-effective systems in various consumer electronics.[11,12,16]

Universal Verification Methodology (UVM) plays a pivotal role in addressing this challenge,
providing a robust framework for verifying the functionality of SPI-based systems. UVM not only
enhances the confidence in design correctness but also ensures scalability and reusability in verification
environments[7,14]. By adopting UVM, engineers can construct modular testbenches that simulate a
wide range of operational scenarios, effectively uncovering potential issues in SPI communication at
an early stage. This becomes increasingly critical as wearable devices and IoT systems integrate more
sensors, connectivity options, and processing capabilities.

In this study, the functional verification of an SPI protocol is approached through a systematic
design verification process under UVM. The methodology starts with test planning, where scenarios
are outlined to cover all functional aspects, including error handling, multi-slave coordination, and
edge-case performance. These scenarios are then implemented in a UVM testbench[15] and validated
through simulation and emulation stages before progressing to top-level verification. This rigorous
process ensures that the SPI implementation is robust and capable of performing reliably under
real-world conditions.

The importance of this approach lies in its ability to address the increasing complexity of modern
electronic designs. As wearable and IoT devices evolve, the demands on communication protocols
like SPI escalate, necessitating a verification methodology that is both thorough and scalable.[16] By
leveraging UVM, this research demonstrates a structured approach to verifying SPI functionalities,
contributing to the development of reliable and efficient electronic systems.

2. Literature Review
2.1. Universal Verification Methodology on System-on-Chip

The adoption of Universal Verification Methodology (UVM) has become a cornerstone in hard-
ware verification, particularly for modern, complex System-on-Chip (SoC) designs. UVM enables
reusable and scalable verification frameworks, crucial for systems with intricate interactions and
high-performance demands. For instance, the use of UVM in designing FPGA-based task schedulers
optimized for real-time systems illustrates the methodology’s capacity to address latency and pre-
dictability issues in hardware systems[17]. By leveraging hardware-accelerated scheduling algorithms
like Earliest Deadline First (EDF), researchers demonstrated significant reductions in task scheduling
time, achieving better system reliability and resource utilization.

2.2. Coverage of the Verification

Functional verification continues to be a bottleneck in the semiconductor industry, consuming over
60% of the development time for ASIC and SoC designs. Existing UVM-based testbenches streamline
this process by integrating coverage-driven functional verification, as showcased in verification
environments for instruction cache controllers. These frameworks utilize agents, reference models,
and scoreboards to ensure high coverage metrics, including code coverage above 99%[18]. Moreover,
directed and random tests enhance the reliability of the verification process by uncovering edge-case
scenarios. Advanced tools like SystemVerilog Assertions (SVA) have been pivotal in embedding
temporal logic checks into these environments, further improving fault detection capabilities[19,20].

2.3. Verification with Artificial Intelligence

Recent advancements emphasize integrating artificial intelligence (AI) into UVM workflows to
address verification scalability challenges. Al-driven methods, such as Convolutional Neural Net-
works (CNNSs), optimize documentation parsing and test scenario generation, significantly reducing
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human intervention in repetitive tasks like test planning and debugging. For example, Al models
trained on datasets derived from AMBA APB/AXI specifications showed high classification accuracy
( 98%)[21], outperforming traditional approaches like BERT[23-25] and TextConvoNet[26]. These
systems categorize documentation into actionable and redundant segments, enabling faster protocol
understanding and verification efficiency.

2.4. SPI under Wearable and IoT Deuvices

The SPI protocol is a pivotal communication standard widely used in wearable and Internet of
Things (IoT) devices due to its efficiency in handling high-speed, low-latency data transfers. In wear-
able technologies like smartwatches and fitness trackers, SPI enables seamless integration with sensors
such as heart rate monitors, accelerometers, and gyroscopes, allowing real-time data acquisition and
interaction with graphical user interfaces. Its lightweight protocol and configurability are particularly
advantageous in resource-constrained environments, ensuring minimal power consumption and
efficient data handling. Similarly, home automation systems rely on SPI to connect microcontrollers
with environmental sensors, connectivity modules like Zigbee or Wi-Fi, and actuators. SPI's high data
rates and ability to handle multiple slave devices make it an ideal choice for centralized control in
smart home architectures. Furthermore, in applications like smart locks and security cameras, SPI
facilitates rapid and secure memory access for logging and encryption. These versatile applications
underscore SPI’s importance in creating robust, scalable, and responsive systems, solidifying its role in
advancing the IoT and wearable sectors.[5,6]

