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Abstract. Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by hyperglycemia,
which could alter metabolic, vascular and hematological parameters. A low-carbohydrate, high-fat
diet (LCHF) diet benefits glycemic and blood pressure control. In turn, exercise in hypoxia (EH) is
known to improve insulin sensitivity, erythropoiesis and angiogenesis. LCHF combined with EH
seem to be a potential therapeutic strategy for T2DM and hypertension (HTN), but evidence is still
scarce. The aim of this study was to evaluate the effects of eight weeks of EH combined with a LCHF
on hematological and lipid profiles, inflammation and blood pressure in older patients with T2DM
and coexistent HTN. Diabetic patients with HTN (n=42) were randomly assigned to a (1) control
group: control diet (high-carbohydrate and low-fat diet) + exercise in normoxia; (2) EH group: control
diet + EH; (3) intervention group: LCHF + EH. Baseline and eight-week measurements included
systolic, diastolic, and mean blood pressure (SBP, DBP, MAP, respectively), and hematological and
lipid profiles and inflammation biomarkers. Blood pressure decreased after interventions (p<0.001),
with no differences among groups (SBP: p=0.151; DBP: p=0.124 and MAP: p=0.18). There were no
differences in lipid profile and C-reactive protein (p>0.05). Mean corpuscular hemoglobin (MCH)
increased in the EH group (p=0.027), while MCH concentration decreased in the EH+LCHF group
(p=0.046). In conclusion, there is no additional benefit in adding hypoxia to exercise or restricting
carbohydrates, on blood pressure in patients with T2DM and coexisting HTN. Further elucidation of
the mechanisms underlying hematological adaptations is imperative. Trial registration number:
NCT05094505.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202501.0270.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 January 2025 d0i:10.20944/preprints202501.0270.v1

2 of 13

Keywords: Hemoglobin; Blood Pressure; Normobaric Hypoxia; Carbohydrates; Exercise; Diabetes;
Elderly

1. Introduction

Diabetes is a metabolic disease that shows itself clinically as chronic hyperglycemia. Poorly or
uncontrolled diabetes could be associated with many physiological processes that may affect lipid
metabolism, regulation of inflammation, vasodilatation, vascular, immunological, and hematological
parameters [1]. In light of this, hypertension (HTN), defined by systolic blood pressure > 140mmHg
or diastolic blood pressure 290mmHg [2], is prevalent in over 50% of individuals with type 2 diabetes
(T2DM) and significantly escalates the risk of cardiovascular diseases (CVD) by fourfold compared
to normotensive non-diabetic individuals [3]. Notably, individuals with T2DM who also have HTN
at the time of diagnosis exhibit elevated rates of mortality and cardiovascular events, particularly
pronounced in older populations [4], suggesting that much of this excess risk is attributable to
coexistent HTN [5], underscoring the critical need for effective therapeutic strategies [6].

Most T2DM patients are not active [7] and a sedentary lifestyle, together with poor nutrition, are
considered as the major risk factors for T2DM and its complications [8]. Current international
guidelines recommend aerobic and resistance exercise training for T2DM patients for improving
blood lipids, inflammation, glycemic and blood pressure control [9]. Exercise and Sports Science
Australia guidelines [10] recommends supervised exercise as an effective modality for improving
weight loss and both blood pressure and glycemic in T2DM patients.

Hyperglycemia in T2DM was negatively correlated with some hematological indices, as red
blood cells (RBC), hemoglobin (Hb) and mean corpuscular hemoglobin (MCH), due the augmented
oxidative stress [11]. Improvements in these biomarkers, mainly by the production of erythropoietin
(EPO) and its consequent erythropoiesis, can be a helpful physiological mechanism, but do not occur
as a result of an exercise training in normoxia [12]. Conversely, adding hypoxia to exercise promotes
relevant hematological adaptations [12,13]. Recent investigations have shown promising outcomes
in elderly patients with CVD [14] and in individuals with T2DM [15] performing exercise in hypoxia
(EH) at simulated altitudes, suggesting EH may offer additional benefits compared to exercise in
normoxia.

