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Abstract: Tuberculosis (TB) remains a major cause of ill health and one of the leading causes of death 
worldwide, with about 1.25 million deaths estimated in 2023. Control measures have focused 
principally on early diagnosis, treatment of active TB, and vaccination. However, the widespread 
emergence of anti-tuberculosis drug resistance remains the major public health threat to progress 
made in global TB care and control. Also, the Bacille Calmette-Guérin (BCG) vaccine, the only 
licensed vaccine against TB in children, has been in use for over a century, and there have been 
considerable debates concerning its effectiveness in TB control. A multi-epitope vaccine against TB 
would be an invaluable tool to attain the Global Plan to End TB, 2023-2030 target. A rational 
approach that combines several B-cell and T-cell epitopes from key lipoproteins was adopted to 
design a novel multi-epitope vaccine candidate. In addition, interactions with TLR4 were done to 
assess its ability to elicit an innate immune response. Conservation of the selected proteins suggests 
the possibility of cross-protection in line with the one-health approach to disease control. The 
vaccine candidate was predicted to be both antigenic and immunogenic, and immune simulation 
analyses demonstrated its ability to elicit both humoral and cellular immune responses. Protein-
protein docking and normal mode analyses of the vaccine candidate with TLR4 predicted efficient 
binding and stable interaction. This study provides a promising one-health approach for the design 
of multi-epitope vaccines against human and livestock tuberculosis. Overall, the designed vaccine 
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candidate demonstrated immunogenicity and safety features that warrant further experimental 
validation in vitro and in vivo. 

Keywords: tuberculosis; immuno-informatics; lipoproteins; TB-MEVA-1; multi-epitope vaccine 
candidate 

 

1. Introduction 

Tuberculosis (TB), caused by species of the Mycobacterium tuberculosis complex (MTBC), remains 
a major cause of ill health and one of the leading causes of death worldwide [1]. While TB in humans 
is caused principally by Mycobacterium tuberculosis sensu stricto, other highly related subspecies of the 
Mycobacterium tuberculosis complex, such as the bovine Mycobacterium bovis can also cause human TB 
[2]. It has been estimated that 1.4% of all human TB cases in the world and 2.8% of all cases in the 
African population are attributed to M. bovis [3]. Since bovine TB can spread from cattle to humans 
and from humans to cattle, there is an urgent need to adopt the One Health Approach to control the 
disease. M. bovis has one of the broadest host ranges of all known pathogens, affecting many groups 
of mammals [4]. Susceptible species include cattle, humans, non-human primates, goats, cats, dogs, 
pigs, buffalo, badgers, possums, deer, and bison [5]. TB is prevalent in all countries, affecting all age 
groups, though mostly adults in their productive years, leading to a significant social and economic 
impact [6]. According to the WHO, in 2023, an estimated 10.8 million people were affected by TB 
worldwide, a majority of whom were men (about 56%). In addition, a total of 1.25 million deaths 
were reported (including 161,000 people with HIV). Furthermore, 1.3 million cases were children [7], 
representing a significant number since TB in children and adolescents is often overlooked by health 
providers and is also difficult to diagnose and treat [8].  

TB is curable and preventable, and control measures have focused principally on early diagnosis 
and treatment of active TB (to stop infectiousness), and the prevention of active disease in exposed 
or known latently infected individuals [9]. It is estimated that up to 66 million lives were saved 
through TB diagnosis and treatment between 2000 and 2020 [7]. Currently approved TB diagnostic 
tests encompassing smear microscopy, microbiological cultures, and molecular methods all rely on 
sputum but suffer poor diagnostic accuracy [10]. In addition, treatment is focused on using a 
combination of antibiotics for periods of between six and 12 months [11]. However, the long periods 
needed for treatment raise concerns about compliance and increase the emergence and persistence of 
antimicrobial resistance [12]. In fact, anti-TB drug resistance remains the major public health threat 
to the progress made in TB care and control worldwide [12,13].  

To further compound the challenges faced by control measures, the Bacille Calmette-Guérin 
(BCG) vaccine, the only licensed vaccine against TB in children has been in use for over a century 
[14], and there have been considerable debates concerning its effectiveness in TB control [15]. It has 
been reported that while infant BCG is moderately effective in preventing severe, extrapulmonary 
forms of TB in young children [16], efficacy in preventing TB in adolescents and adults in multiple 
clinical trials has shown lots of variation, and the vaccine has been largely ineffective in controlling 
the global epidemic [17]. 

The achievement of WHO’s End TB ambitious strategic goal of ending the TB epidemic by 2035 
urgently requires novel, safe, and effective vaccines [18]. Multi-epitope vaccines (MEVs) represent an 
innovative strategy based on immunoinformatics methods to design more robust vaccines for 
infectious diseases with several advantages [19]. Compared to classical vaccine approaches, which 
have been largely empirical, reverse vaccinology has several advantages, including the selection of 
epitopes that can induce strong cellular and humoral immune responses simultaneously, the 
elimination of unwanted antigen components that could trigger either pathological immune reactions 
or adverse effects and the possibility to polarize the immune response through the introduction of 
specific agonist for pathogen recognition receptors [20]. Several MEVs have been designed for 
various diseases, including TB [21–23]. The development of a robust multi-epitope vaccine depends 
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primarily on the selection of appropriate candidate antigens and their immunodominant epitopes 
[24]. Bacterial lipoproteins play several functions, including nutrient uptake, signal transduction, 
virulence, adhesion, conjugation, and sporulation, and participate in antibiotic resistance and 
transport [25,26]. The development of immune responses against Mycobacterium tuberculosis 
lipoproteins could block vital physiological processes in the bacteria. This work focused on the 
deployment of immunoinformatics tools to design a novel MEV candidate for MTB based on selected 
lipoproteins reported to be implicated in pathogenesis and virulence. 

2. Results 

2.1. Protein Retrieval and Preliminary Characterization 

The sequences of 14 lipoproteins (P9WIF5, O53692, Q79FB3, P9WIB5, P9WJE1, P9WK61, 
P9WK65, P9WNF3, P9WK45, P9WG29, O53859, I6Y3P1, A5TZX4 and P9WGT7) previously reported 
to be involved in pathogenesis or virulence constituted the initial dataset [27,28]. Amongst the 
obtained sequences were proteins that have already been investigated as vaccine candidates, 
including ESAT-6-like protein (O53692) [29] and PE_PGRS33 (P9WIF5) [30]. The sequences of all the 
selected lipoproteins were downloaded from the UniProtKB database and used for preliminary 
characterization to down-select the antigens to be employed for epitope prediction and chimeric 
antigen design. SignalP 6.0 predicted the presence of signal peptides in nine of the selected proteins, 
while the TOPCONS server predicted signal peptides in 12 of the selected proteins. For TM domain 
prediction, only one protein (O53859) was predicted by consensus using TOPCONS to have 1 TM 
region. The DeepTMHMM server 1.0, on the other hand, predicted no TM domains in all the selected 
proteins. The DeepLocPro-1.0 server predicted six proteins to be localized in the extracellular space. 
Seven proteins were predicted to be localized in the cytoplasmic membrane, while one (P9WK65) 
was predicted to be localized on both the cell wall and cytoplasmic membrane. Meanwhile, on the 
TBpred server, most of the proteins were predicted to be integral membrane proteins (6). Also, some 
proteins were predicted to be attached to the membrane by a lipid anchor (4). In addition, others were 
predicted to be localized in the cytoplasm (2) or secreted (2) (Supplementary Table S1). Following 
these analyses, seven antigens (P9WK61, P9WK65, P9WNF3, P9WK45, I6Y3P1, A5TZX4, and 
P9WGT7) were predicted to have a signal peptide and be localized in the extracellular space by the 
DeepLocPro-1.0 server. They were then selected for epitope prediction analyses (Table 1). The 
Mycobacterium tuberculosis 50S ribosomal L7/L12 (Locus RL7_MYCTU), P9WHE3, which is 
reported to be a TLR4 agonist [31], was downloaded from the UniProt database to be used as a built-
in adjuvant. 

Table 1. Protein localization prediction. 

