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Abstract: RNA inverse design is an essential part of many RNA therapeutics strategies. To date, there
have been great advances in the computationally-driven RNA design. Current machine-learning
approaches can predict the sequence of an RNA given its 3D structure with acceptable accuracy and
tremendous speed. Design and engineering of RNA regulators such as riboswitches, however, is
often more difficult, partly due to their inherent conformational switching abilities. Although recent
state-of-the-art models do incorporate information about the multiple structures a sequence can fold
into, there is great room for improvement in modeling structural switching. In this work, a relational
geometric graph neural network is proposed that explicitly incorporates alternative structures to
predict the RNA sequence. The proposed model uses edge types to distinguish primary-, secondary-,
and tertiary-structure pairing/positioning of nucleotides for its training. Results show higher native
sequence recovery rates over gRNAde across different test sets (eg. 72% vs 66%) and a benchmark
from the literature (60% vs 57%). The impact of secondary-structure on prediction accuracy was
more significant than that of tertiary-structure dependencies as defined here. The code for the above
relational GNN can be found here.

Keywords: RNA inverse design; geometric deep learning; riboswitches; graph neural networks

1. Introduction

RNA molecule design is essential to gene therapy, drug development, biosensing, synthetic
biology, and more recently, mRNA vaccines[1-3]. However, in deep learning explorations, protein
sequence-structure analyses have enjoyed more advances than RNAs. These advances are partly due
to the significant amount of available data on protein structures [4-8]. Apart from the paucity of data,
other major factors posing challenges in RNA inverse design are RNA'’s inherent flexibility, plasticity,
in some cases its ability to form distinct conformations under different environmental factors, and
non-unique structure-sequence mapping.

Structure-based design of RNAs capable of folding into alternative structures, known as RNA
switches or riboswitches [9] is of great interest in biotechnology and therapeutics [10]. Probably repre-
sentatives of an ancient regulatory mechanism [11,12] even long before proteins [13-16] riboswitches
are usually located in the 5" untranslated region (UTR) of an mRNA. They generally consist of a
ligand-binding aptamer that upon binding to the ligand or metabolite of interest can allosterically alter
the structure of the rest of the riboswitch which also includes an expression platform, in turn regulating
transcription or translation of downstream genes in bacteria [9,17-19]. Currently categorized into 55
distinct classes, riboswitches enjoy a great structural and functional diversity [20-22] as well as the
diversity of ligands that bind to them helping cells regulate a great variety of chemicals essential to all
forms of life [18,23]. It is speculated that additional classes of riboswitches exist in not only bacteria
but also eukaryotes [16,18]. Riboswitches are used in many therapeutic and biotechnological appli-
cations including Riboswitch-targeting antibiotics [24-27], designer gene control [28-30], molecular
fuse [31,32], and research tools to explore fundamental biological processes [33].
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RNA inverse design has been traditionally based on RNA’s 2D or secondary structure [34]. More
recent approaches such as 1ibLEARNA [35] incorporate sequence and secondary-structure constraints
to to perform partial sequence design with outstanding performance applied on riboswitches. One of
the more popular 2D inverse folding tools is ViennaRNA [36], which predicts the complete sequence.
RNA computational design directly from its 3D structure can be performed by the state-of-the-art
physically based molecular modeling software Rosetta [37]. Several deep learning approaches to
3D RNA inverse design have been explored in the past few years that are based on Graph Neural
Network (GNN) architectures. Some of these methods are the representation-based learning approach
RDesign [38] and the diffusion model RiboDiffusion [39] that uses a Transformer-based sequence
module. Another GNN-based model, gRNAde [40], which incorporates concepts from autoregressive
GVP-GNN [41] and protein sequence design ProteinMPNN [6] has been shown to achieve a higher
native sequence recovery compared to Rosetta and RDesign on a set of benchmark sequences that
include riboswitches and ribozymes [42]. The multi-state architecture of gRNAde software uses
multiple structures of a single sequence in its training and design. The architectural design, however, is
more geared towards aggregating multiple structural information, rather than combining them, which
could lead to loss of information in certain cases. An approach that is based on combining information
from multiple structural states, however, is yet to be fully explored. In this work, based on gRNAde, a
secondary-structure-informed relational Graph Neural Network (GNN) is proposed for RNA inverse
design with an architecture that emphasizes learning from RNAs specifically having distinct alternative
structures, i.e., riboswitches. The model uses geometric-vector-perception GNN [41] layers and has a
similar architecture to gRNAde [40,43], with the following alterations:

