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P450 Enzymes 

George Tzotzos 

Visiting research fellow, Marche Polytechnic University, Ancona, Italy; gtzotzos@me.com 

Simple Summary: Cytochrome P450 enzymes (CYPs), are a superfamily of enzymes found in all 

kingdoms of life. Insects, in particular mosquitoes, constitute the taxon with most P450 genes. CYPs 

are grouped in families on the basis of sequence similarity. Some families consist of many members 

thought to have arisen arise from dynamic evolutionary events (“labile” CYPs) whereas others 

comprise only one or two members which have changed little in the course of evolution (“stable” 

CYPs). P450 enzymes show an extraordinary diversity in their reaction chemistry, some being 

involved in essential biosynthetic and developmental processes. However, the precise function of 

most CYPs has not been established experimentally. The main hypothesis of the current study is 

that CYPs carry an evolutionary imprint reflected in their sequences, and by extension their 

function. Here, bioinformatic analysis of CYPs showed that “stable” and “labile” mosquito P450s 

can be differentiated on the basis of a number of genomic and sequence features. “Stable” CYPs are 

encoded by longer genes with more exons than “labile” CYPs, and the corresponding proteins are 

enriched in hydrophobic amino acids. Functional enrichment showed that “stable” genes are 

associated with biosynthetic and developmental functions. 

Abstract: The use of insecticides is widespread in the control of debilitating mosquito-borne 

diseases. P450 enzymes (CYPs) play essential roles in mosquito physiological function but also in 

the enzymatic detoxification of xenobiotics. Broadly speaking, CYPs can be classified as “stable”, 

meaning those that have no or very few paralogs, and “labile” constituting gene families with many 

paralogous members. The evolutionary dichotomy between “stable” and “labile” P450 genes is 

fuzzy and there is not a clear phylogenetic demarcation between P450s involved in detoxification 

and P450s involved in essential metabolic processes. In this study, bioinformatic methods were used 

to explore differences in the sequences of “stable” and “labile” P450s that may facilitate their 

functional classification. Genomic and sequence data of Anopheles gambiae (Agam), Aedes aegypti 

(Aaeg) and Culex quinquefasciatus (Cqui) CYPs were obtained from public databases. The results of 

this study show that “stable” CYPs are encoded by longer genes, have longer introns and more 

exons, and contain a higher proportion of hydrophobic amino acids than “labile” CYPs. Compared 

to “labile” CYPs, a significantly higher proportion of “stable” CYPs are associated with biosynthetic 

and developmental processes. 
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1. Introduction 

Mosquitos are infectious disease vectors having a profound impact on human health. Anopheles 

mosquitoes transmit the parasite Plasmodium falciparum, the causative agent of malaria, Aedes aegypti 

is the vector of transmission of yellow fever, and Culex mosquitoes transmit West Nile virus and Saint 

Louis encephalitis virus, as well as the nematode that causes lymphatic filariasis. In the absence of 

vaccines for these diseases, insecticides are widely applied as a means of mosquito control. This 

strategy has limitations in that insecticides are not only highly ecotoxic but are also becoming 

increasingly ineffective due to acquired resistance of the targeted insects. Resistance is mediated not 

only by mutations in the target insect receptors but also through insecticide detoxification. 
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Cytochrome P450 enzymes have been shown to be essential for insect development and survival but, 

probably a larger number of P450s are involved in insecticide metabolism and resistance. 

Cytochrome P450 enzymes, also known as CYPs, are haem-containing monooxygenases found 

in all kingdoms of life [1]. They first appeared in the scientific literature in 1958 [2].The Pfam database 

of protein families and domains classifies CYPs as a distinct family of enzymes (Pfam entry PF00067) 

involved in the oxidative degradation of various compounds [3]. In P450s, the haem iron forms a 

pentacoordinate system with the axial sulphur of a conserved cysteine (Cys) protein amino acid 

residue in the active site of the enzyme [4]. The conserved Cys residue exists as a thiolate anion giving 

a characteristic absorption band of 450 nm which is also typical of the spectral properties of other 

cytochromes such as the b-type haem-proteins haemoglobin and myoglobin. However, unlike these 

cytochromes, CYP monooxygenases are not electron-transfer proteins and function in the presence 

of redox partners, usually NAD(P)H-dependent ferredoxin or FAD- and FMN- containing CPR-type 

reductases by transferring molecular oxygen to -CH, -NH and -SH moieties of substrates with 

concomitant reduction of the oxygen atom to water [5]. Consequently, a more appropriate term for 

CYP enzymes would be P450 ‘haem-thiolate’ or P450 monooxygenase proteins rather than 

cytochrome P450s. 

