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Abstract: This paper presents an efficient Grey Wolf Optimizer (EGWO) designed to address the
limitations of the standard Grey Wolf Optimizer (GWO), focusing on reducing memory usage and
accelerating convergence. The proposed method integrates Sinusoidal Mapping for enhanced
population diversity and a Transverse Longitudinal Crossover strategy to balance global exploration
and local exploitation. These innovations improve search efficiency and optimization precision while
maintaining a lightweight computational footprint. Experimental evaluations on 16 benchmark
functions demonstrate EGWO’s superior performance in convergence speed, solution accuracy, and
robustness. Its application to hyperparameter tuning of a Random Forest model for a housing price
dataset confirms its practical utility, further supported by SHAP-based interpretability analysis.
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I. Introduction

With the development of intelligent optimization algorithms, some memory efficient and
scalable models have been rising to a favor. Among these, bio-inspired optimization methods have
proven to be highly effective in solving complex global optimization problems [26]. These algorithms
simulate the behaviors and collaborative mechanisms of biological groups in nature, enabling
efficient exploration of large search spaces to find near-optimal solutions [2,25]. Among these
methods, the Grey Wolf Optimizer (GWO), proposed by Mirjalili et al. in 2014, has gained significant
attention due to its simplicity and efficiency. GWO has been successfully applied in various fields
such as engineering design, data mining, and machine learning [18].

GWO mimics the hunting behavior of grey wolves in nature, leveraging the collaborative efforts
of four different roles: «, 8, 6, and w wolves. The @ wolf leads the group, guiding the hunting process;
the p and 6 wolves assist in exploration and adjust the search direction; while the w wolves follow
and maintain the diversity of the population, preventing premature convergence to local optima. The
process involves strategies of encircling, tracking, and capturing prey, progressively narrowing the
search space to approach the optimal solution [6].

Despite its success in various applications, GWO has limitations that restrict its performance.
Firstly, the random initialization of the population can result in uneven distribution, which affects
early-stage search efficiency [1]. Secondly, GWO tends to get trapped in local optima when dealing
with complex, highdimensional, or multimodal optimization problems, due to its insufficient global
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exploration capability. Additionally, as iterations proceed, the diversity of the population decreases,
leading to slow convergence in the later stages [3].

To address these challenges, this paper proposes an Enhanced Grey Wolf Optimizer (EGWO),
which incorporates advanced strategies to improve both global exploration and local exploitation
capabilities. Specifically, EGWO employs a hybrid initialization strategy that combines geometric
uniform distribution with random sampling, ensuring better initial diversity of the population. This
approach enhances early-stage search efficiency by overcoming the limitations of traditional random
initialization [28]. Furthermore, a dynamic weight adjustment mechanism is introduced, enabling
adaptive balancing between global exploration and local exploitation throughout the optimization
process [31]. An adaptive step size strategy is also applied, allowing for fine-tuned search capabilities
based on solution quality, thus facilitating more precise exploration.

The performance of SCGWO is evaluated through extensive experiments on multiple complex
benchmark functions and compared with the classic GWO. The results demonstrate that SCGWO
achieves faster convergence and higher accuracy, particularly in highdimensional, nonlinear, and
multimodal optimization problems. Additionally, SCGWO shows greater robustness across multiple
independent runs, highlighting its stability.

To further demonstrate its effectiveness in practical applications, SCGWO is applied to the
hyperparameter optimization of random forest models using the Boston housing price dataset [8].
The results indicate that SCGWO outperforms traditional optimization methods, achieving superior
convergence and performance in model tuning.

Main Contributions

The key contributions of this paper are summarized as follows:

e  Proposed an Enhanced Grey Wolf Optimizer (SCGWO): A novel improvement of the GWO
algorithm is presented, integrating Sinusoidal Mapping for population initialization and a
Transverse-Longitudinal Crossover strategy, significantly enhancing both global exploration
and local exploitation capabilities.

¢ Introduced Dynamic Weight Adjustment Mechanism: A dynamic weight adjustment
mechanism is developed to adaptively balance the roles of a, 5, and 6 wolves, ensuring better
exploration in early stages and faster convergence in later stages.

e  Evaluated on Comprehensive Benchmark Functions: The proposed SCGWO is rigorously
tested on 10 complex benchmark functions, demonstrating superior performance in terms of
convergence speed, solution accuracy, and robustness when compared to the classic GWO.

e  Validated through Real-World Application: The effectiveness of SCGWO is further validated
through its application to the hyperparameter optimization of a random forest model,

achieving better tuning results than conventional optimization methods.