Physiological adaptations occur in hypoxic environments [16], mainly driven by hypoxia
inducible factor 1o (HIF-1a) activation [17] and increased expression of hypoxia-responsive genes
[18]. EH-induced erythropoiesis and angiogenesis may contribute to improved blood pressure
control and enhanced tissue oxygenation. Not least, HIF-1a promotes lowering of blood glucose
levels through the stimulating on glycolysis and as a result of the increased expression of GLUT4
glucose transporters in muscle tissue independently of muscle work [19]. Collectively, these
adaptations could potentially mitigate vascular, hematological and metabolic complications
associated with T2DM and HTN.

The optimal dietary approach remains a subject of debate among experts [20,21]. The low-
carbohydrate, high-fat (LCHF) diet has emerged as a promising therapeutic option for individuals
with T2DM and HTN, endorsed by the American Diabetes Association for glycemic control and
weight management [22]. Notably, LCHF diets have demonstrated efficacy in reducing blood
pressure [23], even surpassing the Dietary Approaches to Stop Hypertension (DASH) diet [24], the
standard recommendation for blood pressure management by the American Heart Association [21].

Furthermore, LCHF diets have also been associated with hematological adaptations, including
reductions in MCH and in mean corpuscular hemoglobin concentration (MCHC)[25]. Decreases in
MCH and MCHC were inversely linked with insulin resistance and high blood pressure [26]. It was
previously shown that hematological changes could occur as an effect of oxidative stress promoted
by T2DM [11], and that these biomarkers may also serve as predictors of the disease's evolution [27],
due to their role as determinants of blood viscosity [28]. Increased blood viscosity could contribute
to the development of T2DM [29] and HTN [26,30].
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Thus, this study aimed to evaluate the effects of an eight-week normobaric EH intervention at
3000m of simulated altitude combined with an LCHF diet on the hematological and lipid profiles,
inflammation and blood pressure in older patients with T2DM and coexistent HTN. We hypothesize
that the combination of chronic EH and LCHF dietary modifications will lead to improvements in
blood pressure, with associated changes in hemoglobin levels, offering novel insights into therapeutic
interventions for this high-risk population.

2. Materials and Methods

2.1. Ethical Considerations

The study was approved by the Ethics Committee of the Faculty of Nutrition and Food Sciences,
University of Porto (Approval Number 45/2021/CEFCNAUP/2021 in July 2021. It was conducted
following the declaration of Helsinki for studies in humans [31]. It has been registered in the Clinical
Trial database (NCT05094505).

2.2. Study Design

This is a controlled, single-blind, three-arm, parallel, randomized controlled trial (RCT).
Participants were randomly assigned into three independent groups (n=14, in each): control group
(control diet + exercise in normoxia), EH group (control diet + EH) and EH+LCHF group [32]. The
experimental design consisted of (1) pre-intervention tests, (2) a familiarization period, (3) an
experimental intervention, and (4) post-intervention tests [33].

2.3. Participants

To be included, participants met the following criteria: (1) old individuals (>65 years) of either
sex diagnosed with T2DM and HTN by their medical doctor for at least one year; (2) hemoglobin Alc
(HbA1c) between 6.5% and 10%; (3) systolic blood pressure > 140mmHg or diastolic blood pressure
> 90mmHg (4) pharmacological regimen stabilized for at least three months; (5) previous
participation in supervised exercise programs in the last six months, and (6) absence of smoking in
the last six months. Participants were excluded if: (a) they were insulin-dependent; (b) had
uncontrolled microvascular or macrovascular complications related to diabetes, such as retinopathy,
nephropathy, diabetic foot and atherosclerosis, diabetic cardiomyopathy or acute myocardial
infarction; (c) presented other uncontrolled metabolic or vascular comorbidities; (d) were sedentary
or (e) had a physical limitation that prevented them from exercising.

2.4. Dietary Plan

To each participant an individualized dietary plan was prescribed using the Dietbox® software,
version 7.0. The energy content of the dietary plan met 100% of the estimated energy requirement
(EER) for each participant. EER was calculated by multiplying the resting metabolic rate obtained by
the Harris-Benedict equation, the most accurate at the individual level for older adults [34], by a
physical activity level, assessed using the International Physical Activity Questionnaire (IPAQ short
form, last seven days, elderly, self-administered format). Participants were categorically rated into
one of three levels of physical activity: low, moderate or high [35].

