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Abstract: Steel production scheduling represents a pivotal aspect of the steel manufacturing process, 

encompassing the strategic allocation of resources and the optimization of production processes. 

This directly impacts the efficiency and cost-effectiveness of the production process. However, 

conventional scheduling optimization techniques are ill-equipped to address the intricate nuances 

of the steel production environment and the deluge of real-time data. In this work, a method of steel 

production scheduling optimization based on deep reinforcement learning was proposed and 

subsequently innovated and optimized. The Deep Q Network (DQN) was employed as the 

fundamental model, with the objective of enhancing the stability and convergence speed of the 

model. This was achieved through the design of the state space and action space of production 

scheduling, as well as the incorporation of experience playback and target networks. With regard 

to model optimization, an adaptive adjustment mechanism of the reward function is proposed, 

which enables the model to balance the optimization of multiple objectives, such as production 

efficiency and energy consumption, with greater accuracy. Furthermore, the network structure has 

been enhanced and a multi-head attention mechanism has been incorporated to augment the 

model’s capacity for scheduling decisions in intricate production scenarios. The optimized model 

was subjected to experimental verification on an actual steel production dataset, and its 

performance in terms of scheduling efficiency and resource allocation accuracy was found to be 

excellent. 
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I. Introduction 

The integration of advanced information technology has transformed steel production 

scheduling, enabling intelligent and interconnected manufacturing environments. In the era of smart 

manufacturing, artificial intelligence (AI) has become a key enabler, integrating seamlessly with 

production systems to enhance decision-making, optimize resource allocation, and improve 

efficiency. The convergence of AI and advanced manufacturing has accelerated the adoption of 

technologies such as real-time data analytics, machine learning, and deep reinforcement learning to 

address the complexities of modern steel production scheduling. 

Steel production dispatching systems now feature enhanced information acquisition, 

transmission, and processing capabilities, characterized by ubiquity and temporal continuity [1]. AI-

powered systems integrate production scheduling with enterprise management, production control, 

and data monitoring, creating an interconnected ecosystem aligned with Industry 4.0 principles. 
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Extending to physical production sites, these systems enable more comprehensive and responsive 

scheduling. 

Real-time disruptions, such as equipment failures, resource shortages, and order changes, 

frequently render traditional schedules infeasible. AI addresses these challenges through real-time 

data processing, predictive analytics, and adaptive scheduling, which are particularly vital for large-

scale steel enterprises operating in dynamic environments. Research increasingly focuses on AI’s 

ability to perceive system states, analyze data, enable collaborative control, and make data-driven 

decisions within smart manufacturing contexts [2]. 

Steel production scheduling must adapt to complex scenarios with multiple simultaneous 

disturbances. Flexible parameter adjustments and dynamic scheduling reconstruction are essential. 

AI techniques like deep reinforcement learning model complex objectives, constraints, and 

uncertainties, transforming the traditionally NP-hard scheduling problem into an adaptive, resilient 

system capable of efficient operation in dynamic environments [3]. 

Traditional scheduling research has focused on static models and algorithms, which struggle to 

meet the demands of personalized, multi-variety, low-volume production [4]. AI-enabled solutions 

overcome these limitations by responding to rapidly changing internal and external factors. Machine 

learning identifies patterns from historical data, while reinforcement learning optimizes performance 

in real time. 

Conventional approaches, relying on static assumptions, limit flexibility in dynamic production 

scenarios. AI-powered systems address these challenges by employing techniques such as neural 

network-based learning and optimization to align scheduling models with real-time conditions [5]. 

These systems decouple dependencies in traditional scheduling, providing modular and scalable 

solutions that enable rapid adjustments. This flexibility is critical for balancing mass production with 

personalized customization. AI thus serves as a cornerstone for developing intelligent, flexible 

scheduling methods to meet the growing complexity of modern steel manufacturing. 

II. Related Work 

Bu H N et al. [6] employed case-based reasoning to obtain a high-quality initial solution for cold 

continuous rolling planning. They then used the Tabu Search (TS) algorithm for global optimization, 

enhancing the TS algorithm’s search capability, reducing local optima risks, and accelerating 

convergence. This hybrid approach improved computational efficiency and accuracy, enabling rapid 

generation of high-quality schedules in complex production environments with significant potential 

for steel production optimization. 

Jiang GZ et al. [7] proposed integrating a knowledge network into a steel production scheduling 

system, creating a mixed process knowledge network. By establishing a knowledge base (KB) for the 

steel mixing process, the system integrated multidimensional information such as process flows, 

equipment status, and scheduling strategies. Their study focused on model matching and 

reconstruction to adapt scheduling to real production needs. Modular reuse of model knowledge 

further enhanced adaptability and scalability. 

Zahmani MH et al. [8] introduced a method combining scheduling rules, genetic algorithms, 

data mining, and simulation to improve production scheduling. A genetic algorithm optimized 

scheduling globally, while data mining extracted key knowledge to identify critical rules and patterns 

for the scheduling process. 