II. Related Work

A. Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO) is a natureinspired optimization algorithm that models the
behavior of grey wolves in their natural hunting process. It was introduced by Seyedali Mirjalili et
al. in 2014 [18]. The core idea of the algorithm is to convert the optimization problem into a process
where a group of grey wolves search for prey. Within the wolf pack, there are four different roles: «,
B, 0, and candidate wolves, representing the current best solution, the second-best solution, the third-
best solution, and other candidate solutions, respectively. The hunting process of grey wolves is
simulated through the following three phases: encircling prey, hunting prey, and attacking prey.

B. Improvements to GWO
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Since the introduction of GWO, numerous improvements have been proposed to enhance its
performance. Emary et al. (2016) proposed a binary version of GWO for feature selection, which
outperformed traditional methods such as particle swarm optimization (PSO) and genetic algorithms
(GA) in various datasets [6]. Other studies, such as those by Abdollahzadeh et al. (2020), have
incorporated chaos theory into GWO to increase population diversity and prevent premature
convergence [1]. Hybrid approaches combining GWO with differential evolution (DE) and simulated
annealing (SA) have also demonstrated improved performance in complex optimization tasks [5],
[28].

However, most of these studies focus on either global exploration or local exploitation, failing
to address both aspects simultaneously. To bridge this gap, this paper proposes a novel strategy that
integrates Sinusoidal Mapping for initial population diversity and a Transverse-Longitudinal
Crossover mechanism, aiming to balance global search capabilities with refined local optimization
[31].

III. Enhanced Grey Wolf Optimizer (SCGWO)

A. Sinusoidal Chaos Mapping for Population Initialization

In traditional GWO, the initial population is generated through random sampling, which often
results in uneven distribution across the search space, negatively impacting convergence efficiency
and accuracy. To address this, we adopt a Sinusoidal Chaos Mapping method, which generates a
more uniformly distributed set of sample points, thereby enhancing the diversity of the initial
population. The Sinusoidal Chaos Mapping is a typical form of chaotic mapping with a simple
mathematical structure. Its expression is as follows:

Xir1 = @ - X2 SiN(m + Xx), (1)

where the parameter 2 =2.3 and the initial value x(0) = 0.7. By using this mapping, the diversity of the
initial population is significantly improved, allowing for a more effective exploration of the search
space and enhancing the algorithm’s convergence speed and accuracy [1].

B. Transverse-Longitudinal Crossover Strategy

The Transverse-Longitudinal Crossover Strategy is a key method for significantly improving the
performance of the SCGWO. Traditional GWO often faces challenges with population individuals
clustering in local regions of the search space, leading to premature convergence. To overcome this
limitation, the transverse-longitudinal crossover strategy introduces crossover operations that
encourage individuals to explore a wider range of the solution space. Specifically, the transverse
crossover enhances the global exploration capability, enabling the population to escape from local
optima, while the longitudinal crossover refines the solution in local regions, ensuring that no
promising areas are overlooked near the optimal solution. This combined strategy not only increases
the diversity of the algorithm but also accelerates the convergence process.

1) Transverse Crossover Operation: The transverse crossover operation in SCGWO is similar to the
crossover operation in genetic algorithms, focusing on exchanging information between different
individuals across the same dimension. This approach is designed to improve the global search
capability of the population. By randomly arranging the individuals in the population and
performing crossover on the d-th dimension, the positions of the individuals are updated as follows:

MSxti.d = 1 -Xti.d +(1—r1)-Xg,d +C1 - (Xi.dt -Xti,d),
)

M'ngld =ry- m;d +(1—ry)- :cﬁ‘d +ca- (a:j’d -m’;d),

3)
where MSx!isand MSx!arepresent the new offspring generated from individuals x%.+and x'.«through
transverse crossover, r1and r2are random numbers in the range [0,1], and c1and c2are constants in
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the range [-1,1]. After the transverse crossover operation, individuals can generate offspring with a
higher probability within their respective hypercube spaces and edges, thus expanding the search
space and improving global exploration. The offspring generated through this crossover must
compete with their parents, and the individual with higher fitness is retained, ensuring a balance
between exploration and exploitation.