The edge embedding does not include 16 sinusoidal positional encodings. In addition, edges
consist of three different types: Primary-structure edge types, secondary-structure edge types, and
tertiary-structure edge types. Primary-structure edge types are defined along the sequence backbone.
Secondary-structure edge types are determined by an independent software [44,45] that detects
canonical and non-canonical RNA base pairing. Tertiary-structure edge types here have a specific
definition and are based on clustering nucleotides based on a combination of their backbone and
Euclidean distances. An example of edge types is illustrated in Figure 1, which corresponds to a section
of the immature 30S ribosomal subunit of Staphylococcus aureus. Details about edge determination
are explained in Materials and Methods. Each encoder layer consists of three distinct GVP-GNNS,
one for each edge type. Finally, the decoder takes updated node embeddings of the last layer of the
encoder, each resulting from a distinct structural scenario that the sequence can fold into, pooling them
to produce the final updated node embedding. The proposed relational GNN is also O(3)-equivariant
and message-passing components are implemented via PyTorch Geometric [46]. The Materials and
Methods section describes details about input embedding and model architecture.

The paper first defines model architecture in Materials and Methods. In the Results section, the
performance of the relational GNN is then presented and compared to their corresponding gRNAde
counterparts under different data splits and model variations. Finally, the Discussion section contains
conclusions drawn from performance analyses and future direction.
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(b)
Figure 1. The three different edge types of the RNA structure graph. a) Structure corresponds to part of the

immature 30S ribosomal subunit from Staphylococcus aureus, 8BH7 | 1 | a. Nucleotides having different edge types
are shown in blue (for secondary-structure edge types) and magenta (for tertiary-structure edge types). One of
the tertiary-structure edges occurs between C169 and A1457 with length 11.9A, PDB coordinates. Figure drawn
using PyMOL [47]. b) Corresponding primary-structure edge types are shown in orange. Secondary-structure
edge types for three base pairs (six nucleotides) are shown in blue. Tertiary-structure edge types for two edges are
shown in magenta.

2. Materials and Methods
2.1. Data Collection

RNA structure files were downloaded from the RNASolo [48] repository on August 1, 2024.
There were a total of 14,889 PDB files at resolution < 4A. The cleaned dataset contained a total of
12091 structures, corresponding to 3963 unique sequences. Sequence types were: 2612 Protein-RNA
Complexes, 479 Solo RNAs, 14 DNA-RNA Hybrids, and 858 unknowns. Sequence average length was
851.74 £ 1148.69. Only one structure was available for most sequences and the number of structures per
sequence followed an exponential distribution with an average value of 3 structures per sequence. In
Figure 2, parts (a) and (b) show the distributions of the sequence length and the number of structures
per sequence, respectively. Similarity between structures of the same sequence was assessed by
computing the average pairwise Root Mean Square Deviation (RMSD) of structures belonging to
that sequence. The average value was around 1.3A. Complete data statistics and histograms can be
generated via notebooks/data_stats. ipynb. A machine-learning ready set was then produced based
on the downloaded PDB files. In cases of more than one structure in the PDB file, the first one was used.
Structures corresponding to the same RNA sequence were then categorized together, representing
a multiple-structure single-sequence set of data (see the data availability section for the location of
processed files).

Histogram of sequence lengths Histogram of no. of structures per unique sequence
Distribution: 851.7 + 1148.7, Max: 4455, Min: 11 Distribution: 3.05 + 10.65, Max: 301, Min: 1
1000 4 Sequences with >1 structure
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Figure 2. Data statistics. PDB files were downloaded from the RNAsolo web server [48] on August 1, 2024. (a)
Histogram of sequence lengths. (b) Histogram of number of structures per unique sequence.
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2.2. Data Splits

RNA sequences were split into training, validation, and test sets. The sizes of validation and
test sets were 100 each. Two different strategies were used to split the data into training and test
sets. The first one was denoted as seqid. In this procedure, the aim was to avoid exposing the model
to more sequences during training. This was achieved by making the training set have less diverse
sequences than the test set. RNA sequences were clustered into groups based on sequence identity
using command CD-HIT [49] (threshold 90%) and those with less intra-sequence RMSD among their
structures were favored for the training set. In the second strategy, the aim was to avoid exposing
the model to more structures during training. This was achieved by making the training set have less
diverse structures than the test set. RNA sequences were clustered into groups based on structural
similarity using command qTMclust [50] (threshold 0.45%) and those with less intra-sequence RMSD
among their structures were favored for the training set. Both data splitting procedures were according
to [40].

2.3. Metrics

Performance parameters were perplexity, accuracy, recovery, and sc score. Perplexity reflects
the ambiguity within nucleotide probabilities. For instance, a model that predicts equi-probable
nucleotides for each node is undesirable. Lower output perplexity is generally favorable'. Accuracy is
the ratio of correctly predicted nucleotides. Recovery is the ratio of correctly predicted nucleotides
from a population of sequences that are sampled from output probabilities. Here, 16 predictions
were used. Similarly, sc score is the secondary-structure self-consistency score averaged over 16
predictions. Software Eternafold [51] was used to measure how well the predicted secondary structures
of sampled output sequences match that of the ground-truth sequence.

