Pre prints.org

Article Not peer-reviewed version

Curve Tracking Algorithm for Automatic
Train Operation Based on lterative
Learning Control

Xikui Wang , Haiyan Li i , Yanan Li, Chunyan Liu, Peng Xiong
Posted Date: 28 December 2024

doi: 10.20944/preprints202412.2388v1

Keywords: PID; Iterative Learning Control (ILC); Automatic Train Operation (ATO); Curve Tracking Algorithm;
Error

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/1812971

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 December 2024 d0i:10.20944/preprints202412.2388.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Curve Tracking Algorithm for Automatic Train
Operation Based on Iterative Learning Control

Xikui Wang 1, Haiyan Li >*, Yanan Li 3, Chunyan Liu 2 and Peng Xiong 2

School of Communication and Signal, Nanjing Institute of Railway Technology, Nanjing 210031, PR China
School of Civil and Architectural Engineering, Guizhou University of Engineering Science, Bijie 551700, PR China
China Unicom Jiangsu Branch Cloud Network Operation Center, Nanjing 210008, PR China

Correspondence: lhy_2008gz@126.com

¥ W N

Abstract: This paper addresses the challenge of designing an automatic train driving controller for
high-speed railway systems to improve the accuracy and stability of train speed control. The
Automatic Train Operation (ATO) system is crucial for ensuring safety, punctuality, and comfort.
Traditional control algorithms, such as PID, Sliding Mode Control (SMC), and neural networks,
have limitations in handling the nonlinear and time-varying nature of train dynamics. To overcome
these, we propose a PID-type Iterative Learning Control (ILC) algorithm that leverages the
repetitive characteristics of train operations. The algorithm combines feedback and feedforward
mechanisms to process operational data iteratively, enabling rapid and accurate tracking of the
target speed curve. Simulations using real track data and train parameters validate the algorithm's
effectiveness, demonstrating improved tracking accuracy and convergence as the number of
iterations increases. The PID-type ILC algorithm outperforms traditional PID control, showing its
potential for high-precision, fast-response, and stable tracking in automatic train operation systems.

Keywords: PID; iterative learning control (ILC); automatic train operation (ATO); curve tracking
algorithm; error

1. Introduction

The Automatic Train Operation (ATO) system is a crucial technology for high-speed railway
train control. It utilizes the operational speed curve as a reference for speed tracking, automatically
adjusting the train's velocity to ensure precise speed control while maintaining safety, punctuality,
and passenger comfort. However, high-speed trains operate at high velocities within complex and
dynamic environments. The train control system is vulnerable to both internal and external
disturbances, which lead to rapid, time-varying, and strongly nonlinear characteristics. Therefore,
designing an intelligent automatic train driving controller to ensure precise control is a pressing issue
that requires immediate attention.

Current research on automatic train driving control algorithms primarily focuses on
Proportional Integral Derivative (PID) controllers, often in combination with Sliding Mode Control
(SMCQ) [1], predictive control [2,3], fuzzy control [4], neural networks [5,6], and other methods.
However, these approaches exhibit several notable limitations. Firstly, they linearize the nonlinear
factors in train speed control, which may compromise the accuracy of control. Secondly, these
algorithms lack the ability to learn, preventing them from adapting to the repetitive characteristics of
train operation, such as the dynamic model, operating environment, and operational plans.
Additionally, designing and fine-tuning control rules and parameters requires extensive practical
experience, which complicates implementation.

The Iterative Learning Control (ILC) theory is particularly suitable for designing controllers for
systems with highly repetitive characteristics [7]. Currently, ILC has been widely applied in modern
control systems, including aviation and rail transit. For example, Yao [8] employed an intelligent PD-
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type ILC algorithm to address the path tracking problem of a sweeper operating in fixed sections of
a park. Meng [9] integrated an iterative control strategy with Sliding Mode Control (SMC) to achieve
precise tracking of the target trajectory by a manipulator. Additionally, He [10] proposed a
differential parameter calculation method based on iterative learning to mitigate tracking errors in
both the time and iterative domains. Gao [11] designed a model-free adaptive iterative learning fault-
tolerant control strategy to address actuator faults and track high-speed train speed trajectories,
considering both speed and traction/braking force constraints. Furthermore, Huang [12] introduced
a novel ILC scheme that strictly limits speed and displacement to ensure the safety and comfort of
high-speed train operations. Finally, Michael [13] developed a collective learning control method that
combines ILC with a collective updating strategy to enhance the autonomous learning capability of
multi-agent systems. These various applications demonstrate the versatility and potential of ILC in
addressing complex control problems in automated systems. However, despite its advantages, there
remain challenges in adapting ILC for real-time, high-speed train operations, especially in dealing
with rapidly changing environmental conditions and disturbances.

