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Abstract: The generalized matrix of a graph G is defined as M(G) = A(G) —tD(G) (t € R, A(G)
and D(G) respectively denote the adjacency matrix and the degree matrix of G), and the generalized
characteristic polynomial of G is merely the characteristic polynomial of M(G). Let Ky, , be the
complete bipartite graph. Then the Kj;, ,-complement of a subgraph G in Ky, ;, is defined as the
graph obtained by removing all edges of an isomorphic copy of G from K, ;. In this paper, by
using a determinant expansion on the sum of two matrices (one of which is a diagonal matrix), a
general method for computing the generalized characteristic polynomial of the Kj; ,-complement of
a bipartite subgraph G was provided. Furthermore, when G is the k edge-disjoint union or a graph
with rank no more than 4, the explicit formula for the generalized characteristic polynomial of the
Kin,n-complements of G is given.

Keywords: bipartite graph; K;; ,-complement; generalized matrix; balanced bipartite subgraph

1. Introduction

In the present paper, we only consider undirected, simple, and connected graphs unless otherwise
stated. Let G = (V(G),E(G)) (or shortly (V,E)) be a graph with vertex set V(G) and edge set
E(G). The adjacency matrix of G is defined as A(G) = (a;j), where a;; equals the number of edges
connecting vertices v; and v; when i # jand 0 when i = j. The rank of a graph G, denoted by
r(G), is defined to be the rank of its adjacency matrix A(G). The degree matrix D(G) is defined as
the diagonal matrix diag(dy, dy, ..., d,), where n = |V|, and d; equals the number of edges incident
to vertex v;. In the literature [8], Cvetkovi¢ et al. introduced a bivariate polynomial, ¢(G; A, t) =
det(AI — (A(G) —tD(G))) (abbreviated as ¢(G)). Wang et al. [18] referred to it as the generalized
characteristic polynomial of G. It is natural to define A(G) — tD(G) in the variable t as the generalized
matrix of a graph G, denoted by M(G) = (m;;(G))|y|«|v|- To be specific,it is easy to see

—tdg(v;) ifi =j,
ml](G) = 1 if i 75 ] and Ui ~ Uj,
0 otherwise.

Consequently, the generalized characteristic polynomial of graph G is exactly the characteristic
polynomial of the generalized matrix M(G). That is, the polynomial ¢(G) = ¢(G; A, t) = det(AI —
M(G)) = det(AI — (A(G) —tD(G))) is referred to as the generalized characteristic polynomial of G.
Note that A(G) — tD(G) with t € R encodes several well-known graph matrices, such as the adjacency
matrix, the Laplacian matrix, and the normalized Laplacian matrix. It is evident that the generalized
characteristic polynomial of a graph generalizes several well-known polynomial invariants of graphs,
for example:

e The characteristic polynomial of the adjacency matrix of a graph G is given by ¢(G;A,0) =
det(AI — A(G));

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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e The characteristic polynomial of the Laplacian matrix D(G) — A(G) of G is
(—=1)IVIp(G; —A,1) = det(—AI — A(G) + D(G));

e The characteristic polynomial of the unsigned Laplacian matrix D(G) + A(G) of graph G is
$(G; A, —1) = det(A] — A(G) — D(G)); 1

e The characteristic polynomial of the normalized Laplacian matrix [ — D?AgD? is
(—=1)VIp(G;0,—A +1) = det(—A(G) — (A —1)D(G)).

