
Article

Not peer-reviewed version

Properties of “Stable” Mosquito Cytochrome P450 Enzymes

George Tzotzos *

Posted Date: 18 December 2024

doi: 10.20944/preprints202412.1496.v1

Keywords: A. gambiae; A. aegypti; C. quinquefasciatus; CYP; P450; genomic and protein properties; gene enrichment

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Properties of “Stable” Mosquito Cytochrome P450 Enzymes

George Tzotzos

Visiting research fellow, Marche Polytechnic University, Ancona, Italy; gtzotzos@me.com

Simple Summary: Cytochrome P450 enzymes (CYPs), are a superfamily of enzymes found in all kingdoms of life. Insects, in particular mosquitoes, constitute the taxon with most P450 genes. CYPs are grouped in families on the basis of sequence similarity. Some families consist of many members thought to have arisen from dynamic evolutionary events (“labile” CYPs) whereas others comprise only one or two members which have changed little in the course of evolution (“stable” CYPs). P450 enzymes show an extraordinary diversity in their reaction chemistry, some being involved in essential biosynthetic and developmental processes. However, the precise function of most CYPs has not been established experimentally. The main hypothesis of the current study is that CYPs carry an evolutionary imprint reflected in their sequences, and by extension their function. Here, bioinformatic analysis of CYPs showed that “stable” and “labile” mosquito P450s can be differentiated on the basis of a number of genomic and sequence features. “Stable” CYPs are encoded by longer genes with more exons than “labile” CYPs, and the corresponding proteins are enriched in hydrophobic amino acids. Functional enrichment showed that “stable” genes are associated with biosynthetic and developmental functions.

Abstract: The use of insecticides is widespread in the control of debilitating mosquito-borne diseases. P450 enzymes (CYPs) play essential roles in mosquito physiological function but also in the enzymatic detoxification of xenobiotics. Broadly speaking, CYPs can be classified as “stable”, meaning those that have no or very few paralogs, and “labile” constituting gene families with many paralogous members. The evolutionary dichotomy between “stable” and “labile” P450 genes is fuzzy and there is not a clear phylogenetic demarcation between P450s involved in detoxification and P450s involved in essential metabolic processes. In this study, bioinformatic methods were used to explore differences in the sequences of “stable” and “labile” P450s that may facilitate their functional classification. Genomic and sequence data of *Anopheles gambiae* (Agam), *Aedes aegypti* (Aaeg) and *Culex quinquefasciatus* (Cqui) CYPs were obtained from public databases. The results of this study show that “stable” CYPs are encoded by longer genes, have longer introns and more exons, and contain a higher proportion of hydrophobic amino acids than “labile” CYPs. Compared to “labile” CYPs, a significantly higher proportion of “stable” CYPs are associated with biosynthetic and developmental processes.

Keywords: *A. gambiae*; *A. aegypti*; *C. quinquefasciatus*; CYP; P450; genomic and protein properties

1. Introduction

Mosquitos are infectious disease vectors having a profound impact on human health. *Anopheles* mosquitoes transmit the parasite *Plasmodium falciparum*, the causative agent of malaria, *Aedes aegypti* is the vector of transmission of yellow fever, and *Culex* mosquitoes transmit West Nile virus and Saint Louis encephalitis virus, as well as the nematode that causes lymphatic filariasis. In the absence of vaccines for these diseases, insecticides are widely applied as a means of mosquito control. This strategy has limitations in that insecticides are not only highly ecotoxic but are also becoming increasingly ineffective due to acquired resistance of the targeted insects. Resistance is mediated not only by mutations in the target insect receptors but also through insecticide detoxification.

Cytochrome P450 enzymes have been shown to be essential for insect development and survival but, probably a larger number of P450s are involved in insecticide metabolism and resistance.