2.4. Graph Construction of RNA Structures

The 3D coordinates of atoms of an RNA structure, taken from its corresponding PDB file, were
used to construct a geometric graph representation (nodes and edges) of the molecule. Three types
of edges were defined and denoted as primary-structure e’ ¥ ij € EF, secondary-structure 75,-,]- € E°,
and tertiary-structure ?”i,j € E' edge types between nodes i and j. Edge types are mutually exclusive:
EPNE =Q,EPNE'=Q,ESNE' = Q.

Nodes

The 3D coordinates for P, C4’, N1 (pyrimidine), or N9 (purine) atoms of each nucleotide were
used to define the corresponding node for that nucleotide [52]. The C4’ coordinates of nucleotide 7,
?i € R3, represented the 3D coordinates of the corresponding node i. The 3D coordinates of P, C4’,
and N1/9 as well as the atoms of the adjacent nucleotides on the RNA backbone were used for feature
representation.

b
L]

Pairs of consecutive nucleotides on the sequence, i.e., j = i + 1, were assigned primary-structure
edge types in both forward 71-“ — 71- and backward 71’ — ?i—l directions.

Primary-Structure Edge Types I

Secondary-Structure Edge Types ?f ;

Pairs of nucleotides in secondary-structure RNA base pairings, (i,j) € BP, were assigned
secondary-structure edge types. For each base pairing (7,j), two edges wi - 7j and 7]- —%;
were defined. Here, secondary structure base pairings included both canonical and non-canonical
pairings [53] and determined by feeding the corresponding PDB file of an RNA to X3dna-dssr [45].

1 Lower perplexity does not always reflect a more superior model. It may be possible to have slightly high perplexity/entropy

for individual nucleotide probabilities but a low perplexity/entropy on their joint distributions.
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Tertiary-Structure Edge Types ?f f

Pairs of nucleotides that did not form secondary structure base pairings but were in close proximity
of each other were considered for having what is referred to here as tertiary-structure edge types.
The procedure was as follows: Given the secondary-structure base pairs, the unpaired nucleotides
were first identified, i.e., 7,j ¢ BP, and then clustered using Density-Based Spatial Clustering of
Applications with Noise (DBSCAN). Default parameters for DBSCAN were DBSCAN_eps = 204 and
min_samples = 5. Subsequently, those pairs of nucleotides that belonged to the same cluster with
distance of d = || ¥ j H2 < 2xDBSCAN_eps, and were also far apart on the RNA sequence were
selected. Having distance |j —i| > 500, or at least 500nt, was considered far apart. i.e., default
primary_dist = 500. The number of original tertiary-structure edge types increased exponentially
with sequence length. The edges were randomly selected from the original sample, such that the
number of tertiary-structure edges was strictly less than or equal to 4 x L, where L is the length of the
corresponding RNA sequence.

The number of edges selected from each RNA molecule is shown in Figure 3). As we can see, the
number of edges selected is linear with respect to the length of the sequence. The dashed magenta line
shows the cut-off value for cases where the number of original edges was more than the threshold.
Edges of RNAs with higher counts were down-sampled to strictly match the threshold.

Number of edges vs sequence length
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Figure 3. Number of primary-, secondary-, and tertiary-structure edge types with respect to sequence length.
Light magenta represents the original count of tertiary-structure edges. The magenta dashed line shows the cut-off
value tertiary-structure edge number. Edges of RNAs with higher counts were down-sampled to have strictly
matched the threshold
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2.5. Relational Graph Neural Network
Input Embedding

Based originally on [41,54] and identical to the implementation presented in [43], node features
were derived from three distances, three inter-atom angles, and three dihedral angles. The number of
scalar features associated with each node i was then: sin and cos values of the six angles, concatenated
by the three lengths, totaling 15 values. The vector features associated with each node i were four
unit vectors corresponding to forward and backward C4’ - P, and forward and backward C4’ - N1/9
vectors. Scalar and vector features of node i are denoted as (s;, 71‘)- Edges of all types, ?i,]-, had
identical features. Edge features consisted of both unit vectors and scalar values. Normalized vectors
<7i,j> = ?i,j/ || ?i,j || were used as unit vectors. Scalar features consisted of || 71- - % sz encoded
by 16 RBFs. Let x; € X represent both scalar and vector features of node i and e;; € E represent
both scalar and vector features of edge (i, /). Hence, E = {E?, E%, E'} Let matrix T represent the type
of each edge in E in its corresponding indices. For a single sequence-structure scenario, each RNA
structure is then represented as a graph G = (X, E, T). In case of multiple (K) conformations, the graph
corresponding to structure k is denoted as G = (X, E(®), T()), All structures belonging to the
same sequence, {G(l), ..., GK) }, are then passed into the GNN model in a single batch. Unlike [40],
however, where the K graphs were merged into a single multi-graph with total edges being union
of those of individual structures, here edges of each structure k are applied to the model separately.
Hence, although the number of nodes is identical amongst the K graphs, the number of edges is not.
The rationale behind the above choice of input representation of multiple structures was to favor the
expressiveness of an RNA molecule with drastically different conformational states, e.g., a riboswitch,
over that of an RNA molecule with only one innate structure but having multiple experimental data
on that structure.

