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Article

Properties of “Stable” Mosquito Cytochrome
P450 Enzymes

George Tzotzos

Visiting research fellow, Marche Polytechnic University, Ancona, Italy; gtzotzos@me.com

Simple Summary: Cytochrome P450 enzymes (CYPs), are a superfamily of enzymes found in all
kingdoms of life. Insects, in particular mosquitoes, constitute the taxon with most P450 genes. CYPs
are grouped in families on the basis of sequence similarity. Some families consist of many members
thought to have arisen arise from dynamic evolutionary events (“labile” CYPs) whereas others
comprise only one or two members which have changed little in the course of evolution (“stable”
CYPs). P450 enzymes show an extraordinary diversity in their reaction chemistry, some being
involved in essential biosynthetic and developmental processes. However, the precise function of
most CYPs has not been established experimentally. The main hypothesis of the current study is
that CYPs carry an evolutionary imprint reflected in their sequences, and by extension their
function. Here, bioinformatic analysis of CYPs showed that “stable” and “labile” mosquito P450s
can be differentiated on the basis of a number of genomic and sequence features. “Stable” CYPs are
encoded by longer genes with more exons than “labile” CYPs, and the corresponding proteins are
enriched in hydrophobic amino acids. Functional enrichment showed that “stable” genes are
associated with biosynthetic and developmental functions.

Abstract: The use of insecticides is widespread in the control of debilitating mosquito-borne
diseases. P450 enzymes (CYPs) play essential roles in mosquito physiological function but also in
the enzymatic detoxification of xenobiotics. Broadly speaking, CYPs can be classified as “stable”,
meaning those that have no or very few paralogs, and “labile” constituting gene families with many
paralogous members. The evolutionary dichotomy between “stable” and “labile” P450 genes is
fuzzy and there is not a clear phylogenetic demarcation between P450s involved in detoxification
and P450s involved in essential metabolic processes. In this study, bioinformatic methods were used
to explore differences in the sequences of “stable” and “labile” P450s that may facilitate their
functional classification. Genomic and sequence data of Anopheles gambiae (Agam), Aedes aegypti
(Aaeg) and Culex quinquefasciatus (Cqui) CYPs were obtained from public databases. The results of
this study show that “stable” CYPs are encoded by longer genes, have longer introns and more
exons, and contain a higher proportion of hydrophobic amino acids than “labile” CYPs. Compared
to “labile” CYPs, a significantly higher proportion of “stable” CYPs are associated with biosynthetic
and developmental processes.

Keywords: A. gambiae; A. aegypti; C. quinquefasciatus; CYP; P450; genomic and protein properties

1. Introduction

Mosquitos are infectious disease vectors having a profound impact on human health. Anopheles
mosquitoes transmit the parasite Plasmodium falciparum, the causative agent of malaria, Aedes aegypti
is the vector of transmission of yellow fever, and Culex mosquitoes transmit West Nile virus and Saint
Louis encephalitis virus, as well as the nematode that causes lymphatic filariasis. In the absence of
vaccines for these diseases, insecticides are widely applied as a means of mosquito control. This
strategy has limitations in that insecticides are not only highly ecotoxic but are also becoming
increasingly ineffective due to acquired resistance of the targeted insects. Resistance is mediated not
only by mutations in the target insect receptors but also through insecticide detoxification.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Cytochrome P450 enzymes have been shown to be essential for insect development and survival but,
probably a larger number of P450s are involved in insecticide metabolism and resistance.

Cytochrome P450 enzymes, also known as CYPs, are haem-containing monooxygenases found
in all kingdoms of life [1]. They first appeared in the scientific literature in 1958 [2]. The Pfam database
of protein families and domains classifies CYPs as a distinct family of enzymes (Pfam entry PF00067)
involved in the oxidative degradation of various compounds [3]. In P450s, the haem iron forms a
pentacoordinate system with the axial sulphur of a conserved cysteine (Cys) protein amino acid
residue in the active site of the enzyme [4]. The conserved Cys residue exists as a thiolate anion giving
a characteristic absorption band of 450 nm which is also typical of the spectral properties of other
cytochromes such as the b-type haem-proteins haemoglobin and myoglobin. However, unlike these
cytochromes, CYP monooxygenases are not electron-transfer proteins and function in the presence
of redox partners, usually NAD(P)H-dependent ferredoxin or FAD- and FMN- containing CPR-type
reductases by transferring molecular oxygen to -CH, -NH and -SH moieties of substrates with
concomitant reduction of the oxygen atom to water [5]. Consequently, a more appropriate term for
CYP enzymes would be P450 ‘haem-thiolate’ or P450 monooxygenase proteins rather than
cytochrome P450s.