Building on the above analysis and addressing the strong nonlinear and rapidly time-varying
characteristics of the high-speed train automatic driving system, as well as the high repeatability of
train operations, this paper introduces the concept of ILC. Accordingly, a PID-type ILC algorithm
with both feedback and feedforward control is proposed for automatic train operation. The algorithm
leverages iterative learning to process repeated operational data while handling non-repetitive
disturbances during train operation in the time domain. This dual approach enables the train to track
the target curve quickly and accurately. The effectiveness of the algorithm is validated through
simulations in typical scenarios.

2. Problem Formulation

The railway operation entails a sophisticated and perpetual sequence of activities that are
intricately interwoven with human elements, technological systems, and the ambient environment.
This dynamic interplay necessitates a comprehensive understanding of the synergistic relationships
among these constituents to ensure seamless and efficient operational protocols. This process can
often be abstracted as a nonlinear multi-objective optimization problem. The ATO system must
automatically adjust the train speed to accurately track the target speed curve of the train, minimize
transitions between traction, braking, coasting, and operational states. This improves punctuality,
parking accuracy, and passenger comfort while reducing the driver's working intensity. The
schematic diagram of the ATO system’s speed control is illustrated in Figure 1.

Av

Train target speed curve

Train actual speed curve \

Figure 1. Speed control schematic diagram of ATO system.

The dynamic model of the train operation represents the basis for the ATO system to calculate
the target speed of train operation. Therefore, the model is shown in Egs. (1) - (4):
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where t represents the time, measured in seconds, whereas v denotes the train speed, measured
in m/s and having a null initial condition (v(0)=0). Added to that, s represents the train operation
distance, measured in m and having the following initial condition (s(0)=0). Moreover, u denotes the
unit traction or braking force applied by the train dynamical system, expressed in N/kg, whereas w(v)
represents the unit basic resistance of the train, expressed in N. Added to that, g(s) is the additional
unit resistance of the train, also measured in N, I denotes an empirical constant, taking usually the
value of gravitational acceleration, expressed in m/s?, and 6s represents the line slope at position s,
measured in °. Finally, Cs, Gy, and Co are empirical constants standing for air resistance coefficient,
mechanical resistance coefficient, and resistance coefficient of wheel rolling and sliding, respectively.

According to Eq. (3), the basic resistance includes a quadratic term correlated with train speed,
representing a typical nonlinear characteristic. Nonetheless, attributable to the repetitive nature of
train operations, the fundamental drag coefficient experienced by the train during each operational
cycle can be perceived as either repetitive or in a quasi-stationary state over time. Leveraging the
asymptotic convergence property of the iterative learning control (ILC) algorithm along the iterative
axis, the recurring information embedded within the train's operational sequence can be adeptly
managed. Consequently, the drag parameters at each sampling point of the train can be precisely
ascertained.

Henceforth, the objective of this scholarly work is to engineer an automatic train driving control
algorithm predicated on the principles of iterative learning. The aim is to identify an optimal control
input sequence. As the number of iterations approaches infinity, the train is expected to accurately
follow the desired trajectory along the fixed rail line. This precision in tracking ensures that the train
operates with enhanced safety, efficiency, energy conservation, and passenger comfort.

3. Design of PID-Type ILC Algorithm

The automatic control of train speed is a typical tracking control problem. Consequently,
applying ILC algorithms to train speed control enhances its ability to accurately track the target speed
curve during operation.