Given an undirected graph G = (V, E), if E is considered as a set of symmetric directed edges,
meaning that if e € E, then e € E, where ¢ is the reverse edge of e, then G can also be viewed as a
directed graph. For e € E, let hi(e) denote the head of the directed edge e and t(e) the tail of e. A closed
walk in G is defined as a sequence of edges C = (e, ..., ¢) such that h(e;) = t(e;y1) fori € Z/kZ.
Here k = |C]| is the length of C and cbc(C) = #{i € {1,...,k} | ;41 = e;} is called the cyclic bump
count of C. The notation [C] is referred to as the equivalence class of the closed walk C under edge
permutation, meaning that (e1,...,ex) ~ (ea,..., € e1). If none of the representatives of [C| can be
expressed as C¥ (for k > 2), then the cycle C is said to be irreducible. The set of all irreducible cycles is
denoted by C. The Bartholdi zeta function of a graph G is defined as (see [4] for details)

1
1 — Acbe(C)¢lCl”

ZG()L, i’) = H

[CleC

The function Zg(t) = Zg(0,t) is referred to as the (Ihara-Selberg) zeta function [10], which was
introduced by Ihara to study the zeta function of a regular graph and its reciprocal, and the reciprocal
of the zeta function of a regular graph was generalized to the reciprocal of the Bartholdi zeta function
for a general graph G as below:

Zo 7 = (1- (1-2)72F) EEY et (1-tAc + (1= A)(Dg — (1 - D))
In particular, the reciprocal of the zeta function for a general graph G is given by:
Zo(t) 1 = (1= ) E-IVI det (1 — tAg + *(Dg — 1)) .
The zeta function encodes significant structural information about the graph, such as the number of

vertices, edges, and loops. Moreover, the number of spanning trees (the complexity of the graph) 7(G)
satisfies the equation [14]:

afgt(t) = 2(E|~[VI)T(G), where fo() = det (1146 + (D6~ 1))
=
For a comprehensive treatment of many aspects of Zeta function, refer to [17].

Zeta functions of certain classes of graphs have received considerable attention, such as the line
graph of semi-regular bipartite graphs [15], the middle graph of semi-regular bipartite graphs [16],
the cone graph of regular graphs [2], and various special join graphs of regular graphs [5,7]. It is not
difficult to prove that ¢(G; A, t) determines the reciprocal of the zeta function, and vice versa [11]. Let
G = (V, E) be a subgraph of the complete bipartite graph K, . The K, ,-complement of G is defined
as the graph obtained from K, , by deleting all edges of G in Ky, 5, i.e., Ky,n» — E(G). In this paper,
we shall show a computational method for deriving the formula for the generalized characteristic
polynomial of the Kj; ,-complement of any bipartite graph G, and further give an explicit formula for
the generalized characteristic polynomials of the K, ,-complement of a bipartite graph with rank less
than or equal to 4.
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2. Notations and Terminology

Let G = (V,E) be a graph with the vertex set V. = {v1,v,...,v,} and the edge set E =
{e1,...,em}. For two vertices v;, v; €V, if v; and v; are adjacent, we denote this as v; ~ vj. The
neighborhood of a vertex v; in G is defined as Ng(v;) = {v; € V | v; ~ v;}, and the degree of vertex v;
in G is denoted by d; = dg(v;) = |[Ng(v;)|. The complement of the graph G = (V, E) is denoted as

= (V,E), where E¢ = {v;v; | v;,0; € V,v;0; € E}. If G = (V,E) and G’ = (V/,E') with V' C V
and E'={(u,v) |u,v € V!, (u,v) € E}, then G’ is referred to as an induced subgraph of G.

A graph G = (V, E) is a bipartite graph if and only if there exists a bipartition of V into (V3, V3)
(namely V = V; U V,, V1 NV, = @) such that no two vertices within V; or V; are adjacent. If the sizes
of the bipartition sets are equal, i.e., |V;1| = |V,|, then G is said to be a balanced bipartite. If G = (V,E)
is a bipartite graph with a bipartition (Vi, V»), the bipartite complement of G, denoted as G’¢, has
vertex set V(G") = V(G) and edge set E(G*) = {xy | x € Vi,y € V3, xy € E(G)}. For a bipartite
graph G, its adjacency matrix is given by

0 B(G)
BT(G) 0

4

where B(G) = (bjj)mxn is the bipartite adjacency matrix of G that defines the vertex adjacency
relationship between the bipartite sets V; and V5. Specifically,

b — 1 v; ~ U}, Z)iGV], Z)]‘EVZ
g 0 otherwise.