CYPs show an extraordinary diversity in their reaction chemistry. In mammals, they participate
in oxidative, peroxidative and reductive metabolism of numerous endogenous compounds such as
fatty acids, cholesterol, steroids, retinoids, vitamin derivatives, bile acids, porphyrins, thromboxane
A2, prostacyclins, eicosanoids and other lipid mediators. In plants, they are involved in the secondary
metabolism of, amongst others, phenolic compounds, alkaloids, gibberellins. The diversity of
biosynthetic reactions catalysed by P450 is reviewed by Fujiyama, et al. [6]. Last but not least, CYPs
metabolise an enormous range of xenobiotics and endobiotics including drugs, insecticides,
environmental chemicals and pollutants, as well as natural plant products, and bacterial metabolites.
P450s are involved in the metabolic detoxification of xenobiotics (phase I metabolism). This involves
the addition or unmasking of polar groups, such as such hydroxy, amine or sulphydryl groups, in
the xenobiotic substrate followed by hydrolysis, oxidation or reduction. The resultant reaction
intermediates are then further metabolised by phase II enzymes, mainly, glutathione-S-transferases
[7], and transported into the extracellular space through interactions with transmembrane proteins
(phase IIII), mainly ATP-Binding Cassette (ABC) Transporters [8].

By 2018, more than 300,000 CYP sequences had been mined and collected in all areas of the tree
of life [9] but the precise function of individual CYP proteins remains largely unknown. It is estimated
that only 0.2% of the genes deposited in different databanks have been functionally characterised
[10,11]. CYPs were first classified into distinct groups by Nerbert and Gonzalez in 1987. Following
phylogenetic criteria, gene organisation and sequence similarity, CYPs are grouped into kingdom-
specific clusters, named clans, each of which represent genes that diverged from a single common
ancestor and can include one or multiple families [12,13]. Generally, groups of proteins having amino
acid identity over 40% are assigned to the same family, whereas proteins having identity above 55%
are allocated to the same subfamily. Gene families that repeatedly cluster in the same phylogenetic
clade are grouped into the same clan. In this classification scheme a family-specific number is given
after the root symbol CYP, followed by a letter and a number indicative of the subfamily and the
gene, respectively. Clans can consist of one or multiple families and are given the name of the smallest
family number present in the clade. For example, if a single clade in phylogenetic analysis comprises
the CYP7, CYP8 and CYP39 families, these families become part of clan 7 [14]. Clan-based
classification can be volatile and the addition of new, more distant sequences can lead to interleaved
branches obscuring the boundaries between different classes [15].

Amongst animals, insects constitute the taxon with most P450 genes, which are grouped into six
clans, namely, CYP2, CYP3, CYP4, CYP16, CYP20 and mitochondrial (mito). Two clans, CYP16 and
CYP20, are restricted to certain species in Apterygota and Paleoptera [11]. Mosquitoes, second only
to the deer tick (Ixodes scapularis), have a disproportionately large number of P450 genes [16,17]. CYP
protein coding genes in the diptera D. melanogaster (Dmel), A. gambiae (Agam), A. aegypti (Aaeg) and C.


https://doi.org/10.20944/preprints202412.1496.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 December 2024

d0i:10.20944/preprints202412.1496.v1

3

quinquefasciatus (Cqui) form groups in Clans 2, 4, 6 and the mitochondrial clan. The number of CYPs
populating each clan vary considerably (Table 1).

Table 1. P450 gene numbers and their clan-wise distribution in D. melanogaster (Dmel), A. gambiae
(Agam), A. aegypti (Aaeg) and C. quinquefasciatus (Cqui).

Total Clan2 Clan3 Clan4 mitochondrial Source
Family Family Family Family
Dmel CYP18,303- CYP6,9,28, ~ CYP4,311-  CYP12,49,301-2, 314-5
307 308-310,317 313, 316, 318
85 No. genes: 6 No. genes:  No. genes: 32 No. genes: 11 [11]
36
Agam CYP15, 303- CYP6, 9, CYP4, 325 CYP12, 49, 301-2, 314-5
307 329
106  No. genes: 10  No. genes:  No. genes: 45 No. genes: 9 [11]
42
Aaeg CYP15, 18, CYP6, 9, CYP4, 325 CYP12, 49, 301-2, 314-5 [18]
303-307 329
164  No.genes: 11  No. genes:  No. genes: 59 No. genes: 10
84
Cqui Cyp15, 303- CYP6, 9, CYP4, 325 Cyp12, 301-2, 314-14
307 329
196  No. genes: 14 No. genes:  No. genes: 83 No. genes: 11 [19]
88

Gene assignment to clans and families may change with each new genome release and be further
complicated by the fact that genomes can consist of different numbers of CYPs found in natural
populations [20]. CYP assignment discrepancies may also arise from genome annotations differing
in the coverage and quality of assembly of sequenced genomes, or due to homozygosity and
polymorphisms in gene copy numbers [17,21].

