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Abstract: The Hartman-Grobman Theorem plays a pivotal role in the qualitative analysis of
dynamical systems, providing insights into the behavior of systems near hyperbolic equilibrium
points through linear approximations. This paper presents an in-depth exploration of the theorem,
clarifying its technical stipulations and demonstrating its application with practical examples. We
begin by defining key concepts integral to dynamical systems such as equilibrium points,
linearization, and the Jacobian matrix. Subsequent sections discuss the conditions under which the
theorem applies, particularly focusing on hyperbolicity and the importance of eigenvalues in
determining system stability. Additionally, the notion of topological conjugacy is examined to
illustrate how nonlinear and linear system trajectories correlate qualitatively. We further investigate
the concept of Lipschitz continuity and its relevance to the theorem's applicability. Through
illustrative examples, including simple linear systems and more complex saddle points, we
underscore the theorem's utility in simplifying the understanding of nonlinear dynamics. This
comprehensive coverage of the theme not only elucidates the fundamental aspects of the Hartman-
Grobman Theorem but also highlights its significant implications for predicting and analyzing
system behavior in various scientific and engineering applications.

Keywords: Hartman-Grobman Theorem; dynamical systems; hyperbolic equilibrium; linearization;
Jacobian matrix; eigenvalues; topological conjugacy; Lipschitz continuity; system stability

Section 1. Introduction

The study of dynamical systems, which describes how the state of a system evolves over time
under given rules, is fundamental to understanding complex behaviors in various scientific and
engineering fields. A crucial aspect of analyzing these systems is determining how they behave near
equilibrium points —states at which the system does not change unless perturbed. While the direct analysis
of nonlinear dynamical systems can be complex due to their sensitivity to initial conditions and
parameters, linearization provides a powerful tool for simplifying this analysis. The Hartman-
Grobman Theorem, introduced independently by Philip Hartman and Lev Grobman in the late 1950s
(Hartman, 1960; Grobman, 1959), serves as a foundational result in this regard, particularly near
hyperbolic equilibria.

The theorem asserts that near a hyperbolic equilibrium point, the behavior of a nonlinear dynamical system
can be approximated by its linearized form, allowing for the qualitative study of the system’s dynamics using
simpler linear methods. To fully appreciate the implications and applications of the Hartman-Grobman
Theorem, it is essential to understand several foundational concepts, which will be introduced and
developed in this section.

Section 1.1. Proof of the Hartman-Grobman Theorem

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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The Hartman-Grobman Theorem states that near a hyperbolic equilibrium point, a nonlinear
dynamical system is topologically conjugate to its linearization. Here, we will present the proof in a
stepwise, didactic manner with clear explanations of the equations.

Restatement of the Theorem

Let x = f(x) be a dynamical system with x € R*, where f:R"™— R" is continuously
differentiable ( C* ) near an equilibrium point x*.If the equilibrium point x* is hyperbolic, meaning
that the Jacobian matrix A = Df(x*) has no eigenvalues with zero real parts, then there exists a
homeomorphism h:U — V (with U and V neighborhoods of x* and 0, respectively) such that the
nonlinear system:

x=f(x) (1)

is topologically conjugated to its linearized system:

y =4y, A=Df(x") (2)
where h preserves the qualitative structure of trajectories.
Step 1: Setting up the Problem
The system under consideration is:
x = f(x), x € R

We assume that f(x) is continuously differentiable, and x* is an equilibrium point, i.e.,
f(x*) = 0. Let x* be shifted to the origin for simplicity by defining a new variable z = x — x*. Then
the system becomes:

z=f(z+x") with £(0)=0 (3)

Near z = 0, we linearize f using its first-order Taylor expansion:

f(z) =Az+g(2), A= Df(0) (4)
where A is the Jacobian matrix of f at0, and g(z) is a nonlinear remainder term that satisfies:
. lg@ll
lim——=0 (5
z-0 izl ®)
Thus, the system becomes:
z=Az+ g(z) (6)
Our goal is to show that this nonlinear system is topologically conjugated to its linearized
counterpart y = Ay. (7)
Step 2: Properties of the Linearized System
The linear system:

y=Ay, y € R"
has solutions of the form:

y(t) = ey, (8)

where e“’ is the matrix exponential of 4, and y, is the initial condition.

