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Abstract: This paper presents an efficient Grey Wolf Optimizer (EGWO) designed to address the 

limitations of the standard Grey Wolf Optimizer (GWO), focusing on reducing memory usage and 

accelerating convergence. The proposed method integrates Sinusoidal Mapping for enhanced 

population diversity and a Transverse Longitudinal Crossover strategy to balance global exploration 

and local exploitation. These innovations improve search efficiency and optimization precision while 

maintaining a lightweight computational footprint. Experimental evaluations on 16 benchmark 

functions demonstrate EGWO’s superior performance in convergence speed, solution accuracy, and 

robustness. Its application to hyperparameter tuning of a Random Forest model for a housing price 

dataset confirms its practical utility, further supported by SHAP-based interpretability analysis. 

Keywords: grey wolf optimizer; lightweight optimization; sinusoidal mapping; crossover strategy; 

random forest; SHAP analysis 

 

I. Introduction 

With the development of intelligent optimization algorithms, some memory efficient and 

scalable models have been rising to a favor. Among these, bio-inspired optimization methods have 

proven to be highly effective in solving complex global optimization problems [26]. These algorithms 

simulate the behaviors and collaborative mechanisms of biological groups in nature, enabling 

efficient exploration of large search spaces to find near-optimal solutions [2,25]. Among these 

methods, the Grey Wolf Optimizer (GWO), proposed by Mirjalili et al. in 2014, has gained significant 

attention due to its simplicity and efficiency. GWO has been successfully applied in various fields 

such as engineering design, data mining, and machine learning [18]. 

GWO mimics the hunting behavior of grey wolves in nature, leveraging the collaborative efforts 

of four different roles: α, β, δ, and ω wolves. The α wolf leads the group, guiding the hunting process; 

the β and δ wolves assist in exploration and adjust the search direction; while the ω wolves follow 

and maintain the diversity of the population, preventing premature convergence to local optima. The 

process involves strategies of encircling, tracking, and capturing prey, progressively narrowing the 

search space to approach the optimal solution [6]. 

Despite its success in various applications, GWO has limitations that restrict its performance. 

Firstly, the random initialization of the population can result in uneven distribution, which affects 

early-stage search efficiency [1]. Secondly, GWO tends to get trapped in local optima when dealing 

with complex, highdimensional, or multimodal optimization problems, due to its insufficient global 
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exploration capability. Additionally, as iterations proceed, the diversity of the population decreases, 

leading to slow convergence in the later stages [3]. 

To address these challenges, this paper proposes an Enhanced Grey Wolf Optimizer (EGWO), 

which incorporates advanced strategies to improve both global exploration and local exploitation 

capabilities. Specifically, EGWO employs a hybrid initialization strategy that combines geometric 

uniform distribution with random sampling, ensuring better initial diversity of the population. This 

approach enhances early-stage search efficiency by overcoming the limitations of traditional random 

initialization [28]. Furthermore, a dynamic weight adjustment mechanism is introduced, enabling 

adaptive balancing between global exploration and local exploitation throughout the optimization 

process [31]. An adaptive step size strategy is also applied, allowing for fine-tuned search capabilities 

based on solution quality, thus facilitating more precise exploration. 

The performance of SCGWO is evaluated through extensive experiments on multiple complex 

benchmark functions and compared with the classic GWO. The results demonstrate that SCGWO 

achieves faster convergence and higher accuracy, particularly in highdimensional, nonlinear, and 

multimodal optimization problems. Additionally, SCGWO shows greater robustness across multiple 

independent runs, highlighting its stability. 

To further demonstrate its effectiveness in practical applications, SCGWO is applied to the 

hyperparameter optimization of random forest models using the Boston housing price dataset [8]. 

The results indicate that SCGWO outperforms traditional optimization methods, achieving superior 

convergence and performance in model tuning. 

Main Contributions 

The key contributions of this paper are summarized as follows: 

• Proposed an Enhanced Grey Wolf Optimizer (SCGWO): A novel improvement of the GWO 

algorithm is presented, integrating Sinusoidal Mapping for population initialization and a 

Transverse-Longitudinal Crossover strategy, significantly enhancing both global exploration 

and local exploitation capabilities. 

• Introduced Dynamic Weight Adjustment Mechanism: A dynamic weight adjustment 

mechanism is developed to adaptively balance the roles of α, β, and δ wolves, ensuring better 

exploration in early stages and faster convergence in later stages. 