Genes of the CYP2 and mitochondrial clans are relatively conserved and they form many
families with few or even single members. Members of these clans have been shown to participate in
core developmental and physiological functions and their evolution is well conserved with many
families having few or even single members [15,22]. CYP clans 3 and 4 are by far the most populated
due to lineage-specific gene amplification of paralogs or “phylogenetic blooms” [20,23]. These
“blooms” are thought to result in response to environmental stimuli and, in particular, to the selection
pressure exerted by polluted habitats and, in particular, due to the widespread application of
chemical insecticides [18,24].

Phylogenetic studies have shown that the expansion of the P450 gene repertoire is shaped by
gene duplication, gene birth and death, and gene neo-functionalisation [20]. These events are driven
by selection acting on what is available at the time and can be described by a power law typical of
simple birth and death models. An implication of this model is that CYPs may switch their function
from physiology to detoxification and vice versa [16] or that some CYPs genes may be functionally
redundant [25].

Yet some CYPs may deviate from this stochastic evolutionary model and a small number of
CYPs have been shown to be “stable” in evolutionary terms, as for example in D. melanogaster, where
31 such “stable” genes have been identified [26]. Amongst these are the so-called “Halloween” genes,
such as spook (spo), phantom (phm), disembodied (dib), shadow (sad), spookier (spok) and spookiest. These
genes are essential for the biosynthesis of moulting hormones [27]. Functional investigation in
different tissues of D. melanogaster, using RNAi screens, revealed that knockdown of 9 of these CYPs,
resulted in lethality [28]. In the light of this evidence, it has been proposed that natural selection may
also act on copy number polymorphisms within a species. Although this “selectionist” model has
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been contested, it is agreed that “conserved orthologous genes” are present in some phylogenetic
branches of CYPs [11].

Regardless of evolutionary model, it is still not possible to distinguish phylogenetic branches
related to essential physiological and developmental functions from those related to detoxification.
Even in the case of D. melanogaster which serves as a model organism, well over 60% of the total
number of P450s are “orphan” in terms of functional characterisation [29]. Likewise, phylogenetic
branches of CYPs cannot be assigned ubiquitous xenobiotic detoxification functions as (i) different
CYPs respond to insecticide selection in different mosquito populations and geographical regions
[30], and (ii) CYPs are also known to play an indirect role in insecticide resistance [31,32]. As a result,
susceptible and resistant strains with a common genetic background are usually not available to
compare, and susceptible reference strains are biased by geographic variation or genetic drift. This
makes attempts to identify one or a few metabolic genes associated with insecticide adaptation
difficult or even futile [33,34].

“Gene essentiality” refers to those genes where a single gene-knockout results in lethality or
severe loss of fitness. Earlier work has established that essential and non-essential genes can be
recognised on the basis of their respective physical, chemical and evolutionary properties [35-38].
Based on this, bioinformatic methods were used to differentiate “stable” from “labile” mosquito
P450s. Given that “stable” CYP genes may also be involved in auxiliary, non-essential, metabolic
networks the analogy with “gene essentiality” may be tentative.

2. Materials, Methods and Datasets

CYPs identified in the sources specified in Table 1 were submitted to VectorBase [39] to source
genomic and protein data and CYPs with ambiguous annotations were removed. The total number
of CYPs in the dataset was 486 (SI1.xIsx). These were mapped onto 83 ortholog groups derived from
OrthoMCL [40,41]. The latter is a genome-scale algorithm for the identification of orthologous protein
sequences and provides not only groups shared by two or more species/genomes, but also groups
representing species-specific gene expansion families [40,41]. The dataset was further split into two
subsets, one of which included CYPs with zero or up to three paralogs and one that included CYPs
with four or more paralogs (Supplementary Information 1). The division is based on earlier work
with D. melanogaster CYPs in which genes with up to three duplications were shown to derive from
evolutionarily stable clades, and genes with more than three duplications from “dynamic/unstable”
clades. In this paper, the term “labile” is used in preference to “dynamic/unstable” [26].

Redundancy reduction. Each subset was purged by removing genes/proteins having sequence
similarity > 70%. Redundancy reduction is necessary to avoid undesirable bias in statistical analysis
arising from the presence of multiple copies of similar genes/proteins [42]. SkipRedundant of the
EMBOSS suite of bioinformatics tools [43] was used to obtain non-redundant (culled) datasets, one
from the “stable” and “labile” subsets. The numbers of CYPs in each of the resulting subsets is
summarised in Table 2.

Table 2. Number of CYP genes and proteins in the “labile” and “stable” datasets.

Unculled Culled
No. genes “stable” “labile” “stable” “labile”
Dmel 83 53 30 46 22
Agam 94 49 45 31 28
Aaeg 131 58 73 33 30
Cqui 178 85 93 52 35
Total 486 245 241 162 115

Gene and protein sequence-based features. The gene, protein, functional features and
bioinformatic methods used to characterise “stable” and “labile” P450 are summarised in Table 3.
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Table 3. Sequence and functional features and corresponding bioinformatic tools.