3. Materials and Methods
3.1. Materials: What Should Be Tested in SPI and Take Care of

The SPI protocol is a highly versatile and efficient synchronous communication standard, well-
suited for testing due to its full-duplex capabilities and support for flexible configurations. Its unique
features, such as variable word lengths up to 128 bits, MSB/LSB-first data transmission, and edge-
selectable data transfer, distinguish it from other protocols like I2C and UART. Unlike these protocols,
SPI operates without addressing overhead, allowing for high-speed, low-latency communication.
Additionally, the support for up to eight slave select lines makes it ideal for multi-device setups in
modern embedded systems.

To test the SPI protocol, a combination of software and hardware resources will be utilized.
This includes the development of a Universal Verification Methodology (UVM)-based testbench to
simulate real-world operational scenarios. The testbench will interact with an SPI master implemented
in Verilog, which will be synthesized and run on FPGA hardware to validate performance under
actual conditions. The specification highlights that testing will involve verification of fundamental
operations, such as full-duplex data transmission and configurable clock edge timing, alongside
advanced configurations like multi-slave setups and variable character lengths.

3.2. Methods: Test Plan

A well-structured test plan is essential for verifying the functionality of the SPI protocol, especially
when integrated into complex designs like wearable and IoT devices. The test plan ensures that all
functional aspects of the protocol based on the Spec of the protocol[22], including communication
integrity, edge cases, and control mechanisms, are systematically validated. Without a rigorous plan, it
becomes challenging to ensure that SPI-based systems meet design specifications, particularly given
the diverse configurations and applications highlighted in the SPI Master Core specification.

3.3. Methods: Designing the Test Plan

The testing process begins with setting up the SPI Master core using the specifications defined
in the attached document. The system’s primary features, such as control registers and slave select
lines, will be configured to match expected operational modes. A suite of targeted test cases will be
executed, starting with basic functional tests, such as verifying the correct initialization and default
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behavior of the SPI core. More advanced scenarios, including multi-bit word transmission (8-128 bits)

and edge-sensitive data transfer tests, will be conducted. Timing analyses will also be performed to

confirm the clock divider’s accuracy under varying frequencies.

Additionally, error conditions, such as simultaneous multiple slave selection and misaligned clock

settings, will be intentionally introduced to evaluate fault tolerance and error reporting capabilities.

Hardware-in-the-loop (HIL) emulation using FPGA will validate the protocol’s behavior under physi-

cal constraints. By progressively increasing test complexity, the process ensures robust verification of

SPI’s design while leveraging its unique characteristics for diverse embedded system applications.

Table 1. Testplan design.

Test Case ID Description Expected Outcome
. .. Reliable communication
No_01 Vallcilast;SI;Iecfiaa:cla;ttgzgirfusss10n between Master and Slave with
& & default parameters
Verify SPI clock divider SPI clock frequency aligns with
No_02 operation across various the expected value for all
divider configurations divider settings
No 03 Check data transfer in Data is sent and received in
0 MSB-first format MSB-first order
No 04 Check data transfer in LSB-first Data is sent and received in
0 format LSB-first order
Confirm full-duplex Both lines successfully
No_05 communication between MOSI transmit and receive data
and MISO simultaneously
Evaluate transmission with Accurate data exchange across
No_06 variable word lengths (8-bit, e &
16-bit, 32-bit, 64-bit) all specified word lengths
Validate control register Control reeisters respond
No_07 operations (e.g., GO_BSY, LSB, & p
IE bits) correctly when set or cleared
A-ssess. transmission Data is correctly transmitted
functionality on rising clock . o
No_08 edges for both MOSI and and received during rising
MISO clock edges
A.ssesg transmission Data is correctly transmitted
functionality on falling clock . . .
No_09 edees for both MOST and and received during falling
g MISO clock edges
Test compatibility with
No_10 extended character lengths up Accurate data transfer across

to 128 bits

character lengths up to 128 bits

* Programmed under the SystemVerilog/UVM.

1.  Test Item Definition: Test items are defined to cover all possible scenarios, from basic data

transmission to advanced functionalities. The provided test items, such as verifying MSB/LSB-

first transmission, edge-based communication, and variable word lengths, ensure that all critical

aspects of the protocol are tested. These test cases align with the SPI Master Core Specification,

which allows flexible configurations like up to 128-bit data transfers, MSB or LSB-first settings,

and edge-specific transmission.
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2. Test Case Prioritization: High-priority cases, such as basic transmission, serve as a foundation for
testing more complex scenarios like variable word lengths and multi-character transmissions.
This incremental approach minimizes the risk of overlooking fundamental issues.