Lemma 1 ([12]). Let G be a balanced bipartite graph. If G has a unique perfect matching, then the bipartite
adjacency matrix B(G) has determinant 1 or —1.

Lemma 2 ([6]). Let A = (aij)nxn be an n x n matrix, and let D be a diagonal matrix with diagonal entries
dy,dy,...,dy, ie. D = diag(dy,dy, ..., dy). Then

det(A+ D) = ) _ det(Ag)det(Dy), (1)
6C|n]

where 0 is a subset of [n] = {1,2,...,n} and 0 is the complement of 0 in [n], namely 0 = {k | k € [n],k & 6},
Ay is the submatrix formed by the rows and columns of A indexed by 6. By convention, det(Ap) = 1.

The following lemma immediately follows from Lemma 2.

Lemma 3 ([6]). If D is an invertible matrix, then the determinant of the matrix A + D can be expressed as

det(A + D) = det(D) ¥ d:: @)

6C|n] d ( )

Lemma 4 ([3]). Let A bean n x n matrix. If there exists a p X q zero submatrix in A such that p+q > n+1,
then det(A) = 0.

3. The Generalized Characteristic Polynomial

For the sake of simplicity, the complete graph, cycle, and path on n vertices are denoted by K, Cy,
and Py, respectively. Notationally, for m,n € Z, [m] = {1,2,...,m} and [m+1,m+n| = {m+1,m+
2,...,m+n}; I, and Juxn (or J,) respectively denote the n x n identity matrix and the m x n (or n x n)
matrix of all ones. For the rest of this paper, we will use K, , to symbolize the complete bipartite
graph with bipartite partition (X,Y), where X = {v1,v2,..., 0} and Y = {041, Vmt2, - - -, Omtn },
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and %y, to symbolize the set of all bipartite graphs with bipartite partition (X, Y) such that |X| = m
and |Y| = n. Note that a graph G € %, , if and only if its bipartite complement G’ € %, ,. Let G
be a subgraph of the complete bipartite graph K, . The Kj;; ,-complement of a subgraph G in Ky, ,, is
defined as the graph obtained from K, , by deleting all edges of G in Ky, ,, denoted by K, , — G.

Theorem 1. Let G = (V, E) be a subgraph of Ky, , with bipartite partition (X,Y') mentioned previously, and
G has a bipartite partition (Vq, Va) such that Vi C X (|Vq| =s), Vo C Y (|V,| = t). Then, we have

¢(Kn = G)

= (nt+ )" (mt + A" I ((n—dg(v)t+A) T ((m—dg(v)t+A)
UGVl veV,
V(b hen\2

: [1 Ly (-1) 7 (det(—B(Q")) }

QbeeG(Hbe) vev(gc)nx((nidG(v))tJrA) vev(gﬂ)my(W7dG(v))t+A) (3)
= (nt+A)"(mt + A)" I ((n —dg(v)t+A) TI ((m —dg(v)t+A)
veV) veEV,)

\4

" (detp)’

QeG(Kmun—G) vev(%)mx((n_dc @A) vev(%)m/((m_dc @)A) } ,

1+

where G(HY) is the set of all induced balanced bipartite subgraphs QP in H such that the bipartite complement
Q of Q¥ has a nonsingular biadjacency matrix B(Q); G(H) is the set of all nonempty induced balanced bipartite
subgraphs Q in H (i.e., Ky n — G) such that B(Q) is nonsingular.