The control objective of speed curve tracking is to ensure that the control variables in the train’s
dynamic model, namely the train’s running speed v and displacement s, accurately track the target
speed and displacement trajectories. Therefore, before designing the ILC controller, the tracking error
for the system’s k- iteration must be defined. Assume a finite time interval [0, T] is selected, typically
representing the train's travel time between two adjacent stations. Repeating the train operation over
this interval, denoted by k (k=0, 1, 2, ..., K), with the train’s operating speed v and displacement s as
the system states, Egs. (1) - (4) can be expressed as the system’s state space model. Upon reaching the
k- jteration, the system model is defined as follows:

V() [~ (cavi(t)? + c v (t) + c) — g(sk (D)) 1

(s’k(t)) = < 0, (£) ) + (0) () ©)
~(vk(®)

yk(t) - (Sk(t)>

where t is the time, expressed in seconds, vk(t)is the train speed of the k- time iteration, measured

(6)

in m/s, sk(f) represents the train operation displacement of the k- iteration, expressed in m, v, (t) and
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ék (t) denote the first speed derivative and displacement respectively, representing the speed and
displacement rate change, ux(t) denotes the system input, and, finally, yx(t) is the system output.
Definition 1: The tracking error ex(f) of the system is defined as follows:

e (1) = <€k,1(t)> _ (Uk(t) - Ud(t)>

ex,2(t) Si(t) = sq(t)
where ex1(t) is speed tracking error, measured in m/s, ex2(t) represents the displacement tracking

7)

error, expressed in m, va(t) is target speed, measured in m/s, and finally, s«(f) denotes the target
displacement, expressed in m. The derivation of Eq. (7) with respect to time t yields the dynamic rate
of change of the system’s tracking error, as shown in Eq. (8):
6(t) = <ék,1(t)> _ (vk(t) - f’d@))
k() =1. =\. .
éi.2(t) $1c(t) — $4(t)
The iterative learning tracking law for the train’s target curve is designed based on the ILC

(8)

concept, as shown in Eq. (9):

Uer (6) = () + ae(©) + Bé(®) +y | § e ©

where a is the iterative learning gain with respect to the error, p denotes the iterative learning
gain with respect to the rate of error change, and y represents the learning law of the error integral
term. By integrating the error rate of change and the error integral term in the controller’s iterative
learning law, the system can achieve accurate tracking of the train's running trajectory after several
iterations.

In summary, the block diagram of the PID-type ILC algorithm is designed as illustrated in Figure
2 where the tracking error ex is input to the PID feedback controller and the ILC controller,
respectively, to generate the next inputs ul:, and uf'5. The train speed and displacement can

approach the target speed and displacement curves quickly by combining both algorithms.

€k

ILc
“k+l

ILC
Target speed

U, .| Yk Ya
Input Train —>€><— and target

displacement

PID >
B

€k

Figure 2. Implementation block diagram of PID-type ILC algorithm.

4. Simulation and Analysis

This section simulates the PID-type ILC algorithm proposed in the previous section through
typical scenarios, and compares the simulation results with the PID control results to validate the
performance of the proposed algorithm.

4.1. Controller Construction

This section simulates the PID-type ILC algorithm proposed earlier in typical scenarios and
compares the simulation results with those of PID control to verify the effectiveness of this method.
The simulation was performed using Matlab (2018b). The running resistance parameters in Eq. (3)
are unknown, time-varying parameters influenced by the train’s dynamic operation and changes in
external conditions. In controller design, empirical constants are often used. In this section, some
technical parameters from the CRH-3 high-speed train, which is used in actual operation, are adopted
as the train parameters, as shown in Table 1.
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Table 1. Partial technical parameters of high-speed railway CRH-3 EMU

Parameters Values Units
Marshalling length 200.67 m
Marshalling weight 380 t

C, 0.0166 N-h?/km?-t

C, 0.228 N-h/km-t

Co 7.75 N/t
Maximum operation speed 350 km/h
Mean starting acceleration 0.38 m/s?

4.2. Design of Typical Simulation Scenario

The simulation line of train operation is set as follows:

(1) Through the simulation, the total length of the line is 99.95 km. There are two slope sections
in the line: a 12.85 km-long section with a slope of 10%o0 and a 4.1 km-long section with a slope of 7%o.
The slope data of the simulated line is displayed in Figure 3.

! |

/ | |
10%0 ' |

' |

' |

[ |
| |
e i
: 38.5km :

|
12.85km |

>
4.1km

T

|
|
|
|
|
|
|
: 5.1km :

|
39.4km |
Figure 3. Gradient data of simulation line.