Model Encoder

The overall architecture of the pipeline consisted of a linear model, L stacked layers of relational
GNNs, and followed by a decoder layer which produces nucleotide probabilities for each sequence
location i. Node and edge embeddings are first passed through the linear model. Encoded features are
then passed to the first relational GNN layer. The relational GNN consists of three O(3)-equivariant
GVP-GNN [41] components. Using edge-type indices, T, the encoded features of G*) are first broken
down to three sub-graphs, Grik) = (xW), Ep(k)), Gsh) = (xW), Es(k)), and G'% = (xW), Et(k)), each
representing a graph of a specific edge type. Each of the sub-graph encodings is fed into a separate
GVP-GNN (eqg. 1), and then pooled using learned weights (eq. 2) to produce updated node features
(eq. 3):

m?, wt! = Y MSG((s;, 7). (57, 7)), )

jent

m,mi =Y MSG((si,?i)/(sjr ?]-),e?j) @
JEN

mit, = Y MSG((SZ', 7). (s 71)'85‘)
jent

m;, ﬁi = Z w® (mf, mf) (2)

ec{p,;s,t}

S;, ?: = UPD((Si, 71'), (mi, ﬁl)) (3)

Messages with p, s, and t indices reflect primary-structure, secondary-structure, and tertiary-
structure messages from neighboring nodes, respectively. Learned weights, {w”, w®, w'} reflect the
significance of each edge type, i.e., the attention given to different edge types. The above message-
passing and pooling mechanism applies to any relational GNN layer and layer indices are omitted for

d0i:10.20944/preprints202412.2156.v1
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simplicity. For instance, edge-type weights of layer / can be denoted as: {w”(l ) ws), wt! }. In order
to assess the impact of the secondary and tertiary edge types separately, two different versions of the
model were used, one including primary and secondary edge types only, denoted by suffix -2D, and
one including all edge types, denoted here by suffix -3D.

Scalar and vector node features are updated at every layer (eq. 3). For instance, the output of
layer [ is (sfl), 71@) . The above message passing scheme is applied to all K structural conformations
in the input. At the end of the last encoder layer, the updated node embedding for the k-th structure is
(Sz(,i)’ 75?) . The final node (or nucleotide) embedding given all K structures of the RNA sequence is
then an average of individual estimates:

S;, 71- = Z (sl(,,L(), 75?) 4)

keK

Model Decoder

The original model [40] presented two different decoder implementations: Non-AutoRegressive,
NAR-original, and autoregressive AR-original. The NAR-original decoder consisted of two GVP-
GNN modules and decoded the node embedding into a dimension of 4 to reflect the four nucleotide
probability estimates at each sequence position. The AR-original decoder was an autoregressive
model [55] that updated each node embedding based on the nodes there preceded it in the sequence.
Here, based on the above two decoders, two secondary-structure-informed decoders by the names
NAR-informed and AR-informed were deployed. The implementation of NAR-informed was identical
to NAR-original. In the AR-informed decoder, node embeddings specific to structure k are first
independently updated, (Si,kr 71',;{). A final decode layer then pools the individual embeddings to
generate final nucleotide probabilities for each sequence position.

3. Results

The proposed RNA inverse design is mainly based on defining different edge types. Unlike
primary- and secondary-structure edge types, however, the tertiary-structure edge types are not as
deterministic and vary based on the choice of modeling. Here, the intention behind tertiary-structure
edges was to capture some of RNA molecule’s tertiary patterns that are evolved beyond the secondary
structural constraints. Here, a simple model is used based on the relative orientation of unpaired
nucleotides. A general analysis of all the tertiary-structure edge types is provided in A.1. Given the
unevenness of the relative-orientation distribution of the unpaired nucleotides (Figure A1 part (a)), it
was speculated that introducing tertiary-structure edge types as defined above may contain certain
hidden information about RNA nucleotide positioning in 3D space.