Cytochrome P450 enzymes, also known as CYPs, are haem-containing monooxygenases found in all kingdoms of life [1]. They first appeared in the scientific literature in 1958 [2]. The Pfam database of protein families and domains classifies CYPs as a distinct family of enzymes (Pfam entry PF00067) involved in the oxidative degradation of various compounds [3]. In P450s, the haem iron forms a pentacoordinate system with the axial sulphur of a conserved cysteine (Cys) protein amino acid residue in the active site of the enzyme [4]. The conserved Cys residue exists as a thiolate anion giving a characteristic absorption band of 450 nm which is also typical of the spectral properties of other cytochromes such as the b-type haem-proteins haemoglobin and myoglobin. However, unlike these cytochromes, CYP monooxygenases are not electron-transfer proteins and function in the presence of redox partners, usually NAD(P)H-dependent ferredoxin or FAD- and FMN- containing CPR-type reductases by transferring molecular oxygen to -CH, -NH and -SH moieties of substrates with concomitant reduction of the oxygen atom to water [5]. Consequently, a more appropriate term for CYP enzymes would be P450 'haem-thiolate' or P450 monooxygenase proteins rather than cytochrome P450s.

CYPs show an extraordinary diversity in their reaction chemistry. In mammals, they participate in oxidative, peroxidative and reductive metabolism of numerous endogenous compounds such as fatty acids, cholesterol, steroids, retinoids, vitamin derivatives, bile acids, porphyrins, thromboxane A2, prostacyclins, eicosanoids and other lipid mediators. In plants, they are involved in the secondary metabolism of, amongst others, phenolic compounds, alkaloids, gibberellins. The diversity of biosynthetic reactions catalysed by P450 is reviewed by Fujiiyama, et al. [6]. Last but not least, CYPs metabolise an enormous range of xenobiotics and endobiotics including drugs, insecticides, environmental chemicals and pollutants, as well as natural plant products, and bacterial metabolites. P450s are involved in the metabolic detoxification of xenobiotics (phase I metabolism). This involves the addition or unmasking of polar groups, such as such hydroxy, amine or sulphydryl groups, in the xenobiotic substrate followed by hydrolysis, oxidation or reduction. The resultant reaction intermediates are then further metabolised by phase II enzymes, mainly, glutathione-S-transferases [7], and transported into the extracellular space through interactions with transmembrane proteins (phase III), mainly ATP-Binding Cassette (ABC) Transporters [8].

By 2018, more than 300,000 CYP sequences had been mined and collected in all areas of the tree of life [9] but the precise function of individual CYP proteins remains largely unknown. It is estimated that only 0.2% of the genes deposited in different databanks have been functionally characterised [10,11]. CYPs were first classified into distinct groups by Nerbert and Gonzalez in 1987. Following phylogenetic criteria, gene organisation and sequence similarity, CYPs are grouped into kingdom-specific clusters, named clans, each of which represent genes that diverged from a single common ancestor and can include one or multiple families [12,13]. Generally, groups of proteins having amino acid identity over 40% are assigned to the same family, whereas proteins having identity above 55% are allocated to the same subfamily. Gene families that repeatedly cluster in the same phylogenetic clade are grouped into the same clan. In this classification scheme a family-specific number is given after the root symbol CYP, followed by a letter and a number indicative of the subfamily and the gene, respectively. Clans can consist of one or multiple families and are given the name of the smallest family number present in the clade. For example, if a single clade in phylogenetic analysis comprises the CYP7, CYP8 and CYP39 families, these families become part of clan 7 [14]. Clan-based classification can be volatile and the addition of new, more distant sequences can lead to interleaved branches obscuring the boundaries between different classes [15].

Amongst animals, insects constitute the taxon with most P450 genes, which are grouped into six clans, namely, CYP2, CYP3, CYP4, CYP16, CYP20 and mitochondrial (mito). Two clans, CYP16 and CYP20, are restricted to certain species in Apterygota and Paleoptera [11]. Mosquitoes, second only to the deer tick (*Ixodes scapularis*), have a disproportionately large number of P450 genes [16,17]. CYP protein coding genes in the diptera *D. melanogaster* (*Dmel*), *A. gambiae* (*Agam*), *A. aegypti* (*Aaeg*) and *C.*

quinquefasciatus (*Cqui*) form groups in Clans 2, 4, 6 and the mitochondrial clan. The number of CYPs populating each clan vary considerably (Table 1).