Moreover, 0s in Eq. (4) is usually very small; therefore, the value of sin(0s) can be approximated
to 0s. Considering the empirical constant I as the standard gravitational acceleration of 9.8 m/s?, the
slope additional resistance g(s) is obtained according to Figure 3, as shown in Eq. (10):

0, s € [0,38400)
0.098, s € [38400,51250)
g(s) = 0, s e€[51250,90650) (10)
[0.0686, s € [90650,94750)
0, s €[94750,99950)

(2) The simulation running time T is 1460 s, and the target speed curve of the train running

within [0, T] is displayed in Eq. (11):

0.4t, t€[0,200)
80, s €[200,620)
80— 0.5(t — 620), s €[620,640)
va(t) = 70, s € [640,850) (11)
70 + 0.2(t — 850), s € [850,900)
80, s €[900,1300)
80— 0.5(t —1300), s €[1300,1460)
Moroever, the target displacement curve of the train within [0, T] is illustrated in Eq. (12):
0.2t2, t € [0,200)
8000 + 80(t — 200), s €[200,620)
41600 — 0.25(¢ — 620)% + 80(t — 620), s € [620, 640)
sq(®) = 43100 + 70(t — 640), s € [640,850) (12)
57800 + 0.1(t — 850) + 70(t —850), s € [850,900)
61550 +80(t —900), s €[900,1300)
93550 — 0.25(t — 1300)% + 80(t — 1300), s € [1300,1460)
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(3) The proposed algorithm is based on the iterative domain; moreover, the feedback control is
implemented using the time domain, and the ILC is implemented based on the iteration domain. The
simulation sampling time t: is set to 0.1s;

(4) The learning gains in Eq. (9) are set a=0.5, $=0.05, and y=0.1; therefore, the iterative learning
law is displayed in Eq. (13):

WiEG (1) = ug (t) + 0.5e,(t) + 0.056,(t) + 0.1 f (t)ek(r)dr (13)

(5) To facilitate of comparison of the control algorithms’ performance, the PID algorithm is
evaluated against the PID-type ILC algorithm proposed in this paper, focusing on aspects such as
convergence speed and tracking error. The control law of the PID algorithm is presented in Eq. (14):

uppp (t) = Kpe(t) + K; f 0 (DT + Kyé(t) (14)

where the gain of proportional term K; is set to 5 according to reference [14], whereas the gain
of integral term Ki is set to 0.1 and the one of the differential term Ku is set to 10.

(6) Definition 2: To quantify the tracking accuracy of PID-type ILC and PID algorithms, the
tracking error rate . is displayed in Eq. (15):

r, = a =yl 1000 (15)

Ya
where yu is the target value, and y2>0. Moreover, y- represents the actual value and the 7. value
is represented using 2 decimal digits.

4.3. Simulation Result Analysis

By running the above simulation scenario using the PID-type ILC controller (refer to Eq. (11))
and the PID controller (refer to Eq. (12)), the speed and displacement tracking trajectories can be
obtained, as illustrated in Figures 4 and 5, respectively.

PID-type ILC controller speed tracking
T T I
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Figure 4. Speed tracking results of PID controller and PID-type ILC controller.
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0t PID-type ILC displacement tracking
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Figure 5. Displacement tracking of PID controller and PID-type ILC controller.

Figure 4 represents the tracking trajectory of the PID controller for the target speed curve, along
with the tracking trajectories of PID-type ILC controller at the 1, 5%, 15%, and 30t iterations. It also
provides enlarged views of the tracking trajectory at the 30t iteration within the time intervals [197
s-210 s] and [610 s-655 s]. Several tracking points from Figure 4 are selected, and the speed tracking
error rates for both controllers are calculated according to Eq. (16), as presented in Table 2.

Table 2. Analysis of speed tracking absolute error rates.

Time Target Speed of PID r, of PID Speed of PID-type ILC r, of PID-type
/(s) speed /(m/s) controller/(m/s) controller controller/(m/s) ILC controller
200 80 70.98 11.28% 79.6 0.5%

205.2 80 / / 79.85 0.19%

209.2 80 / / 79.86 0.18%

244 .4 80 77.81 2.74% / /

296.5 80 79.62 0.48% / /

619.5 80 80 0% / /

619.6 80 / / 80 0%

627.3 76.36 / / 76.54 0.24

641.2 70 / / 70 0%

684.9 70 71.6 2.29% / /

754.4 70 70.11 0.16% / /

According to Table 2, the speed tracking error rate of the PID-type ILC algorithm at the 30t
iteration is less than 1%, significantly outperforming the PID algorithm. Additionally, for the same
error rate, the implementation rate of PID-type ILC algorithm exhibits a faster response compared to
the PID algorithm.