Proof. Let H = Kyyu — G € By,n. Note that H has the same bipartite partition as Ky, that is,
(X,Y) ={v1,02,...,0m} U{Ups1,..., Vmsn}, where Vj C X and V, C Y. Obviously, HP* ~ GU (m+
n—|V])Ky € B The generalized matrix M(H) = A(H) — tD(H) = (mj(H)) () x (m4n) 18 given
by

tdyee(v;) —n) ifi=j € [m],
t(dec(Uj)_m) 1f1:]€ [m—i—l,m_i_n],

mij(H) =94 4 if i # j and v;0; € E(H),
0 otherwise.
In other words,
_ —tD1(H) Jmxn — B(Hbc)
M(H) B |]n><m - BT(HbC) _tDZ(H)

where Dl(H) = diag(n — dec(Z)l),n — deg(Uz),. N (e dec(Um)) and Dz(H) = diag(m —
dpgpe (Om+1),m — dppe (Omt2), -+ ., m — dgoe (Vmtn))-

Let 1y, be the (m + n) x 1 column vector such that the i-th element is 1 for 1 < i < m and 0 for
m+1 < i < m+ n. Similarly, let 1y, be the (m + 1) x 1 vector where the i-th elementis 0 for1 <i < m
andlform+1<i<m+n.

tD1(H) 4+ AL, B(HY) — Jsn

BT(H"Y) — Juxm tD2(H) + Al

= D(H) 4 Alysn + A(H”) = 1y, 1], — 1y,1],
D'+ A’

Let D’ = tD(H) 4 ALy n and A’ = A(H) — 1‘/11‘T,2 - 1V21‘T,1. Then, we have

det(D') = TT((n — dyyue(0))t + A) TT((m — djyuc (0))£ + A) # 0.

veX veY

By Lemma 2, the following equality holds:
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det(Ap)
det( b))

det(Alyin — M(H)) = det(D' + A’) = det(D") )|
0C [m+n)

(4)

Now, we claim two facts:
Fact 1: The first-order principal submatrix of A’ is zero. The third-order principal submatrices of
A’ are in the form:

0 0 =x 0
0 0 = or *
* % 0 *

S O ¥
S O ¥

and both of their determinants are zero. The fifth-order principal submatrices of A’ are in one of the
following forms:

0 *x *x *x 0 0 *x *x = 0 0 0 x = 0 0 0 0 =
* 0 0 0 O 0 0 % x = 0 0 0 % = 0 0 0 0 =
*x 00 0 O], = 0O O Of,|]0 O O x x|,]0 O O O x|,
* 0 0 0 O * x 0 0 0 * x x 0 0 0 0 0 0 =
* 00 0 O * x 0 0 O *x x x 0 0 * % x x 0

and each of their determinants equals zero. Analogously, the odd-order principal submatrices of A’
are in the form:

Ay =

+q=10).
AT quq] (p+q=16l)

Note that 2p > n +1 or 29 > n + 1. According to Lemma 4, we conclude that det(Aj) = 0,
indicating that all odd-order principal submatrices of A’ are singular.
Fact 2: By definition, A’ = A(H") — 11/11‘T,2 - 11/211T,1 or equivalently

A =

0 B(H") = Juxn
BT(HbC) - ]n><m 0 ’
|0\ = [0N[m]| = 0N [m+1,m+ n]|. Let Aj be an even-order
the submatrix of A’ formed by the rows

Suppose 6 is a subset of [m + 1] such that

principal submatrix of A’. We denote by Aem[m] 0 [m+1,m—11]

indexed by 6 N [m] and the columns indexed by 6 N [m + 1, m + n]. Furthermore,

1915 1ol 2
det(4f) = (=1) 77 (det(Ap it min)) -

This reduces to

— (—1)l (det(By))?,

where By is the @ X ‘%l submatrix obtained from B(H"") by deleting the rows that are not in 6 N []
and the columns that are not in 6 N [m + 1, m + n]. Similarly, By is the matrix resulting from B(H) by
the same deletion of rows and columns, and it is easy to see By + By = g -

7
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Setk = ‘éﬂ, and let Q be a balanced bipartite induced subgraph of H with 2k vertices, and the
bipartite complement Q" corresponding to Q is also a balanced bipartite induced subgraph of H.
Obviously, B(Q) + B(Q") = Ji. Let Gx(H") denote the set of induced balanced bipartite subgraphs
Q¢ in H with 2k vertices such that the bipartite complement Q of Q" has a nonsingular biadjacency
matrix B(Q), that is, the rank of B(Q) is k (k < r(A’)/2). Moreover, we denote by G(H") the set of
all induced balanced bipartite subgraphs Q' in H such that B(Q) is nonsigular. We denote by G(H)
the set of all nonempty induced balanced bipartite subgraphs Q in H (i.e., K;;,» — G) such that B(Q) is
nonsingular; that is to say, if Q is such a nonempty induced balanced bipartite subgraph in H on 2k
vertices, then the k x k matrix B(Q) satisfies the condition (J; — B(Q")) = k, and it’s worth noting
that the induced subgraph Q may not necessarily be nonsingular.