3. Simulation and Emulation: The testing methodology transitions from simulation to emulation
for validating SPI under real-world conditions. Simulations are conducted at the register-transfer
level (RTL) using models like UVM to verify logical functionality, while emulation replicates the
behavior on physical hardware. This dual-layer approach ensures comprehensive coverage and
identifies design flaws early in the process.

4.  Top-Level Verification: Finally, the entire SPI system is tested as part of a fully integrated design
to validate interactions between subsystems. This phase confirms the protocol’s reliability under
operational constraints typical of wearable and IoT environments.

3.4. Example Test Cases and Their Significance
3.4.1. Fundamental Operation: Ensuring That the Core Settings Perform as Expected

This step involves testing the basic functionality of the SPI controller core. The core should be
able to transmit and receive data correctly under typical conditions, with the expected behavior when
initialized. This validation checks whether the SPI controller operates as designed, without any errors
or unexpected behavior, and that the settings such as baud rate, data format, and polarity are correctly
configured and functioning.

3.4.2. Checks the Clock Divider’s Accuracy: SPI and External Peripherals” Synchronization

The clock divider is a crucial component of the SPI system, as it divides the system clock to
generate the SPI clock (SCK), which is used for data transmission. If the clock divider isn’t accurate,
the timing between the SPI controller and the connected peripheral devices could be mismatched. This
can result in communication errors or data corruption. Verifying the clock divider ensures that the
SPI controller generates the correct clock speed that matches the timing requirements of the external
device it is communicating with.

3.4.3. Behavior of Control Registers, Advanced Features

SPI communication often requires control over advanced features such as enabling interrupts
(IE) or selecting specific slave devices (ASS, or Slave Select). The control registers configure the SPI
controller’s operation for such features. Verifying these control registers ensures that:

e  The interrupt functionality behaves as expected (triggering appropriate actions when specific
conditions, like data ready or transmission complete, occur).

e  The slave selection works properly, ensuring that the correct device (in a multi-slave configuration)
is addressed when the SPI bus is used. This step is important for confirming that the more complex,
advanced

e features of the SPI controller are operational and that the device interacts correctly with various
external components or peripherals.

By following this structured methodology and referencing the SPI Master Core Specification, the test
plan ensures robust verification of the SPI protocol, facilitating its reliable integration into sophisticated
applications.

3.5. Importance of Sanity Testing in Verification

Sanity testing is indispensable in complex verification environments like SPI. By validating essen-
tial configurations and operational correctness in a controlled setup, it ensures that subsequent tests
operate on a verified foundation. This reduces debugging time and enhances overall productivity. The
spi_sanity_test serves this purpose by configuring and validating key SPI control registers, checking
for protocol adherence, and confirming the proper functioning of the environment. Each register
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setting and phase in the code plays a crucial role in ensuring reliability and correctness during this
process.

The use of a sanity test in SystemVerilog, particularly within a UVM (Universal Verification
Methodology) framework, is critical in ensuring that the design under test (DUT) and the testbench
environment are configured correctly before moving to more comprehensive testing. A sanity test
validates the basic functionalities and confirms the setup’s correctness. In the context of a Serial
Peripheral Interface (SPI) environment, this ensures that communication protocols, registers, and
initial configurations behave as expected before progressing to more advanced and resource-intensive
tests. The spi_sanity_test class in the code is designed as a foundational test, verifying the correctness
of basic SPI settings and sequences, ensuring subsequent tests have a reliable starting point.

Figure 1. Class spi_sanity_test in UVM, showcasing factory registration, virtual sequence handle declaration,
constructor, register configuration in the build phase, and test execution in the run phase.

3.6. Breakdown of the Code: spi_sanity_test Class
3.6.1. Factory Registration

The uvm_component_utils macro registers the spi_sanity_test class with the UVM factory. This
enables dynamic object creation and type-specific customization during runtime, a feature that is
integral to UVM for scalability and reusability. Factory registration ensures that this test can be
instantiated using the UVM type system, allowing configurations to be swapped dynamically without
modifying the base testbench structure.