Table 1. P450 gene numbers and their clan-wise distribution in *D. melanogaster* (*Dmel*), *A. gambiae* (*Agam*), *A. aegypti* (*Aaeg*) and *C. quinquefasciatus* (*Cqui*).

	Total	Clan2	Clan3	Clan4	mitochondrial	Source
		Family	Family	Family	Family	
<i>Dmel</i>		CYP18, 303- 307	CYP6, 9, 28, 308-310, 317	CYP4, 311- 313, 316, 318	CYP12, 49, 301-2, 314-5	
	85	No. genes: 6	No. genes: 36	No. genes: 32	No. genes: 11	[11]
<i>Agam</i>		CYP15, 303- 307	CYP6, 9, 329	CYP4, 325	CYP12, 49, 301-2, 314-5	
	106	No. genes: 10	No. genes: 42	No. genes: 45	No. genes: 9	[11]
<i>Aaeg</i>		CYP15, 18, 303-307	CYP6, 9, 329	CYP4, 325	CYP12, 49, 301-2, 314-5	[18]
	164	No. genes: 11	No. genes: 84	No. genes: 59	No. genes: 10	
<i>Cqui</i>		Cyp15, 303- 307	CYP6, 9, 329	CYP4, 325	Cyp12, 301-2, 314-14	
	196	No. genes: 14	No. genes: 88	No. genes: 83	No. genes: 11	[19]

Gene assignment to clans and families may change with each new genome release and be further complicated by the fact that genomes can consist of different numbers of CYPs found in natural populations [20]. CYP assignment discrepancies may also arise from genome annotations differing in the coverage and quality of assembly of sequenced genomes, or due to homozygosity and polymorphisms in gene copy numbers [17,21].

Genes of the CYP2 and mitochondrial clans are relatively conserved and they form many families with few or even single members. Members of these clans have been shown to participate in core developmental and physiological functions and their evolution is well conserved with many families having few or even single members [15,22]. CYP clans 3 and 4 are by far the most populated due to lineage-specific gene amplification of paralogs or “phylogenetic blooms” [20,23]. These “blooms” are thought to result in response to environmental stimuli and, in particular, to the selection pressure exerted by polluted habitats and, in particular, due to the widespread application of chemical insecticides [18,24].

Phylogenetic studies have shown that the expansion of the P450 gene repertoire is shaped by gene duplication, gene birth and death, and gene neo-functionalisation [20]. These events are driven by selection acting on what is available at the time and can be described by a power law typical of simple birth and death models. An implication of this model is that CYPs may switch their function from physiology to detoxification and vice versa [16] or that some CYPs genes may be functionally redundant [25].

Yet some CYPs may deviate from this stochastic evolutionary model and a small number of CYPs have been shown to be “stable” in evolutionary terms, as for example in *D. melanogaster*, where 31 such “stable” genes have been identified [26]. Amongst these are the so-called “Halloween” genes, such as *spook* (*spo*), *phantom* (*phm*), *disembodied* (*dib*), *shadow* (*sad*), *spookier* (*spok*) and *spookiest*. These genes are essential for the biosynthesis of moulting hormones [27]. Functional investigation in different tissues of *D. melanogaster*, using RNAi screens, revealed that knockdown of 9 of these CYPs, resulted in lethality [28]. In the light of this evidence, it has been proposed that natural selection may also act on copy number polymorphisms within a species. Although this “selectionist” model has

been contested, it is agreed that “conserved orthologous genes” are present in some phylogenetic branches of CYPs [11].