The energy distribution by macronutrients was 60% from carbohydrates, 20% from protein and
20% from fat for the control diet, and 40% of energy from carbohydrates, 20% from protein, and 40%
from fat for the LCHF diet. Both diets emphasized low—glycemic index foods to convey conventional
dietary guidelines [36]. According to the classification of diets as (1) very low-carbohydrate: less than
26% of the energy intake; (2) low-carbohydrate: 26-45% of the energy intake; and (3) high
carbohydrate > 45% of the energy intake [37], we compared a low-carbohydrate diet (EH+LCHF
group) to a high-carbohydrate diet (EH group). Compliance with the dietary plan was assessed using
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weekly 24-hour recalls. Participants met individually in appointments with a nutritionist twice over
the eight weeks to encourage adherence to the dietary plan.

2.5. Exercise Protocol

Exercise sessions, either in normoxia or hypoxia (at 3000m of simulated altitude, via nitrogen
dilution), took place in a hypoxic chamber at CMEP - Exercise Medical Center, 3 times per week
during a period intervention of eight weeks. The chamber allows the control of Oz (11% to 20.97%),
temperature (up to 50°C), relative humidity (up to 80%), and altitude above sea level (up to 8000m).
Altitude rating can be defined as (1) high altitude: 1500 to 3500m; (2) very-high altitude: 3500 to
5500m; and (3) extreme altitude: above 5500m [38].

Before starting the intervention period, six familiarization sessions were held for two weeks so
the participants could learn the exercise techniques and acclimate to the simulated altitude, with an
increment of 500m at each visit until reaching 3000m of altitude. Exercise intensity was set at 75% of
the heart rate reserve, quantified in the pre-intervention cardiopulmonary test (CPET). Heart rate and
oxygen saturation were constantly monitored using a finger pulse oximeter (Globus YM201, Milan,
Italy), and the Borg Rating of Perceived Exertion (RPE) was recorded after each exercise session [39].
All exercise sessions occurred at the same time of day (+ 1 hour), and visits were separated by at least
48 hours of recovery.

The total duration of each exercise session was approximately 60min, which included a 5min
warm-up with body mobilization and dynamic stretching, followed by 40min of moderate aerobic
exercise, alternated every 9min on a cycle ergometer (Life Fitness, Illinois, United States) and a
treadmill (Life Fitness, Illinois, United States), with a 1min rest between them. At the end of each
session, and alternately between weeks, three strength exercises were performed (pectoral, shoulders,
back, arms, thighs, legs and abdominals) using a structure of 3 series of 12 to 15 repetitions per
exercise, with a 1min rest between sets, totaling ~ 15min of strength exercises.

2.6. Measurements

In all groups, hematological parameters, blood lipids, inflammation marker, and blood pressure
were evaluated at baseline and 48h after the last exercise session (eighth week), after fasting for 12
hours and without any strenuous exercise in the last 24 hours and no alcohol consumption in the
previous 72 hours.

2.7. Blood Samples Analyses

Hematological markers were determined, including erythrocytes (L), hemoglobin (g/dL),
globular volume, (MCV, %), mean corpuscular hemoglobin (MCH, pg), mean corpuscular
hemoglobin concentration (MCH, g/dL), red cell distribution width (RDW, %), leukocytes (L),
neutrophils (%), eosinophils (%), basophils (%), lymphocytes (%), monocytes (%) and platelets (L).
Lipid parameters included total cholesterol (mmol/L), high-density lipoprotein cholesterol (HDL-c,
mmol/L), low-density lipoprotein cholesterol (LDL-c, mmol/L), triglycerides (TAG, mmol/L); and
inflammatory marker, as CRP (mg/dL) were collected and analyzed.

2.8. Blood Pressure

Systolic, diastolic, and mean blood pressure (SBP, DBP and MAP) were measured using an
automated sphygmomanometer (Dinamap Pro; Florida, United States) in the left arm, in a sitting
position and after ten minutes of rest in the same day of blood sample collection. The measurements
were performed in triplicate, and the average was expressed in mmHg.