• Evaluated on Comprehensive Benchmark Functions: The proposed SCGWO is rigorously 

tested on 10 complex benchmark functions, demonstrating superior performance in terms of 

convergence speed, solution accuracy, and robustness when compared to the classic GWO. 

• Validated through Real-World Application: The effectiveness of SCGWO is further validated 

through its application to the hyperparameter optimization of a random forest model, 

achieving better tuning results than conventional optimization methods. 

II. Related Work 

A. Grey Wolf Optimizer (GWO) 

The Grey Wolf Optimizer (GWO) is a natureinspired optimization algorithm that models the 

behavior of grey wolves in their natural hunting process. It was introduced by Seyedali Mirjalili et 

al. in 2014 [18]. The core idea of the algorithm is to convert the optimization problem into a process 

where a group of grey wolves search for prey. Within the wolf pack, there are four different roles: α, 

β, δ, and candidate wolves, representing the current best solution, the second-best solution, the third-

best solution, and other candidate solutions, respectively. The hunting process of grey wolves is 

simulated through the following three phases: encircling prey, hunting prey, and attacking prey. 

B. Improvements to GWO 
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Since the introduction of GWO, numerous improvements have been proposed to enhance its 

performance. Emary et al. (2016) proposed a binary version of GWO for feature selection, which 

outperformed traditional methods such as particle swarm optimization (PSO) and genetic algorithms 

(GA) in various datasets [6]. Other studies, such as those by Abdollahzadeh et al. (2020), have 

incorporated chaos theory into GWO to increase population diversity and prevent premature 

convergence [1]. Hybrid approaches combining GWO with differential evolution (DE) and simulated 

annealing (SA) have also demonstrated improved performance in complex optimization tasks [5], 

[28]. 

However, most of these studies focus on either global exploration or local exploitation, failing 

to address both aspects simultaneously. To bridge this gap, this paper proposes a novel strategy that 

integrates Sinusoidal Mapping for initial population diversity and a Transverse-Longitudinal 

Crossover mechanism, aiming to balance global search capabilities with refined local optimization 

[31]. 

III. Enhanced Grey Wolf Optimizer (SCGWO) 

A. Sinusoidal Chaos Mapping for Population Initialization 

In traditional GWO, the initial population is generated through random sampling, which often 

results in uneven distribution across the search space, negatively impacting convergence efficiency 

and accuracy. To address this, we adopt a Sinusoidal Chaos Mapping method, which generates a 

more uniformly distributed set of sample points, thereby enhancing the diversity of the initial 

population. The Sinusoidal Chaos Mapping is a typical form of chaotic mapping with a simple 

mathematical structure. Its expression is as follows: 

xk+1 = a · x2
k sin(π · xk),  (1) 

where the parameter a = 2.3 and the initial value x(0) = 0.7. By using this mapping, the diversity of the 

initial population is significantly improved, allowing for a more effective exploration of the search 

space and enhancing the algorithm’s convergence speed and accuracy [1]. 

B. Transverse-Longitudinal Crossover Strategy 

The Transverse-Longitudinal Crossover Strategy is a key method for significantly improving the 

performance of the SCGWO. Traditional GWO often faces challenges with population individuals 

clustering in local regions of the search space, leading to premature convergence. To overcome this 

limitation, the transverse-longitudinal crossover strategy introduces crossover operations that 

encourage individuals to explore a wider range of the solution space. Specifically, the transverse 

crossover enhances the global exploration capability, enabling the population to escape from local 

optima, while the longitudinal crossover refines the solution in local regions, ensuring that no 

promising areas are overlooked near the optimal solution. This combined strategy not only increases 

the diversity of the algorithm but also accelerates the convergence process. 

1) Transverse Crossover Operation: The transverse crossover operation in SCGWO is similar to the 

crossover operation in genetic algorithms, focusing on exchanging information between different 

individuals across the same dimension. This approach is designed to improve the global search 

capability of the population. By randomly arranging the individuals in the population and 

performing crossover on the d-th dimension, the positions of the individuals are updated as follows: 

MSxti,d = r1 ·xti,d +(1−r1)·xtj,d +c1 ·(xi,dt ·xtj,d), 

(2) 

, 

(3) 

where MSxti,d and MSxtj,d represent the new offspring generated from individuals xti,d and xtj,d through 

transverse crossover, r1 and r2 are random numbers in the range [0,1], and c1 and c2 are constants in 
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the range [−1,1]. After the transverse crossover operation, individuals can generate offspring with a 

higher probability within their respective hypercube spaces and edges, thus expanding the search 

space and improving global exploration. The offspring generated through this crossover must 

compete with their parents, and the individual with higher fitness is retained, ensuring a balance 

between exploration and exploitation. 