Bioinformatic

Features
methods

Genomic features: gene length, % of GC content, number of
. . VectorBase [39]

transcripts, number of exons, length of exon and intron

Protein sequence features: protein length, molecular weight,

protein charge, isoelectric point, amino acid composition,

hydrophobicity

Phosphorylation PhosNet 3.0 [44]

Signal peptide; transmembrane domains; Subcellular localisation BUSCA [45]

Gene Ontology terms: biological process, cellular component,

molecular function

EMBOSS Pepstats
[43]

NetGO 3.0 [46]

Protein sequence properties. The length of our “stable” and “labile” proteins was obtained from
VectorBase. The EMBOSS program Pepstats
(https://www .ebi.ac.uk/jdispatcher/seqstats/emboss_pepstats) was used to obtain statistics of a
number of properties of FASTA formatted protein sequences. These attributes include: molecular
weight, number of residues, charge, isoelectric point, and amino acid composition. Hydrophobicity
was determined by multiplying the frequency of each amino acid in each P450 with its Kyte and
Doolitttle hydropathicity index [47] and summing up the resulting values.

Pepstats groups amino acids into nine categories: Tiny (A, C, G, S and T); Small (A, B, C, D, G,
N, P, 5, T and V); Aliphatic (I, L and V); Aromatic (F, H, W and Y); Non-polar (A, C,F, G, L L, M, P,
V, Wand Y); Polar (D, E, H, K, N, Q R, S, T and Z); Charged (B, D, E, H, K, R and Z); Basic (H, K and
R) and Acidic (B, D, E, Z). Pepstats was run with the default parameters setting. MATLAB scripts
were used to extract features values from the output files and determine corresponding statistical
values (MATLAB. (2024). Version R2024a. Natick, Massachusetts: The MathWorks Inc.).

Genomic properties. Genomic data (gene, CDS, intron/exon lengths) were obtained from
VectorBase. %CG content data were obtained from the Ensembl Metazoa release 60
(http://metazoa.ensembl.org/index.html). For genes with multiple transcripts, the longest length
transcript was used to determine the number of exons and total exon length. The intron length of a
gene was calculated by subtracting the total exon length from the corresponding gene length.

Phosphorylation. Protein phosphorylation was predicted using PhosNet 3.0 [44]. The program
predicts serine, threonine or tyrosine phosphorylation sites in eukaryotic proteins using neural
networks. Kinase-specific predictions were used for serine and threonine, and generic predictions
were used for tyrosine. In all cases, the confidence score used was > 0.7.

Signal peptides, transmembrane domains and protein localisation. Signal peptides, transmembrane
domains and protein subcellular localisations were predicted using BUSCA [45]. The program runs
as a web server which integrates several resources to predict sub-cellular localisation including
protein feature predictors (DeepSig, TPPred3, PredGPl, BetAware and ENSEMBLE3.0) and protein
localisation predictors (MemLoci, BaCelLo, SChloro). In addition, BUSCA annotates relevant protein
features, such as signal/transit peptides, GPI anchors and transmembrane domains.

Gene ontology terms. GO term enrichment was obtained using the web-based application NetGO
3.0. The program predicts molecular function ontology from sequence using protein language models
[46]. NetGO addresses shortcomings of GO functional annotations and is considered as one of the
best methods at predicting function ontology [48,49]. Contextual visualisation of the GO terms was
performed using GOATOOLS [50].

Statistical analysis. Statistical tests were carried out throughout using the statistics toolbox of
MATLAB. The sequence properties did not show a normal distribution and the statistical significance
of each property was determined using the two-tailed nonparametric Wilcoxon rank sum test. The
test is equivalent to a Mann-Whitney U-test. Statistical significance was determined at the 0.05 level
and the Bonferroni correction was applied to calculate corrected p-values. The Chi-squared (x2) test
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was also carried out to check whether the frequencies of a particular feature in “stable” and “labile”
genes differ from each other.

3. Results
3.1. Analysis of Genomic Features

Gene length, %CG content, transcript and exon numbers, as well as intron and exon lengths were
analysed in all datasets. The results are shown in Table 4. Compared to “labile” P450s, “stable” genes
were shown to be generally longer and have a greater number of exons. The opposite is true for intron
lengths, where introns in the “labile” dataset are on the average considerably shorter (Table 4). The
same trends are observed in the subsets of “culled” genes (Figure 1). The GC content of the “stable”
CYDPs is less than that of the “labile” CYPs but the difference may not be statistically significant.

Table 4. Median gene length, GC contents, number of transcripts, number of exons, exon length and

intron length for essential and viable genes*.