CYPs show an extraordinary diversity in their reaction chemistry. In mammals, they participate 

in oxidative, peroxidative and reductive metabolism of numerous endogenous compounds such as 

fatty acids, cholesterol, steroids, retinoids, vitamin derivatives, bile acids, porphyrins, thromboxane 

A2, prostacyclins, eicosanoids and other lipid mediators. In plants, they are involved in the secondary 

metabolism of, amongst others, phenolic compounds, alkaloids, gibberellins. The diversity of 

biosynthetic reactions catalysed by P450 is reviewed by Fujiyama, et al. [6]. Last but not least, CYPs 

metabolise an enormous range of xenobiotics and endobiotics including drugs, insecticides, 

environmental chemicals and pollutants, as well as natural plant products, and bacterial metabolites. 

P450s are involved in the metabolic detoxification of xenobiotics (phase I metabolism). This involves 

the addition or unmasking of polar groups, such as such hydroxy, amine or sulphydryl groups, in 

the xenobiotic substrate followed by hydrolysis, oxidation or reduction. The resultant reaction 

intermediates are then further metabolised by phase II enzymes, mainly, glutathione-S-transferases 

[7], and transported into the extracellular space through interactions with transmembrane proteins 

(phase IIII), mainly ATP-Binding Cassette (ABC) Transporters [8]. 

By 2018, more than 300,000 CYP sequences had been mined and collected in all areas of the tree 

of life [9] but the precise function of individual CYP proteins remains largely unknown. It is estimated 

that only 0.2% of the genes deposited in different databanks have been functionally characterised 

[10,11]. CYPs were first classified into distinct groups by Nerbert and Gonzalez in 1987. Following 

phylogenetic criteria, gene organisation and sequence similarity, CYPs are grouped into kingdom-

specific clusters, named clans, each of which represent genes that diverged from a single common 

ancestor and can include one or multiple families [12,13]. Generally, groups of proteins having amino 

acid identity over 40% are assigned to the same family, whereas proteins having identity above 55% 

are allocated to the same subfamily. Gene families that repeatedly cluster in the same phylogenetic 

clade are grouped into the same clan. In this classification scheme a family-specific number is given 

after the root symbol CYP, followed by a letter and a number indicative of the subfamily and the 

gene, respectively. Clans can consist of one or multiple families and are given the name of the smallest 

family number present in the clade. For example, if a single clade in phylogenetic analysis comprises 

the CYP7, CYP8 and CYP39 families, these families become part of clan 7 [14]. Clan-based 

classification can be volatile and the addition of new, more distant sequences can lead to interleaved 

branches obscuring the boundaries between different classes [15]. 

Amongst animals, insects constitute the taxon with most P450 genes, which are grouped into six 

clans, namely, CYP2, CYP3, CYP4, CYP16, CYP20 and mitochondrial (mito). Two clans, CYP16 and 

CYP20, are restricted to certain species in Apterygota and Paleoptera [11]. Mosquitoes, second only 

to the deer tick (Ixodes scapularis), have a disproportionately large number of P450 genes [16,17]. CYP 

protein coding genes in the diptera D. melanogaster (Dmel), A. gambiae (Agam), A. aegypti (Aaeg) and C. 
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quinquefasciatus (Cqui) form groups in Clans 2, 4, 6 and the mitochondrial clan. The number of CYPs 

populating each clan vary considerably (Table 1). 

Table 1. P450 gene numbers and their clan-wise distribution in D. melanogaster (Dmel), A. gambiae 

(Agam), A. aegypti (Aaeg) and C. quinquefasciatus (Cqui). 

 Total Clan2 Clan3 Clan4 mitochondrial Source 

  Family Family Family Family  

Dmel  CYP18, 303-

307 

CYP6, 9, 28, 

308-310, 317 

CYP4, 311-

313, 316, 318 

CYP12, 49, 301-2, 314-5  

 85 No. genes: 6 No. genes: 

36 

No. genes: 32 No. genes: 11  [11] 

Agam  CYP15, 303-

307 

CYP6, 9, 

329 

CYP4, 325 CYP12, 49, 301-2, 314-5  

 106 No. genes: 10 No. genes: 

42 

No. genes: 45 No. genes: 9  [11] 

Aaeg  CYP15, 18, 

303-307 

CYP6, 9, 

329 

CYP4, 325 CYP12, 49, 301-2, 314-5  [18] 

 164 No. genes: 11 No. genes: 

84 

No. genes: 59 No. genes: 10  

Cqui  Cyp15, 303-

307 

CYP6, 9, 

329 

CYP4, 325 Cyp12, 301-2, 314-14  

 196 No. genes: 14 No. genes: 

88 

No. genes: 83 No. genes: 11  [19] 

Gene assignment to clans and families may change with each new genome release and be further 

complicated by the fact that genomes can consist of different numbers of CYPs found in natural 

populations [20]. CYP assignment discrepancies may also arise from genome annotations differing 

in the coverage and quality of assembly of sequenced genomes, or due to homozygosity and 

polymorphisms in gene copy numbers [17,21]. 