2.9. Statistical Analysis

For sample and power calculations, this study was powered based on changes in hemoglobin
Alcin the RCTs included in the meta-analysis by Zuuren et al. [40]. To detect an effect size of Cohen’s
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d=1.14 with 80% power (alpha=0.05, two-tailed), G*Power software [41] suggested we would need 28
participants in a paired samples t-test, totaling 42 individuals to the three experimental groups.
Assuming a 20% dropout rate, it was recruited 48 participants. All data was reported as mean
(standard deviation SD). Normality was assessed using Shapiro-Wilk’s test. Continuous variables
that did not follow a normal distribution were transformed using the logarithm function: y=log(x-L)
with L < minimum of x, if skewness was positive; or y=log(H-x) with H > maximum of x, if the
skewness was negative; except for the diastolic blood pressures, that were transformed using the Box-
Cox transformation with parameter A=0.75. A two-way repeated measures ANOVA was used to
examine changes in hematological markers, CRP, lipid profile and blood pressure over the chronic
exercise period (zero vs. eighth weeks) and whether the magnitude of the chronic exercise-mediated
adaptations differ in time and differ among groups. A Tukey post hoc test for multiple pairwise
comparisons was performed to identify differences between groups when a significant main- or
interaction effect was found. Statistical analysis was performed using SPSS Statistics software version
28.0, 2021 (IBM Company, Chicago, United States), and statistical significance was assumed at p<0.05.

3. Results

3.1. Baseline Characteristics

The baseline characteristics of the participants are shown in Table 1. None of the participants got
injured or had adverse responses to the EH or LCHF diet. The groups did not differ significantly at
this moment, neither in terms of gender or age.

Table 1. Baseline characteristics of the participants.

Variables CTRL group EH group EH+LCHF group p-Value
Gender (male:female) 7.7 8:6 9:5 0.747
Age (years) 744 (3.6) 71.6 (3.8) 70.7 (4.0) 0.110
Body mass index
29.4 (4.1 28.3 (4.0 29.3 (3.4 0.707
. @1 ®0) (34
Hemoglobin Alc (%) 6.9 (0.8) 7.1(0.7) 6.8 (0.5) 0.647
Fasting glucose (mg/dL)  118.7 (27.8) 117.9 (22.3) 108.2 (19.7) 0.435
Systolic blood pressure ., - ) q) 142.3 (18.2) 148.0 (18.9) 0.254
(mmHg)
Diastolic blood 77.5 (8.1) 76.3 (11.7) 82.9 (16.3) 0.347
pressure(mmHg)
Mean arterial blood 107.9 (16.9) 98.7 (13.6) 107.1 (15.8) 0-234

pressure (mmHg)

42 subjects participated in this study. All values are presented as the mean (SD).

3.2. Dietary and Exercise Interventions

The detailed data regarding exercise and diet interventions were previously published [33].
Briefly, the EH+LCHF group had a lower carbohydrate intake (p<0.001), a higher total fat intake
(p<0.001), while no significant differences were found between groups about energy (p=0.69) and
fiber (p=0.49) intakes. Physiological parameters obtained during eight weeks of exercise sessions,
showed that the groups that exercised in hypoxia (EH and EH+LCHF) presented lower mean values
of oxygen saturation when compared to the CTRL group (p<0.001), but the average heart rate was
similar among groups (p=0.63). Also, subjective effort perception was collected and the EH and
EH+LCHF groups achieved the highest score of RPE (p=<0.001) used to measure the level of
subjective intensity of physical exercise.

3.3. Cardiovascular Risk Factors
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Cardiovascular risk factors were evaluated by lipid profile and CRP. No effect from baseline to
post-interventions was observed on total cholesterol (p=0.08), HDL-c (p=0.987), LDL-c (p=0.501) and
TAG (p=0.435), and among the three groups (p=0.135; p00.511; p=0.119; p=0.518), respectively. CRP
did not show differences from baseline to the eighth week of intervention (p=0.090), and did not differ
among groups (p=0.66, Table 2).