Datasets Gene No. of Exon Intron No. % GC
length (bp) exons length (bp)length (bp) transcripts content

“labile” 1840 3 1524 311 1 47.20

Non- “stable” 2149 4 1518 612 1 44.78

lled 1.0212e-

cutle p-value 2.8034e-07 ® 00209 7.6899e-09 03531  0.0270
“labile” 1890 3 1527 359 1 46.48

Culled stable 2165 . 4145 y 1521 612 1 45.63
p-value 7.1450e-04 ) 06 0.0302 1.5198e-04 0.6973 0.3718

* The median value of each feature is reported. p—values are determined from a Mann-
Whitney U test. Statistically significant results were evaluated based on the Bonferroni
corrected p—value of 0.0083. They are shown in bold typeface.

Gene Length Intron Length No. Exons Gene Length Intron Length No. Exons
4000 T — i T 4000 3 T T
+ * [r00f + * MR + *
+ * 16 1 + * 16
+
+ +
+
3500 F l1200} | wl | as00 11200 - wl
+ | +
+ +
+ i ‘ +
tooo | 12l . + Jrooop 2l
a0 T i 1 i : +  + |[3000 E: " ¥ +
% I 800 - f | 4 1of + || st T 10
|
| ‘ - + i | | + +
% ‘ P ! Lo |
200+ I et 1 8 T as0o ‘ | {e00f | I
| |
| | | I | | | | | |
| e | 6f | | | | 6 | I A
| 400 4 | 400 - 1 | |
2000 L 1 2000 ]
| al , al J
L 200 - P 200 - J
T I I 2 b i 2+ L
| | | . | | |
1500 - — L9 ot 1 1] L . |1s00 =4 of = 1] [
labile stable labile  stable labile ~ stable labile  stable labile  stable labile  stable
unculled dataset culled dataset

Figure 1. Distributions of the total gene length, number of exons, total length of exons, total length of
introns, number of transcripts, and percentage of GC content in “stable” and “labile” genes.

3.2. Analysis of Protein Features

Protein average molecular weight, charge, isoelectric point and frequencies of different amino
acid categories were analysed statistically to determine significant differences in the two groups of
P450 (Table 5). “Labile” proteins were found to have greater proportions of acidic, basic, charged and
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polar amino acids. In the case of charged amino acids, the p-value in the culled dataset was
marginally above the Bonferroni correction. “Stable” proteins had a higher median value for aliphatic
amino acids and hydrophobicity. Differences between the protein features examined follow the same
trend in the culled datasets (Figure 2).

Table 5. Median values of different protein features and the p-values of their distribution calculated
using the Mann-Whitney U test *.

Unculled Culled

Property “Labile” “Stable” p-value “Labile” “Stable” p-value
MW 5.8236e+04 5.8106e+04 0.0124 5.8454e+04 5.8162e+04 0.0249

IEP 8.3088 8.1503 0.2324 8.2718 8.3542 0.4991
Charge 9 9.5000 0.4037 10 10.5000 0.0724
Hydrophobicity | -19.6450 -16.0583 4.3384e-08 -18.7226 -15.5340 2.7720e-04
Aromatic 13.2110 13.1148 0.5403 13.2110 13.1417 0.6721
Aliphatic 28.5714 29.7619 3.4826e-10 28.6299 29.8651 3.1629e-06
Acidic 12.0240 11.5686 3.5141e-08 11.7530 11.4458 3.8132e-05
Basic 14.7810 14.6000 0.0258 14.6535 14.6939 0.6806
Charged 26.6791 26.0521 1.2929¢-06 26.4706 25.9669 0.0056
Polar 45.0980 44.3340 6.3566e-07 45.0902 44.3137 2.4062e-04
Non-polar 54.9020 55.6660 5.1469e-07 54.9098 55.6863 2.4062e-04
Small 44.6000 44.6939 0.6356 44.6680 44.4890 0.6232
Tiny 23.3202 23.5887 0.0306 23.5409 23.8095 0.3240

* The median value of each feature is reported. p—values are determined from a Mann-Whitney U test. Statistically

significant results were evaluated based on the Bonferroni corrected p—value of 0.0038. They are shown in bold typeface.
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Figure 2. Distributions of acidic, aliphatic, charged, non-polar and polar residues (%) between “labile”
and “stable” P450s. Unculled and culled datasets denoted as (A) and (B), respectively.
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Variations in the frequencies of amino acids found in “stable” and “labile” P450s are shown in
Table 6. Statistically significant variations were observed in 11 amino acids (8 in the culled dataset).
The relative proportion of Cys, Arg, Leu, and Trp is higher in “stable” P450s, and that of Glu, Lys,
and Met higher in “labile” proteins. Variations in four of these (Ala, His) were not statistically
significant in culled datasets of proteins.

Table 6. Differences in the amino acid frequency of usage between the P450 proteins of the two groups
in the culled and non-culled datasets.