2) Longitudinal Crossover Operation: The longitudinal crossover operation addresses the tendency
of GWO to get stuck in local optima in later stages of the optimization process. This occurs when
some individuals in the population reach local optima too early, causing the convergence speed to
increase while the ability to explore the global optimum diminishes. The lack of a mutation
mechanism in GWO restricts its ability to continue approaching the global optimum. Therefore, after
performing transverse crossover, it is necessary to apply longitudinal crossover to further enhance
the algorithm’s ability to escape local optima.

Longitudinal crossover operates on all dimensions of newly generated offspring, with a lower
probability than transverse crossover, similar to mutation in genetic algorithms. If a newly generated
individual x; «dundergoes longitudinal crossover between dimensions diand 4z, the calculation is as
follows:

MSaxt =1 - a“:f,dl +(1—ry)- a:f’dz’ (4)

where MSx'ia is the offspring generated from dimensions di and 42 of individual Zid through
longitudinal crossover, and r1 € [0,1]. Similar to the transverse crossover operation, the offspring
generated through longitudinal crossover competes with its parent, and the individual with higher
fitness is preserved. This selection mechanism allows crossover participants to retain their superior
dimensional information while improving population diversity and solution quality.

By combining transverse and longitudinal crossover operations, SCGWO effectively balances
the ability to explore and exploit, resulting in a more efficient convergence to the global optimum. As
the algorithm iterates, if an individual escapes a local optimum through longitudinal crossover in
one dimension, this improvement is rapidly spread through transverse crossover, reinforcing the
quality of the new solution throughout the population. This combined approach significantly
enhances the algorithm’s ability to overcome local optima and improve both convergence speed and
solution accuracy.

IV. Simulations and Results

A. Experiment Setup

The experiments were conducted on a Windows 11 system with an Intel(R) Core(TM) i9-
14700HX CPU and 16GB of memory. We evaluated the performance of SCGWO using 16 benchmark
functions commonly used to test optimization algorithms [31]. The functions are defined in Table 1.

Table 1. Benchmark Functions for SCGWO Performance Testing.

Function Name Search Range DIM OPT Value
F1 Sphere [-100, 100] 30 0
F2 Schwefel2.22 [-10, 10] 30 0
F3 Schwefell.2 [-100, 100] 30 0
F4 Schwefel2.21 [-100, 100] 30 0
F5 Rosenbrock [-30, 30] 30 0
F6 Step [-100, 100] 30 0
F7 Rastrigin [-5.12, 5.12] 30 0
F8 Ackley [-32,32] 30 0
F9 Griewank [-600, 600] 30 0
F10 Penalized [-50, 50] 30 0
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F11 Michalewicz [-100,100 30 0
F12 Levy [-10,10] 30 0
E
F13 asom [-100,100] 30 0
Fl4 Bird [-100,100] 30 0
R Hyper-
F15 otated Hyper [-30,30] 30 0
Ellipsoid
F16 Welerstrass [-100,100 30 0

B. Results and Discussion

Figures 1 show the convergence curves for four representative functions: Sphere, Rastrigin,
Ackley and Griewank. As shown, SCGWO significantly outperforms the traditional GWO and PSO
in terms of convergence speed and solution accuracy [3].
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Figure 1. Convergence Curves of SCGWO, GWO and PSO on Different Benchmark Functions.

V. Random Forest Hyperparameter Optimization

SCGWO was applied to optimize the hyperparameters of a random forest regression model
using the Boston housing price dataset from Kaggle [8]. The results are summarized in Table 3,
showing that SCGWO outperformed traditional methods.

Table 3. Performance Comparison on Random Forest Hyperparameter Optimization.

Method MAE (train) RMSE (train) MAE (test) RMSE (test)

Default 285109 398584 957916 1357261
GWO 413922 547712 922632 1262471

SCGWO 448753 616299 917518 1238437

VI. Shap Analysis

SHAP (SHapley Additive exPlanations) analysis was used to interpret the SCGWO-optimized
random forest model’s predictions. The SHAP summary plot, shown in Figure 2, highlights the key
features contributing to the model’s predictions.
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Figure 2. SHAP Summary Plot for Random Forest Model.

VII. Future Work

In future work, we aim to explore the potential of SCGWO in addressing more challenging
machine learning applications. For instance, optimizing deep neural network architectures, as
demonstrated by Gao et al. [7], could benefit from SCGWQO's capacity to handle complex high-
dimensional optimization tasks. Additionally, combining SCGWO with other optimization
techniques, such as particle swarm optimization (PSO), may improve performance in real-time
systems, particularly in dynamic environments like warehouse robotics.