Protein 
Localization 

DeepLocPro-1.0 TBpred 
P9WK45 Cytoplasmic membrane Protein attached to membrane by lipid anchor 
P9WNF3 Cytoplasmic membrane Secreted protein 

P9WK65 
Cytoplasmic membrane and cell 
surface Protein attached to membrane by lipid anchor 

A5TZX4 Cytoplasmic membrane Integral membrane protein 
I6Y3P1 Cytoplasmic membrane Cytoplasmic protein 
P9WGT7 Cytoplasmic membrane Protein attached to membrane by lipid anchor 
P9WK61 Cytoplasmic membrane Protein attached to membrane by lipid anchor 

2.2. Protein Conservation in Other Mycobacterium Species 

A high degree of conservation for all the selected proteins in related species of the Myc bacterium 
genus (ranging from 30.9 – 100%) was observed based on the BLAST search done against the 
UniProtKB database and the BLASTp search on NCBI. For 3 of the selected proteins (I6Y3P1, A5TZX4, 
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and P9WNF3), no homologs were found in at least one of the target Mycobacterium species. The 
conservation of the proteins against their homologs in M. decipiens, M. leprae, M. lacus, M. gordonae, 
M. asiaticum, M. bovis, M. riyadhense, and M. pseudokansasii) was performed. The highest level of 
conservation was observed for the M. bovis, with 6 of the seven proteins showing 100% conservation 
and the last protein showing 99.8% conservation (Table 2). 

Table 2. Conservation of target proteins in selected Mycobacterium species. 

Protein 
Percentage Identity (%) 

M. 
decipiens 

M. leprae  M. lacus 
M. 
gordonae 

M. 
asiaticum 

M. bovis  
M. 
riyadhense

M. 
pseudokansasii 

P9WK45 91.5 68.1 81.0 70.6 72.5 100 77.5 81.8 
P9WNF3 86.0 Not found 83.3 77.2 75.0 100 65.8 75.0 
P9WK65 71.6 76.4 75.9 66.4 30.9 100 67.3 62.8 
A5TZX4 84.3 61.2 37.7 63.5 60.5 99.8 62.0 60.0 
I6Y3P1 83.1 Not found 85.6 79.9 79.7 100 85.3 79.1 
P9WGT7 91.1 77.6 85.1 81.5 80.5 100 84.9 82.5 
P9WK61 87.6 43.0 81.1 80.5 69.8 100 85.7 82.5 

2.3. Cytotoxic T Lymphocyte Epitope Prediction 

High-scoring CD8+ (9-mer) epitopes were predicted from all the selected antigens on the 
NetCTL 1.2 server using a threshold set at 1.0. From the predicted epitope sequences, sixteen CD8+ 
epitopes were selected to be incorporated into the chimera based on their antigenicity or their overlap 
with some of the HTL or LBL epitopes predicted (Table 3). 

Table 3. Predicted epitopes selected for the multi-epitope vaccine candidate design. 

Protein LBL CTL HTL 

I6Y3P1 GGLNSLPLPGTAGHGE TTFDLTLRR NDDRKDFVTSLQLLLTFPFPNFGIKQA 
 

A5TZX4 LKSGDTIGLKNSSAYP 
ATFDVTLSA 
WIATLTLEL 
KSGDTIGLK 

VRDISLRNWIATLTLEL 

P9WGT
7 

TYEIVCSKYPDSQVGT 
EGARGNDGTSAAAKNTPGSITY
N 
LQSTIGAGQSGLGDNG 

ATTGQASAK 
NLDGPTLAK 
SPAWNLPVV 

GNDDNVTGGGATTGQASAKV 

P9WK65 DVDVRANPLAAKGVCT 
YNDEQGVPFRVQGDNI 

SPTASDPAL  

P9WNF
3 

TYHVIAGQASPSRIDG 

TLQGADLTV 
KLNPDVNL
V 
FLAGCSSTK 
TLTSALSGK 

INVQAKPAAAASLAAIAIAFLAGCSST
K 

P9WK61 GSVVCTTAAGNVNIAI 
NVNGVTLG
Y 
GLSGCSSNK 

DGKDQNVTGSVVCTTAAGNV 
TTGSGETTTAAGTTASPGAASGPK 

P9WK45  
IPGLSLKTL 
TPRRHCRRI 

ETGDHQLAQAQLDRGSGNS 
GQNTIRISGKVSAQAVNQ 

Overlapping sequences are underlined. 
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2.4. Helper T Lymphocyte Epitope Prediction 

High-affinity MHC-II epitopes (based on IC50 scores) for the HLA-DR, HLA-DQ, and HLA-DP 
human alleles, predicted on the NetMHCII 2.3 web server, were selected as HTL epitopes. In total, 
eight high-affinity HTL epitopes were chosen to design the chimeric vaccine candidate. It was 
observed that some of the predicted HTL epitopes and linear B-cell epitopes had overlapping regions 
(Table 3). 

2.5. Linear B-Lymphocyte Epitopes Prediction 

Linear B-cell epitopes of varying residue lengths were predicted using two servers, and epitopes 
simultaneously predicted by both servers were selected for the final chimeric vaccine candidate. It 
was noticed that one of the predicted linear B-cell epitopes had a region of overlap with a predicted 
HTL epitope. A total of 9 linear B-epitopes were selected (Table 3). 

2.6. Antibody Class Prediction 

All the nine selected linear B-lymphocyte epitopes initially predicted to be antigenic and chosen 
for incorporation in the designed chimeric antigen were subjected to the antibody class prediction 
using the AbCPE server. All the epitopes were predicted to bind to IgG. None of the selected epitopes 
was predicted to bind to IgE or IgM, while two (from proteins A5TZX4 and P9WK65) were predicted 
to induce IgA. The prediction probabilities ranged from 66-100%, with 4 LBLs demonstrating a 100% 
probability of inducing antibody production (Table 4).  

Table 4. Predicted immunoglobulin (Ig) class induction by linear B-epitopes. 

Predicted Linear B-Cell Epitope Predicted epitope 
probability (%) 

Predicted Antibody Class 
IgG IgE IgA IgM 

GGLNSLPLPGTAGHGE 66 + - - - 
TYEIVCSKYPDSQVGT 66 + - - - 
LKSGDTIGLKNSSAYP 100 + - + - 
EGARGNDGTSAAAKNTPGSITYN 100 + - - - 
DVDVRANPLAAKGVCT 66 + - + - 
LQSTIGAGQSGLGDNG 100 + - - - 
TYHVIAGQASPSRIDG 66 + - - - 
YNDEQGVPFRVQGDNI 100 + - - - 
GSVVCTTAAGNVNIAI 66 + - - - 
+: Epitope/peptide binds to the respective antibody class. -: Epitope/peptide does not bind to the respective 
antibody class. 

2.7. Design of the Chimeric Multi-Epitope Vaccine Candidate 

Predicted epitopes containing overlapping amino acids were merged to form contiguous 
sequences (Table 1). As a consequence, the multi-epitope chimeric vaccine candidate was designed 
from 11 CTL epitopes, 7 HTL epitopes, and 9 linear B-lymphocyte epitopes in total. The chimera was 
designed by incorporating KK, AAY, and GPGPG linkers to merge the linear B-cell epitopes CD8+ T-
epitopes and CD4+ T-epitopes, respectively. In addition, the TLR4 (PDB ID: 4G8A) agonist, 
RL7_MYCTU from Mycobacterium tuberculosis, (RPFE_MYCTU) (accession number P9WHE3) was 
chosen as a built-in adjuvant and incorporated at the N-terminal of the designed vaccine candidate 
using the EAAAK linker to boost immune elicited responses. In addition, the universal Pan DR 
Epitope (PADRE) sequence (AKFVAAWTLKAAA), a potent stimulator of CD4+ responses, was 
added after the M. tuberculosis RpfE sequence. Furthermore, the TAT sequence (GRKKRRQRRRPQ) 
was added after the PADRE sequence using the GGGS linker. The 10xHis tag was incorporated at the 
carboxyl terminal of the designed chimeric antigen to aid in purification and identification 
procedures. Summarily, the chimeric vaccine candidate (designated TB-MEVA-1) comprised 683 
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amino acid residues that included 27 M. tuberculosis peptides (predicted epitopes), the immune 
potentiators (TLR4 agonist and PADRE) added, and different linkers (Figure 1). 