Table 2. Lipid profile and inflammation marker pre- and post- eight weeks of interventions.

Variables CTRL group EH group EH+LCHF group p-Value
Pre Post A Pre Post A Pre Post A MomentsGroups
Cholesterol 1812 1881 24 1789 1619 71 1585 1432 7.3 0.082
(mmol/L) 495)  (518) (17.7) (30.1) (232) (67) (464) (427) (164) 0.135
HDL-c (mmol/L) 538 525(106) 05 523 520(94) 01 562 572 04 0.987
117) @2)  (13.1) @.8) (140) (139) (1.4) 0511
LDL-c (mmol/L) 1004 1125 36 1045 938 33 877 777 35 0.501
(432)  (484) (143) (292) (19.1) (64) (36.6) (284) (8.3) 0.119
TAG (mmol/L) 1346 1338 12 1365 1268 21 962 912 25 0435
(615)  (464) (94) (59.6) (47.1) (9.0) (29.8) (29.6) (9.9) 0.518
CRP (mg/dL)  18(24) 33(64) 01 19(21) 16(17) 01 34@47) 17(13) 02 0.155
(0.3) 0.1) (0.3) 0.19

HDL-c: High-density lipoprotein cholesterol; LDL-c: Low-density lipoprotein cholesterol; TAG: Triglycerides;
CRP: C-reactive protein.

3.4. Hematological Parameters

The hemogram of the study participants is shown in Table 3. There were no significative
differences from pre to post interventions regarding erythrocytes (p=0.585), Hb (p=0.355), globular
volume (MCV, p=0.460), RDW (p=0.059), leukocytes (p=0.999), neutrophils (p=0.192), eosinophils
(p=0.863), basophils (p=0.691), lymphocytes (p=0.279%), monocytes (p=0.303) and platelets (p=0.105).
There were no differences between the moments for MCH (p=0.733) and MCHC (p=0.669), but MCH
increased only in the EH group (p=0.027), and MCHC was reduced only in the EH+LCHF group
(p=0.046).

Table 3. Hemogram with platelets pre- and post- eight weeks of interventions.

Variables CTRL group EH group EH+LCHF group p-Value
Pre Post A Pre Post A Pre Post A Momentsc
roups
Erythrocytes 01 0585
0 47(04) 4.7(05) 0.1(0.1) 45(0.4) 45 (0.5) 0.1(0.2)4.6 (0.51) 4.7 (0.5) 02) 0122
Hemoglobin 0.1 0.355
(e/dL) 14.2 (1.0) 14.2 (1.2) 0.1 (0.5) 13.9 (1.3) 13.7 (1.4) 0.1 (0.6) 13.8 (1.6) 13.7 (1.7) (05) 0.668
MCV (%) 42.7 (3.1)42.7 (3.5) 0.1 (1.3) 41.7 (3.6) 41.1 (4.3) 0.5 (1.9) 41.9 (4.1) 41.9 (5.0) ((1)'2) 0 gﬁa)
0.1 0.733
MCH (pg) 29.9 (2.2)29.2 (2.2) 0.7 (2.7) 30.2 (1.2) 31.3 (1.7) 1.1 (1.3) 29.7 (1.8) 29.6 (1.8)
(0.3) 0.027#
MCHC (g/dL) 33.3 (1.3)33.4 (1.3) 0.1(0.3) 33.3 (1.1) 33.4 (1.3) 0.1 (0.3) 32.9 (0.9) 32.6 (0.8) (8?) 0 846639
RDW (%)  12.5(0.5) 12.6 (0.7) 0.1 (0.3) 12.8 (0.5) 12.8 (0.5) 0.1 (0.1) 13.4 (0.6) 13.5 (0.6) (gi) 0 81'259
03 0.99
Leukocytes (L) 7.4 (2.1) 7.1(1.9) 0.2(1.0) 6.1(1.3) 6.3 (1.1) 0.2(1.0) 6.1 (1.4) 5.8 (1.1) 09) 0156
Neutrophils 60.3 2.1 0.192
@) 62.2 (8.0) a01) 8 (5.2) 63.1(7.2) 63.9 (7.7) 0.9 (5.4) 61.5 (7.5) 59.3 (7.4) (46) 0241
Eosinophils 0.37 0.863
0 26(14) 25(14) 0.1(04) 22(1.1) 1.9(1.1) 0.2 (0.6) 2.4 (1.4) 2.8(L.1) (1) 018
01 0.691