Figure 5 illustrates the tracking trajectory of the PID controller for the target displacement,
alongside the tracking trajectories of the PID-type ILC controller at the 1st, 5%, 15t, and 30t iterations.
Enlarged views of the displacement tracking trajectory at the 30t iteration within the time interval
[810s-835s] are also provided. At 823.5s, the target displacement is 55940 m, the tracking
displacement of the PID controller is 54,890 m, the tracking error is 1,050 m, and 7. is equal to 1.88%.
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In comparison, the tracking displacement of the PID-type ILC controller is 55,870 m, with a tracking
error is 80 m and an error rate 7. of 0.14%.

Referring to Figures 4 and 5, a significant deviation is observed between the tracking trajectory
of the PID-type ILC controller and the target trajectory at the start of the iteration. However, once the
number of iterations reaches 15 or more, the two trajectories nearly overlap.

Figure 6 illustrates the absolute tracking error of the PID controller for both the target speed and
target displacement. From this figure, the PID controller exhibits a high deviation rate during periods
of target speed change, such as in the intervals [0s,200s), [620s,650s), [850s,900s), and [1300s,1460s).
In summary, the PID algorithm lacks a learning mechanism, and increasing the number of iterations
does not continuously reduce the tracking error. As a result, it cannot ensure tracking accuracy or
convergence. This is particularly evident when the target speed changes, where the PID control
algorithm exhibits a significant lag, resulting in a large error between the two trajectories.

Absolute error rate of speed tracking
100
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g s Y 64.42
5 \ :
o 60 i
g /|
-] /|
2 aH| 7|
5 \ X 83.18 rd I\
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Figure 6. Speed and displacement tracking absolute error rate of PID controller.

Referring to Figure 7, the tracking error of the PID-type ILC controller decreases gradually as
the number of iterations increases. By the 25% iteration, the speed and displacement tracking errors
approach zero. In summary, the PID-type ILC algorithm efficiently learns from the target speed and
displacement by learning repeated information of train operation, thereby achieving precise tracking.
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Figure 7. The relationship between the absolute value of the maximum tracking errors and the number of

iterations in PID-type ILC controller.

5. Concluding Remarks

In this paper, the dynamic model of high-speed train operation is analyzed, and a curve tracking
algorithm for ATO is designed based on the repetitive characteristics of train operation. The
algorithm integrates the ILC law into the classical PID control law, achieving accurate tracking of the
desired curve by learning from the error factors during the tracking process and the rate of error
change from the previous iteration.

A typical simulation scenario was established to validate the performance of the designed
algorithm using real track data and train parameters, and it was compared to existing algorithms.
The simulation results demonstrate that the designed algorithm offers higher tracking accuracy. As
the number of iterations increases, the actual running trajectory gradually converges with the target
trajectory, with the tracking error steadily decreasing until it approaches zero. This confirms the
effectiveness and superiority of the proposed algorithm. Consequently, the PID-type ILC algorithm
presented in this article achieves high-precision, fast-response, and stable tracking of both the train’s
target speed and target displacement.

The train dynamics model used in this paper treats high-speed trains as a single particle,
whereas, in reality, high-speed trains operate with dispersed power systems. Therefore, it is essential
to explore ILC methods based on a multi-particle model of the train. Additionally, integrating energy-
saving operation strategies and autonomous driving techniques for high-speed trains will be key
areas for next research direction.

Author Contributions: X.W.: Data curation, formal analysis, methodology, writing—original draft preparation.
H.L.: Supervision, funding acquisition, writing—review and editing. Y.L.: Conceptualization, investigation.
C.L.: Methodology, supervision, project administration. P.X.: Software, visualization. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Open Fund for Technological R&D of Rail Transit Control Engineering
in Jiangsu Province (grant number: KF]J2411), Excellent Science and Technology Innovation Team of Nanjing
Vocational Institute of Railway Technology (grant number: CXTD2022003), Bijie science and technology project
(grant number: Bikelianhe [2023]45) and Guizhou Provincial Department of Education Youth Science and
Technology Talents Growth Project (grant number: KY [2022]405 and KY [2024]251).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Li, M; Wang, F.; Gao, F. PID-Based Sliding Mode Controller for Nonlinear Processes. Industrial &
Engineering Chemistry Research 2001, 40, 2660-2667, doi:10.1021/ie990715e.