 

Figure 1. Schematic presentation of the final multi-epitope vaccine antigen, TB-MEV-1. The 683-amino 
acid long polypeptide sequence containing a built-in adjuvant (green) at the N-terminal linked with 
the multi-epitope sequence through an EAAAK linker (cyan) to the PADRE and TAT peptides which 
are linked through GGGS linkers. The CTL, HTL epitopes, and linear-B cell (high-scoring), epitopes 
predicted to be antigenic are merged by AAY (yellow), GPGPG (orange), and KK linkers (blue), 
respectively). A 10x-His tag is added at the C-terminal for purification and identification purposes, 
separated from the peptide epitopes using the HRV 3C Protease cleavage sequence. 

2.8. Physicochemical Properties and Solubility Analysis 

The designed chimeric antigen, composed of 683 amino acids, was predicted to have a molecular 
weight (MW) of 69.7 kDa and a theoretical pI of 9.36, indicating that the protein is basic. In addition, 
physicochemical properties analyses revealed the protein to be rich in Ala (15.2%) and Gly (12.7%). 
The protein had a predicted half-life of 30 hours, >20 hours, and >10 hours in mammalian 
reticulocytes in vitro, yeast, and E. coli in vivo, respectively. The instability index (II) was predicted to 
be 27.03. This score classifies the protein as stable since it is below the threshold score of 40.00. The 
GRand AVerage of hydropathicitY (GRAVY) was predicted to be −0.295, indicating that the protein 
can interact with water molecules. An aliphatic index of 76.31 was predicted, suggesting that the 
protein exhibits thermostability. The predicted solubility score was 0.4811 (slightly below the 0.5 
threshold) on the NetSolP 1.0 server and 0.4218 on the DeepSoluE server, predicting the protein to 
only be marginally soluble upon expression in bacteria (Table 5). 

Table 5. The physicochemical properties of the designed chimeric vaccine. 

Property Measurement 
Number of Amino Acids  683 
Molecular Weight  69.7kDa 
Formula C3060H4917N885O959S8 
Theoretical pI  9.36 
Instability Index  27.03 
Aliphatic Index (AI)  -0.295 
Grand Average of Hydropathicity (GRAVY)  76.31 
Solubility on expression (DeepSoluE) 0.4218 
Solubility on expression (NetSolP 1.0) 0.4811 

2.9. Secondary Structure and Intrinsic Disorder Prediction 

The final chimeric protein was predicted to be composed of 27% alpha helix, 13% beta-strand, 
and 58% coil (Figure 2A). Regarding solvent accessibility, 59% of amino acid residues were predicted 
as being exposed, 16% as medium-exposed, and 23% were predicted as being buried. A total of 217 
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amino acid residues (31%) were predicted to be located in intrinsically disordered regions. (Figure 
2B). Figure 2C shows the pictorial representation of the secondary structure by the color of the 
designed vaccine candidate. 

 
Figure 2. Graphical representation of secondary structure features of the final subunit vaccine 
sequence. (A) The protein is predicted to comprise alpha-helices (28.0%), beta strands (7.0%), and coils 
(65.0%), and (B) 20% of positions are predicted to be in intrinsically disordered regions as predicted 
by DISOPRED3.  (C). The vaccine candidate 3D structure shows the different secondary structure 
elements with the helices (cyan), coils (red), and strands (magenta). 

2.10. Antigenicity, Allergenicity, and Toxigenicity Prediction 

The predicted antigenicity score of the final sequence on the VaxiJen 2.0 server was 1.1314 
(bacteria model with a threshold of 0.4). The antigenicity score on the ANTIGENpro server was 
0.9218. In addition, the Vaxi-DL server predicted the designed chimera to be a vaccine candidate with 
a 96.66% probability. The results indicate that the generated protein is antigenic. The AllerTOP v.2 
and AllergenFP servers predicted the protein to be non-allergenic. While the ToxinPred and ToxDL 
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servers predicted TB-MEVA-1 did not contain any toxic peptides, with a score of 0.0001 predicted on 
the ToxDL server (Table 6). 

Table 6. The antigenicity, allergenicity, and toxigenicity of the designed vaccine candidate. 

Property Measurement Remark 
Antigenicity (VaxiJen v2.0)  1.1314 Antigenic 
Antigenicity (ANTIGENpro)  0.9218 Antigenic 
Antigenicity (VaxiDL) 96.66% Antigenic 
Allergenicity (AllerTOP v2.0)  Probable non-allergen Probable non-allergen 
Allergenicity (AllergenFP 2.0)  Probable non-allergen Probable non-allergen 
Toxicity (ToxinPred)  Non-toxin Non-toxigenic 
Toxicity (ToxDL) 0.0001 Non-toxigenic 

2.11. IFN-γ-Inducing Epitope Prediction 

Of the 122 potential IFN-γ inducing epitopes (15-mer) predicted for the built-in adjuvant, 62 
scored above the epitope prediction threshold. Meanwhile, of the 486 potential epitopes predicted for 
the main vaccine sequence, a total of 86 IFN-γ inducing epitopes scored above the default threshold. 
The number of IFN-inducing epitopes predicted correlated with the simulated levels of IFN-γ 
induction following injection with the chimeric vaccine by immune simulation on the C-ImmSim 
server (Figure 3).  

 

Figure 3. Immune simulation of the cytokine profile induced by three injections of TB-MEVA-1 given 
28 days apart. The main plot shows different cytokine levels after the three injections. The insert plot 
shows the IL-2 level and the Simpson index, D indicated by the blue line. D is a measure of diversity. 
An increase in D with time indicates the emergence of different epitope-specific dominant clones of 
T-cells. The smaller the D value, the lower the diversity. 
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2.12. Prediction of Epitopes for Mouse MHC II Alleles 

From the 669 9-mer epitopes that could be derived from the antigen for each allele, 168 peptides 
capable of binding to six mouse MHC II alleles were predicted for TB-MEV-1 with the H-2-IAb allele 
having the highest number of epitopes, and the H-2-IEk allele having no binding epitopes (Table 7). 

Table 7. Number of predicted peptides binding to mouse H2 class II alleles. 

Allele H-2-IAb H-2-IAd H-2-IAk H-2-IAs H-2-IAu H-2-IEd H-2-IEk 
Number of 
epitopes 

78 32 9 22 24 3 0 

2.13. Prediction, Refinement, and Validation of Modeled Tertiary Structure 

AlphaFold2 was used to predict the 3D structure of the designed multi-epitope vaccine 
candidate on the ColabFold interface (Figure 4A). Refinement of the designed vaccine candidate 3D 
structure generated initially on the ModRefiner server, followed by the GalaxyRefine server yielded 
5 models. From the quality scores model of the refined models, “model 4”, with parameters GDT-HA 
(0.8679), RMSD (0.682), and MolProbity (1.072) was selected as the final 3D model for further 
characterization (Figure 4B). In addition, the model had a clash score of 1.6, a poor rotamers score of 
0.0, and a Ramachandran plot score of 97.1%. The Ramachandran plot analysis of the selected model 
protein predicted 97.06% of residues to be located in favored regions. This percentage is very similar 
to the score obtained from the GalaxyRefine analysis. In addition, 2.1% of residues were predicted to 
be located in allowed regions, while only 0.2% were predicted in disallowed regions (Figure 4C). 
Following refinement, the 3D model quality was tested on the ProSA-web and ERRAT servers. The 
selected model had a Z-score of −4.92 on the ProSA webserver (Figure 4D) and an overall quality 
factor of 94.444 on the ERRAT server (Figure not shown). The ProSA-web score was outside the 
typical score range for native proteins of similar size. 
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Figure 4. Protein modeling, refinement, and validation. (A) The initial 3D model of the multi-epitope 
vaccine candidate predicted on the ColabFold server. (B) Superimposition of the refined 3D structure 
(colored) on the initial ‘crude model’ (gray) by the GalaxyRefine server. Validation of the refined 
model showing (C) Ramachandran plot analysis with 97.1% of residues in favoured regions (A, B, L), 
2.1% in allowed regions (a, b, l, p and ~a, ~b, ~l, ~p), and 0.2% (red circles) of protein residues in 
favored, allowed, and disallowed (outlier) regions respectively, and (D) ProSA-web, giving a Z-score 
of -4.92. 