Basophils (%) 0.5(0.1) 0.4(0.1) 0.1(0.1) 06(02) 07(02) 01(02) 06(02) 0603) ' (120
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Lymphocytes 1.6 0279
%) 28.6 (6.3)30.4 (9.1) 1.7 (4.7) 28.1(6.9)27.1(7.1)0.9 (5.1) 28.7 (7.2) 30.3 (8.1) (4.4) 0.260

Monocytes (%) 5.9 (14) 62 (1.6) 0.2(1.3) 59 (1.1) 6.1(1.1) 02(0.6) 6.7 (1.2) 6.90 (1.6) ((1)'1) 086'3;03

218.2 212.8 213.5 227.4 13.8 219.1 223.2 41  0.105

Platelets (1) 550) 354y >* 13 33) 3120 @71 652 (359) (32.0)0.066

# = MCH (pg): EH group increased from CTRL and EH+LCHF groups; MCHC (g/dL): EH+LCHF group
decreased from EH and CTRL groups. MCV: Mean Corpuscular Volume; MCH: Mean Corpuscular Hemoglobin;

MCHC: Mean Corpuscular Hemoglobin Concentration.

3.5. Blood Pressure

SBP, DBP and MAP significantly reduced (p<0.001) from pre- to post-intervention (Table 4).
While SBP, DBP, and MAP values decreased after interventions, post-hoc analysis revealed that these
changes did not reach statistical significance between groups (p=0.151; p=0.124; p=0.18, respectively).
No differences were found in resting heart rate regarding moments (p=0.090) and groups (p=0.660).

Table 4. Blood pressure measures pre- and post- eight weeks of interventions.

Variables CTRL group EH group EH+LCHF group p-Value
Pre Post A Pre  Post A Pre  Post A  MomentsGroups
154.7 1425 122 142.3 124.5 17.7 148.0 126.5 21.5 .
SBP (mmHg) (209) (166) (102) (182) (146) (156) (189) (186) (10.6) <0.001% 0151
54 76.3 71.8 82.9 .
DBP (mmHg) 77.5 (8.1)72.2 (7.7) 62 117 (120) 4.1(6.6) 163) 71.4 (8.4)9.0 (8.9) <0.001* 0.124
MAP (mmHg) 1079 1029 5.0 98.7 87.0 11.7 1071 92.0 15.1 «0.001* 0.158

(169) (102) (133) (136) (17.8) (156) (158) (12.1) (12.3)
05 647 673

RHR (bpm) 68.5 (9.5)69.0 (9.7) 52) (105 (101)

2.4(8.1)62.1 (8.1)65.0 (9.5)2.8 (8.3) 0.090 0.660

SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial blood pressure; RHR: resting

heart rate.

4. Discussion

This is the first RCT examining the responses of chronic EH with and without a LCHF diet on
hematological and lipid profile, inflammation and blood pressure in patients with T2DM and
coexistent HTN. The study’s main findings revealed an increased in MCH in patients who exercised
in hypoxia, while a reduction in MCH concentration was observed in patients following an LCHF
diet. Additionally, the study identified a significant reduction in HTN following eight weeks of
exercise in normoxia and hypoxia, with no substantial disparity in the efficacy of EH compared to
normoxia, irrespective of dietary carbohydrate content, which contradicts our hypothesis. These
findings align with prior research indicating comparable blood pressure outcomes between EH and
normoxia-based exercise interventions in older individuals over an eight-week period with same
oxygen levels (~15% of FIO2) [42].