2.  Havaei, P; Sandidzadeh, M.A. Intelligent-PID controller design for speed track in automatic train
operation system with heuristic algorithms. Journal of Rail Transport Planning & Management 2022, 22,
100321, doi:10.1016/j.jrtpm.2022.100321.

3. Xu, X; Peng, J.; Zhang, R.; Chen, B.; Zhou, F.; Yang, Y.; Gao, K.; Huang, Z. Adaptive Model Predictive
Control for Cruise Control of High-Speed Trains with Time-Varying Parameters. Journal of Advanced
Transportation 2019, 2019, 7261726, doi:10.1155/2019/7261726.

4. Pu, Q. Zhu, X, Liu, J.; Cai, D.; Fu, G.; Wei, D.; Sun, J.; Zhang, R. Integrated Optimal Design of Speed Profile
and Fuzzy PID Controller for Train With Multifactor Consideration. IEEE Access 2020, 8, 152146-152160,
doi:10.1109/ACCESS.2020.3017193.


https://doi.org/10.20944/preprints202412.2388.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 December 2024 d0i:10.20944/preprints202412.2388.v1

10 of 10

5. Milovanovi¢, M.B.; Anti¢, D.S.; Milojkovi¢, M.T.; Nikoli¢, S.S.; Peri¢, S.L.; Spasi¢, M.D. Adaptive PID control
based on orthogonal endocrine neural networks. Neural Networks 2016, 84, 80-90,
doi:10.1016/j.neunet.2016.08.012.

6. Pu, Q.; Zhu, X,; Zhang, R; Liu, J.; Cai, D.; Fu, G. Speed Profile Tracking by an Adaptive Controller for
Subway Train Based on Neural Network and PID Algorithm. IEEE Transactions on Vehicular Technology
2020, 69, 10656-10667, d0i:10.1109/TVT.2020.3019699.

7.  Arimoto, S.; Kawamura, S.; Miyazaki, F. Bettering operation of Robots by learning. Journal of Robotic
Systems 1984, 1, 123-140, d0i:10.1002/rob.4620010203.

8. Yao, W.; Pang, Z.; Chi, R.; Shao, W.; Wang, H. Trajectory Tracking Control of Sweeping Car Based on
Intelligent PD Iterative Learning Control. Journal of Qingdao University of Science and
Technology(Natural Science Edition) 2022, 43, 105-110, do0i:10.16351/j.1672-6987.2022.01.015.

9.  Meng, Q.;Nan, X,; Zhang, Y. Trajectory tracking control of manipulator based on PD type iterative learning.
Modular Machine Tool & Automatic Manu-facturing Technique 2022, 11, 62-65.

10. He, Z,; Xu, n. Research on Automatic Train Operation Algorithm Based on Non-parametric Iterative
Learning Control. Journal of The China Railway Society 2020, 42, 90-96, doi:10.3969/j. issn.1001-
8360.2020.12.012.

11. Gao, G; Jin, S.; Wang, Q. Model Free Adaptive Iterative Learning Fault-tolerant Control for High-speed
Trains with Speed and Input Constraints. In Proceedings of the 2021 IEEE 10th Data Driven Control and
Learning Systems Conference (DDCLS), 14-16 May 2021, 2021; pp. 866-870.

12. Huang, D.; Huang, T.; Chen, C.; Qin, N,; Jin, X.; Wang, Q.; Chen, Y. Iterative learning control for high-speed
trains with velocity and displacement constraints. International Journal of Robust and Nonlinear Control
2022, 32, 3647-3661, d0i:10.1002/rnc.5984.

13.  Michael, M,; Fabio, M.; Dustin, L.; Thomas, S. Collective Iterative Learning Control: Exploiting Diversity in
Multi-Agent Systems for Reference Tracking Tasks. IEEE Transactions on Control Systems Technology
2022, 30, 1390-1402, doi:10.1109/TCST.2021.3109646.

14. Wang, S.; Han, Y.; Chen, J.; Zhang, Z.; Liu, X. Active disturbance rejection control of UAV attitude based
on iterative learning control. Acta Aeronautica et Astronautica Sinica 2020, 41, 324112, doi:10.7527/51000-
6893.2020.24112.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.


https://doi.org/10.20944/preprints202412.2388.v1