2) Longitudinal Crossover Operation: The longitudinal crossover operation addresses the tendency 

of GWO to get stuck in local optima in later stages of the optimization process. This occurs when 

some individuals in the population reach local optima too early, causing the convergence speed to 

increase while the ability to explore the global optimum diminishes. The lack of a mutation 

mechanism in GWO restricts its ability to continue approaching the global optimum. Therefore, after 

performing transverse crossover, it is necessary to apply longitudinal crossover to further enhance 

the algorithm’s ability to escape local optima. 

Longitudinal crossover operates on all dimensions of newly generated offspring, with a lower 

probability than transverse crossover, similar to mutation in genetic algorithms. If a newly generated 

individual undergoes longitudinal crossover between dimensions d1 and d2, the calculation is as 

follows: 

, (4) 

where MSxti,d is the offspring generated from dimensions d1 and d2 of individual  through 

longitudinal crossover, and r1 ∈ [0,1]. Similar to the transverse crossover operation, the offspring 

generated through longitudinal crossover competes with its parent, and the individual with higher 

fitness is preserved. This selection mechanism allows crossover participants to retain their superior 

dimensional information while improving population diversity and solution quality. 

By combining transverse and longitudinal crossover operations, SCGWO effectively balances 

the ability to explore and exploit, resulting in a more efficient convergence to the global optimum. As 

the algorithm iterates, if an individual escapes a local optimum through longitudinal crossover in 

one dimension, this improvement is rapidly spread through transverse crossover, reinforcing the 

quality of the new solution throughout the population. This combined approach significantly 

enhances the algorithm’s ability to overcome local optima and improve both convergence speed and 

solution accuracy. 

IV. Simulations and Results 

A. Experiment Setup 

The experiments were conducted on a Windows 11 system with an Intel(R) Core(TM) i9-

14700HX CPU and 16GB of memory. We evaluated the performance of SCGWO using 16 benchmark 

functions commonly used to test optimization algorithms [31]. The functions are defined in Table 1. 

Table 1. Benchmark Functions for SCGWO Performance Testing. 

Function Name Search Range DIM OPT Value 

F1 Sphere [-100, 100] 30 0 

F2 Schwefel2.22 [-10, 10] 30 0 

F3 Schwefel1.2 [-100, 100] 30 0 

F4 Schwefel2.21 [-100, 100] 30 0 

F5 Rosenbrock [-30, 30] 30 0 

F6 Step [-100, 100] 30 0 

F7 Rastrigin [-5.12, 5.12] 30 0 

F8 Ackley [-32, 32] 30 0 

F9 Griewank [-600, 600] 30 0 

F10 Penalized [-50, 50] 30 0 
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F11 Michalewicz [-100,100  30    0 

F12 Levy [-10,10]  30    0 

F13 
Easom 

 
[-100,100]  30    0 

F14 
Bird 

 
[-100,100]  30    0 

F15 
Rotated Hyper-

Ellipsoid 
[-30,30]  30    0 

F16 
Weierstrass 

 
[-100,100  30    0 

B. Results and Discussion 

Figures 1 show the convergence curves for four representative functions: Sphere, Rastrigin, 

Ackley and Griewank. As shown, SCGWO significantly outperforms the traditional GWO and PSO 

in terms of convergence speed and solution accuracy [3]. 

 

(a) Convergence Curve on Sphere Function 

 

(b) Convergence Curve on Rastrigin Function 
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(c) Convergence Curve on Ackley Function 

 

(d) Convergence Curve on Griewank Function 

Figure 1. Convergence Curves of SCGWO, GWO and PSO on Different Benchmark Functions. 

V. Random Forest Hyperparameter Optimization 

SCGWO was applied to optimize the hyperparameters of a random forest regression model 

using the Boston housing price dataset from Kaggle [8]. The results are summarized in Table 3, 

showing that SCGWO outperformed traditional methods. 

Table 3. Performance Comparison on Random Forest Hyperparameter Optimization. 