2.14. Discontinuous B-Cell Epitope Prediction 

A total of 371 residues (53.1%) were predicted by the ElliPro server to be found in 25 
conformational B-cell epitopes, with epitope prediction scores in the range of 0.517 to 0.983. The 
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predicted discontinuous epitope residues ranged from 3 to 68 amino acid residues (Supplementary 
Table S2). 

2.15. Protein-Protein Docking Between the Designed Vaccine Candidate and TLR4 Receptor Dimer 

An appropriate immune response relies on well-coordinated recognition and interaction 
between antigenic determinants and specific immune receptors. Several studies have reported the 
involvement of toll-like receptor-4 (TLR-4) in protective immunity against M. tuberculosis [32,33]. 
Molecular docking investigated the binding interaction between the refined and validated 3D of the 
chimeric vaccine candidate and TLR4 after a protein-protein interaction pocket was predicted in the 
designed chimera (Figure 5A). Thirty models were generated, displayed, and ranked according to 
the cluster size generated by the ClusPro 2.0 server, the docking complex with the largest cluster size 
was selected. The TB-MEVA-1-TLR4 complex with the largest cluster size exhibited a center binding 
score of −1388.4, with the lowest energy identified at −1497.4 (Figure 5B). For further characterization 
of vaccine-receptor interactions, the selected model of the vaccine-TLR4 complex was analyzed for 
binding affinity using PrODIGY and the interactions at the interface using PDBsum. The relative 
binding free energy (ΔG) of the vaccine-TLR4 complex was predicted to be −15.3 Kcal/mol while the 
predicted Kd was 1.7e-11. Consistently, the number of contacts made at the interface (IC) per property 
(ICs charged-charged:16, ICs charged-polar:17, ICs charged-apolar:35, ICs polar-polar: 6, ICs apolar-
apolar: 30. For the vaccine-TLR4 complex, the PDBsum server predicted that 22 hydrogen bonds, one 
salt bridge and 214 non-bonded contacts were formed between 38 residues from TLR4 and 32 
residues from the chimeric vaccine candidate (Figure 5C). Above all, the vaccine candidate exhibited 
favorable interactions with TLR4. 

 

Figure 5. Protein-protein interaction pocket prediction and molecular docking of vaccine candidate 
with the TLR4 receptor. (A) The largest predicted PPI pocket located at the interface of the designed 
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chimeric vaccine candidate (red), with a surface area of 29113.275 Å2 and a surface volume of 
129803.080 Å3. (B) The docked complex of the designed vaccine candidate (red) with the Toll-like 
receptor 4 chain (green). (C) Interaction network of the vaccine candidate and TLR4, respectively; 
hydrogen bonding interactions are shown in blue. Non-bonded interactions and salt bridges are 
shown in orange. The positive, negative, neutral, aliphatic, and aromatic charged residues are shown 
in blue, red, green, grey, and purple colors, respectively. 

2.16. Normal Mode Analyses 

The normal mode analysis (NMA) was performed to investigate the molecular stability and 
functional motions of the vaccine candidate-TLR4 complex (Figure 6). The deformability graph 
showed peak points that represent the main chain residues deformed regions in the vaccine 
candidate-TLR4 complex. The locations with hinges are regions with high deformability (Figure 6A). 
The B-factor plot demonstrates the association between the NMA mobility and TB-MEVA-1-TLR4 
complex, representing the average RMSD values of the docked complex (Figure 6B). B-factor values 
calculate the uncertainty of each atom. The calculated eigenvalue of the vaccine candidate-TLR4 
complex was 2.000137-e07, reflecting the motion stiffness related to each normal mode (Figure 6C). 
The eigenvalue is an estimate of the energy required to deform the structure. Each normal mode of 
the complex is represented by an individual (purple) and cumulative (green) variance in the variance 
bar. The variance and eigenvalue showed a negative correlation (Figure 6D). In addition, the 
interacting motions between the vaccine candidate and the TLR4 in the complex are represented by 
a covariance matrix. The interrelated motions among different pairs of residues were specified by 
correlated (red), uncorrelated (white), and anti-correlated (blue) atomic motions in the vaccine 
candidate-TLR4 complex (Figure 6E). The elastic network map, which represents atom pairs 
connected by spring in the vaccine candidate-TLR4 complex, was also generated. Each dot in the 
graph denotes a spring connecting the corresponding pair of atoms. The stiffness of the dots is 
indicated by their color; darker greys denote stiffer parts, whereas the lighter dots denote more 
flexible sections (Figure 6F). All the data from the normal mode analyses further indicate the 
favourable interaction and stability in the vaccine candidate-TLR4 complex. 
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Figure 6. The molecular dynamics simulation of the vaccine candidate-TLR4 docked complex. (A) 
The main-chain deformability of the TBMEVA-1-TLR4 complex. (B) The B-factor quantifies the 
uncertainty of each atom. (C) The eigenvalue specifies the motion stiffness linked to each normal 
mode. (D) The variance map is associated with individual (red) and cumulative (green) variances. (E) 
The covariance graph between pairs of residues shows correlated (red), uncorrelated (white), or anti-
correlated (blue) mobility of the pairs. (F) The elastic network model describes the pairs of atoms 
connected by springs, and the darker greys indicate the stiffness of the springs. 

2.17. Immune Simulation for Vaccine Candidate Immunogenicity Analyses 

Immune simulation predictions demonstrated an expansion in the elicited secondary responses. 
Theoretically, the observed trend portrays the operational development of immunological responses 
(Figure 7A). Elevated IgM levels characterized the immune response generated to the prime dose. In 
addition, significant increases in the B-cells population together with corresponding increases in IgM, 
total IgG + IgM, IgG1, and IgG2 antibody levels for the two vaccination booster doses (Figure 7A,B). 
The observed pattern suggests the development of immune memory, as depicted in the development 
of a sustained population of memory B-cells (Figure 7C). Similarly, the helper T-cell (TH) and 
cytotoxic T-cell (TC) populations were also predicted to elicit more potent responses to the antigen 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2025 doi:10.20944/preprints202501.0032.v1

https://doi.org/10.20944/preprints202501.0032.v1


 14 

 

following inoculation of the booster doses. These responses led to sustained increases in the active T-
cell populations and the development of immunological memory (Figure 7D–F). Furthermore, 
sustained increases in dendritic cell, macrophage, and NK cell populations were observed during the 
immunization period (Figure 7G–I). In summary, the designed vaccine candidate elicited both 
cellular and humoral immune responses, which have been reported to be critical in protection against 
tuberculosis.  

 

Figure 7. In silico simulation of immune response induced by the designed vaccine candidate: (A) 
Antigen and immunoglobulins, (B) B cell population per state, (C) B cell population, (D) TH cell 
population, (E) TH cell population per state, (F) TC cell population per state, (G) MA population per 
state, (H) DC population per state, and (I) NK cell population. 

2.18. Codon Optimization and In-Silico Cloning 

The gene coding for the designed vaccine candidate was codon-optimized using the Java Codon 
Adaptation Tool (JCat) to ensure high protein expression levels in E. coli. The gene sequence 
contained 2,079 nucleotides in total, with a Codon Adaptation Index (CAI) of 1.0 and a mean GC 
content of 50.7%. These results suggest the possibility of suitable expression in the E. coli bacterial 
host. In general, a GC content in the range of 30% to 70% is preferred for optimal protein expression 
[34]. Lastly, the adapted codon sequence was inserted in the appropriate sites of the pET30a (+) vector 
using SnapGene software to generate a recombinant plasmid in silico (Figure 8). 
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Figure 8. In silico restriction cloning of the final vaccine sequence into the pET30a (+) expression vector 
where the red part represents the gene coding for the vaccine and the black circle represents the vector 
backbone. The His-tag is located at the Carboxy-terminal end. 