Since A is hyperbolic (by assumption), the eigenvalues of A have nonzero real parts. This means the
space R™ can be decomposed into two invariant subspaces:

1. Stable subspace E®, corresponding to eigenvalues with negative real parts.
2. Unstable subspace EY, corresponding to eigenvalues with positive real parts.

Any trajectory y(t) of the linearized system will exhibit exponential decay in the stable directions and

exponential growth in the unstable directions:

ly@®Il - 0 as t - oo (if yo € E®) ©)
ly(®]l = o0 as t » —oco (if yo € E¥)

Step 3: Constructing the Homeomorphism
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To prove topological conjugacy, we construct a homeomorphism h that maps solutions of the
nonlinear system Z = Az + g(z) to solutions of the linearized system y = Ay. The strategy is to
"straighten" the nonlinear flow using a carefully defined map h.

Define the map h: R™ — R" by:

h(z) =z +n(z) (10)
where 7(z) is a correction function that ensures h maps trajectories of the nonlinear system to those
of the linearized system. The function 7 must satisfy:

1. 1(0) = 0, ensuring h(0) = 0.
2. 1 is small near z = 0, i.e., n vanishes as z - 0.
3. The conjugacy condition holds:

%h(z(t)) = Ah(z(t)) (11)

where z(t) is a solution of the nonlinear system.
Substituting h(z) = z + n(z) into the conjugacy condition, we get:

Sz +n@)] = Alz + ()] (12)
The left-hand side is:
z+Dn(2)z (13)
and from the nonlinear system z = Az + g(z), we substitute for 2 :
Az + g(z) + Dn(2)[Az + g(2)] = Az + An(z) (14)
Rearranging terms gives:
9(2) + Dn(2)[Az + g(2)] = An(2) (15)
The goal now is to solve for 7(z), ensuring it is small and smooth near z = 0.
Step 4: Existence of the Homeomorphism

The solution for 7(z) can be constructed using a fixed-point argument. Specifically, under the
hyperbolicity assumption, the operator L(7) defined by:

L(n) = An(z) — Dn(2)Az — g(2) (16)

has a unique solution 7(z) that is small near z = 0. By applying the Banach Fixed-Point
Theorem in an appropriate function space, it can be shown that such an 7 exists and satisfies the
required smoothness and smallness conditions (Perko, 2013).

Thus, the map h(z) = z + n(z) is a homeomorphism, and the conjugacy condition:

= h(z) = Ah(2) (17)

is satisfied.
Step 5: Conclusion
Since h:U — V is a homeomorphism, the nonlinear system:

z=Az+ g(z) (18)
is topologically conjugated to its linearized system:

y =4y (19)

This completes the proof of the Hartman-Grobman Theorem.

Section 1.2. Dynamical Systems

A dynamical system can be defined formally as a system in which a function describes the time
dependence of a point in a geometrical space. Mathematically, it is often represented as:

d0i:10.20944/preprints202412.1769.v1
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fx) =0 (20)

This definition implies that if the system starts at x”, it remains at x* indefinitely, representing
a constant or steady state of the system. Determining the nature of these points is crucial for
understanding the long-term behavior of the system.
Section 1.2.1. Linearization

To analyze the behavior of a system near an equilibrium point x*, we often linearize the function
f around x*. The linearization involves approximating f by its first-order Taylor expansion,
leading to:

fe) = f(x) +Df(x")(x — x7) (21)
where Df(x*) denotes the Jacobian matrix of f at x*. This matrix A = Df(x*) is crucial as it
simplifies the nonlinear system to a linear one, which is easier to analyze.