However, contrasting results from existing studies suggest superior effects of regular EH on
blood pressure regulation. For instance, moderate exercise at a natural altitude of 1700m exhibited
notable reductions in SBP and DBP in individuals with metabolic syndrome over a three-week period
[43]. A reduction of 10 mmHg and 7 mmHg in SBP was observed after four weeks of chronic EH at
16.4 and 14.5% of FIOy, respectively [44,45]. In contrast, other researchers observed a reduction only
in DBP after a 13-week of aerobic and strength exercise in normobaric hypoxia simulating 2000-
3350m altitude [46]. It is noteworthy that most of these studies reported an improved in body
composition after EH intervention [43,44,46], a crucial factor in decreasing blood pressure by exercise
[47].
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Moreover, there is evidence suggesting that older individuals may exhibit resistance to the
reduction of exercise-induced blood pressure [47], and this resistance appears to be closely tied to
changes in body composition [44,47]. Published data from the current RCT showed reductions in
weight loss, body mass index (BMI) and body fat after eight weeks of interventions [33], and there
were no significant additional benefits observed in the groups exercising in hypoxia compared to
those exercising in normoxia. Similarly, our investigation into blood pressure failed to reveal any
notable advantages of exercising in hypoxia over normoxia, irrespective of dietary carbohydrate
content. In agreement, it was demonstrated that an eight-month training program led to
improvements in weight, BMI, waist and hip circumference over time, with no discernible differences
between the normoxia and hypoxia exercise groups [48].

Despite observing similar improvements in blood pressure with both normoxic and hypoxic
exercise interventions, along with comparable levels of Hb mass, MCH, and MCHC before and after
chronic EH and LCHF diet interventions, our study revealed higher MCH levels in the EH group. It
is widely acknowledged that achieving a substantial increase in hemoglobin content requires an
adequate hypoxic dose of >12 hours per day at a sufficient altitude for >21 days (approximately 300
hours) [49,50]. This suggests that the similarity in hemogram biomarkers from pre- to post-eight
weeks in the current study may be attributed to the short exposure to simulated altitude, specifically
3 hours per week and 24 hours during the total intervention period.

Compensatory elevation in MCH within a specific range is recognized as a fundamental
physiological response to high-altitude hypoxia [51], enhancing blood’s oxygen-carrying capacity
and improving tissue oxygenation without increasing cardiac output [52]. This adjustment translates
to an increase of approximately 0.30-0.47 g/dL per 1000 meters of altitude [50]. However, when Hb
production significantly exceeds the reference range, an increase in cardiac output is required to
sustain oxygen transport [52], potentially contributing to blood pressure elevation. Given that Hb
production remains within the normal range proposed for sea-level [53], and when corrected by high-
altitudes [54], it appears that the increase in MCH production within the minimum cut-off values in
patients who exercised in hypoxia was not sufficient to induce significant changes in blood pressure
compared to exercise in normoxia, at least with 24h of hypoxic exposure at 3000m simulated-altitude.

Contrary to our findings, previous studies have demonstrated improvements in SPB and DBP
following long-term exposure (approximately 6 and 12 months) to natural high-altitude,
accompanied by increased Hb levels [55]. Other authors found similar improvements after 15
sessions of hypoxia exposure (14-10% FiOz2) compared to normoxia [56]. This discrepancy may be
attributed to altered hydration status in the EH group, increasing Hb content when dehydrated [53].
However, the MCV values in the current study do not support this hypothesis.

Additionally, existing evidence has demonstrated that incorporating hypoxia into exercise, even
during short periods and at moderate high altitudes, yields greater benefits in blood pressure,
independent of hematological parameters. This suggests the involvement of alternative mechanisms
beyond MCH in this response [44—46]. Chronic EH has been linked to reduced arterial stiffness [57],
and improvements in metabolic risk factors such as body fat and insulin resistance [58], all of which
play a role in regulating blood pressure. EH also induces vasodilation and lowers blood pressure in
patients with T2DM [59]. These effects are, in part, mediated by increased HIF-1a protein expression,
which is inversely associated with systemic blood pressure [16]. HIF-1a also triggers VEGF activation
[60], impacting blood pressure regulation via nitric oxide synthase expression and nitric oxide
activity [59]. Unfortunately, we did not evaluate HIF-1a and VEGF levels in our study.