The secondary-structure-informed relational GNN architecture use is shown in Figure 4. The

model consists of L relational message-passing GNN layers. Each layer pools messages from three
distinct GVP-GNN components each corresponding to an edge type. Note that a single GVP-GNN
component can be used instead of three where, ejj would be defined as concatenation of eZ, els-]-, and ef]-.
In fact, Egs (1) and (2) are mathematically equivalent to equation (1) of [40]. However, since edges are
mutually exclusive, the merging of edge types would result in a sparse adjacency matrix. In addition,
each e;; vector would have been 3 times an original edge vector, padded by zeros in corresponding
locations. Although a single GVP-GNN would have been equivalent to the three original GVP-GNNSs,
deploying three GVP-GNNSs has the advantage of requiring a smaller input size for edges.
Given multiple structures of a particular sequence, each individual sequence-structure pair is fed into
the encoder, separately, resulting in a k set of final updated node embeddings (output of layer L). The
node embeddings, each resulting from a distinct structure, are then pooled before being fed into the
decoder, which produces the final probabilities p(i) for each nucleotide i:

p(i) = (1/K) Y p(i|structurey) (5)
keK
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Apart from the above re-structuring, The GVP-GNN components, linear, and final decoder lay-
ers are adopted from and according to the gRNAde software [40,43]. Two different decoders
were introduced in [40] by names one-shot and autoregressive, which are referred to here as
NAR-original and AR-original, respectively. Implementations for both models were altered to imple-
ment the above secondary-structure-informed relational GNN versions, denoted as NAR-informed and
AR-informed, respectively. For each altered implementation, two different versions of *-informed-2D
and *-informed-3D were considered. In the case of AR-informed-*, the pooling of updated node
embeddings was performed after autoregressive node prediction of individual structure. Hence, eq. (5)
holds for all implementations.

L layers
P
- —
Relational GNN
-
-~ B N z
e colr—mmgl] 4= 2 = 2 B
=1 27 LA r GVP-GNN )
5 = 2
—_ ‘Secondary-structure
ol H edge embeddings = Gl --—> 2
?,-s - [ Tertiary-structure ey L
= = edge embeddings —_—————p]
Sequence
—
B Decoder

. RNA

.

. Sequence
E e B : Z
‘ﬂ_) Node embeddings o
8 £ —
B 1 g :
S % | 2 =
5 7 \ ‘Secondary-structure R g ———] z
(/2] o edge embeddings Ed Z

Tertiary-structure.
edge embeddings

Figure 4. Secondary-structure-informed relational graph neural network diagram for the NAR-informed model.
Node and edge embeddings of each structure k are fed into L cascaded layers of relational GNNs. Each layer
is composed of three GVP-GNNs acting on their own primary-, secondary-, and tertiary-structure edge types,
shown in orange, blue, and magenta, respectively. Messages are pooled to produce a single message used to
update node embedding before feeding it into the next layer. Final updated node embeddings corresponding to
individual structures are then pooled to produce final nucleotide probabilities using a linear model in the decoder

Table 1 contains a performance comparison between the original gRNAde and the secondary-
structure-informed relational graph neural network under different data split strategies and for
different parameters such as the number of encoder layers and inclusion/exclusion of tertiary-structure
edge types.

In addition to the [45] software, other choices of software such as Fr3d [56], and corresponding
implementation NA_pairwise_interactions.py were considered, which led to similar results (data
not shown). The Fr3d software annotates base pair interactions in RNA 3D structures according to the
Leontis—Westhof classification [53].

Performance measures of Table 1 were obtained from single runs. Therefore, variation in perfor-
mance is not available. Based on table (1) of [40], however, we can see that the upper bound of the
standard deviation of mean Recovery for k = 3 is +1.19. Since models here are very similar to [40], we
assume the mean Recovery to have similar standard deviation measures.

The original autoregressive model AR-original trained on seqid data split, and implemented
as part of gRNAde had a lower perplexity as well as higher sc score across all models. Higher
sc score is consistent across both sequence-based seqid and tertiary-structure-based structsim
data splits.

Comparing models based on accuracy and recovery metrics, however, shows a higher per-
formance for the *-informed-* models compared to their *-original counterparts. The higher
performance is true regardless of the choice of data split strategies. In fact, the *-informed-* models
only have 2 layers while the original model is set to 4 layers. The comparison here is based on the
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assumption that the mean Recovery deviation is bounded by +1.19. Finally, increasing layers from 2
to 4 further improves the performance of the AR-informed-3D model to recovery=58.37.

Comparing *-informed-2D model performances to their *-informed-3D counterparts shows that
tertiary-structure edge types did not result in any major improvement.