Unculled Culled

Aa* | “Labile” “Stable” p-value “Labile” “Stable” p-value

A 5.6711 6.1100 4.0438e-04 | 5.8601 6.2500 0.0145

C 1.1811 1.5238 1.9760e-10 | 1.2048 1.5385 2.8718e-05
D 5.4409 5.3465 0.0230 5.4104 5.2427 0.0963

E 6.4338 6.1151 8.9284e-06 | 6.3241 6.0362 0.0012

F 6.5476 6.2000 0.0014 6.4833 6.1100 0.0150

G 5.6075 5.3254 0.0125 5.6863 5.3407 0.0966

H 2.1696 2.3301 4.2799e-05 | 2.2018 2.3297 0.0233

I 6.1185 6.0827 0.8018 6.1185 6.0038 0.7398

K 6.4639 5.4000 1.3464e-14 | 6.0998 5.3360 3.4017e-05
L 10.0616 11.0656 2.6111e-12 | 10.2970 11.0891 7.5251e-07
M 3.3730 2.9851 4.2922e-05 | 3.4068 3.0364 0.0015

N 4.0161 3.9448 0.3603 3.9062 3.8076 0.1330

P 5.0710 5.1081 0.2145 4.9900 5.0813 0.1682

Q 3.4765 3.5849 0.1371 3.6290 3.6735 0.5681

R 6.0852 6.6202 1.0888e-04 | 6.3116 6.7308 0.0013

S 5.3435 5.4104 0.4267 5.3465 5.4409 0.4281

T 5.4326 5.2104 0.0015 5.4902 5.1383 0.0011

\ 6.5056 6.2745 0.0128 6.4885 6.2622 0.0318

w 0.9452 1.1236 4.8193e-06 | 0.9328 1.1494 3.9031e-05
Y 3.5185 3.6072 0.5588 3.4926 3.6000 0.5164

* amino acid (aa). The p-value for the Bonferroni correction is 0.0025. Statistically significant

differences are shown in bold typeface.

3.3. Phosphorylation

Protein phosphorylation plays crucial roles in the regulation of cellular and metabolic processes
such as cell differentiation and cell division. Cytochrome P450 have been shown to be subject to
phosphorylation mediated by different protein kinases, CAMP-dependent protein kinase A being the
most prominent one. In insects, phosphorylation is thought to play a role in the control of genotoxic
metabolites [51]. P450 phosphorylation was predicted using NetPhos-3.1 [44] (SI2.xIsx). The median
number of phosphorylated residues was 3 with the exception of threonine in the unculled “labile”
dataset (median=4). The statistical differences between “labile” and “stable” P450s in the culled and
unculled datasets were not statistically significant.
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3.4. Signal Peptides, Transmembrane Domains, and Protein Location

Insect P450s are transmembrane proteins bound either to the endoplasmic reticulum (ER) or the
inner mitochondrial membrane by means of the N-terminal transmembrane helix (TMH) [52]. In
mitochondrial CYPs, the N-terminal anchor is missing. Instead, a topogenic sequence present at the
nascent enzyme serves as a signal peptide to ensure the enzyme is transported and incorporated into
the mitochondrial membrane [53]. Both transmembrane and mitochondrial P450s share the same fold
and very similar tertiary structures [54]. The transmembrane domains usually adopt an a-helical
structure while passing through the lipid bilayer once (single-pass proteins) or multiple times
(multiple-pass proteins). In non-mitochondrial P450s, the catalytic domain of the enzyme is on the
cytosolic side of ER and the N-terminus a-helix protrudes on the luminal side of ER. This posture of
CYPs in relation to the membrane is stabilised by hydrophobic interactions between the residues of
the N-terminal helix and the lipophilic ER environment. The N-terminal anchor has been associated
with CYP trafficking into the ER or mitochondria, in interactions with different phospholipids, and
as a mediator of CYP heteromer formation.

Signal peptides, subcellular localisation and number of transmembrane helices were predicted
using BUSCA [45] (SI3.pdf). A summary of the results is given in Table 7. All CYPs were predicted
to have at least two transmembrane domains. Approximately 80% of CYPs, both in the unculled and
culled datasets, were predicted to lack the N-terminal helix. The differences between the datasets
were not statistically significant.

Table 7. Summary of predicted signal peptides, subcellular localisation and transmembrane helices.

Non-culled Culled

Biological feature | No.”labile” CYPs | No.”stable” CYPs | No. “labile” CYPs | No. “stable” CYPs
Signal peptide 19 (7.9%) 28 (11.4%) 8 (7.0%) 18 (11.2%)
Mito transit 11 (4.6%) 5 (2%) 7 (6.1%) 2 (1.3%)
Mitochondrial

11 (4.6%) 5 (2%) 7 (6.1%) 2 (1.3%)
membrane
N-terminal helix 198 (82.2%) 196 (80.0%) 95 (82.6%) 132 (81.5%)