It is well known that elevated levels of Hb, MCH and MCHC are associated with increased blood
viscosity [61], which induces decreased blood flow to skeletal muscles and fat tissues, contributing
to peripheral vascular resistance and elevating the risk for T2DM development, interfering with
insulin-mediated glucose uptake [29], and potentially elevating blood pressure [62] contributing to
the development of HTN [26,30]. While the EH group exhibited increased MCH levels within normal
ranges, restricting carbohydrate intake appeared to decrease MCH concentration, albeit within
appropriate levels [53,54]. Consistent with this, prior research reported that a LCHF diet over twelve
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weeks reduced iron intake and lowered both MCH and MCHC in male endurance athletes [25]. This
reduction could be attributed to increased inflammation associated with the LCHF diet, affecting the
iron regulatory hormone hepcidin [63]. Hepcidin production is stimulated by iron and inflammation
but inhibited by hypoxia [64]. Considering that Hb comprises nearly 70% of iron in the body, the
LCHF diet's reduction in iron consumption, coupled with hypoxia-induced decrease in hepcidin
production, could explain the reduced MCHC values observed in our study.

Moreover, MCHC has been linked to metabolic disorders, with levels increased in obesity and
decreased by medications improving cellular insulin sensitivity [64]. Prediabetic patients with higher
Hb content have been shown to exhibit impaired blood pressure, HDL-c levels, and waist
circumference [65], contributing to a proinflammatory state and worsening metabolic dysfunction
and CVD development [66]. Although our study found no differences in lipid profile and CRP levels
among time and groups, evidence suggests a positive association between reduced MCHC and
carbohydrate-restricted diets, with consequent improvement on insulin resistance and blood
pressure, highlighting a crucial mechanism for further exploration in patients with T2DM and
coexistent HTN.

In summary, while EH interventions did not demonstrate superior benefits in reducing blood
pressure compared to normoxia-based exercise, our findings underscore the intricate interplay
between exercise, diet, and hematological parameters in managing metabolic disorders and
hypertension in patients with T2DM. Further research is needed to elucidate underlying mechanisms
and optimize therapeutic strategies for this population.

Strengths and Limitations

The study had a 100% adherence rate, with no dropouts throughout the testing and intervention
phases, surpassing the general cutoff point for sufficient adherence in older adults by 30pp [67]. To
uphold participation levels, the research team maintained constant contact with participants
throughout the eight-week intervention period, motivating them to complete their participation
regularly during the eight weeks of intervention. This proactive approach helped motivate
participants, ensuring their consistent involvement in the study. Recognizing potential barriers to
attendance, such as transportation challenges, the study provided chauffeured transportation for
participants to attend exercise sessions at the clinic, removing logistical hurdles. Regular meetings
were convened to assess food consumption and address any queries, fostering correct adherence to
the prescribed dietary plan among all participants. This personalized support contributed to the
overall adherence success of the intervention.

Some limitations should also be mentioned. Due to logistical and budgetary constraints, the
study was limited to an eight-week duration, resulting in a total of 24h of hypoxia exposure. While
sufficient for certain outcomes, this timeframe may have been insufficient to induce substantial
changes in hematological parameters [50], such as Hb, MCH and MCHGC, and their influence on blood
pressure regulation. The reasons mentioned above precluded the determination of key biomarkers,
including HIF-1a, VEGF, iron deficiency markers, and hepcidin levels. These markers are vital for
understanding the mechanistic underpinnings of the intervention and its effects on blood pressure
regulation. Future research should delve into these biomarkers, as well as increase the time of
exposure to hypoxia, to elucidate their role in the treatment of HTN in type 2 diabetic patients
undergoing EH and LCHF dietary interventions.

5. Conclusions

In conclusion, diets and exercise lowered HTN, with no additional benefits from added hypoxia
and restrict carbohydrate. Future research is needed to provide a deeper understanding of the precise
mechanisms underlying hematological adaptations and their subsequent impact on blood pressure
regulation. Additional elucidation of these mechanisms is imperative for a comprehensive
understanding of the therapeutic potential and optimization of EH and LCHF dietary interventions
in managing related HTN complications in individuals with T2DM.
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