3.6.2. Virtual Sequence Handle Declaration

The vseqs_1 handle represents a virtual sequence (sequence driver for the testbench). It serves as
an entry point to drive sequences that generate transactions on the DUT interface, ensuring abstraction
between the test and the stimulus.

3.6.3. Constructor

The constructor initializes the class by invoking the base class’s new method with a default
name (spi_sanity_test) and its parent. It adheres to UVM’s hierarchical component structure, ensuring
modularity and consistency.

3.7. Build Phase: Register Configuration

The build_phase is a critical part of UVM where the testbench’s topology and default configura-
tions are set up. For SPI, this involves defining specific control register (cnt_reg) values to initialize the
SPI protocol.
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cnt_regl[6:0]1 =
cnt_regl[71] 2]
cnt_reg[8] = 1
cnt_reg[10:9] = 2'be1l

cnt_reg[13:11] = 3'd7
cnt_reg[31:14] = @
uvm_config_db#(bit[31:0]1)::set(this, "x", "bit[31:0]1", cnt_reg)

Figure 2. Detailed register configuration in the build_phase method, setting up the control register (cnt_reg) with
specific bit-field values for SPI testing.

¢ CHAR LENGTH (cnt_reg[6:0] = 10): This specifies the number of bits per transaction. A value
of 10 indicates that each SPI transfer consists of 10 bits, a standard configuration for validating
medium-length transfers during a sanity test.

e  RESERVED BIT (cnt_reg[7] = 0): Reserved bits are set to 0 for consistency and to ensure no
undefined behaviors in register configurations.

e GO BUSY (cnt_reg[8] = 1): The GO or BUSY flag signals the SPI interface to initiate a transfer.
Setting this bit ensures that the SPI controller begins a transaction during the test.

e TX_NEG and RX_NEG (cnt_reg[10:9] = 2’b01): These bits control the data capture and transmis-
sion phase. Setting TX_NEG = 1 and RX_NEG = 0 configures the transmitter to change data on
the falling edge and the receiver to sample data on the rising edge, a common configuration for
SPI protocols.

e ASS,IE, MSB/LSB (cnt_reg[13:11] = 3'd7):

- ASS (Automatic Slave Select): A value of 1 ensures the chip select (CS) signal is managed
automatically.

- IE (Interrupt Enable): Enabling interrupts (IE = 1) ensures that any irregularities during
communication are flagged immediately.

- MSB/LSB: Setting this to 1 configures the SPI to transmit the most significant bit (MSB) first,
which is standard for many SPI devices.

e  RESERVED BITS (cnt_reg[31:14] = 0): Setting all unused bits to 0 prevents unintentional interfer-
ence.

Finally, the uvm_config_db API is used to make this configuration accessible throughout the testbench.

3.8. Run Phase: Execution of the Test

The run_phase drives the test logic after the environment is constructed and configured:

task run_phase(uvm_phase phase)
phase.raise_objection(this)
vseqs_1 = spi_vseqs_1::type_id::create("vseqs_1")

vsegs_1.start(envh.vseqr)
phase.drop_objection(this)
endtask

Figure 3. Run phase implementation, including objection handling and virtual sequence instantiation and
execution for the SPI test.

*  Raise/Drop Objection: These methods synchronize the testbench phases. Raising an objection
indicates that the test is still executing, while dropping it signals completion.

e  Sequence Creation and Execution: The spi_vseqs_1 sequence is dynamically created and started
on the virtual sequencer (envh.vseqr). This abstraction ensures that the generated transactions
align with the defined protocol and environmental setup.

4. Results
4.1. Master and Slave Devices Under the Testbench

The results of the SPI protocol testing demonstrated successful data transmission between the
master and slave devices, verifying the functionality and reliability of the system. The master device
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issued multiple requests (master_xtn) at different timestamps (9000ns, 15000ns, 21000ns, 27000ns, and
123000ns). Each request included key data elements such as address bits (ADDRESS BITS), output data
(DATA_OUT), input data (DATA_IN), and control registers. The master driver’s log shows consistent
updates to these fields, reflecting the correctness of data flow at each phase of the test. On the other
hand, the slave device received and processed the transmitted data successfully. For instance, at
109000ns, the slave monitor captured the request (slave_xtn) with integral fields for MISO and MOSL
The transmission data integrity and timing accuracy observed in these exchanges validate the robust
synchronization between master and slave devices.