Genes of the CYP2 and mitochondrial clans are relatively conserved and they form many 

families with few or even single members. Members of these clans have been shown to participate in 

core developmental and physiological functions and their evolution is well conserved with many 

families having few or even single members [15,22]. CYP clans 3 and 4 are by far the most populated 

due to lineage-specific gene amplification of paralogs or “phylogenetic blooms” [20,23]. These 

“blooms” are thought to result in response to environmental stimuli and, in particular, to the selection 

pressure exerted by polluted habitats and, in particular, due to the widespread application of 

chemical insecticides [18,24]. 

Phylogenetic studies have shown that the expansion of the P450 gene repertoire is shaped by 

gene duplication, gene birth and death, and gene neo-functionalisation [20]. These events are driven 

by selection acting on what is available at the time and can be described by a power law typical of 

simple birth and death models. An implication of this model is that CYPs may switch their function 

from physiology to detoxification and vice versa [16] or that some CYPs genes may be functionally 

redundant [25]. 

Yet some CYPs may deviate from this stochastic evolutionary model and a small number of 

CYPs have been shown to be “stable” in evolutionary terms, as for example in D. melanogaster, where 

31 such “stable” genes have been identified [26]. Amongst these are the so-called “Halloween” genes, 

such as spook (spo), phantom (phm), disembodied (dib), shadow (sad), spookier (spok) and spookiest. These 

genes are essential for the biosynthesis of moulting hormones [27]. Functional investigation in 

different tissues of D. melanogaster, using RNAi screens, revealed that knockdown of 9 of these CYPs, 

resulted in lethality [28]. In the light of this evidence, it has been proposed that natural selection may 

also act on copy number polymorphisms within a species. Although this “selectionist” model has 
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been contested, it is agreed that “conserved orthologous genes” are present in some phylogenetic 

branches of CYPs [11]. 

Regardless of evolutionary model, it is still not possible to distinguish phylogenetic branches 

related to essential physiological and developmental functions from those related to detoxification. 

Even in the case of D. melanogaster which serves as a model organism, well over 60% of the total 

number of P450s are “orphan” in terms of functional characterisation [29]. Likewise, phylogenetic 

branches of CYPs cannot be assigned ubiquitous xenobiotic detoxification functions as (i) different 

CYPs respond to insecticide selection in different mosquito populations and geographical regions 

[30], and (ii) CYPs are also known to play an indirect role in insecticide resistance [31,32]. As a result, 

susceptible and resistant strains with a common genetic background are usually not available to 

compare, and susceptible reference strains are biased by geographic variation or genetic drift. This 

makes attempts to identify one or a few metabolic genes associated with insecticide adaptation 

difficult or even futile [33,34]. 

“Gene essentiality” refers to those genes where a single gene–knockout results in lethality or 

severe loss of fitness. Earlier work has established that essential and non-essential genes can be 

recognised on the basis of their respective physical, chemical and evolutionary properties [35–38]. 

Based on this, bioinformatic methods were used to differentiate “stable” from “labile” mosquito 

P450s. Given that “stable” CYP genes may also be involved in auxiliary, non-essential, metabolic 

networks the analogy with “gene essentiality” may be tentative. 

2. Materials, Methods and Datasets 

CYPs identified in the sources specified in Table 1 were submitted to VectorBase [39] to source 

genomic and protein data and CYPs with ambiguous annotations were removed. The total number 

of CYPs in the dataset was 486 (SI1.xlsx). These were mapped onto 83 ortholog groups derived from 

OrthoMCL [40,41]. The latter is a genome-scale algorithm for the identification of orthologous protein 

sequences and provides not only groups shared by two or more species/genomes, but also groups 

representing species-specific gene expansion families [40,41]. The dataset was further split into two 

subsets, one of which included CYPs with zero or up to three paralogs and one that included CYPs 

with four or more paralogs (Supplementary Information 1). The division is based on earlier work 

with D. melanogaster CYPs in which genes with up to three duplications were shown to derive from 

evolutionarily stable clades, and genes with more than three duplications from “dynamic/unstable” 

clades. In this paper, the term “labile” is used in preference to “dynamic/unstable” [26]. 

Redundancy reduction. Each subset was purged by removing genes/proteins having sequence 

similarity > 70%. Redundancy reduction is necessary to avoid undesirable bias in statistical analysis 

arising from the presence of multiple copies of similar genes/proteins [42]. SkipRedundant of the 

EMBOSS suite of bioinformatics tools  [43] was used to obtain non-redundant (culled) datasets, one 

from the “stable” and “labile” subsets. The numbers of CYPs in each of the resulting subsets is 

summarised in Table 2. 

Table 2. Number of CYP genes and proteins in the “labile” and “stable” datasets. 

  Unculled Culled 

 No. genes “stable” “labile” “stable” “labile” 

Dmel 83 53 30 46 22 

Agam 94 49 45 31 28 

Aaeg 131 58 73 33 30 

Cqui 178 85 93 52 35 

Total  486 245 241 162 115 

Gene and protein sequence-based features. The gene, protein, functional features and 

bioinformatic methods used to characterise “stable” and “labile” P450 are summarised in Table 3. 
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Table 3. Sequence and functional features and corresponding bioinformatic tools. 