3. Discussion 

Vaccines remain one of the most valuable and reliable tools in the current End TB Strategy target 
of a 90% reduction in TB deaths and an 80% reduction in TB incidence by 2030 [35]. Considering the 
monetized value of health gains, modeling studies have estimated that the introduction of an 
adolescent/adult vaccine could generate $283 to 474 billion in economic benefits by 2050 [36]. 
However, at the moment, the only TB vaccine, BCG, has been in use for over 100 years, and several 
reports have indicated that BCG has only moderate effectiveness in preventing severe, 
extrapulmonary forms of TB in young children [16], shows lots of variation in efficacy to prevent TB 
in adolescents and adults [17]. This has resulted in BCG being largely ineffective in controlling the 
global TB epidemic [16]. In the search for potential alternatives to BCG, several vaccine candidates 
(both single antigens and antigen cocktails) have been evaluated in clinical trials [37]. These vaccines 
(which can be divided into four categories: viral vector, protein/adjuvant, inactivated, and attenuated 
live vaccines) include ID93/GLA-SE (consisting of Rv2608, Rv1813, ESXV, and ESXW), M72 
(consisting Mtb39A and Mtb32A) GamTBvac (a fusion between Ag85a and ESAT6-CFP10), 
AEC/BC02, Ad5 Ag85A, and others [38]. However, none of these is yet to be licensed by the WHO. 
Multi-epitope vaccine candidates offer numerous advantages including the generation of a targeted 
immune response and the elimination or mitigation of potential unwanted (allergenic or tolerigenic) 
responses [39].  Several multi-epitope vaccine candidates have been designed for different infectious 
diseases including onchocerciasis [40], schistosomiasis [20], malaria [41], and others.  
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In addition, chimeric antigens have been designed for tuberculosis, with some of them evaluated 
in animal models [21,38]. The design of TB-MEVA-1 takes a unique approach to targeting protein 
antigens exposed on the surface of the bacteria and plays roles in pathogenicity and virulence. 
Extracellularly or cell surface localized proteins, due to their increased accessibility to the immune 
system, have been reported to be good vaccine candidates [42]. Since the selected lipoprotein antigens 
used for TB-MEVA-1 design are implicated in virulence and pathogenicity, blocking their activities 
could help in both reducing the infectivity of the pathogens and also reducing disease severity in 
persons who are already infected. Previously, the Shigella virulence antigen VirG  (also known as 
IcsA) has been characterized as a vaccine candidate and provoked vigorous immune responses that 
included antibodies capable of blocking bacterial adhesion and invasion and provided high levels of 
protection against S. flexneri 2a or S. sonnei in mice models [43]. In addition, BauA and OmpA, which 
are proteins involved in the pathogenicity of A. baumannii, have been targeted as vaccine candidates 
and showed significant decreases in bacterial loads in organs of vaccinated mice [44].  

Importantly, the selected antigens used in designing the chimeric vaccine candidate also 
exhibited the potential for cross-protection with high levels of conservation observed in homologous 
proteins in Mycobacterium species that affect humans and livestock. The current TB vaccine has been 
reported to promote immunity against other non-tuberculosis mycobacteria, such as Mycobacterium 
leprae, Mycobacterium ulcerans, Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium 
abscessus [45]. In addition, recent studies have reported that BCG can also be used to protect livestock 
against M. bovis, with a 74% reduction in bovine TB transmission and a substantial reduction in 
lesions of vaccinated animals [46]. A high level of conservation observed in M. bovis (Table 2), the 
causative agent for bovine TB which also affects humans [47], implies that the designed vaccine 
candidate can be a useful tool in the context of the current one-health approach to prevent human 
and livestock tuberculosis [48]. 

The roles of both B- and T-cells have been reported in protective immunity to tuberculosis with 
the involvement of different immune mechanisms [49–51]. The selected linear B-epitopes were 
predicted to potentially elicit both IgG and IgA responses, which have been reported to be important 
in immune protective mechanisms against TB [52,53]. Besides adaptive immune responses, innate 
immune responses are also vital in protective immune responses against TB, with the important role 
of TLRs also reported [54]. Studies in mice have suggested the vital protective role TLR4 plays a role 
in host defense against lung infection by M. tuberculosis, with splenocytes from infected TLR4 mutant 
mice demonstrating a reduced capacity to produce the protective type 1 cytokine IFN-γ upon 
antigen-specific stimulation [55]. Given the role of TLR4 in generating protective immune responses, 
a TLR4 agonist (M. tuberculosis 50S ribosomal protein L7/L12) was added at the N-terminal of the 
designed chimeric as a built-in adjuvant. The adjuvant has been reported to potentiate immune 
responses through DC maturation and pro-inflammatory cytokine production. Therefore, DCs 
activated by the vaccine candidate could activate naïve T cells, effectively polarize CD4+ and CD8+ 
T cells to secrete IFN-gamma and induce T cell-mediated-cytotoxicity [31]. These additional immune-
stimulating effects of the adjuvant could be a valuable addition to the immune responses elicited by 
the selected epitopes. 

Predicted B-cell and T-cell epitopes in TB-MEVA-1 were fused using specialized linkers to 
design a multi-epitope chimeric vaccine candidate. Linker sequences are a key component of epitope-
based vaccine design and have been used to boost immune responses by minimizing the formation 
of neo-epitopes, thereby eliminating junctional immunogenicity and improving epitope processing 
and presentation [56,57]. In addition to linkers between the different epitopes (AAY, GPGPG, KK, 
and GGGS) the EAAAK linker was added between the built-in adjuvant sequence and the fused 
epitopes. The EAAAK linker has been reported to augment the expression levels of bioactivity 
bifunctional proteins [58]. Moreover, the TAT sequence which is a cell-penetrating peptide (CPP), 
and the Pan DR epitope, PADRE (a universal synthetic 13-mer peptide that activates CD4+ T cells 
[59]) were added to the design to further potentiate the immune response elicited by TB-MEVA-1. 
Cell-penetrating peptides have been successfully used in the delivery of a large variety of cargoes, 
from small particles to proteins, peptides, and nucleic acids [60]. They have been reported to be 
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important in enhancing peptide vaccine accumulation and persistence in lymph nodes, enhancing 
immunogenicity [61]. [59], on the other hand, is a potent stimulator of CD4+ responses, which has 
been reported to be critical for the control of M. tuberculosis infection [62]. Immuno-informatics 
analyses of the generated TB-MEVA-1 revealed the presence of large numbers of IFN-γ epitopes 
which have been reported by multiple studies to play an essential role in host defense against 
infection with intracellular pathogens, including M. tuberculosis [63]. Further analyses of the designed 
chimeric antigen using different servers revealed that it was not only antigenic but also non-allergenic 
and non-toxigenic. These characterizations are important since efficacy and safety are key 
components of the vaccine research and development pipeline [64].   

The designed chimeric antigen was predicted to have a molecular weight of 69.7 kDa. The 
predicted solubility score suggests that the protein may only be slightly soluble upon expression in 
E. coli. E. coli is a common host for recombinant protein expression, and the soluble expression and 
purification of protein is a vital step in many biochemical and functional investigations [65]. The 
predicted theoretical pI of 9.36 indicates that the designed protein is basic. The predicted instability 
index of 27.03 and the estimated half-life upon expression in different host organisms suggest that 
the vaccine candidate will be stable upon expression. Moreover, the high aliphatic index predicted 
for the designed antigen suggests the thermostability of the protein [66] , which indicates its 
suitability for use in low-resource settings.  

Information on the secondary and tertiary structural features of the target protein is essential in 
vaccine design [67]. Secondary structure analyses predicted the vaccine candidate to consist 
predominantly of coils (58%). In addition, 31% of amino acid residues were predicted to be located 
in intrinsically disordered regions (IDRs). IDRs and alpha-helical coiled coils are reported to consist 
important forms of “structural antigens” with important biomedical applications, including vaccine 
delivery systems and drug development [68]. In addition, IDRs have been reported to be a major 
component of several vaccine candidates, including the circumsporozoite protein (CSP) used in RTS,S 
against malaria [69]. The Ramachandran plot following 3D structure and refinement revealed that 
most of the residues are found in the favoured and allowed regions (99.0%), with very few residues 
in the outlier region (Figure 4); this indicates that the quality of the overall model is satisfactory. 