ACKNOWLEDGMENT
INTERRUPT

Figure 4. Log of the master driver displaying register and transaction states at 123000ns. The DATA_IN value
was recorded as 2456940507, while DATA_OUT, CONTROL STATUS REG, and TX registers remained consistent.
These results validate the driver’s correct operation in managing SPI transactions.

4.2. Monitor and Driver Devices Under the Testbench

The monitoring components of the SPI system, particularly the master and slave monitors,
provided detailed insights into data transmission. They captured the exact values of the transmitted
and received data, ensuring accuracy in reporting and verifying system behavior. For example, the
master monitor at 123000ns reported a DATA_IN value of 2456940507 and a CONTROL STATUS REG
value of 15114, indicating proper processing of control and data signals. Additionally, comparisons of
received and transmitted data in the log files revealed consistent alignment between expected and
actual values. The test outcomes further highlight that the characters’ length was correctly set to 10
bits, with MOSI (Master Out Slave In) data recorded as 123 and MISO (Master In Slave Out) data as
798, matching the expectations for successful SPI communication.

ADDRESS BIT
DATA_OUT

Figure 5. Log output from the master monitor capturing detailed register states at 123000ns. Key data includes
DATA_IN set to d0, CONTROL STATUS REG set to d15114, and TX-0 REG represented as b1111011. These values
confirm proper master-side data monitoring during SPI communication.

Figure 6. Snapshot of the slave driver and monitor logs showing the captured MISO and MOSI data. The slave
driver received a MISO value of he37e64871581d6a68e5df96946a26ble and transmitted a MOSI value of h0. The
slave monitor observed a MISO value of h31e and MOSI value of h7b at 109000ns.
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4.3. Waveform Demonstration on Result

The waveform illustrates a detailed sequence of SPI transactions between the master and slave
devices. Key signals such as wb_clk_i, wb_rst_i, mosi_pad_i, and miso_pad_i are well-synchronized,
indicating robust clock-domain crossing and data integrity throughout the communication. Address
(wb_adr_i) and data (wb_dat_i) buses reflect precise transactions at designated clock cycles, ensuring
accurate data handshaking between components. For example, the transitions in wb_ack_o and
wb_err_o validate proper acknowledgment mechanisms and error-free communication. Furthermore,
the sequence transitions in control signals such as wb_we_i, wb_stb_i, and wb_cyc_i demonstrate
an effective write and read operation workflow. The miso_pad_i and mosi_pad_o signals exhibit
consistent data flow in accordance with the SPI protocol, further validating the design’s adherence to
specification.

Figure 7. Waveform depicting SPI transactions, showcasing synchronized clocking, data handshaking on wb_adr_i
and wb_dat_i, and successful communication via mosi_pad_o and miso_pad_i signals, adhering to the SPI protocol
specification.

This waveform underscores the importance of employing UVM and SystemVerilog for such
complex verification tasks. UVM provides a scalable and reusable verification framework, allowing
for structured testbench development that facilitates debugging and analysis, as evident from the
precise signal monitoring in the simulation. SystemVerilog enhances the verification process by
offering advanced constructs for modeling, constrained-random testing, and functional coverage.
Together, they empower engineers to identify intricate bugs and ensure protocol compliance effectively,
reducing the risk of design flaws in real-world applications. This combination of tools is indispensable
for modern hardware design and verification, ensuring high-quality, robust, and reliable system
performance.

4.4. Coverage Analysis Summary

The coverage report for the SPI package demonstrates a robust verification process, achieving an
overall instance coverage of 91.66%. The assertion coverage reached 100%, indicating that all specified
assertions were effectively hit during simulation, ensuring key functional checks were comprehensively
validated. The covergroup coverage, however, stands at 83.33%, revealing some room for improvement
in exercising specific functional scenarios or corner cases. Additionally, the coverage for bins within the
covergroups shows a rate of 87.5%, with one bin remaining unhit. This suggests that while the majority
of the design’s functionality has been verified, additional test scenarios targeting unhit conditions could
further enhance the thoroughness of the verification process. These results highlight the efficiency of
the UVM-based verification environment, while also emphasizing the need for refining test coverage
to achieve complete verification.
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& Instances 28 Design Units

Questa Coverage
@ spi_pkg (91.66%)
.

[ =]

Assertions 33 33 0 100%

Covergroups 1 83.33%
Coverpoints/Crosses 3

Covergroup Bins 8 7 1 87.5%

Figure 8. Coverage analysis results for the SPI package, showing 91.66% overall instance coverage, 100%
assertion coverage, 83.33% covergroup coverage, and 87.5% bin coverage, highlighting effective verification with
opportunities for further improvement in specific scenarios.