3.5. Gene Enrichment Analysis

Gene Ontology (GO) [55]enables the classification of gene functions through the application of
controlled vocabularies (ontology) to annotate the functional properties of gene and gene products
across species. Each GO term is annotated with information which includes the type of gene product
(e.g., protein, tRNA, etc.) and an evidence code describing the type of evidence (e.g., experimental,
phylogenetic, text mining etc.). Annotations that are not curated manually are described as ‘IEA’
(inferred from electronic annotation). GO is structured as a graph comprising nodes representing
each GO term. Edges between the nodes represent relationships between terms. The GO graph is
hierarchical with ‘parent” and ‘child’ terms, but unlike strict hierarchy, a given term may have more
than one “parent’. Genes are annotated by (a) molecular function (b) cellular component and (c)
biological process. One of the most common methods to perform GO term gene-set enrichment
analysis is through the identification of common functions in a group of genes by means of over-
representation analysis (ORA). The method compares the GO terms corresponding to a test list of
genes to the functions of selected background genes (for example, a database with functionally
annotated genes). If the number of functions in the test list is greater than the number of functions
obtained by chance, then these functions are considered to be over-represented.

NetGO 3.0 [46] was used to predict enrichment of GO terms of the “stable” and “viable” P450s
(SI4.xlsx). “Stable” and “labile” proteins were differentially enriched in the terms shown in Table 8.
Although individual proteins in both datasets can show enrichment in the same GO term, the relative
proportions of proteins in each set are substantially different. Comparing the numbers of “labile” and
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“stable” P450, considerably more “stable” P450s showed enrichment of GO terms related to
biosynthetic and developmental processes. This trend is reversed in the case of deteoxification
catabolic processes. GOATOOLS [50] was used to generate graphical views of enriched GO terms in
biosynthetic, developmental and catabolic processes. These are shown in Figures 3 and 4,
respectively.

Table 8. Gene enrichment in GO terms related to biosynthetic, developmental and detoxification
metabolic processes.

Subset! All
GO term Description Dmel> | Agam? | Aaeg®> | Cqui?
CYPs?
. Anatomical S 135 27 26 (10.6) 33 49 (20)
' structure (55.1) | (11.0) (13.5)
GO:0048856
development 75 7 18 23 27
141 26 26 (10.6) 38 51
2. lipid biosynthetic
(57.5) (10.6) (15.5) (20.8)
GO:0008610 process
24(99) | 4(1.7) | 3(1.2) | 8(3.3) | 9(3.7)
S 95(38.8) | 11 (4.5) | 29 (11.8) 37 18 (7.3)
3. steroid metabolic
(15.1)
GO:0008202 process
10(4.1) | 2(0.8) | 1(04) | 1(04) | 6(2.5)
S 53 (21.6) | 12(4.9) | 15(6.1) 15 11(4.5)
4. hormone
(6.1)
GO:0042445 metabolic process
4 (1.6) - - - 4(1.6)
s multicellular S 91(37.1) | 19(7.7) | 18(7.3) 22 32
' i 9.0 13.0
GO:0007275 | O™ G0 1 {130
development L 25(104) | 2(08) | 7(9) | 9B.7) | 7(29)
6. post-embryonic S 19(7.7) | 6(24) | 4(16) | 6(24) | 3(1.2)
GO:0009791 development L - - - - -
; instar larval or S 17 (6.9) | 6(2.4) 6 (2.4) 3(12) | 2(0.8)
' 1 ; ; ; ; -
Go:0002165 | P P° L
development
. ecdysteroid S 10(41) | 4(16) | 4(16) | 1(04) | 1(0.4)
. biosynthetic L - - - - -
GO:0045456
process
9. S 24(9.8) | 2(0.8) | 5(2.0) | 6(24) | 11(4.5)
xenobiotic
GO:0006805 69(28.6) | 9(3.7) | 11(4.6) 28 21 (8.7)
metabolic process
(11.6)
10 30(122) | 8(33) | 5(20) | 8(8.3) | 9(3.7)
. response to DDT 86 (35.7) | 10 (4.1) | 22(9.1) 29 25
GO:0046680
(12.0) (10.4)
S 12(49) | 3(1.2) | 2(0.8) | 2(0.8) | 5(2.0)
11. toxin metabolic
28(11.6) | 7(29) | 2(0.8) 10 9(3.7)
GO:0009404 process 1)

1S denotes “stable”; L. denotes “labile). 2values in () denote %
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Figure 3. Plot of the enriched GO terms and their ancestors (Table 7, GO terms 1-8).
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Figure 4. Plot of the enriched GO terms and their ancestors (Table 7, GO terms 9-11.

4. Discussion

The non-culled dataset was split into two subgroups which contained a total of 245 defined as
phylogenetically “stable” and 241 phylogenetically “labile”. The genes were obtained from
VectorBase database and cross-referred to Ensembl (Metazoa Genes 60 database). To avoid bias in
statistical analyses, redundant proteins were removed from the datasets to generate non-redundant
or culled datasets of “labile” and “stable” P450s. The culled and non-culled datasets were compared
for a number of genomic and protein sequence properties. In general, sequence redundancy did not
affect the overall picture and all sets follow similar statistical trends. Table 8 shows the gene and
protein features that are strongly associated with “stable” P450 genes.
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Table 9. Summary of characteristics likely to be associated with essential or viable genes.