Table 1. Model performance comparison between the original gRNAde and the secondary-structure-informed
relational graph neural network. Performance corresponds to 100 epochs. Mean Recovery is expected to have
+1.19 standard deviation [40]. Abbreviations: Ppl. = Perplexity, Acc. = Accuracy, Rec. = Recovery, SC = SC score.

model split layers Ppl. (}) Acc. (1) Rec. () SC(1)

1.2501 66.08 50.84 63.18
1.4875 71.12 54.51 53.00
1.4136 71.84 54.10 52.32
1.3526 72.24 58.37 52.92
1.4843 62.72 44.85 55.41
1.3422 68.61 50.31 51.06
1.3471 68.66 49.40 51.59
1.2984 69.02 50.23 54.57

1.5790 53.95 53.62 38.68
1.6062 59.87 61.06 42.44
1.4562 60.17 61.92 30.66
1.5483 61.02 61.39  0.4840
1.9695 47.18 43.51 39.36
1.4444 56.25 55.07 25.22
1.4398 54.97 51.44 26.37
1.3413 56.59 53.00 40.83

S

AR-original seqid
AR-informed-2D seqid
AR-informed-3D seqid
AR-informed-3D seqid
AR-original structsim
AR-informed-2D structsim
AR-informed-3D structsim
AR-informed-3D structsim

NAR-original seqid
NAR-informed-2D  seqid
NAR-informed-3D  seqid
NAR-informed-3D  seqid
NAR-original structsim
NAR-informed-2D  structsim
NAR-informed-3D  structsim
NAR-informed-3D  structsim
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Inverse design performance of the seqid-trained AR-informed-3D model was also evaluated
on the 14 RNA structures of interest identified by ([42], Supplementary Table 2) and compared to
previous methods (See Table 2). Recovery values are based on averaging prediction accuracy over
16 predicted sequences in each case. Our proposed secondary-structure-informed approach had an
average of 0.6044 native sequence recovery rate, slightly higher than gRNAde (0.5682) and also higher
than other methods including Rosetta (0.45) and RDesign (0.4296). All Recovery values are according
to [43].

In order to showcase an example of designing an RNA, an experimentally derived structure of thi-
amine pyrophosphate (TPP)-sensing riboswitch was selected and passed into the structsim-trained
AR-informed-3D model to obtain 16 sequence predictions. The crystal structure of the TPP riboswitch,
PDB ID 8F40, was resolved in the ligand-free (apo) state and with resolution 3.1A [57]. The sequence
with the highest recovery rate (here, 0.7692) was then selected as the final prediction, referred to as
Pred_1. Table 3 shows the true and predicted sequences. The structure of Pred_1 was then computa-
tionally determined via AlphaFold 3 [58]. AlphaFold provided 5 different predicted structures, the
first of which had the highest similarity (lowest RMSD) with the true structure of the TPP riboswitch
aptamer. Figure 5 shows the true and predicted structures, in orange and green, respectively. The first
and last nucleotides of both structures are shown in licorice mode for ease of visualization. Aligned
structures had RMSD of (15.88A) among all their atoms and RMSD of (16.38A) among their C4” atoms.
The disconnects in the true structure are due to numbering schemes in the corresponding PDB file.
Although the two structures do not have perfect alignment, Figure 5 shows an extended Y-shaped
conformation for the predicted structure (green), similar to a typical TPP riboswitch.
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Table 2. Performance comparison for the 14 structures of interest ([42], Supplementary Table 2). AR-informed
refers to the seqid-trained AR-informed-3D with four layers. Recovery values for AR-informed were computed
over 16 sampled sequences for each structure. All other Recovery values are according to [43]. Abbreviations:
VRNA = ViennaRNA, RDes. = RDesign, Ros. = Rosetta, and AR-3D = seqid-trained AR-informed-3D.

PDB  Desc. VRNA RDes. Ros. gRNAde AR-3D
1CSL  RRE high affinity site 025 04455 044 05719  0.4263
1ET4  RNA aptamer 025 03929 044  0.6250  0.4379
1F27  RNA pseudoknot 030 03013 037 03437  0.3750
1L2X  RNA pseudoknot 024 03727 048 04721  0.5765
1LNT  internal loop of SRP 033 0.5556 053 0.5843  0.7131
1Q9A  Sarcin/ricin dom. 0.27 0.4417 0.41 0.5044 0.8079
4FE5  Guanine riboswitch 029 04112 036 05300  0.7687
1X9C  All-RNA hairpin ribozyme 026 0.3967 0.50  0.5000  0.3927
1XPE  HIV-1 BRNA 027 0.3834 040 0.7037  0.4266
2GCS  glmS ribozyme 025 04518 044 0.5078  0.6659
2GDI  TPP riboswitch 025 03523 048  0.6500  0.7680
20EU  Junctionless hairpin riboz. 0.23 05000 0.37 09519  0.7680
2R8S  Tetrahymena ribozyme 027 05641 053 05689  0.6985
354D  Loop E 0.28 04458 055 04410  0.8210