Since a TLR4 agonist was included in the designed chimera, protein-protein docking analysis 
and normal mode analyses investigated the potential interaction between TLR4 and TB-MEVA-1. 
Obtained findings reveal the presence of a large pocket in TB-MEVA-1 and favourable interactions 
between TLR4 with the presence of different bond types (Figure 5). Since the docking and NMA 
investigations predicted a stable interaction, the chimeric antigen is expected to interact with the 
TLR4 on professional antigen-presenting cells like dendritic cells to stimulate a protective immune 
response. This possibility was also observed in the immune simulation analyses which predicted an 
overall increase in the elicited immune responses following the injection with primer and booster 
doses. The immune simulation analyses also demonstrated the development of memory B-cells and 
T-cells which were sustained for several months. These memory cell pools are vital to the rapid 
clearance of the pathogen upon exposure of the host to M. tuberculosis [49,70].  

All of the observations reported here are generated from computational studies. The validation 
of this data through both in-vitro and in-vivo investigations remains a dire necessity. The immediate 
next step of this project will involve the expression of TB-MEVA-1 in a suitable host for serological 
analyses using samples from infected persons or exposed to assess antibody recognition since the 
vital role of antibodies has been reported in the action of the current BCG vaccine [71]. Further 
investigations could include immunogenicity and protective studies in mice models, which will 
provide valuable information on the potential efficacy of the designed vaccine candidate in clinical 
trials. With the recent development of humanized mice models (some of which have already been 
tested in tuberculosis vaccine studies [72]), it is expected that results from studies generated in these 
mice would be more comparable to human studies. Regarding TB-MEVA-1, its potential to elicit an 
immune response in preclinical studies is demonstrated by its ability to bind to mouse alleles (Table 
4). Results generated from both in-vitro and in-vivo studies of TB-MEVA-1 will provide the requisite 
pilot data to decide whether the vaccine candidate can be further evaluated in clinical trials. 
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4. Materials and Methods 

The methodology used in this study comprises the following parts: (1) Lipoprotein selection and 
preliminary analyses; (2) T-cell and B-cell epitopes prediction from selected proteins; (3) Antigenicity 
prediction for selected epitopes; (4) design of a multi-epitope chimeric antigen using appropriate 
linkers; (5) preliminary characterization of the designed chimera; (6) 3D structure prediction, 
refinement and validation of the designed vaccine candidate; (7) molecular docking with TLR-4 and 
normal mode analysis; (8) immune simulation prediction and (9) codon optimization and in-silico 
cloning for bacterial expression. Figure 9 summarizes the methodology adopted in this study in a 
flowchart. 

 

Figure 9. Schematic presentation of the final multi-epitope vaccine antigen, TB-MEV-1. The 683-amino 
acid long polypeptide sequence containing a built-in adjuvant (green) at the N-terminal linked with 
the multi-epitope sequence through an EAAAK linker (cyan) to the PADRE and TAT peptides which 
are linked through GGGS linkers. The CTL, HTL epitopes, and linear-B cell (high-scoring) epitopes 
predicted to be antigenic are merged by AAY (yellow), GPGPG (orange), and KK linkers (blue), 
respectively). A 10x-His tag is added at the C-terminal for purification and identification purposes, 
separated from the peptide epitopes using the HRV 3C Protease cleavage sequence. 
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4.1. Protein Sequence Retrieval and Preliminary Analyses 

The sequences of Mycobacterium 14 lipoproteins (accession numbers: P9WIF5, O53692, Q79FB3, 
P9WIB5, P9WJE1, P9WK61, P9WK65, P9WNF3, P9WK45, P9WG29, O53859, I6Y3P1, A5TZX4, and 
P9WGT7)  previously reported to be involved in pathogenicity and virulence [27,28] were retrieved 
from the UniProtKB database (https://www.uniprot.org/) in the Fasta format unto a .txt file. 
Preliminary characterization of the sequences included analyses for: 1. Localization (using the 
DeepLocPro 1.0 server; https://services.healthtech.dtu.dk/services/DeepLocPro-1.0/ and the TBpred 
server; https://webs.iiitd.edu.in/raghava/tbpred); 2. Signal peptide presence (using the SignalP 6.0; 
https://services.healthtech.dtu.dk/services/SignalP-6.0/ and TOPCONS; 
https://topcons.cbr.su.se/servers); and 3. The presence of transmembrane domains (using the 
DeepTMHMM 1.0; https://services.healthtech.dtu.dk/services/DeepTMHMM-1.0/ and TOPCONS; 
https://topcons.cbr.su.se/servers). All proteins predicted to be localized in the extracellular space 
were selected for further analyses. 

4.2. Protein Conservation Analyses 

A BLAST search was performed on the UniProtKB database (https://www.uniprot.org/) to 
investigate the level of the conservation of each of the selected proteins amongst other species of the 
Mycobacterium genus. This is because a high degree of conservation across the genus suggests the 
possibility of cross-protection [73]. The UniProtKB is a central database for storing and 
interconnecting information from large and disparate sources. It is the most comprehensive catalog 
of protein sequence and functional annotation [74]. The degree of relatedness between the selected 
proteins and their homologs in M. decipiens (human), M. leprae (human), M. lacus (human), M. gordonae 
(human), M. asiaticum (primates), M. bovis (human, cattle and other livestock), M. riyadhense (humans), and. 
pseudokansasii (humans) was investigated. 

4.3. Linear B-Cell Epitope Prediction 

The sequences of the selected proteins were subjected to linear B-lymphocyte epitope (LBE) 
prediction using two servers: firstly, the BepiPred-3.0 webserver 
(https://services.healthtech.dtu.dk/service.php?BepiPred-3.0) and then the LBtope server 
(https://webs.iiitd.edu.in/raghava/lbtope/index.php). The BepiPred server is a sequence-based tool, 
that uses numerical representations from protein language model (LM) embeddings, to vastly 
improve prediction accuracy for linear and conformational B-cell epitope prediction on several 
independent test sets [75]. Employing the default server threshold of 0.1512, linear B-epitopes of 
various lengths for the selected lipoproteins were predicted. LBtope on the other hand, is an epitope 
prediction model that uses a larger dataset of validated B-cell epitopes and non-epitopes (12063 
epitopes and 20589 non-epitopes obtained from the IEDB database) for epitope prediction. The 
LBtope server, which is based on SVM, is reported to have a predictive accuracy that can go up 
to ~ 81% [76]. The server assigns scores (ranging from 0 – 100%) to each of the predicted epitopes with 
a higher score indicating a higher probability of being an epitope. 

4.4. T-Cell Epitope Prediction 

The NetMHCII 2.3 server (http://www.cbs.dtu.dk/services/NetMHCII/) whose functioning is 
based on artificial neural networks (ANNs) was used to predict 15-mer helper T-lymphocyte (HTL) 
epitopes for human alleles (HLA-DR, HLA-DQ, and HLA-DP) using the default server parameter for 
strong binders (SB) and weak binders (WB) [77]. Epitopes for HLA-DR, HLA-DQ, and HLA-DP 
alleles were predicted for all selected proteins, and only the highly promiscuous epitopes (capable of 
binding to several alleles) classified as strong binders were selected for chimera for design. 

The NetCTL 1.2 server (http://www.cbs.dtu.dk/services/NetCTL/) was used for cytotoxic T-
lymphocyte (CTL) epitope prediction. The server works on an algorithm that implements epitope 
prediction by integrating class I MHC binding, proteasomal cleavage, and TAP (Transporter 
Associated with Antigen Processing) transport efficiency and predicts CTL epitopes for 12 MHC class 
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I supertypes [78]. For this study, the epitopes restricted to the A2, A3, and B7 supertypes were 
predicted to achieve approximately 90% coverage of phenotypic frequency in the vaccinated 
population [57]. Though the default threshold for CTL epitope prediction is 0.75, a threshold of 1.0 
was used (to improve the epitope specificity). Predicted epitopes were sorted by their combined 
scores. 