One promising direction for SCGWO is its application to multitask learning systems. Techniques
like the MT2ST framework, which transitions from multitask to single-task learning [12], could
leverage SCGWO for fine-tuning task-specific performance. Similarly, SCGWO can enhance the
robustness of representation learning in symmetric positive definite manifolds, as explored by Bu et
al. [4].

In healthcare, SCGWO has the potential to optimize ensemble learning techniques in medical
diagnostics. For example, ensemble models have been used to improve skin lesion diagnosis [16],
and SCGWO could further refine the weighting of model components to enhance diagnostic
accuracy. Likewise, SCGWO could improve performance in stroke treatment outcome prediction [17]
and biomedical imaging tasks.

Real-time 3D imaging tasks, such as crack detection [29], could also benefit from SCGWO by
improving the computational efficiency of multi-sensor fusion models. Furthermore, SCGWO could
be applied to optimize reinforcement learning algorithms for robot navigation in complex warehouse
layouts [9], enhancing adaptability and efficiency.

In content moderation, SCGWO could optimize machine learning models to integrate
community rules for better transparency, as proposed by Xin et al. [27]. Similarly, it holds promise in
mitigating knowledge conflicts in large language models for model compression [11], and for
question answering, which could advance human-computer interaction technologies.

Besides, SCGWO can be potentially improved by large language models [33] and be applied in
various domains [34-39].

For cloud computing and networking, SCGWO can optimize resource allocation dynamically,
building on prior research into distributed systems [32]. Additionally, in cybersecurity, SCGWO may
contribute to defending against sequential query-based blackbox attacks [22] or enhancing meta-
learning enabled adversarial defenses [23].

Recent advancements in deep learning optimizers, such as those enhancing stability and
efficiency [14,30], has been a favor. Our research suggest that SCGWO could improve learning
efficiency in largescale models. Moreover, SCGWO’s potential applications in large-scale object
detection [21] indicate its versatility for real-world tasks.
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In time series modeling, SCGWO could optimize advanced models, such as Transformers and
LSTMs, for applications in healthcare like heart rate prediction [20]. Furthermore, integrating
SCGWO with quantized low-rank adaptation (QLoRA) methods for stock market prediction [19]
could enhance adaptability and decision-making in financial forecasting as well as social media
prediction [40,41].

In recommendation systems, SCGWO could improve optimization strategies based on graph
neural networks [13,15,24], yielding better predictive performance in dynamic environments.
SCGWO could also play a vital role in optimizing intelligent vehicle classification models in traffic
systems [10], enhancing multi-sensor fusion and reducing computation time.

Finally, SCGWO holds promise in enhancing large language models for detecting Al-generated
content. By optimizing adaptive ensembles of fine-tuned transformers, SCGWO could improve
detection systems’ speed and accuracy.

Overall, SCGWO exhibits significant potential across diverse domains, including healthcare,
autonomous systems, financial technology, and intelligent transportation. Its adaptability and
efficiency make it a valuable tool for addressing complex, highdimensional problems, paving the way
for broader applications in theoretical and practical research.

VIII. Conclusion

This paper proposes an improved Grey Wolf Optimizer, SCGWO, which integrates Sinusoidal
Mapping and a Transverse-Longitudinal Crossover strategy. SCGWO was tested on several
benchmark functions and applied to hyperparameter optimization in a random forest regression
model. The results demonstrate that SCGWO outperforms traditional GWO in both convergence
speed and solution accuracy. Future work will explore its application in more complex optimization
problems and real-time systems.

References

1.  Behnam Abdollahzadeh, Reza Ebrahimi, and Saeed Arani Arani. Improved grey wolf optimization
algorithm based on chaos theory for optimization problems. Applied Soft Computing, 90:106187, 2020.

2. Sanjay Arora and Satvir Singh. A review on nature-inspired optimization algorithms. International Journal
of Industrial Engineering Computations, 10(4):681-709, 2019.

3. Jagdish Bansal and Himanshu Sharma. Enhanced grey wolf optimizer with levy flight for engineering
design optimization. Journal of Computational Design and Engineering, 9(1):23— 38, 2022.

4.  Xingyuan Bu, Yuwei Wu, Zhi Gao, and Yunde Jia. Deep convolutional network with locality and sparsity
constraints for texture classification. Pattern Recognition, 91:34—46, 2019.

5. Gaurav Dhiman and Vijay Kumar. Hybrid optimization strategies combining grey wolf optimizer with
differential evolution and simulated annealing. Expert Systems with Applications, 159:113584, 2021.