Section 1.2.2. Hyperbolicity

A point x* is termed hyperbolic if none of the eigenvalues of the Jacobian matrix A at x* have
zero real parts. The significance of this condition lies in the behavior it predicts:
e Eigenvalues with negative real parts indicate stability (trajectories converge to x* ).
o Eigenvalues with positive real parts indicate instability (trajectories diverge from x* ).

The absence of eigenvalues with zero real parts ensures that the system's behavior near x* is
welldefined and predictable, thus satisfying the conditions for the application of the Hartman-
Grobman Theorem.

Section 1.3. Topological Conjugacy

Finally, the concept of topological conjugacy provides the framework within which the linear
and nonlinear systems are compared. Two systems are topologically conjugate if there exists a
homeomorphism h that maps trajectories of the nonlinear system to those of the linear system while
preserving their qualitative structure:

ho¢e =1 oh (22)
where ¢, and i, represent the flows of the nonlinear and linear systems, respectively.

This introduction sets the stage for a deeper exploration of the theorem's proof, implications,
and applications, demonstrating how the linear approximation facilitated by the Hartman-Grobman
Theorem allows for a nuanced understanding of dynamical systems near critical points. Through the
use of real-world examples and further theoretical development, we will see how this theorem
provides a bridge between complex nonlinear behavior and more manageable linear dynamics.

Section 2. Methodology

In order to rigorously examine the applicability of the Hartman-Grobman Theorem to a given
dynamical system, we must follow a systematic approach. This section outlines the methodology
employed to determine whether the theorem can be applied to analyze the behavior near equilibrium
points and how we can verify the conditions of topological conjugacy between the nonlinear system
and its linear approximation.

Section 2.1. Identifying and Analyzing Equilibrium Points

The first step in applying the Hartman-Grobman Theorem is identifying equilibrium points of
the dynamical system described by:

x = f(x) (23)

where x € R" is the state vector and f:R™ — R" is a continuously differentiable function governing
the system dynamics. An equilibrium point x* satisfies:
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fx*) =0 (24)
Determining x* involves solving the equation, which may require numerical methods if an
analytical solution is not feasible.

2. Linearization at Equilibrium Points

Once an equilibrium point x* is identified, the next step is to linearize the system at this point.
The linearized form around x* is given by the first-order Taylor expansion:

f(x) = A(x —x7) (24)
where A = Df(x") is the Jacobian matrix evaluated at the equilibrium point. The elements of A are
defined as:

0 i *
Aij = a—,fj(x ) (25)

This matrix A encapsulates the system's local behavior near x* and is critical for further
analysis.

3. Assessing Hyperbolicity

The equilibrium point x* must be hyperbolic for the Hartman-Grobman Theorem to apply. This
requires that the eigenvalues A4 of the Jacobian matrix A do not have zero real parts:

Re(4;) # 0 foralli (26)

Determining the eigenvalues of A provides insight into the stability of x* and indicates
whether trajectories near this point converge or diverge.

4. Verifying Topological Conjugacy

Topological conjugacy between the nonlinear system and its linearization is central to the
application of the Hartman-Grobman Theorem. This is verified if there exists a homeomorphism h
such that:

ho¢=1oh (27)
Here, ¢, represents the flow of the nonlinear system x = f(x), and v, is the flow of the linear

system y = Ay. Establishing this relationship typically involves constructing h explicitly or proving
its existence under the theorem's assumptions.

5. Application to Specific Examples

The final step involves applying the methodology to specific examples to illustrate the theorem's
practical implications. For each example, we will:

e  Calculate the Jacobian matrix A at identified equilibrium points.

e  Assess the eigenvalues to confirm hyperbolicity.

e Discuss potential forms for the homeomorphism h and how it relates the dynamics of the
nonlinear system to its linearization.

By methodically following these steps, we can utilize the Hartman-Grobman Theorem to gain
qualitative insights into the dynamics of nonlinear systems near hyperbolic equilibrium points. This
methodology not only validates the theoretical aspects but also enhances our understanding through
practical application to diverse dynamical systems.