4.5. Epitope Antigenicity Prediction 

To design a multi-epitope chimeric vaccine candidate capable of stimulating a robust protective 
immune response, the VaxiJen v2.0 server (http://www.ddg-
pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) was used to assess the antigenicity of all the predicted 
epitopes. This server uses an alignment-independent approach based on the physicochemical 
characteristics of peptides and proteins to classify antigens. The server algorithm functions based on 
the autocross-covariance (ACC) transformation of protein sequences into uniform vectors of 
principal amino acid properties to predict the antigenicity of proteins from bacteria, fungi, parasites, 
viruses, and tumors [79]. The default threshold for the bacteria model (0.4) was used to evaluate 
epitope antigenicity, and only those with scores above 0.5 were selected to constitute the chimeric 
antigen. Figure 9 provides a summary flowchart showing the steps involved in this study.  

4.6. Multi-Epitope Vaccine Candidate Design 

The selected high-scoring CTL epitopes (with combined scores above the 1.0 threshold), 
promiscuous strong-binding HTL epitopes, and selected linear-B cell epitopes predicted to be 
antigenic were merged using AAY, GPGPG, and KK linkers, respectively. The EAAAK linker 
sequence was used to include the Mycobacterium tuberculosis 50S ribosomal protein L7/L12 (UniProt 
ID: P9WHE3), a TLR4 agonist at the N-terminal of the designed chimeric antigen to serve as a built-
in adjuvant [31]. The EAAAK linker has been reported to improve protein expression, stability, and 
biological activity [80]. GPGPG linkers have been used to minimize the creation of junctional epitopes 
in epitope-based vaccines – facilitating antigen processing and presentation [56]. The pan HLA-DR 
epitope (PADRE) and cell-penetrating TAT peptide sequences were also embedded between the 
adjuvant and epitopes using the GGGS linker. The linker is used to ensure flexibility and ensure 
effective separation of individual epitopes [81]. Similarly, for the linear B-epitopes, KK linkers which 
have been reported to maintain the independent immune reactivity of each epitope were used [82]. 
In summary, all the incorporated linkers play pivotal roles in providing an extended conformation 
(flexibility), assisting folding, separating protein domains, and generally making the recombinant 
multi-epitope vaccine structure more stable [83]. Finally, a 10xHis-tag was added at the C-terminal 
of the multi-epitope vaccine candidate for application in identification and purification procedures 
after the HRV 3C Protease cleavage sequence. 

4.7. Physicochemical Properties and Solubility Prediction 

The physicochemical properties of the designed multi-epitope chimeric antigen were predicted 
using the ProtParam webserver (https://web.expasy.org/protparam/). The server generates 
information on the molecular weight, theoretical pI, aliphatic index, and predicted half-lives of the 
protein of interest upon expression in Escherichia coli, yeast, and mammal cells. In addition, 
information on the instability index, amino acid, and atomic composition is predicted [84]. Since E. 
coli is a common first choice for protein expression [85], chimera solubility upon expression in bacteria 
was also predicted using the NetSolP - 1.0 server 
(https://services.healthtech.dtu.dk/services/NetSolP-1.0/). The NetSolP - 1.0 server is used to predict 
the solubility and usability of purification of proteins expressed in Escherichia coli directly from the 
sequence. The working algorithm deployed in NetSolP is based on deep-learning protein language 
models and the server achieves state-of-the-art performance and improves extrapolation across 
datasets [86]. In addition, the DeepSoluE (http://lab.malab.cn/~wangchao/softs/DeepSoluE/), which 
predicts protein solubility using a long-short-term memory (LSTM) network with hybrid features 
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composed of physicochemical patterns and distributed representation of amino acids was also used 
to predict solubility of the vaccine candidate upon expression in bacteria [87].  

4.8. Antigenicity, Immunogenicity, Allergenicity, and Toxigenicity prediction 

The VaxiJen v2.0 (previously described) and the ANTIGENpro server from Scratch Proteomic 
Predictor (https://scratch.proteomics.ics.uci.edu/) were used to predict the antigenicity of the 
designed multi-epitope chimeric antigen. The ANTIGENpro server, like VaxiJen v2.0, is a sequence-
based, alignment-free prediction tool trained using a large, non-redundant dataset primarily 
obtained from protein microarray data analysis. The server achieved an estimated accuracy of 76% 
using the combined dataset in cross-validation experiments [88]. In addition, the Vaxi-DL server 
(https://vac.kamalrawal.in/vaxidl/) was used to further assess the potential of the designed candidate 
to stimulate protective immune responses. The Vaxi-DL server uses Deep Learning (DL) algorithms 
to classify given protein sequences into vaccine candidates and non-vaccine candidates [89]. 

The AllergenFP v1.0 (https://ddg-pharmfac.net/AllergenFP/) and AllerTop v.2.0 
(https://www.ddg-pharmfac.net/AllerTOP/) servers were used to predict the potential of the 
designed multi-epitope antigen to stimulate allergenic responses. The AllergenFP server uses an 
alignment-independent descriptor-based fingerprint approach to classify proteins based on their 
allergenicity by implementing a four-step process. The AllergenFP server achieved an accuracy of 
88% with a Matthews correlation coefficient of 0.759 when tested using a dataset of 2427 known 
allergens and 2427 non-allergens  [90]. The AllerTop v2.0 server operates using amino acid E-
descriptors, auto-, and cross-covariance transformation, and several machine learning methods with 
the k nearest neighbours (kNN) performing the best (85.3% accuracy at 5-fold cross-validation) [91].  

Meanwhile, the ToxinPred3 (https://webs.iiitd.edu.in/raghava/toxinpred3/) and ToxDL 
(http://www.csbio.sjtu.edu.cn/bioinf/ToxDL/) servers were used to predict the presence of potential 
toxic peptides in the designed chimeric antigen. The ToxinPred3 server is based on machine learning 
(ML) and deep learning methods and has been trained using a large dataset of 5518 toxic and 5518 
non-toxic experimentally validated peptides [92]. The ToxDL server uses a deep learning-based 
alignment-free approach for in silico prediction of protein toxicity, and independent test results 
showed that ToxDL outperformed servers based on traditional homology-based approaches and 
state-of-the-art machine-learning techniques [93]. 

4.9. Secondary Structure and Intrinsic Disorder Prediction 

The PSIPRED v4.0 server (http://bioinf.cs.ucl.ac.uk/psipred/) was used to predict the secondary 
of the designed chimeric antigen. The PSIPRED algorithm incorporates two feed-forward neural 
networks that analyze the output of a PSI-BLAST (Position-Specific Iterated BLAST) to accurately 
predict protein secondary structure [94]. The PSIPRED v4.0 server has a Q3 prediction accuracy of 
84.2.5% [95].  

Disordered proteins constitute an important class of antigens in a wide range of human 
pathogens, and are frequently targets of protective immune responses [96]. Intrinsically disordered 
regions (IDRs) in the designed chimeric vaccine candidate were predicted using the IUPred3 
(https://iupred.elte.hu/) and PrDOS (https://prdos.hgc.jp/cgi-bin/top.cgi) servers. The IUPred web 
server algorithm employs the amino acid sequence or UniProt ID to predict the tendency for each 
amino acid to be in a disordered region using a unique energy estimation approach [97]. The PrDOS 
server algorithm is composed of two predictors (one based on the local amino acid sequence and the 
other based on template proteins) to predict protein disorder using support vector machine (SVM) 
and PSI-BLAST [98]. 

4.10. Antibody Class Prediction 

Specific immunoglobulins, predominantly IgG, have been reported to be implicated in immune 
protection against Mycobacterium tuberculosis [99]. The Antibody Class(es) Predictor for Epitopes 
(AbCPE) server (http://bioinfo.unipune.ac.in/AbCPE/Home.html) was used to investigate the 
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specific antibody classes elicited by the predicted linear B-epitope sequences. The AbCPE server is a 
novel method based on a multi-label classification algorithm (including Binary Relevance, Label 
Powerset, Random Forest, and AdaBoost) for antibody class(es) prediction and the binding of peptide 
sequences to IgG, IgE, IgA, and IgM [100].  