Observe that (i) 7(A’) = 2r(Jmxn — B(HY)) = 2r(B(H") — Jyuxn) < 2r(B(HY)) + 2r(Jmuxn) =
2r(B(G)) +2 = r(A(G)) + 2, where (M) symbolizes the rank of the matrix M; (i) B(Q) = Jx — B(Q").
Then, by Lemma 2.3, we conclude that

¢ (K — G) = det(D' + A")
—TT (1= dype ()t + A) TT((m = dype (0))£ + A)

veX veY
' r(A(G))/2+1 (—1)k2(det(]k _ B(ch)>)2
[1 i k:zl chegzk(Hbc) vev(gf)mx((n — dppe(0))t+A) veV(glbf)mY((m — dype ()t + AJ
=(nt + A" (mt + L) H/ (n—dg)t+A) H/ ((m—dg(v))t+A)
(-1 (det(Ji - BQ™)))?
< N | I (CE F )=y (= de@)i )
QEGH™) ey (obo)nx eV (QF)NY
=(nt+A)"5(mt + )" 1—‘[/ (n—dg(0)t+A) HV ((m—dg(v))t+A)
(—1)" (det(B(Q)))?
' {1 * QEQ(I;W_G) vevg)mx((n —dg(v))t+A) vevl(gm((m —dg(v))t+A) ] '

This completes the proof. [

4. An Application

Our main result in this section gives an application of Theorem 1. A permutation matrix is a
square matrix obtained from the same size identity matrix by a permutation of rows. Two n by n
matrices A and B are said to be permutationally equivalent if there exist # by n permutation matrices
P, Q such that PAQ = B.

Theorem 2. With notations mentioned in Theorem 1, if G has its rank r(A(G)) < 4, then

¢(Kmn —G) = (nt+A)"5(mt +1)" T ((n —dg (o))t +A) T ((m —dg(v))t+A)

veV] veV)

x |1+ Y _ 1 _

[ 02015, o) vyl "~ GENEA] T~ (n=da o)) .
+ D N S

QeQz, (Kun—G) %V%)OX(( dg(vi))t+A) veVI(—(g)ﬁY(( dg(vi))i+A)

+ Z —d, t )\72 —d A |7
QeQyc,y (Kin—G) vev}g)mx((n oLl )vevl(_(g)my((m A
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where Qo (G) is the set of all induced bipartite subgraphs of G that are isomorphic to the graph Q, and Qr(G)
is the set of all induced bipartite subgraphs of G that are isomorphic to certain graph in the family F. Here,
F1 = {2Ky,Q7}, Fo = {K2,3Ky, Ky U Py, Ps, Qs, Qg }, where Qs, Qg and Qy are illustrated in Figure 1,
Figure 2 and Figure 3.

Proof. From the proof of Theorem 1, we know that

det(ALyyn — M(H)) = det(D' + A") = det(D") )| det(45) (6)
oci det(Dj)
Clm+n] 0
where H = K, — G, A’ = A(H") — lvll‘T,2 - 1V21€11 or
A/ — 0 B<Hbc) - ]m><n
BT(HhC) — Jnxm 0 :
Hence we only need to study the summation
det(Aj)
(7)
0C[m+n] det(Dé)
or equivalently
V(Q) 2
oy (1) " (det(B(Q))) | o
ol o T (n—da@)itA) I ((m—dg(o)t+A)

veV(Q)NX veV(Q)NY

Observe that r(A’) = 2r(B(H") — Jyuxn) < 2r(B(HY)) +2r(Jmuxn) = 2r(B(G)) +2 = r(A(G)) +
2 < 6. The following cases need to be discussed:
Case 1: If 8 = @, then

det(Ap) 1
det(Dp)
Case 2: If || = 2, then
0 1
Ay = .
T 01

Consequently, Q = K; and Q¥ =2 KJ° (the trivial graph on two vertices). The contribution of this case
to the summation part of Equation (7) is given by