Features 
Bioinformatic 

methods 

Genomic features: gene length, % of GC content, number of 

transcripts, number of exons, length of exon and intron 
VectorBase [39] 

Protein sequence features: protein length, molecular weight,  

protein charge, isoelectric point, amino acid composition,  

hydrophobicity 

EMBOSS Pepstats

[43]  

Phosphorylation PhosNet 3.0 [44] 

Signal peptide; transmembrane domains; Subcellular localisation BUSCA [45] 

Gene Ontology terms: biological process, cellular component,  

molecular function 
NetGO 3.0 [46] 

Protein sequence properties. The length of our “stable” and “labile” proteins was obtained from 

VectorBase. The EMBOSS program Pepstats 

(https://www.ebi.ac.uk/jdispatcher/seqstats/emboss_pepstats) was used to obtain statistics of a 

number of properties of FASTA formatted protein sequences. These attributes include: molecular 

weight, number of residues, charge, isoelectric point, and amino acid composition. Hydrophobicity 

was determined by multiplying the frequency of each amino acid in each P450 with its Kyte and 

Doolitttle hydropathicity index [47] and summing up the resulting values. 

Pepstats groups amino acids into nine categories: Tiny (A, C, G, S and T); Small (A, B, C, D, G, 

N, P, S, T and V); Aliphatic (I, L and V); Aromatic (F, H, W and Y); Non-polar (A, C, F, G, I, L, M, P, 

V, W and Y); Polar (D, E, H, K, N, Q, R, S, T and Z); Charged (B, D, E, H, K, R and Z); Basic (H, K and 

R) and Acidic (B, D, E, Z). Pepstats was run with the default parameters setting. MATLAB scripts 

were used to extract features values from the output files and determine corresponding statistical 

values (MATLAB. (2024). Version R2024a. Natick, Massachusetts: The MathWorks Inc.). 

Genomic properties. Genomic data (gene, CDS, intron/exon lengths) were obtained from 

VectorBase. %CG content data were obtained from the Ensembl Metazoa release 60 

(http://metazoa.ensembl.org/index.html). For genes with multiple transcripts, the longest length 

transcript was used to determine the number of exons and total exon length. The intron length of a 

gene was calculated by subtracting the total exon length from the corresponding gene length. 

Phosphorylation. Protein phosphorylation was predicted using PhosNet 3.0 [44]. The program 

predicts serine, threonine or tyrosine phosphorylation sites in eukaryotic proteins using neural 

networks. Kinase-specific predictions were used for serine and threonine, and generic predictions 

were used for tyrosine. In all cases, the confidence score used was > 0.7. 

Signal peptides, transmembrane domains and protein localisation. Signal peptides, transmembrane 

domains and protein subcellular localisations were predicted using BUSCA [45]. The program runs 

as a web server which integrates several resources to predict sub-cellular localisation including 

protein feature predictors (DeepSig, TPPred3, PredGPI, BetAware and ENSEMBLE3.0) and protein 

localisation predictors (MemLoci, BaCelLo, SChloro). In addition, BUSCA annotates relevant protein 

features, such as signal/transit peptides, GPI anchors and transmembrane domains. 

Gene ontology terms. GO term enrichment was obtained using the web-based application NetGO 

3.0. The program predicts molecular function ontology from sequence using protein language models 

[46]. NetGO addresses shortcomings of GO functional annotations and is considered as one of the 

best methods at predicting function ontology [48,49]. Contextual visualisation of the GO terms was 

performed using GOATOOLS [50]. 

Statistical analysis. Statistical tests were carried out throughout using the statistics toolbox of 

MATLAB. The sequence properties did not show a normal distribution and the statistical significance 

of each property was determined using the two-tailed nonparametric Wilcoxon rank sum test. The 

test is equivalent to a Mann-Whitney U-test. Statistical significance was determined at the 0.05 level 

and the Bonferroni correction was applied to calculate corrected p-values. The Chi–squared (χ2) test 
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was also carried out to check whether the frequencies of a particular feature in “stable” and “labile” 

genes differ from each other. 

3. Results 

3.1. Analysis of Genomic Features 

Gene length, %CG content, transcript and exon numbers, as well as intron and exon lengths were 

analysed in all datasets. The results are shown in Table 4. Compared to “labile” P450s, “stable” genes 

were shown to be generally longer and have a greater number of exons. The opposite is true for intron 

lengths, where introns in the “labile” dataset are on the average considerably shorter (Table 4). The 

same trends are observed in the subsets of “culled” genes (Figure 1). The GC content of the “stable” 

CYPs is less than that of the “labile” CYPs but the difference may not be statistically significant. 

Table 4. Median gene length, GC contents, number of transcripts, number of exons, exon length and 

intron length for essential and viable genes*. 