Section 2.2 Practical Application: Population Dynamics Model

A practical application of the Hartman-Grobman Theorem can be seen in ecological models,
particularly in understanding the dynamics of populations under certain biological assumptions.
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One such example is the logistic growth model, which captures how a population evolves over time,
taking into account the natural limitations of the environment such as carrying capacity.

1. The Logistic Growth Model

The logistic growth equation for a population is given by:

P=rpP(1-1) (28)
where:

e P represents the population size.

e 1 is the intrinsic growth rate of the population.

e K is the carrying capacity of the environment, the maximum population size that the
environment can sustain indefinitely.

2. Equilibrium Points

The equilibrium points occur where the growth rate P equals zero. Setting equation (11) to zero,
we find:

rP(1-2)=0 (29)

This yields two equilibrium points:
e P =0 (extinction)
e P =K (population stabilizes at carrying capacity)
3. Linearization at Equilibrium Points
We now linearize the logistic model at each equilibrium point. The Jacobian matrix A for this

model, which is a scalar in this case since P is a one-dimensional variable, is given by the derivative
of the right-hand side of equation (11):

a==lrp(1-2)| =r(1-%) @0)
ar K K
4. Evaluating Jacobian at Equilibrium Points

. At P=0:

a=r(1-22)=r (31

At P=K:
2XK

a=r(1-25=-r (3

Assessing Hyperbolicity

Both equilibrium points are hyperbolic since the eigenvalue A at each point does not have a
zero real part:

A =r for P =0 indicates instability (positive eigenvalue, population grows if slightly above
Z€ero0).

A=—-r for P=K indicates stability (negative eigenvalue, population returns to K if
perturbed).

Section 2.3. Implications of the Hartman-Grobman Theorem

The Hartman-Grobman Theorem tells us that the behavior of the nonlinear logistic model near
these equilibrium points can be approximated by its linearizations. Specifically:

Near P = 0, the linear approximation suggests exponential growth away from extinction if P is
initially positive.

Near P = K, the linear approximation indicates exponential decay back to K if the population
is perturbed.
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This application of the Hartman-Grobman Theorem enables ecologists to predict and
understand the outcomes of small perturbations to a population near critical thresholds, providing
crucial insights into the resilience and stability of ecological systems under various conditions.

Section 2.4. Understanding Lipschitz Continuity in the Context of the Logistic Growth Model

Lipschitz continuity is an important mathematical concept in the analysis of differential
equations, including those used in dynamical systems like the logistic growth model. This property
plays a vital role in ensuring the solutions to these equations behave well, particularly in the context of the
Hartman-Grobman Theorem.

1. Definition of Lipschitz Continuity

A function f:R™ —» R" is said to be Lipschitz continuous on a domain D c R" if there exists a
constant L = 0 such that:

If () = fFDI < Lllx = y|l for all x,y € D (33)

where || - || denotes a norm on R™. The constant L is called the Lipschitz constant and provides a
measure of how sensitive the function f is to changes in its input.

2. Lipschitz Continuity in the Logistic Growth Model
In the logistic growth model described by:

P=rpP(1-1) (34)

we can assess the Lipschitz continuity of the function f(P) =rP (1 - g) over adomainsuch as [0, K]

or R*. By computing the derivative f'(P) and examining its boundedness, we can establish the
Lipschitz condition.

3. Derivative and Boundedness
The derivative of f with respectto P is:
2P
rey=r(1-%) @)
The maximum value of |f'(P)| over the domain will give us the Lipschitz constant L. The
derivative achieves its extreme values at the endpoints of the interval [0, K] :

If'(0)] = Ir| (36)
If'(Ol = Ir| (37)

Thus, the function f is Lipschitz continuous on [0, K] with a Lipschitz constant L = |r|. (38)

4. Implications of Lipschitz Continuity

Lipschitz continuity of f implies that the logistic growth model has well-behaved solutions in terms of
stability and convergence properties. Specifically, it ensures that the solutions to the differential equation are
unique and depend continuously on the initial conditions within the domain where f is Lipschitz continuous.
This is crucial for applying the Hartman-Grobman Theorem since it relies on the system being well-
posed to approximate the nonlinear dynamics by the linearized dynamics effectively.