-1
)y ,
Q€K (Kin—G) UGV(%)OX((" —dg(v))t+ 1) Uevl(—é)my((m —do(v))t+A)

Case3If [§| =4, then |0N[m]| =|0N[m+1,m+n]| =2. Letd = {i,j,k I} withi <j<k <],
where i,j € [m] and k,1 € [m + 1,m + n]. In this case, the matrix A’ is in the form

0 0 aje  aj
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where l”ik ﬂil] is permutationally equivalent to 0 ! since det(A;) # 0. This

a ik a jl 01 ot 0 1
indicates that the induced subgraph Q in K;;; , — G satisfies that Q = 2K; or P4. The contribution of
this case to the summation part of Equation (7) is given by

1

) )
n—do(v))t+ A m—do(v))t+ A
Q€O 2y py} (Kinn—G) vGV(I_QI)ﬁvl(( o) )vev(lg)mvz(( o) )

Case 4If |8] = 6, then |§ N [m]| = |0 N [m +1,m + n]| = 3. Suppose B3(Q") is the 3 x 3 principal
submatrix of B(Q") in A’ such that

Al — 0 B3(ch) - ]3
(B3(Q") — J5)T 0

Moreover,

det(Ag) = (—1)>3 det (B3(Q™) — J3) det ((B3(Q") — J5)T) = —(det(J5 — B3(Q")))*.

By exhaustive search, there exist 174 nonsingular 0-1 matrices of order 3, each of which is
permutationally equivalent to one of the following seven matrices or their transposes:

10 11
1 0|,Bs= |0 1
11 0 0

011 111 110
Bs=1[1 0 1|,B¢=1{(1 1 0|,B;=1|1 1 1
110 1 00 011
In [9], it is proved by the authors that By corresponds to the induced subgraph Qi in Ky, — G,
where Q1 = 3Ky, Q2 = Ko U Py, Q3, Qs = P, Qs = Cg, Qp, or Q7 (see Figure 1, Figure 2 and Figure 3
). By Lemma 1 or simple calculations, we know that (det(J; — Bk))2 =1fork =1,2,3,4,57 and
(det(J3 — Bs))? = 4. Hence, the contribution of this case to Equation (7) is given by

[T ((n—dg(o)t+4) TI ((m—dg(v))t+A)

Q€0,,0,,05,04.06.07} (Knin=G) vev(gnx 0eV(QNY
—4
+ Y .
11 n—dp(v))t+A 11 m—dgo(v))t+A
QGQC6(Km,n—G) veV(Q)mX(( Q( )) )veV(Q)nY(( Q( )) )

=
o
S
=
o

a b c a

a’ b’ ¢ a b’ d d v c
Fig. 1. Q1 = 3Ky, Qp =2 Ky U Py, Q3.
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a b & a b c a b c
M’ a b’ d a b’ c

Flg 2. Qg = Pg, Qs =2 Cg and Q.

a b C
a’ b’ c
Flg 3. Q7.

The proof is completed. O

5. Conclusions

In this paper we studied the computation of the generalized characteristic polynomial or
equivalently the zeta function of graphs, and derived a general formula for the generalized
characteristic polynomial of the K, ,-complement of a bipartite graph. As a by-product, we obtained an
explicit formula for the generalized characteristic polynomial of the Ky, ;- tite complement of a bipartite
graph with rank no more than 4. In a sense, the formulas obtained in this paper are straightforward
and only rely on the use of fundamental linear algebra about the biadjacency matrix of the bipartite
graph.
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