Method MAE (train) RMSE (train) MAE (test) RMSE (test) 

Default 285109 398584 957916 1357261 

GWO 413922 547712 922632 1262471 

SCGWO 448753 616299 917518 1238437 

VI. Shap Analysis 

SHAP (SHapley Additive exPlanations) analysis was used to interpret the SCGWO-optimized 

random forest model’s predictions. The SHAP summary plot, shown in Figure 2, highlights the key 

features contributing to the model’s predictions. 
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Figure 2. SHAP Summary Plot for Random Forest Model. 

VII. Future Work 

In future work, we aim to explore the potential of SCGWO in addressing more challenging 

machine learning applications. For instance, optimizing deep neural network architectures, as 

demonstrated by Gao et al. [7], could benefit from SCGWO’s capacity to handle complex high-

dimensional optimization tasks. Additionally, combining SCGWO with other optimization 

techniques, such as particle swarm optimization (PSO), may improve performance in real-time 

systems, particularly in dynamic environments like warehouse robotics. 

One promising direction for SCGWO is its application to multitask learning systems. Techniques 

like the MT2ST framework, which transitions from multitask to single-task learning [12], could 

leverage SCGWO for fine-tuning task-specific performance. Similarly, SCGWO can enhance the 

robustness of representation learning in symmetric positive definite manifolds, as explored by Bu et 

al. [4]. 

In healthcare, SCGWO has the potential to optimize ensemble learning techniques in medical 

diagnostics. For example, ensemble models have been used to improve skin lesion diagnosis [16], 

and SCGWO could further refine the weighting of model components to enhance diagnostic 

accuracy. Likewise, SCGWO could improve performance in stroke treatment outcome prediction [17] 

and biomedical imaging tasks. 

Real-time 3D imaging tasks, such as crack detection [29], could also benefit from SCGWO by 

improving the computational efficiency of multi-sensor fusion models. Furthermore, SCGWO could 

be applied to optimize reinforcement learning algorithms for robot navigation in complex warehouse 

layouts [9], enhancing adaptability and efficiency. 

In content moderation, SCGWO could optimize machine learning models to integrate 

community rules for better transparency, as proposed by Xin et al. [27]. Similarly, it holds promise in 

mitigating knowledge conflicts in large language models for model compression [11], and for 

question answering, which could advance human-computer interaction technologies. 

Besides, SCGWO can be potentially improved by large language models [33] and be applied in 

various domains [34–39]. 

For cloud computing and networking, SCGWO can optimize resource allocation dynamically, 

building on prior research into distributed systems [32]. Additionally, in cybersecurity, SCGWO may 

contribute to defending against sequential query-based blackbox attacks [22] or enhancing meta-

learning enabled adversarial defenses [23]. 

Recent advancements in deep learning optimizers, such as those enhancing stability and 

efficiency [14,30], has been a favor. Our research suggest that SCGWO could improve learning 

efficiency in largescale models. Moreover, SCGWO’s potential applications in large-scale object 

detection [21] indicate its versatility for real-world tasks. 
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In time series modeling, SCGWO could optimize advanced models, such as Transformers and 

LSTMs, for applications in healthcare like heart rate prediction [20]. Furthermore, integrating 

SCGWO with quantized low-rank adaptation (QLoRA) methods for stock market prediction [19] 

could enhance adaptability and decision-making in financial forecasting as well as social media 

prediction [40,41]. 

In recommendation systems, SCGWO could improve optimization strategies based on graph 

neural networks [13,15,24], yielding better predictive performance in dynamic environments. 

SCGWO could also play a vital role in optimizing intelligent vehicle classification models in traffic 

systems [10], enhancing multi-sensor fusion and reducing computation time. 

Finally, SCGWO holds promise in enhancing large language models for detecting AI-generated 

content. By optimizing adaptive ensembles of fine-tuned transformers, SCGWO could improve 

detection systems’ speed and accuracy. 

Overall, SCGWO exhibits significant potential across diverse domains, including healthcare, 

autonomous systems, financial technology, and intelligent transportation. Its adaptability and 

efficiency make it a valuable tool for addressing complex, highdimensional problems, paving the way 

for broader applications in theoretical and practical research. 

VIII. Conclusion 

This paper proposes an improved Grey Wolf Optimizer, SCGWO, which integrates Sinusoidal 

Mapping and a Transverse-Longitudinal Crossover strategy. SCGWO was tested on several 

benchmark functions and applied to hyperparameter optimization in a random forest regression 

model. The results demonstrate that SCGWO outperforms traditional GWO in both convergence 

speed and solution accuracy. Future work will explore its application in more complex optimization 

problems and real-time systems. 
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