By ensuring Lipschitz continuity, we also establish a groundwork for further numerical analysis
and simulations, which can be critical for applying theoretical results to practical scenarios in
population dynamics and other fields of study.

In summary, Lipschitz continuity in the logistic growth model not only aids in validating the
conditions under which the Hartman-Grobman Theorem applies but also provides assurances
regarding the behavior of the model under small perturbations, contributing to a robust
understanding of the system's dynamics near equilibrium points.
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Section 2.5. Applications

Let's analyse two practical examples where the Hartman-Grobman Theorem can be applied. We
will focus on two types of dynamical systems: the logistic growth model and a simple pendulum
under small angle approximation. For both examples, we'll code the systems in Python, simulate their
behavior, and plot their respective graphs to visualize the dynamics near the equilibrium points.

Example 1: Logistic Growth Model

As previously discussed, the logistic growth model describes the population dynamics where
the population size is limited by the carrying capacity. We will simulate the behavior of this model
near the equilibrium points P = 0 (extinction) and P = K (carrying capacity).

Logistic Growth Model Dynamics with Equilibrium Points

100 F---=== ===
80
Initial P=1
o -
c 60 = |nitial P=50
2 —— Initial P=99
= —— Initial P=101
g— === Equilibrium P=0 (Extinction)
o a0t === Equilibrium P=100 (Carrying Capacity)
20
0 _____________________________________________________________________________________
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Time

Graph 1. Logistic Growth Model Simulation. Note the traced red horizontal line representing the
equilibrium at P=100 (K).

1. Logistic Growth Model: The graph shows how the population size evolves under different
initial conditions. As anticipated, the population approaches the equilibrium points:

o  From an initial condition slightly above zero, the population grows towards the carrying
capacity K.

o  From initial conditions near K, the population quickly stabilizes around the carrying
capacity. Even slight perturbations above and below K return to this equilibrium,
demonstrating the system's stability at this point.

o Logistic Growth Model: The graph displays the dynamics of population growth under
various initial conditions, with the equilibrium points highlighted:

o  The extinction point P = 0 is marked with a black dashed line, indicating where the
population size remains zero if it reaches this state.
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Simple Pendulum Dynamics (Small Angle Approximation) with Equilibrium Point

—— Theta (rad)
0.3 —— Omega (rad/s)
——=- Equilibrium Theta=0

0.2

0.1

0.0 f==mpr== A === e e e A e e e

Displacement and Angular Velocity

Time

Graph 2. Simple pendulum dynamics gravitating around point of equilibrium o (Theta).

2. Simple Pendulum (Small Angle Approximation): This graph illustrates the oscillatory behavior
of the pendulum under a small initial displacement. The pendulum's angle (theta) and angular
velocity (omega) oscillate over time, indicative of the typical harmonic motion expected from
the small angle approximation. The model effectively captures the dynamics near the
equilibrium (lowest point), showcasing the pendulum returning to its initial state repeatedly
due to its stability at this point.

e  The carrying capacity P = K is marked with a red dashed line, showing the maximum
sustainable population. The model's behavior near this point confirms its stability as
perturbations lead back to K.

3. Simple Pendulum (Small Angle Approximation): This graph shows the oscillatory motion of
the pendulum'’s angle (theta) and angular velocity (omega). The equilibrium point at 8 = 0,
where the pendulum would naturally rest in the absence of any initial movement, is clearly
marked with a black dashed line. This helps visualize how the system repeatedly passes through
this equilibrium, demonstrating its stability.

These visualizations provide a clearer understanding of how the systems behave near their
equilibrium points, highlighting the theoretical concepts in a more visually intuitive manner.

To provide a comprehensive analysis of the simple pendulum dynamics under the small angle
approximation, let's study the system's equations, calculate the Jacobian matrix, and establish the
Lipschitz continuity constant.