5. Discussion

The nuances of functional and code coverage underscore the complexity of verification tasks.
While achieving functional coverage was a primary objective in this project, previous experiences,
such as with a 1x3 router design, highlighted the importance of reaching 100% code coverage by
exercising all lines, branches, and conditions in the HDL code. Nevertheless, code coverage and
assertion coverage are complementary metrics—neither can fully guarantee design quality in isolation.
For example, the functional suite successfully validated RX scenarios, but issues with TX bins revealed
a potential RTL bug. Despite sequences covering all TX scenarios, specific bins remained unhit,
emphasizing the importance of both metrics in identifying corner cases. Addressing such coverage
gaps ensures a robust verification process and paves the way for improved hardware reliability.

5.1. Potential Areas for Improvement

1. Additional Assertions: While the test effectively validates initial configurations and basic op-
eration, it could benefit from assertions to monitor specific runtime conditions. For example,
verifying that the GO BUSY flag clears after a transaction or that the MSB/LSB configuration
aligns with transmitted data would enhance the test’s robustness.

2. Coverage Metrics: The test does not explicitly mention functional coverage or code coverage
metrics. Adding a coverage model that tracks key aspects, such as edge cases in character
lengths or timing variations in TX/RX signals, would provide quantitative feedback on the test’s
effectiveness.

3. Error Injection: To further validate the SPI design, the test could introduce scenarios with
intentional misconfigurations. For example, setting the reserved bits (cnt_reg[7] or cnt_reg[31:14])
to non-zero values could test the DUT’s resilience to unexpected inputs.

4. Scalability to Larger Configurations: While the test focuses on a 10-bit character length, SPI
designs often support configurable lengths (e.g., 8, 16, 32 bits). Expanding the test to dynamically
handle multiple configurations would enhance its utility.

5.2. Educational Value and Industry Relevance

This implementation is highly relevant for students and professionals learning UVM and SPI pro-
tocols. It demonstrates practical applications of concepts like register configuration, virtual sequences,
and phase synchronization. Moreover, SPI remains ubiquitous in applications ranging from embedded
systems to high-speed communication interfaces. This test, therefore, provides a framework that is
both educational and immediately applicable in industry settings.

The emphasis on clarity and explicit register settings ensures that even newcomers can grasp the
key aspects of SPI operation. At the same time, the adherence to UVM best practices prepares users for
more complex verification tasks.
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6. Conclusions

The verification of the SPI protocol using Universal Verification Methodology (UVM) has proven
to be a robust approach to ensuring the functionality and reliability of this critical communication
protocol in modern IoT and wearable devices. By methodically covering key features such as full-
duplex transmission, variable word lengths, and edge-sensitive data handling, this study demonstrated
that the SPI protocol can meet the stringent demands of real-world applications. The results highlight
comprehensive functional coverage and assertion coverage, validating the correctness of the SPI Master
core under diverse scenarios, including high-speed data exchange and fault handling. This thorough
verification process ensures the readiness of SPI for integration into application-specific integrated
circuits (ASICs), which are essential for advanced wearable technology and IoT systems.

The spi_sanity_test is a well-crafted implementation that highlights the importance of early-stage
validation in the verification process. Its detailed configuration and adherence to UVM principles
make it a valuable resource for ensuring the reliability of SPI designs. While there are opportunities to
expand its functionality, the test provides a solid foundation for both learning and professional use.
By emphasizing clarity, modularity, and adherence to standards, it serves as an exemplary model for
UVM-based verification in the context of SPI communication.

Wearable devices, in particular, demand precise, high-speed communication between microcon-
trollers and peripherals like sensors, displays, and connectivity modules. The application of UVM
enables an efficient and scalable verification framework, reducing the time-to-market while maintain-
ing the integrity of these intricate designs. This methodology not only ensures the quality of current
ASIC implementations but also sets a standard for emerging technologies in embedded systems. The
insights gained from this work lay a foundation for future research, including optimizing verification
workflows for energy-efficient designs and exploring the application of UVM in other communication
protocols, cementing its importance in the advancement of modern electronics.
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Abbreviations

The following abbreviations are used in this manuscript:

SPI Serial Peripheral Interface

UVM  Universal Verification Methodology
IoT Internet of Thing

RAL  Register Abstraction Layer

RTL  Register Transaction Level

DUT  Design Under Test
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