Qiu et al. [9] developed a data mining-based prediction system for disturbances in workshop 

scheduling. The system comprises three modules: data mining, disturbance prediction, and 

manufacturing processes. The data mining module identifies production patterns and causes of 

disturbances by analyzing historical production data. 
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III. Methodology 

A. Deep Q Network 

The steel production scheduling problem can be defined as a discrete-time Markov decision 

process (MDP), which can be represented as a quintuple (�, �, �, �, �) . The term � denotes the state 

space, which encompasses all pertinent system data pertaining to steel production. This includes, but 

is not limited to, the current status of the production process, the operational status of machinery, the 

allocation of resources, and so forth. 

The action space, represented by � , is used for scheduling operations, such as allocating 

resources to a specific production link and adjusting the processing sequence. The state transition 

probability, represented by �(��|�, �), is the probability distribution of transitioning to state QQ after 

performing action � in state ��. 

The term �(�, �) denotes the reward function, which quantifies the immediate reward yielded 

by the execution of action �  in state � . The reward function can be meticulously devised in 

accordance with a multitude of objectives, including those pertaining to production efficiency, energy 

consumption and output. The discount factor, represented by � ∈ [0,1] , serves to regulate the 

influence of prospective rewards on present-day decision-making. The objective is to identify an 

optimal strategy, �∗, that maximises the expected cumulative reward as Equation (1). 

π∗(s) = arg max
�

� �� γ�R(s�, a�)

�

���

� . (1) 

The DQN algorithm is employed to address the optimisation challenge associated with steel 

production scheduling. In DQN, the neural network is employed as an approximate function to 

represent the Q value function Q(s, a; θ), where θ represents the parameter of the neural network. 

In accordance with the Bellman equation, the update rules for the Q value function are based on a 

given state s and action a described as Equation (2). 

Q(s�, a�) = R(s�, a�) + γ max
����

Q(s���, a���; θ�) , (2) 

where θ� represents the parameter of the target network, which is updated independently from 

the current network parameter θ  with the objective of stabilising the training process. The 

configuration of the state space S encompasses pivotal data pertinent to the manufacturing process. 

The status vector of the production line should be set to s = [s�, s�, … , s�] . In this context, s� 

represents the status of the first i machine in the production line, including its current task load, 

resource consumption, and dependencies with other machines. The incorporation of this data into 

the state space enables the capture of the intricate dynamics inherent to steel production. 

The action space, designated as A, represents the scheduling operations that can be performed 

at each discrete time step. Let us suppose that there are m machines. We define actions as operations 

which schedule resources from one process to another. The action vector can be expressed as a =

[a�, a�, … , a�], where a� represents the scheduling strategy for the i machine. 

B. Adaptive Adjustment Mechanism 

This subsection presents an innovative approach to improve the stability and convergence speed 

of the Deep Q Network (DQN). The method combines empirical replay and target network 

mechanisms with an adaptive reward function adjustment to achieve dynamic multi-objective 

optimization. The experience replay mechanism archives state transitions (s�, a�, , r�, s���) in a replay 

buffer during each training cycle. A random sample from the buffer is then used for training during 

network updates, reducing sample correlation and enhancing model training. The update formula is 

provided in Equation (3). 

Q((s�, a�; θ) = Q((s�, a�; θ)

+α �r� + γ max
��

Q(s���, a�; θ�) − Q((s�, a�; θ)� . (3)
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The parameters of the current network are θ, while those of the target network are θ�. The 

learning rate is α , and the discount factor is γ . The parameters of the target network θ�  are 

decoupled from the current network θ  and updated on a fixed interval C  to enable gradual 

adaptation to changes in the current network described as Equation (4): 

θ� = θ if t%C = 0. (4) 

The proposed design circumvents the inherent instability of Q − value  estimation, thereby 

facilitating enhanced convergence of the model. This is particularly beneficial in the context of 

complex steel production scheduling tasks, where it can mitigate the impact of state transition 

uncertainty-induced fluctuations. 

To achieve a better balance between production efficiency, resource consumption, and cost, this 

study proposes an adaptive adjustment mechanism for the reward function. Conventional reward 

functions are fixed, making it difficult to adjust weights for multiple objectives in dynamic 

production environments. This study introduces an innovative strategy that combines adaptive 

dynamic weight adjustment with an experience playback mechanism, allowing the reward function 

weights to be optimized based on actual production conditions. The reward function 

R(s, a)comprises multiple sub-goals, including productivity, energy consumption, and cost, as shown 

in Equation (5). 

R(s, a) = w�(t)R����������(s, a)

+w�(t)R������(s, a) + w�(t)R����(s, a). (5)
 

The weights assigned to production efficiency w�(t), energy consumption w�(t), and cost w�(t) 

are subject to dynamic adjustment over time. The core of the adaptive adjustment mechanism is the 

real-time modification of individual weights in accordance with feedback. The weights are defined 

as follows, as illustrated in Equation (6). 

w�(t + 1) = w�(t) + η� ∙ ∆R�(t), (6) 

where η�  represents the learning rate, while ∆R�(t)  denotes the discrepancy between the 

immediate and anticipated rewards associated with the T sub-goal as illustrated in Equation (7). 