Section 2.5.1.Simple Pendulum Dynamics Equations

For a simple pendulum, the equation of motion derived from Newton's second law for small
angular displacements 6 (where 6 is assumed to be small enough that sin 8 = 0 ) is:

6=-26 (39)

This second-order differential equation can be transformed into a system of first-order
differential equations by introducing w = 6 (angular velocity):

0=w 10
o=-26 40

This system can be expressed in matrix form as:
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(8)=(or ) @
Jacobian Matrix

The Jacobian matrix J of the system is derived from the derivatives of the right-hand side
functions with respect to 8 and w. From equations (25) and (26):

260 96
- — 0 1

_| o6 o —

/=% a0 ‘(—% 0) *2)
00 Jdw

Assessing Hyperbolicity
The eigenvalues of the Jacobian matrix /| determine the nature of the equilibrium points. The
characteristic equation of J is:

22+2=0 (43)

Solving this gives the eigenvalues:

A= ii\/% (44)

These purely imaginary eigenvalues indicate that the system's equilibrium at § =0 and w =0
is not hyperbolic, and hence, the Hartman-Grobman Theorem does not directly apply. This
corresponds to typical harmonic oscillator behavior.

Lipschitz Continuity Constant

The Lipschitz continuity of the system can be investigated by examining the elements of the
Jacobian matrix. For the system represented in equation (42), the elements are constants. Hence, the
Lipschitz constant L can be determined as the maximum norm of the Jacobian matrix, which in this
case, directly corresponds to the maximum absolute value of its elements:

L =max(1,2) (43)

Thus, L = max ( 1, ‘2—7) is the Lipschitz continuity constant, ensuring that the rate of change of the

system's state is bounded by this value multiplied by the distance between any two states. This
confirms the system's good behavior in terms of solution uniqueness and stability under initial
condition variations.

Section 4. Discussion

The Hartman-Grobman Theorem stands as a pivotal result in the qualitative analysis of
dynamical systems, providing a rigorous framework for understanding the local behavior of
nonlinear systems near hyperbolic equilibrium points. By demonstrating that such systems are
topologically conjugated to their linearizations, the theorem allows the study of complex systems
through simpler linear models, making it an invaluable tool in mathematics, physics, and
engineering. Nevertheless, while its applications are profound and far-reaching, the theorem is not
without limitations, particularly when addressing non-hyperbolic equilibria and the qualitative
behavior of systems beyond local neighborhoods.

Section 4.1. Strengths of the Hartman-Grobman Theorem

The principal strength of the Hartman-Grobman Theorem lies in its ability to simplify the study
of nonlinear systems near hyperbolic equilibrium points. A nonlinear system described by

x = f(x), x € R" (44)

can be approximated near an equilibrium x* through its linearization, where the Jacobian matrix
A = Df(x") governs the local dynamics. This result provides a powerful method for identifying
stability and qualitative behavior of trajectories using eigenvalues of A (Perko, 2013). As a result,
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many practical applications, such as control theory, population dynamics, and fluid mechanics, benefit from the
theorem, where approximations near critical points allow for real-world predictions (Guckenheimer & Holmes,
1983).

In population dynamics, the Hartman-Grobman Theorem is widely applied in models such as
the logistic growth equation or predator-prey systems. For instance, in the logistic growth model:

. P
P=rP (1 K) (45),

the equilibrium points P = 0 (extinction) and P = K (carrying capacity) can be analyzed through
their linearized systems. The theorem confirms that near P = K, the system exhibits local stability,
where perturbations return the population to equilibrium. Such analyses are fundamental in ecology
and resource management to ensure sustainable population levels (Murray, 2002).

In mechanical systems, the theorem applies to small oscillations, such as in the simple pendulum
under small angle approximation. Linearizing the pendulum's nonlinear dynamics near its stable
equilibrium (lowest point) reveals harmonic motion governed by:

6+70=0 (46)

The Hartman-Grobman Theorem ensures that the local behavior of the nonlinear pendulum near
equilibrium matches that of the linearized system, validating the use of simple harmonic motion
equations. This is particularly relevant in engineering applications, such as the design of oscillators,
clocks, and vibration absorbers (Strogatz, 2018).