Datasets  
Gene 

length (bp) 

No. of 

exons 

Exon 

length (bp) 

Intron 

length (bp) 

No. 

transcripts 

% GC 

content 

Non-

culled 

“labile” 1840 3 1524 311 1 47.20 

“stable” 2149 4 1518 612 1 44.78 

p-value 2.8034e-07 
1.0212e-

08 
0.0209 7.6899e-09 0.3531 0.0270 

Culled 

“labile” 1890 3 1527 359 1 46.48 

“stable” 2165 4 1521 612 1 45.63 

p-value 7.1450e-04 
4.4157e-

06 
0.0302 1.5198e-04 0.6973 0.3718 

* The median value of each feature is reported. p–values are determined from a Mann–

Whitney U test. Statistically significant results were evaluated based on the Bonferroni 

corrected p–value of 0.0083. They are shown in bold typeface. 

 

Figure 1. Distributions of the total gene length, number of exons, total length of exons, total length of 

introns, number of transcripts, and percentage of GC content in “stable” and “labile” genes. 

3.2. Analysis of Protein Features 

Protein average molecular weight, charge, isoelectric point and frequencies of different amino 

acid categories were analysed statistically to determine significant differences in the two groups of 

P450 (Table 5). “Labile” proteins were found to have greater proportions of acidic, basic, charged and 
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polar amino acids. In the case of charged amino acids, the p-value in the culled dataset was 

marginally above the Bonferroni correction. “Stable” proteins had a higher median value for aliphatic 

amino acids and hydrophobicity. Differences between the protein features examined follow the same 

trend in the culled datasets (Figure 2). 

Table 5. Median values of different protein features and the p-values of their distribution calculated 

using the Mann–Whitney U test *. 

 Unculled Culled 

Property “Labile” “Stable” p-value “Labile” “Stable” p-value 

MW 5.8236e+04 5.8106e+04 0.0124 5.8454e+04 5.8162e+04 0.0249 

IEP 8.3088 8.1503 0.2324 8.2718 8.3542 0.4991 

Charge 9 9.5000 0.4037 10 10.5000 0.0724 

Hydrophobicity -19.6450 -16.0583 4.3384e-08 -18.7226 -15.5340 2.7720e-04 

Aromatic 13.2110 13.1148 0.5403 13.2110 13.1417 0.6721 

Aliphatic 28.5714 29.7619 3.4826e-10 28.6299 29.8651 3.1629e-06 

Acidic 12.0240 11.5686 3.5141e-08 11.7530 11.4458 3.8132e-05 

Basic 14.7810 14.6000 0.0258 14.6535 14.6939 0.6806 

Charged 26.6791 26.0521 1.2929e-06 26.4706 25.9669 0.0056 

Polar 45.0980 44.3340 6.3566e-07 45.0902 44.3137 2.4062e-04 

Non-polar 54.9020 55.6660 5.1469e-07 54.9098 55.6863 2.4062e-04 

Small 44.6000 44.6939 0.6356 44.6680 44.4890 0.6232 

Tiny 23.3202 23.5887 0.0306 23.5409 23.8095 0.3240 

* The median value of each feature is reported. p–values are determined from a Mann–Whitney U test. Statistically 

significant results were evaluated based on the Bonferroni corrected p–value of 0.0038. They are shown in bold typeface. 

 

Figure 2. Distributions of acidic, aliphatic, charged, non-polar and polar residues (%) between “labile” 

and “stable” P450s. Unculled and culled datasets denoted as (A) and (B), respectively. 
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Variations in the frequencies of amino acids found in “stable” and “labile” P450s are shown in 

Table 6. Statistically significant variations were observed in 11 amino acids (8 in the culled dataset). 

The relative proportion of Cys, Arg, Leu, and Trp is higher in “stable” P450s, and that of Glu, Lys, 

and Met higher in “labile” proteins. Variations in four of these (Ala, His) were not statistically 

significant in culled datasets of proteins. 

Table 6. Differences in the amino acid frequency of usage between the P450 proteins of the two groups 

in the culled and non-culled datasets. 