Overall recovery: 027 0429 045 05682  0.6044

Table 3. True and predicted sequence for the apo structure of the TPP riboswitch aptamer. The sequence 8F40_1_B
was 65nt. The predicted sequence, Pred_1, was obtained from passing the experimentally-derived structure of
8F40 to the seqid-trained AR-informed-3D model. Pred_1 recovery was 0.7692.

name sequence

8F40_1_B GCGACUCGGGGUGAAGGCUGAGAAAUACCCGUAUCACCUGAUCUGGAGCCAGCGUAGGGAAGUCG
Pred_l GCGCCUCGGGGUGAAAGCUGAGAAAUACCGGUAGCACUUCUUUUCGUUCGAACGUAAGGAAGGCG

Figure 5. The apo structure of the TPP riboswitch aptamer PDB ID 8F40 along with the predicted structure of
its corresponding designed sequence using seqid-trained AR-informed-3D. True and predicted structures are
shown in orange and green, respectively. The first and last nucleotides of both structures are shown in licorice
mode for ease of visualization. Aligned structures had RMSD of (15.88A) among all their atoms and RMSD of
(16.38A) among their C4” atoms. Predicted structure obtained via AlphaFold 3 [58]. The disconnects in the true
structure are due to numbering schemes in the corresponding PDB file.
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4. Discussion and Conclusions

In this work, a geometric GNN-based model was presented to improve the computational design
of RNA, especially those with multiple structural states, such as riboswitches. The proposed model
named secondary-structure-informed RNA inverse design is mostly taken from gRNAde, with some
major differences. These differences were the use of different edge types to represent RNA structural
graphs and explicitly combining results from multiple structures in corresponding sequence prediction.
Details about these differences are explained in Materials and Methods. It was shown that the proposed
model does indeed improve both accuracy and native sequence recovery compared to gRNAde. Using
the seqid training/test sets, the autoregressive AR-informed-2D with only two layers obtained 71.12%
sequence recovery, while its gRNAde counterpart with four layers produced 66.08% recovery. Similar
improvements were seen under the structsim training/test sets (comparing 68.61% with 62.72%)
as well as over different choices of decoders (see Table 1). Results demonstrate that the addition of
secondary-structure base-pairing information in RNA inverse design and combining predictions via
a relational graph architecture does indeed improve performance since both models share similar
architectural components and parameters. Improvements may also be due to the fact that identification
of canonical and non-canonical base pairings, namely the 12 possible orientations [53], are done
independently, relieving the GNN model from the burden of identifying such edges.

Performance of AR-informed-3D was also evaluated on a different benchmark and compared to
different methods. The dataset presented in [42] contains 14 structures which include riboswitches and
ribozymes. It is shown in Table 2 that the proposed model achieves higher average native sequence
recovery on this set over previous methods. The AR-informed model achieved 60.44 native sequence
recovery rate, higher than gRNAde (56.82), as well as Rosetta (45) and RDesign (42.96). These results
highlight the ability of the proposed approach in the inverse design of novel structures.

4.1. Future Work

In order to identify RNA base pairings, we used X3dna-dssr [45]. Therefore, unlike gRNAde
which is a stand-alone software, our model relies on an external component to identify secondary
structural base pairing patterns. Performance measures presented here are only valid if the secondary
structure of the desired RNA can be independently determined. The gRNAde has the advantage
of being able to handle the general case of only using the 3D structure to design sequences. In
order to eliminate the need for external software, Python packages such as rnaglib [59] can be used
which provide a graph representation of RNA 3D structures with edges representing base pairs and
spatial interactions.

Metrics recovery and sc score evaluate primary- and secondary-structure similarity with the
ground truth and are only generic assessments. Two RNAs with dissimilar sequence and secondary
structure predictions might still have a very similar tertiary structure. A gold standard metric for an
effective RNA inverse design should be based on similarity in key tertiary structural information,
which was partly addressed by [40]. Reliable 3D structural prediction tools such as the state-of-the-art
tools [58] combined with effective similarity measures such as RMSD or novel metrics inspired by the
protein realm [60], can aid us in such comparisons. For the case of RNAs with more than one structural
state, however, a more complex metric may be needed that reliably assesses the sequence’s ability to
fold into the two desired alternative structures of a typical riboswitch.