6.  Ebrahim Emary, Hossam M Zawbaa, and Aboul Ella Hassanien. Binary grey wolf optimization approaches
for feature selection. Neurocomputing, 172:371-381, 2016.

7. Zhi Gao, Yuwei Wu, Xingyuan Bu, Tan Yu, Junsong Yuan, and Yunde Jia. Learning a robust representation
via a deep network on symmetric positive definite manifolds. Pattern Recognition, 92:1-12, 2019.

8. Soliman Khalil. Machine learning model for housing dataset. https://www kaggle.com/code/solimankhalil/
ml-model-linear-regression-housing-dataset, 2021. Kaggle.

9.  Keqin Li, Lipeng Liu, Jiajing Chen, Dezhi Yu, Xiaofan Zhou, Ming Li, Congyu Wang, and Zhao Li. Research
on reinforcement learning based warehouse robot navigation algorithm in complex warehouse layout.
arXiv preprint arXiv:2411.06128, 2024.

10.  Xinjin Li, Yuanzhe Yang, Yixiao Yuan, Yu Ma, Yangchen Huang, and Haowei Ni. Intelligent vehicle
classification system based on deep learning and multi-sensor fusion. Preprints, July 2024.

11. Dong Liu. Contemporary model compression on large language models inference. arXiv preprint
arXiv:2409.01990, 2024.

12.  Dong Liu. Mt2st: Adaptive multi-task to single-task learning. arXiv preprint arXiv:2406.18038, 2024.


https://www.kaggle.com/code/solimankhalil/ml-model-linear-regression-housing-dataset
https://www.kaggle.com/code/solimankhalil/ml-model-linear-regression-housing-dataset
https://www.kaggle.com/code/solimankhalil/ml-model-linear-regression-housing-dataset
https://doi.org/10.20944/preprints202412.1974.v3

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 April 2025

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Dong Liu and Meng Jiang. Distance recomputator and topology reconstructor for graph neural networks.
arXiv preprint arXiv:2406.17281, 2024.

Dong Liu, Meng Jiang, and Kaiser Pister. Limeasyquant— an easy to use toolkit for llm quantization. arXiv
preprint arXiv:2406.19657, 2024.

Dong Liu, Roger Waleffe, Meng Jiang, and Shivaram Venkataraman. Graphsnapshot: Graph machine
learning acceleration with fast storage and retrieval. arXiv preprint arXiv:2406.17918, 2024.

Xiaoyi Liu, Zhou Yu, Lianghao Tan, Yafeng Yan, and Ge Shi. Enhancing skin lesion diagnosis with
ensemble learning. 2024.

Danging Ma, Meng Wang, Ao Xiang, Zongqing Qi, and Qin Yang. Transformer-based classification
outcome prediction for multimodal stroke treatment. 2024.

Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf optimizer. Advances in
Engineering Software, 69:46—61, 2014.

Haowei Ni, Shuchen Meng, Xupeng Chen, Ziqing Zhao, Andi Chen, Panfeng Li, Shiyao Zhang, Qifu Yin,
Yuanqging Wang, and Yuxi Chan. Harnessing earnings reports for stock predictions: A glora-enhanced 1lm
approach. arXiv preprint arXiv:2408.06634, 2024.

Haowei Ni, Shuchen Meng, Xieming Geng, Panfeng Li, Zhuoying Li, Xupeng Chen, Xiaotong Wang, and
Shiyao Zhang. Time series modeling for heart rate prediction: From arima to transformers. arXiv preprint
arXiv:2406.12199, 2024.

Junran Peng, Xingyuan Bu, Ming Sun, Zhaoxiang Zhang, Tieniu Tan, and Junjie Yan. Large-scale object
detection in the wild from imbalanced multi-labels. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9709-9718, 2020.

Yiyi Tao. Sqgba: sequential query-based blackbox attack. In Fifth International Conference on Artificial
Intelligence and Computer Science (AICS 2023), volume 12803, page 128032Q. International Society for Optics
and Photonics, SPIE, 2017.

Yiyi Tao. Meta learning enabled adversarial defense. In 2023 IEEE International Conference on Sensors,
Electronics and Computer Engineering (ICSECE), pages 1326-1330, 2023.

Zeyu Wang, Yue Zhu, Zichao Li, Zhuoyue Wang, Hao Qin, and Xinqi Liu. Graph neural network
recommendation system for football formation. Applied Science and Biotechnology Journal for Advanced
Research, 3(3):33-39, 2024.