 Unculled Culled 

Aa* “Labile” “Stable” p-value “Labile” “Stable” p-value 

A 5.6711 6.1100 4.0438e-04 5.8601 6.2500 0.0145 

C 1.1811 1.5238 1.9760e-10 1.2048 1.5385 2.8718e-05 

D 5.4409 5.3465 0.0230 5.4104 5.2427 0.0963 

E 6.4338 6.1151 8.9284e-06 6.3241 6.0362 0.0012 

F 6.5476 6.2000 0.0014 6.4833 6.1100 0.0150 

G 5.6075 5.3254 0.0125 5.6863 5.3407 0.0966 

H 2.1696 2.3301 4.2799e-05 2.2018 2.3297 0.0233 

I 6.1185 6.0827 0.8018 6.1185 6.0038 0.7398 

K 6.4639 5.4000 1.3464e-14 6.0998 5.3360 3.4017e-05 

L 10.0616 11.0656 2.6111e-12 10.2970 11.0891 7.5251e-07 

M 3.3730 2.9851 4.2922e-05 3.4068 3.0364 0.0015 

N 4.0161 3.9448 0.3603 3.9062 3.8076 0.1330 

P 5.0710 5.1081 0.2145 4.9900 5.0813 0.1682 

Q 3.4765 3.5849 0.1371 3.6290 3.6735 0.5681 

R 6.0852 6.6202 1.0888e-04 6.3116 6.7308 0.0013 

S 5.3435 5.4104 0.4267 5.3465 5.4409 0.4281 

T 5.4326 5.2104 0.0015 5.4902 5.1383 0.0011 

V 6.5056 6.2745 0.0128 6.4885 6.2622 0.0318 

W 0.9452 1.1236 4.8193e-06 0.9328 1.1494 3.9031e-05 

Y 3.5185 3.6072 0.5588 3.4926 3.6000 0.5164 

* amino acid (aa). The p-value for the Bonferroni correction is 0.0025. Statistically significant 

differences are shown in bold typeface. 

3.3. Phosphorylation 

Protein phosphorylation plays crucial roles in the regulation of cellular and metabolic processes 

such as cell differentiation and cell division. Cytochrome P450 have been shown to be subject to 

phosphorylation mediated by different protein kinases, cAMP-dependent protein kinase A being the 

most prominent one. In insects, phosphorylation is thought to play a role in the control of genotoxic 

metabolites [51]. P450 phosphorylation was predicted using NetPhos-3.1 [44] (SI2.xlsx). The median 

number of phosphorylated residues was 3 with the exception of threonine in the unculled “labile” 

dataset (median=4). The statistical differences between “labile” and “stable” P450s in the culled and 

unculled datasets were not statistically significant. 
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3.4. Signal Peptides, Transmembrane Domains, and Protein Location 

Insect P450s are transmembrane proteins bound either to the endoplasmic reticulum (ER) or the 

inner mitochondrial membrane by means of the N-terminal transmembrane helix (TMH) [52]. In 

mitochondrial CYPs, the N-terminal anchor is missing. Instead, a topogenic sequence present at the 

nascent enzyme serves as a signal peptide to ensure the enzyme is transported and incorporated into 

the mitochondrial membrane [53]. Both transmembrane and mitochondrial P450s share the same fold 

and very similar tertiary structures [54]. The transmembrane domains usually adopt an α-helical 

structure while passing through the lipid bilayer once (single-pass proteins) or multiple times 

(multiple-pass proteins). In non-mitochondrial P450s, the catalytic domain of the enzyme is on the 

cytosolic side of ER and the N-terminus α-helix protrudes on the luminal side of ER. This posture of 

CYPs in relation to the membrane is stabilised by hydrophobic interactions between the residues of 

the N-terminal helix and the lipophilic ER environment. The N-terminal anchor has been associated 

with CYP trafficking into the ER or mitochondria, in interactions with different phospholipids, and 

as a mediator of CYP heteromer formation. 

Signal peptides, subcellular localisation and number of transmembrane helices were predicted 

using BUSCA [45] (SI3.pdf). A summary of the results is given in Table 7. All CYPs were predicted 

to have at least two transmembrane domains. Approximately 80% of CYPs, both in the unculled and 

culled datasets, were predicted to lack the N-terminal helix. The differences between the datasets 

were not statistically significant. 

Table 7. Summary of predicted signal peptides, subcellular localisation and transmembrane helices. 

 Non-culled Culled 

Biological feature No.“labile” CYPs No.“stable” CYPs No. “labile” CYPs No. “stable” CYPs 

Signal peptide 19 (7.9%) 28 (11.4%) 8 (7.0%) 18 (11.2%) 

Mito transit 11 (4.6%) 5 (2%) 7 (6.1%) 2 (1.3%) 

Mitochondrial 

membrane 
11 (4.6%) 5 (2%) 7 (6.1%) 2 (1.3%) 

N-terminal helix 198 (82.2%) 196 (80.0%) 95 (82.6%) 132 (81.5%) 

3.5. Gene Enrichment Analysis 

Gene Ontology (GO)  [55]enables the classification of gene functions through the application of 

controlled vocabularies (ontology) to annotate the functional properties of gene and gene products 

across species. Each GO term is annotated with information which includes the type of gene product 

(e.g., protein, tRNA, etc.) and an evidence code describing the type of evidence (e.g., experimental, 

phylogenetic, text mining etc.). Annotations that are not curated manually are described as ‘IEA’ 

(inferred from electronic annotation). GO is structured as a graph comprising nodes representing 

each GO term. Edges between the nodes represent relationships between terms. The GO graph is 

hierarchical with ‘parent’ and ‘child’ terms, but unlike strict hierarchy, a given term may have more 

than one ‘parent’. Genes are annotated by (a) molecular function (b) cellular component and (c) 

biological process. One of the most common methods to perform GO term gene-set enrichment 

analysis is through the identification of common functions in a group of genes by means of over-

representation analysis (ORA). The method compares the GO terms corresponding to a test list of 

genes to the functions of selected background genes (for example, a database with functionally 

annotated genes). If the number of functions in the test list is greater than the number of functions 

obtained by chance, then these functions are considered to be over-represented. 