The autoregressive AR-informed model led to the highest performance, supporting the fact that
including auto-regression is very effective in RNA inverse design. In this work, auto-regression and
pooling are done for each structure separately, only to combine predictions at the last step eq. (5). One
direction for improvement would be to have more effective auto-regressive techniques. for instance,
we can have auto-regression and pooling combined for each iteration i, i.e., determining p(i) from all
K structures and only then repeating the process for p(i + 1). Exploring novel, possibly non-causal,
auto-regressive strategies may also improve the inverse design of RNAs with multiple structures.
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The incorporation of tertiary-structure edge types here did not lead to any major performance
increase. This may be due to the fact that our tertiary edge determination was too simplistic and could
not capture any meaningful tertiary dependencies in RNA structures. Indeed, RNA 3D structural
data such as base pair geometry and protein binding sites have been successfully used to predict
the corresponding RNA function [59], which highlights the usefulness of extracting more complex
structural patterns from RNAs. More effective modeling of RNA complexes, for example, ligand-
binding configurations, may provide a clearer answer to whether learnable and generalizable patterns
can be extracted by machine learning that could improve more intricate RNA inverse design challenges.
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Abbreviations

The following abbreviations are used in this manuscript:

RNA Ribonucleic Acid

GNN Graph Neural Network

GVP-GNN Geometric Vector Perceptron Graph Neural Network

3D Three-Dimensional

2D Two-Dimensional

UTR Untranslated Region

gRNAde Geometric Deep Learning for 3D RNA inverse design

PDB Protein Data Bank

A Angstrém (unit of length)

O(3)-equivariant Equivariance under the orthogonal group in 3 dimensions
PyMOL Molecular visualization system

PyTorch Geometric  Library for graph neural networks

libLEARNA Library for solving the partial RNA design problem

DNA Deoxyribonucleic Acid

RMSD Root Mean Square Deviation

DBSCAN Density-Based Spatial Clustering of Applications with Noise
RBF Radjial Basis Function

CD-HIT Cluster Database at High Identity with Tolerance

qTMclust Structure Clustering by Sequence-Independent Structure Alignment
X3dna-dssr An integrated software tool for Dissecting the Spatial Structure of RNA
Eternafold RNA Secondary Structure Prediction Software

sc score Secondary-Structure Self-Consistency Score

NAR Non-Autoregressive

AR Autoregressive

BP Base Pairing

nt Nucleotide

TPP Thiamine Pyrophosphate

Ppl.

Perplexity
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Acc. Accuracy
Rec. Recovery
SC Secondary-structure Compatibility Score
DSSR An integrated software tool for Dissecting the Spatial Structure of RNA
X3DNA A software package for the Analysis and Visualization of 3D Nucleic Acid Structures
Fr3d A software package for finding small RNA motifs in RNA 3D structures

AR-informed-2D  Autoregressive structure-informed model based on primary- and secondary-structure edge types
AR-informed-3D  Autoregressive structure-informed model based on primary-, secondary, and tertiary-structure edge types

seqid Sequence-based data split

structsim Structure-based data split

Pred Prediction

AlphaFold Algorithm for Protein and RNA 3D Structure Prediction

ProteinMPNN Protein Message Passing Neural Network

Appendix A. Supplementary Information
Appendix A.1. An Exploration into Tertiary-Structure Edge Type Characteristics

Using the all RNA structures available in the dataset, all nucleotide pairs having tertiary-structure
edge types between them were identified. Euclidean distance and relative orientation between each of
the corresponding node pairs were considered for further analysis. Value d was a scalar representing
Euclidean distance between the C4’ coordinates of the two nucleotides. Filtering for Euclidean distance
of2<d<20in Aresulted in around 43 thousand such pairs. As illustrated in Figure Al(a), the
relative orientation was defined in terms of spherical coordinates with ¢ being the angle from the
positive z-axis and 0 being the angle between the radial line and a polar axis. Angle 1 was defined
as the angle between normal vectors of the two (C4’,P,N1/9) planes of the two nucleotides. Angle 0
was defined as the angle between the two C4’-P vectors. The density plot of the normalized relative
orientation of the nucleotide pairs is shown in Figure Al(b). Red represents high-density and blue
represents low-density orientations. Certain relative pairwise orientations were extremely rare in 3D
space. In particular, relative orientations with angle 8 ~ 90° were not found, regardless of values of ¢
or d. On the other hand, certain orientations such as ) = 70° were more prevalent representing an
uneven distribution of relative orientations.

(b)

Figure A1. Relative orientations of distant nucleotide pairs having tertiary-structure edge types. a) Angle ¢ was

(@)

defined as the angle between normal vectors of the two (C4’,P,N1/9) planes of the two nucleotides. Angle 6 was
defined as the angle between the two C4’-P vectors. b) Density plot of the normalized relative orientation of
around 43 thousand nucleotide pairs, taken from RNA structures of the old Dataset. All pairs had Euclidean
distance of 2 < d < 20 in A. Red represents high-density and blue represents low-density orientations.
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