∆R�(t) = R��(t) − R�(t), (7) 

where R��(t) signifies the expected reward for sub-goal i, whereas R�(t) denotes the immediate 

reward actually received. The feedback mechanism enables the model to adjust the balance of 

multiple objectives in each training cycle, thereby allowing it to optimise dynamically between 

competing goals such as production efficiency and energy consumption. 

To ensure optimal model performance, key parameters were tuned during preliminary 

experiments. The learning rate α was tested in the range [0.001, 0.1], and the discount factor γ was 

varied between 0.8 and 0.99. Additionally, the initial reward weights (λp, λe, λc) were set equally 

and adjusted dynamically during training. These adjustments helped balance objectives like 

production efficiency, energy consumption, and cost. 

IV. Experiments 

A. Experimental Setups 

The characteristic indicators of multiple disturbance events in the steel production process are 

employed as input, with strong disturbance and weak disturbance serving as the output of the 

decision tree model. The data were sourced from the following: The data were sourced from the steel 

mill workshop Manufacturing Execution System (MES) database. The decision parameter, 

designated as D, represents the intensity of the disturbance. This parameter is defined in terms of two 

distinct classifications: A value of 1 is assigned to indicate a weak disturbance, while a value of 2 is 

assigned to indicate a strong disturbance. A decision tree model is constructed from these 

characteristic indicators with the objective of distinguishing and predicting perturbations of different 

intensities. The model was trained on an NVIDIA Tesla V100 GPU, requiring approximately 12 hours 
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for 50,000 iterations. Resource demands were significant, highlighting the need for hardware 

efficiency. 

B. Experimental Analysis 

Prediction accuracy metrics evaluate a model’s ability to correctly identify or classify outcomes 

in a prediction task. Figure 1 compares the experimental prediction accuracy of TS (Tabu Search), KB 

(Knowledge-Based Algorithm), and our method. The horizontal axis represents the number of 

algorithm runs. As shown, our method achieves higher prediction accuracy and faster convergence 

compared to the other two methods. Table 1 presents initial data for molten steel production 

scheduling, including processing, start, and end times. Figure 2 shows a Gantt chart of production 

scheduling generated by TS, KB, and our proposed method. It depicts processing times and task 

schedules for each heat on different equipment. Colors represent various heats, the horizontal axis 

indicates time (minutes), and the vertical axis lists devices, showing task start and end times on each 

device. 

 

Figure 1. Comparison of Prediction Accuracy Over Algorithm Runs. 

Table 1. Initial Production Schedule. 

 Furnace Equipment Start Time Processing Time End Time 

0 Furnace_1 Equipment_1 95 65 160 

1 Furnace_1 Equipment_2 471 25 496 

2 Furnace_1 Equipment_3 232 56 288 

3 Furnace_1 Equipment_4 179 43 222 

4 Furnace_1 Equipment_5 112 65 177 

5 Furnace_1 Equipment_6 317 72 389 

6 Furnace_1 Equipment_7 496 79 575 

7 Furnace_1 Equipment_8 441 82 523 

8 Furnace_1 Equipment_9 51 51 102 

9 Furnace_1 Equipment_10 267 52 319 

The TS method uses neighborhood search to avoid some local optima but may result in inflexible 

task scheduling. In more complex scenarios, it often leads to scheduling delays or uneven resource 

allocation. The KB method schedules tasks based on predefined rules, such as prioritizing specific 

devices, which can cause delays for others. In contrast, our proposed deep reinforcement learning 
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approach adapts intelligently to environmental changes, balances task allocation across devices, and 

improves scheduling efficiency and robustness. 

Sensitivity analysis revealed that a learning rate of 0.01 provided the best trade-off between 

convergence speed and stability, while γ=0.95 effectively balanced short and long term rewards. The 

adaptive reward mechanism outperformed fixed-weight configurations, ensuring dynamic trade-offs 

among objectives. However, the method’s computational requirements may limit industrial 

deployment. Techniques such as model pruning or quantization could reduce costs while 

maintaining performance. 

 

 

 

Figure 2. Scheduling Results Illustration using Gantt chart. 

V. Conclusion 

In conclusion, our comparative analysis of TS, KB, and the proposed deep reinforcement 

learning-based method highlights their respective strengths and limitations. TS avoids local optima 

but struggles with resource imbalances in complex scenarios, while KB offers faster scheduling but 

lacks adaptability to real-time changes. Our method demonstrates superior scheduling efficiency and 

resilience, effectively handling multi-disturbance events and dynamic constraints. For practical 

deployment, challenges such as integration with existing MES systems, real-time data handling, and 
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operator usability must be addressed. Future work will focus on pilot studies to validate its feasibility 

in real steel production environments. 
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