NetGO 3.0 [46] was used to predict enrichment of GO terms of the “stable” and “viable” P450s 

(SI4.xlsx). “Stable” and “labile” proteins were differentially enriched in the terms shown in Table 8. 

Although individual proteins in both datasets can show enrichment in the same GO term, the relative 

proportions of proteins in each set are substantially different. Comparing the numbers of “labile” and 
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“stable” P450, considerably more “stable” P450s showed enrichment of GO terms related to 

biosynthetic and developmental processes. This trend is reversed in the case of deteoxification 

catabolic processes. GOATOOLS [50] was used to generate graphical views of enriched GO terms in 

biosynthetic, developmental and catabolic processes. These are shown in Figures 3 and 4, 

respectively.  

Table 8. Gene enrichment in GO terms related to biosynthetic, developmental and detoxification 

metabolic processes. 

GO term Description 
Subset1 All 

CYPs2 
Dmel2 Agam2 Aaeg2 Cqui2 

1. 

GO:0048856 

Anatomical 

structure 

development 

S 135 

(55.1) 

27 

(11.0) 

26 (10.6) 33 

(13.5) 

49 (20) 

L 75 7 18 23 27 

2. 

GO:0008610 

lipid biosynthetic 

process 

S 141 

(57.5) 

26 

(10.6) 

26 (10.6) 38 

(15.5) 

51 

(20.8) 

L 24 (9.9) 4 (1.7) 3 (1.2) 8 (3.3) 9 (3.7) 

3. 

GO:0008202 

steroid metabolic 

process 

S 95 (38.8) 11 (4.5) 29 (11.8) 37 

(15.1) 

18 (7.3) 

L 10 (4.1) 2 (0.8) 1 (0.4) 1 (0.4) 6 (2.5) 

4. 

GO:0042445 

hormone 

metabolic process 

S 53 (21.6) 12 (4.9) 15 (6.1) 15 

(6.1) 

11(4.5) 

L 4 (1.6) - - - 4 (1.6) 

5. 

GO:0007275 

multicellular 

organism 

development 

S 91 (37.1) 19 (7.7) 18 (7.3) 22 

(9.0) 

32 

(13.0) 

L 25 (10.4) 2 (0.8) 7 (2.9) 9 (3.7) 7 (2.9) 

6. 

GO:0009791 

post-embryonic 

development 

S 19 (7.7) 6 (2.4) 4 (1.6) 6 (2.4) 3 (1.2) 

L - - - - - 

7. 

GO:0002165 

instar larval or 

pupal 

development 

S 17 (6.9) 6 (2.4) 6 (2.4) 3 (1.2) 2 (0.8) 

L - - - - - 

8. 

GO:0045456 

ecdysteroid 

biosynthetic 

process 

S 10 (4.1) 4 (1.6) 4 (1.6) 1 (0.4) 1 (0.4) 

L - - - - - 

9. 

GO:0006805 

 

xenobiotic 

metabolic process 

S 24 (9.8) 2 (0.8) 5 (2.0) 6 (2.4) 11 (4.5) 

L 69 (28.6) 9 (3.7) 11 (4.6) 28 

(11.6) 

21 (8.7) 

10. 

GO:0046680 
response to DDT 

S 30 (12,2) 8 (3.3) 5 (2.0) 8 (3.3) 9 (3.7) 

L 86 (35.7) 10 (4.1) 22 (9.1) 29 

(12.0) 

25 

(10.4) 

11. 

GO:0009404 

toxin metabolic 

process 

S 12 (4.9) 3 (1.2) 2 (0.8) 2 (0.8) 5 (2.0) 

L 28 (11.6) 7 (2.9) 2 (0.8) 10 

(4.1) 

9 (3.7) 

1 S denotes “stable”; L denotes “labile). 2 values in () denote % 
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Figure 3. Plot of the enriched GO terms and their ancestors (Table 7, GO terms 1-8). 

 

Figure 4. Plot of the enriched GO terms and their ancestors (Table 7, GO terms 9-11. 

4. Discussion 

The non-culled dataset was split into two subgroups which contained a total of 245 defined as 

phylogenetically “stable” and 241 phylogenetically “labile”. The genes were obtained from 

VectorBase database and cross-referred to Ensembl (Metazoa Genes 60 database). To avoid bias in 

statistical analyses, redundant proteins were removed from the datasets to generate non-redundant 

or culled datasets of “labile” and “stable” P450s. The culled and non-culled datasets were compared 

for a number of genomic and protein sequence properties. In general, sequence redundancy did not 

affect the overall picture and all sets follow similar statistical trends. Table 8 shows the gene and 

protein features that are strongly associated with “stable” P450 genes. 
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Table 9. Summary of characteristics likely to be associated with essential or viable genes. 