4.11. IFN-γ-Inducing Epitope Prediction 

Interferon-gamma (IFN-γ), which is vital for the generation of protective responses against 
intracellular pathogens like M. tuberculosis is reported to be important in the development of 
protective anti-TB immune responses [101]. IFN-γ epitopes present in the designed chimeric antigen 
were predicted using the hybrid motif and SVM approach on the IFNepitope server 
(https://webs.iiitd.edu.in/raghava/ifnepitope/scan.php). The IFNepitope server algorithm functions 
by constructing overlapping 15-mer sequences, which are used to predict the IFN-γ epitopes. The 
server was developed using a training dataset of experimentally validated MHC class II binders 
obtained from the Immune Epitope Database (IEDB) comprising 3705 IFN-γ inducing and 6728 non-
inducing MHC class-II binders [102]. 

4.12. Prediction of Epitopes for Mouse MHC II Alleles 

To probe into the potential of the designed vaccine candidate to stimulate immune responses in 
preclinical studies, MHC II binding peptides (15-mer) for mice alleles in the designed vaccine 
candidate were predicted using the NetMHCII 2.3 server 
(http://www.cbs.dtu.dk/services/NetMHCII/). The server uses artificial neural networks to predict 
binding affinities to molecules covering human alleles (HLA-DR, HLA-DQ, and HLA-DP) as well as 
7 mouse alleles. The functioning of the server has previously been described. 

4.13. Immune Simulation Analyses 

The C-ImmSim server (https://kraken.iac.rm.cnr.it/C-IMMSIM/index.php) which performs in-
silico immune simulations was used to predict the immune response elicited by the chimeric vaccine 
candidate. The C-ImmSim server is an agent-based model which employs a position-specific scoring 
matrix (PSSM) for epitope prediction and machine-learning approaches to predict immunological 
interactions. The server “simultaneously simulates three compartments that represent three separate 
anatomical regions found in mammals: (i) the bone marrow, where hematopoietic stem cells are 
simulated and produce new lymphoid and myeloid cells; (ii) the thymus, where naive T cells are 
selected to avoid autoimmunity; and (iii) a tertiary lymphatic organ, such as a lymph node” [103]. A 
total of 500 simulation steps were set. The default settings of simulation parameters were used, and 
the time steps were set to 1, 84, and 168 for the three injections (each time step is 8 hours, and time 
step 1 is injection at time = 0).  These settings were based on a slight modification of the protocol 
used in phase II clinical trials for the M72/AS01E vaccine candidate [104]. 

4.14. Tertiary Structure Prediction, Refinement, and Validation 

The 3D structure of the designed chimeric antigen was predicted using ColabFold, an easy-to-
use interface that uses the AlphaFold2 [105] technology within the Google Colab environment. 
ColabFold offers an accelerated prediction of protein structures and complexes by combining the fast 
homology search of MMseqs2 with AlphaFold2 or RoseTTAFold [106]. The 3D structure obtained 
was refined using the GalaxyRefine server (http://galaxy.seoklab.org/cgi-
bin/submit.cgi?type=REFINE). The GalaxyRefine server functions based on a refining technique that 
was successfully evaluated in CASP10 community-wide tests and found to greatly improve local 
structure quality compared to other servers. To accomplish overall structure relaxation, this 
technique first rebuilds side chains, performs side chain repacking and then employs a molecular 
dynamics simulation [107]. The overall quality score of the refined chimera 3D structure was assessed 
using the ProSA-web (https://prosa.services.came.sbg.ac.at/prosa.php) and ERRAT 
(http://services.mbi.ucla.edu/ERRAT/) servers. ProSA is widely used to examine 3D models of 
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protein structures for potential errors and is used for error recognition in experimentally determined 
structures, theoretical models, and protein engineering [108]. The ERRAT server, on the other hand, 
analyzes non-bonded atom-atom interactions compared to reliable high-resolution crystallography 
structures [109]. 

4.15. Discontinuous B-Cell Epitope Prediction 

Following 3D structure validation of the modeled chimeric vaccine candidate, the ElliPro 
(http://tools.iedb.org/ellipro/) server was used to predict discontinuous B-cell epitope using default 
parameters. The ElliPro server “implements a modified version of Thornton's method and, together 
with a residue clustering algorithm, the MODELLER program and the Jmol viewer, allows the 
prediction and visualization of antibody epitopes in protein sequences and structures”. The ElliPro 
server has been tested on a benchmark dataset of conformational epitopes deduced from 3D 
structures of antibody-protein complexes. ElliPro produced the best performance, when compared 
with other structure-based epitope prediction algorithms, giving an AUC value of 0.732 when 
considering the most significant prediction for each protein [110].  

4.16. Binding Pocket Prediction, Molecular Docking, Binding Affinity, and Interaction Analyses 

To assess the binding pockets in the designed chimera, the CASTp 3.0 
(http://sts.bioe.uic.edu/castp/index.html?2was) server was used. CASTp is a web server that uses the 
alpha shape method developed in computational geometry to locate, delineate, and measure different 
geometric and topological properties of protein structures [111]. 

To assess the interaction between the designed chimera and TLR4, protein-protein docking 
analysis was executed using the ClusPro 2.0 server (https://cluspro.bu.edu/login.php). The ClusPro 
2.0 server has consistently been one of the best docking servers, as demonstrated in Critical 
Assessment of Predicted Interactions (CAPRI), providing high predictive performance for the 
docking of protein-protein complexes [112]. The server performs docking through the following 
computational steps: (1) rigid body docking by sampling billions of conformations, (2) root-mean-
square deviation (RMSD) based clustering of the 1000 lowest energy structures generated to find the 
largest clusters that will represent the most likely models of the complex, and lastly (3) refinement of 
selected structures through energy minimization. The rigid body docking step uses PIPER, a docking 
program based on the Fast Fourier Transform (FFT) correlation approach. The server performs 
similarity-based docking by retrieving templates from the database of experimentally determined 
structures and building models using energy-based optimization, which allows for structural 
flexibility [112].  

The binding affinity of the predicted interaction between the vaccine candidate and the TLR4 
immune receptor was assessed using the PROtein binDIng enerGY (PRODIGY) prediction server 
(https://wenmr.science.uu.nl/prodigy/). The server implements a simple but very efficient predictive 
model based on intermolecular contacts and properties derived from the non-interface surface [33]. 
The docking results were further analyzed by the PDBsum server ( http://www.ebi.ac.uk/thornton-
srv/databases/pdbsum/Generate.html), which generates a 2D picture of the interactions at the ligand-
protein interface from the 3D coordinates [113]. 

4.17. Normal Mode Analyses 

Normal mode analysis (NMA) was performed for the docked vaccine candidate-TLR4 complex 
using the iMODS server (http://imods.Chaconlab.org/). This analysis was performed to demonstrate 
the internal dihedral coordinates and measure the cooperative functional motions of the docked 
complex. The essential dynamic simulation program of the iMODS server was deployed to ensure 
the energy minimization, molecular stability, and atomic mobility of the vaccine candidate in the 
docked complex. The server determines the possible motions of the vaccine candidate-TLR4 complex 
based on specialized parameters, including B-factors, RMSD, eigenvalues, deformability of the 
complex, covariance values, and elastic models [114]. 
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4.18. Codon Optimization and In-Silico Cloning 

The E. coli K12 strain was selected to express the multi-epitope chimeric antigen since bacteria is 
often the primary host for protein expression experiments. The Java Codon Adaptation Tool 
(https://www.jcat.de/) was used to reverse-translate the protein sequence into a DNA sequence and 
perform codon optimization. The JCat server offers the flexibility to adapt the codon usage for any 
gene the user provides to that of any host organism. The server also provides information on the 
codon adaptation index (CAI) and GC% content, which have both been reported to affect protein 
expression in bacteria [115,116]. For expression of the designed antigen in E. coli, the codon-optimized 
gene sequence was cloned between the Nde I and Xho I restriction sites of the pET30a+ vector using 
the Snapgene tool (https://www.snapgene.com/). 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Table S1: Preliminary characterization of selected lipoproteins; Table S2: Characteristics 
of predicted conformational epitopes. 
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