In electrical engineering, the theorem is successfully applied to nonlinear circuit analysis, where
small-signal approximations near equilibrium points allow the behavior of circuits with diodes,
transistors, or other nonlinear components to be analyzed using linear tools. For example, the
behavior of a diode-based rectifier circuit near a steady-state voltage can be approximated using its
Jacobian matrix, greatly simplifying the design and stability analysis of such systems (Khalil, 2002).

Another example arises in economics, where nonlinear models such as the Solow growth model

or predator-prey-inspired business cycle models exhibit equilibria that can be studied using the
Hartman-Grobman Theorem. Linearized approximations near steady states allow policymakers and
economists to predict economic recovery rates and assess the stability of growth trajectories (Arnold
1998).
Another strength of the Hartman-Grobman Thenrem is its generality: it applies to any system where
the Jacobian at the equilibrium point has no eigenvalues with zero real parts. This condition ensures
hyperbolicity, and thus robustness to small perturbations, which is a key property in fields such as
structural mechanics and robotics (Khalil, 2002). By preserving the topological structure of
trajectories through homeomorphisms, the theorem ensures that the qualitative nature of the
nonlinear system can be captured effectively by its linear counterpart.

Section 4.2. Limitations of the Hartman-Grobman Theorem

Despite its elegance and utility, the Hartman-Grobman Theorem has inherent limitations that
constrain its applicability. First and foremost, the theorem applies only to hyperbolic equilibrium
points, i.e., those where the Jacobian matrix A has no eigenvalues with zero real parts. This condition
excludes a broad class of systems, including those with center manifolds, which exhibit neutral
stability (Carr, 1981). Non-hyperbolic equilibria, common in bifurcation theory and nonlinear
oscillations, require more sophisticated tools, such as the center manifold theorem or normal form
theory, to analyze their local behavior (Wiggins, 2003).

Furthermore, the theorem’s result is valid only in a local neighborhood of the equilibrium point.
While this local analysis provides valuable insights into the dynamics near critical points, it does not
extend to the global behavior of nonlinear systems. Many real-world systems, particularly those with
nonlinearities far from equilibrium, exhibit behaviors such as chaos, limit cycles, or global
bifurcations that cannot be captured by linear approximations (Strogatz, 2018). For example, in the
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Lorenz system, while linearization near equilibria reveals local stability, the system’s chaotic
attractors and nonlinearity in larger domains require numerical simulations and global analysis.
Another significant limitation is the assumption of Lipschitz continuity or differentiability of the
nonlinear function f(x). While the theorem holds under these regularity conditions, many systems of
practical interest are governed by discontinuous dynamics, as seen in control systems with switching
mechanisms or economic models with thresholds (Filippov, 1988). In such cases, the linearization
procedure breaks down, and alternative methods like piecewise smooth systems must be applied.

Section 4.3. Practical Considerations and Broader Context

In practical terms, while the Hartman-Grobman Theorem simplifies nonlinear systems through
linearization, it must be used with caution when applied to real-world scenarios. The theorem's
reliance on eigenvalues assumes precise knowledge of the system parameters, which may not always
be feasible in empirical studies. Small inaccuracies in the Jacobian matrix due to measurement errors
or model approximations can lead to incorrect predictions of stability (Hale & Kogak, 1991). This
sensitivity highlights the need for complementary numerical techniques, such as bifurcation analysis
and numerical simulations, to validate theoretical results.

Additionally, the theorem's scope is limited to deterministic systems. In many modern
applications, such as climate models and financial systems, stochastic effects play a significant role,
and linear approximations must be extended to include noise and uncertainty (Arnold, 1998).
Techniques such as stochastic differential equations and Lyapunov exponents are more appropriate
in such contexts.