“Stable” gene tendencies

“Labile” gene tendencies

Longer genes; longer introns; more exons

Simpler, shorter gene structure

More hydrophobic; relative proportion of
aliphatic amino acids higher; enriched in
Cys, Arg, Leu, and Trp

Less hydrophobic; relative proportion of
charged and polar amino acids higher;
enriched in Glu, Lys, and Met

Involved in biosynthetic and

Involved in cellular catabolic processes,

d0i:10.20944/preprints202412.1496.v1

12

detoxification of xenobiotics and
insecticide metabolic processes

developmental processes, such as
biosynthesis of lipids and hormones
essential for instar larval or pupal
morphogenesis

Analysis of genomic features of CYPs showed that “stable” genes are longer, have more exons,
and longer intron lengths. This is consistent with recent findings showing that longer genes correlate
with functions that are important in the development stages of an organism [56,57]. Additionally,
“stable” CYPs the average intron length was shown to be almost twice the size of introns in “labile”
P450s. This is in agreement with research showing intonic “burden” plays an important role in the
evolutionary conservation of genes [58]. “Stable” CYPs were shown to have lower GC content than
the “labile” ones and although the difference was not statistically significant it is noted that GC
content varies inversely with intron and exon length [59].

Analysis of physicochemical and protein sequence features revealed several differences between
“labile” and “stable” P450s. “Labile” proteins were found to have a greater proportion of polar and
charged residues and be less hydrophobic than “stable” P450s which were relatively enriched in
aliphatic amino acids. It is noted, however, that the method used to determine the relative
hydrophobicity of P450s is a poor predictor as it does not take into account protein folding. It is
known that the aggregation propensity of proteins is frequently linked to imperfect folding. In terms
of amino acid composition, “stable” P450s were found to have Arg, Cys, Leu, Trp in greater
proportion than “labile” P450s. Arg is a known chaotrope associated with the prevention of protein
aggregates and increasing the solubility of hydrophobes [60]. Recent studies have shown that Trp/Tyr
chains are common in enzymes utilising O2 as a substrate and that redox active Trp/Tyr chains extend
the functional lifetimes of P450s [61]. The relative enrichment of “stable” P450s in Cys residues may
have a two fold importance. On one hand, Cys residues may impose structural constraints necessary
for specific, rather than promiscuous, protein-ligand interactions as in the case of interactions that are
developmentaly important [62]. On the other, Cys has a tendency to behave as a hydrophobic residue
in folded proteins, despite possessing a polar sulthydryl group [63].

Functional analysis of “stable” and “labile” P450s was studied by enrichment analysis of GO
terms. “Stable” P450s were predicted to be enriched in GO terms relevant to the biosynthesis of lipids
and hormones. These biosynthetic processes are also essential for instar larval or pupal
morphogenesis and play essential roles in the growth, reproduction and defence systems of insects
[64,65]. “Labile” P450s were predicted to be enriched in GO terms related to biological processes
involving the detoxification of xenobiotics. As a cautionary note, it is pointed out that GO gene
enrichment analysis is not without methodological challenges and pitfalls [66—-68] and results can be
unreliable due to inadequate coverage and resolution of the annotation databases [69,70].

The analysis of biological features, such as signal peptides and cellular localisation, was
inconclusive and merits additional investigation. For example, proportion of “labile” CYPs predicted
to be located in the mitochondrion is higher than that for “stable” CYP, albeit the fact that the absolute
numbers are small to draw an definitve conclusions. This is contrary to phylogenetic studies showing
that mitochondrial CYPs are relatively well conserved [22]. However, the name “mitochondrial”
refering to the CYP clan should not be taken as definitive evidence of subcellular localisation and
CYPs of this clan can be microsomal or have dual localisations [11]. Another important feature is the
composition of tranmembrane domains. The reducing power of CYPs depends on the coupling of the
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endoplasmic reticulum N-terminal transmembrane helix with membrane-anchored NADPH-
dependent cytochrome P450 oxidoreductase [71]. Bioinformatic analysis of of sequence conservation
of transmembrane anchors and the characterisation of motif patterns of signal and transit peptides
can provide useful insights on the localisation and function of CYPs [72].

5. Conclusions

“Stable” and “labile” P450s were shown to be significantly different in a number of genomic and
protein features. The interdependency of these features implies that multiple aspects of biology unite
to determine whether a gene is “stable” or “labile” in mosquitos. The range of features analysed and
discussed in this paper can be broadened and expanded to other organisms thus gaining further
insights into gene “essentiality”.Broadening the scope of the bioinformatic analysis presented in this
paper may enable the functional classification of insect CYPs by training machine learning classifiers
for the functional identification of insect P450s. Last but not least, the identification of “stable” genes
associated with “lethality” may facilitate the identification of non-viable null mutants thus the
identification of new insecticide targets.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org.
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