“Stable” gene tendencies “Labile” gene tendencies 

Longer genes; longer introns; more exons Simpler, shorter gene structure 

More hydrophobic; relative proportion of 

aliphatic amino acids higher; enriched in 

Cys, Arg, Leu, and Trp 

Less hydrophobic; relative proportion of 

charged and polar amino acids higher; 

enriched in Glu, Lys, and Met 

Involved in biosynthetic and 

developmental processes, such as 

biosynthesis of lipids and hormones 

essential for instar larval or pupal 

morphogenesis 

Involved in cellular catabolic processes, 

detoxification of xenobiotics and 

insecticide metabolic processes 

Analysis of genomic features of CYPs showed that “stable” genes are longer, have more exons, 

and longer intron lengths. This is consistent with recent findings showing that longer genes correlate 

with functions that are important in the development stages of an organism [56,57]. Additionally, 

“stable” CYPs the average intron length was shown to be almost twice the size of introns in “labile” 

P450s. This is in agreement with research showing intonic “burden” plays an important role in the 

evolutionary conservation of genes [58]. “Stable” CYPs were shown to have lower GC content than 

the “labile” ones and although the difference was not statistically significant it is noted that GC 

content varies inversely with intron and exon length [59]. 

Analysis of physicochemical and protein sequence features revealed several differences between 

“labile” and “stable” P450s. “Labile” proteins were found to have a greater proportion of polar and 

charged residues and be less hydrophobic than “stable” P450s which were relatively enriched in 

aliphatic amino acids. It is noted, however, that the method used to determine the relative 

hydrophobicity of P450s is a poor predictor as it does not take into account protein folding. It is 

known that the aggregation propensity of proteins is frequently linked to imperfect folding. In terms 

of amino acid composition, “stable” P450s were found to have Arg, Cys, Leu, Trp in greater 

proportion than “labile” P450s. Arg is a known chaotrope associated with the prevention of protein 

aggregates and increasing the solubility of hydrophobes [60]. Recent studies have shown that Trp/Tyr 

chains are common in enzymes utilising O2 as a substrate and that redox active Trp/Tyr chains extend 

the functional lifetimes of P450s [61]. The relative enrichment of “stable” P450s in Cys residues may 

have a two fold importance. On one hand, Cys residues may impose structural constraints necessary 

for specific, rather than promiscuous, protein-ligand interactions as in the case of interactions that are 

developmentaly important [62]. On the other, Cys has a tendency to behave as a hydrophobic residue 

in folded proteins, despite possessing a polar sulfhydryl group [63]. 

Functional analysis of “stable” and “labile” P450s was studied by enrichment analysis of GO 

terms. “Stable” P450s were predicted to be enriched in GO terms relevant to the biosynthesis of lipids 

and hormones. These biosynthetic processes are also essential for instar larval or pupal 

morphogenesis and play essential roles in the growth, reproduction and defence systems of insects 

[64,65]. “Labile” P450s were predicted to be enriched in GO terms related to biological processes 

involving the detoxification of xenobiotics. As a cautionary note, it is pointed out that GO gene 

enrichment analysis is not without methodological challenges and pitfalls [66–68] and results can be 

unreliable due to inadequate coverage and resolution of the annotation databases [69,70]. 

The analysis of biological features, such as signal peptides and cellular localisation, was 

inconclusive and merits additional investigation. For example, proportion of “labile” CYPs predicted 

to be located in the mitochondrion is higher than that for “stable” CYP, albeit the fact that the absolute 

numbers are small to draw an definitve conclusions. This is contrary to phylogenetic studies showing 

that mitochondrial CYPs are relatively well conserved [22]. However, the name “mitochondrial” 

refering to the CYP clan should not be taken as definitive evidence of subcellular localisation and 

CYPs of this clan can be microsomal or have dual localisations [11]. Another important feature is the 

composition of tranmembrane domains. The reducing power of CYPs depends on the coupling of the 
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endoplasmic reticulum N-terminal transmembrane helix with membrane-anchored NADPH-

dependent cytochrome P450 oxidoreductase [71]. Bioinformatic analysis of of sequence conservation 

of transmembrane anchors and the characterisation of motif patterns of signal and transit peptides 

can provide useful insights on the localisation and function of CYPs [72]. 

5. Conclusions 

“Stable” and “labile” P450s were shown to be significantly different in a number of genomic and 

protein features. The interdependency of these features implies that multiple aspects of biology unite 

to determine whether a gene is “stable” or “labile” in mosquitos. The range of features analysed and 

discussed in this paper can be broadened and expanded to other organisms thus gaining further 

insights into gene “essentiality”.Broadening the scope of the bioinformatic analysis presented in this 

paper may enable the functional classification of insect CYPs by training machine learning classifiers 

for the functional identification of insect P450s. Last but not least, the identification of “stable” genes 

associated with “lethality” may facilitate the identification of non-viable null mutants thus the 

identification of new insecticide targets. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. 
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