Yijie Weng and Jianhao Wu. Fortifying the global data fortress: a multidimensional examination of cyber
security indexes and data protection measures across 193 nations. International Journal of Frontiers in
Engineering Technology, 6(2), 2024.

Yijie Weng, Jianhao Wu, Tara Kelly, and William Johnson. Comprehensive overview of artificial
intelligence applications in modern industries. arXiv preprint arXiv:2409.13059, 2024.

Wangjiaxuan Xin, Kanlun Wang, Zhe Fu, and Lina Zhou. Let community rules be reflected in online
content moderation. 2024.

Xiaofei Yang and Jinsong Guo. A novel hybrid algorithm of ant colony optimization and grey wolf
optimizer for continuous optimization problems. Expert Systems with Applications, 150:113282, 2020.
Haowei Zhang, Kang Gao, Huiying Huang, Shitong Hou, Jun Li, and Gang Wu. Fully decouple
convolutional network for damage detection of rebars in rc beams. Engineering Structures, 285:116023, 2023.
Hongye Zheng, Bingxing Wang, Minheng Xiao, Honglin Qin, Zhizhong Wu, and Lianghao Tan. Adaptive
friction in deep learning: Enhancing optimizers with sigmoid and tanh function. arXiv preprint
arXiv:2408.11839, 2024.

Hua Zhu, Yi Wang, and Jian Zhang. An adaptive multipopulation differential evolution with cooperative
co-evolution for high-dimensional optimization. Swarm and Evolutionary Computation, 44:226-239, 2019.
Wenbo Zhu. Optimizing distributed networking with big data scheduling and cloud computing. In
International Conference on Cloud Computing, Internet of Things, and Computer Applications (CICA 2022),
volume 12303, pages 23-28. SPIE, 2022.

Pluhacek M, Kazikova A, Kadavy T, Viktorin A, Senkerik R. Leveraging large language models for the
generation of novel metaheuristic optimization algorithms. In Proceedings of the Companion Conference on
Genetic and Evolutionary Computation 2023 Jul 15 (pp. 1812-1820).


https://doi.org/10.20944/preprints202412.1974.v3

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 April 2025

34.

35.

36.

37.

38.

39.

40.

41.

10 of 10

Mai Z, Zhang ], Xu Z, Xiao Z. Is llama 3 good at sarcasm detection? a comprehensive study. In Proceedings
of the 2024 7th International Conference on Machine Learning and Machine Intelligence (MLMI) 2024 Aug 2 (pp.
141-145).

Mai Z, Zhang J, Xu Z, Xiao Z. Financial sentiment analysis meets llama 3: A comprehensive analysis. In
Proceedings of the 2024 7th International Conference on Machine Learning and Machine Intelligence (MLMI) 2024
Aug 2 (pp. 171-175).

Xiao Z, Blanco E, Huang Y. Analyzing large language models’ capability in location prediction. In
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024) 2024 May (pp. 951-958).

Xiao Z, Mai Z, Xu Z, Cui Y, Li J. Corporate event predictions using large language models. In 2023 10th
International Conference on Soft Computing & Machine Intelligence (ISCMI) 2023 Nov 25 (pp. 193-197). IEEE.
Zhang J, Mai Z, Xu Z, Xiao Z. Is llama 3 good at identifying emotion? a comprehensive study. In Proceedings
of the 2024 7th International Conference on Machine Learning and Machine Intelligence (MLMI) 2024 Aug 2 (pp.
128-132).

Xiao Z, Mai Z, Cui Y, Xu Z, Li]. Short interest trend prediction with large language models. In Proceedings
of the 2024 International Conference on Innovation in Artificial Intelligence 2024 Mar 16 (pp. 1-1).

Liu Y, Shen X, Zhang Y, Wang Z, Tian Y, Dai ], Cao Y. A Systematic Review of Machine Learning
Approaches for Detecting Deceptive Activities on Social Media: Methods, Challenges, and Biases. arXiv
preprint arXiv:2410.20293. 2024 Oct 26.

Cao Y, Dai J, Wang Z, Zhang Y, Shen X, Liu Y, Tian Y. Machine Learning Approaches for Depression
Detection on Social Media: A Systematic Review of Biases and Methodological Challenges. Journal of
Behavioral Data Science. 2025 Feb 14,5(1):1-36.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.


https://doi.org/10.20944/preprints202412.1974.v3