Summary

The Hartman-Grobman Theorem is a cornerstone result in the analysis of dynamical systems,
offering a robust framework for approximating nonlinear dynamics near hyperbolic equilibria. Its
strengths lie in its generality, simplicity, and applicability to diverse fields, from biology to
engineering. However, the theorem's limitations, particularly its restriction to hyperbolic equilibria
and local neighborhoods, underscore the need for complementary methods in cases involving non-
hyperbolic points or global dynamics. While it remains an essential tool for understanding the
qualitative behavior of dynamical systems, it must be applied judiciously and in conjunction with
broader analytical and numerical techniques to address the complexities of real-world nonlinear
phenomena.

Section 5. Conclusion

The Hartman-Grobman Theorem is a fundamental result in the qualitative theory of dynamical
systems, offering a powerful method for analyzing the local behavior of nonlinear systems near
hyperbolic equilibrium points. By establishing that such systems are topologically conjugate to their
linearized counterparts, the theorem enables a significant simplification in understanding the
stability and trajectories of nonlinear systems. Its broad applicability across disciplines, including
biology, mechanics, electrical engineering, and economics, highlights its utility in real-world
problems where approximations near equilibria yield valuable insights.

However, the theorem’s limitations must be carefully considered. It is constrained to hyperbolic
equilibria, where the Jacobian matrix has no eigenvalues with zero real parts, and its validity holds
only within local neighborhoods of equilibrium points. These restrictions exclude systems with non-
hyperbolic equilibria, global nonlinearities, or discontinuous dynamics, necessitating alternative
techniques like center manifold theory, bifurcation analysis, or stochastic models. Furthermore, the
sensitivity to model parameters and measurement inaccuracies underscores the importance of
complementing theoretical results with numerical simulations to ensure robustness and accuracy.

In conclusion, while the Hartman-Grobman Theorem is an invaluable tool for approximating
and analyzing nonlinear systems, its application requires careful consideration of its assumptions
and scope. It serves as a foundation upon which more advanced methods can build, facilitating a
deeper understanding of the rich and complex behaviors inherent in nonlinear dynamics.
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Section 6. Attachment:

Python Code (without indentations):

Code for Logistic Growth Model

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp

# Parameters

r=0.5 # Growth rate

K =100 # Carrying capacity

# Logistic growth function

def logistic_growth(t, P):

returnr*P* (1-P/K)

# Time span

t =np.linspace(0, 20, 1000)

# Initial conditions near the equilibrium points
initial_conditions = [1, 50, 99, 101] # Slightly above 0, around K/2, just below K, just above K
# Plotting

plt.figure(figsize=(10, 6))

for PO in initial_conditions:

sol = solve_ivp(logistic_growth, [t.min(), t. max()], [PO], t_eval=t)
plt.plot(sol.t, sol.y[0], label=f'Initial P={P0}')

plt.title('Logistic Growth Model Dynamics')
plt.xlabel('Time")

plt.ylabel('Population P')

plt.legend()

plt.grid(True)

plt.show()

# Parameters

g =9.81 # Acceleration due to gravity, m/s"2

L =1 # Length of the pendulum, m

omega = np.sqrt(g / L) # Angular frequency

# Pendulum system (small angle approximation)

def pendulum(t, theta):

return [theta[1], -omega**2 * theta[0]]

# Initial conditions

theta0 = [0.1, 0] # Small initial displacement in radians, no initial angular velocity
# Time span

t=np.linspace(0, 10, 1000)

# Solving the differential equation

sol = solve_ivp(pendulum, [t.min(), t.max()], theta0, t_eval=t)
# Plotting

plt.figure(figsize=(10, 6))

plt.plot(sol.t, sol.y[0], label="Theta (rad)')

plt.plot(sol.t, sol.y[1], label='Omega (rad/s)")

plt.title('Simple Pendulum Dynamics (Small Angle Approximation)’)
plt.xlabel('Time")

plt.ylabel('Displacement and Angular Velocity')

plt.legend()

plt.grid(True)

plt.show()
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