Regardless of evolutionary model, it is still not possible to distinguish phylogenetic branches related to essential physiological and developmental functions from those related to detoxification. Even in the case of *D. melanogaster* which serves as a model organism, well over 60% of the total number of P450s are “orphan” in terms of functional characterisation [29]. Likewise, phylogenetic branches of CYPs cannot be assigned ubiquitous xenobiotic detoxification functions as (i) different CYPs respond to insecticide selection in different mosquito populations and geographical regions [30], and (ii) CYPs are also known to play an indirect role in insecticide resistance [31,32]. As a result, susceptible and resistant strains with a common genetic background are usually not available to compare, and susceptible reference strains are biased by geographic variation or genetic drift. This makes attempts to identify one or a few metabolic genes associated with insecticide adaptation difficult or even futile [33,34].

“Gene essentiality” refers to those genes where a single gene–knockout results in lethality or severe loss of fitness. Earlier work has established that essential and non-essential genes can be recognised on the basis of their respective physical, chemical and evolutionary properties [35–38]. Based on this, bioinformatic methods were used to differentiate “stable” from “labile” mosquito P450s. Given that “stable” CYP genes may also be involved in auxiliary, non-essential, metabolic networks the analogy with “gene essentiality” may be tentative.

2. Materials, Methods and Datasets

CYPs identified in the sources specified in Table 1 were submitted to VectorBase [39] to source genomic and protein data and CYPs with ambiguous annotations were removed. The total number of CYPs in the dataset was 486 (SI1.xlsx). These were mapped onto 83 ortholog groups derived from OrthoMCL [40,41]. The latter is a genome-scale algorithm for the identification of orthologous protein sequences and provides not only groups shared by two or more species/genomes, but also groups representing species-specific gene expansion families [40,41]. The dataset was further split into two subsets, one of which included CYPs with zero or up to three paralogs and one that included CYPs with four or more paralogs (Supplementary Information 1). The division is based on earlier work with *D. melanogaster* CYPs in which genes with up to three duplications were shown to derive from evolutionarily stable clades, and genes with more than three duplications from “dynamic/unstable” clades. In this paper, the term “labile” is used in preference to “dynamic/unstable” [26].

Redundancy reduction. Each subset was purged by removing genes/proteins having sequence similarity > 70%. Redundancy reduction is necessary to avoid undesirable bias in statistical analysis arising from the presence of multiple copies of similar genes/proteins [42]. SkipRedundant of the EMBOSS suite of bioinformatics tools [43] was used to obtain non-redundant (culled) datasets, one from the “stable” and “labile” subsets. The numbers of CYPs in each of the resulting subsets is summarised in Table 2.

Table 2. Number of CYP genes and proteins in the “labile” and “stable” datasets.

	No. genes	Unculled		Culled	
		“stable”	“labile”	“stable”	“labile”
<i>Dmel</i>	83	53	30	46	22
<i>Agam</i>	94	49	45	31	28
<i>Aaeg</i>	131	58	73	33	30
<i>Cqui</i>	178	85	93	52	35
Total	486	245	241	162	115

Gene and protein sequence-based features. The gene, protein, functional features and bioinformatic methods used to characterise “stable” and “labile” P450 are summarised in Table 3.

Table 3. Sequence and functional features and corresponding bioinformatic tools.

Features	Bioinformatic methods
Genomic features: gene length, % of GC content, number of transcripts, number of exons, length of exon and intron	VectorBase [39]
Protein sequence features: protein length, molecular weight, protein charge, isoelectric point, amino acid composition, hydrophobicity	EMBOSS Pepstats [43]
Phosphorylation	PhosNet 3.0 [44]
Signal peptide; transmembrane domains; Subcellular localisation	BUSCA [45]
Gene Ontology terms: biological process, cellular component, molecular function	NetGO 3.0 [46]

Protein sequence properties. The length of our “stable” and “labile” proteins was obtained from VectorBase. The EMBOSS program Pepstats (https://www.ebi.ac.uk/jdispatcher/seqstats/emboss_pepstats) was used to obtain statistics of a number of properties of FASTA formatted protein sequences. These attributes include: molecular weight, number of residues, charge, isoelectric point, and amino acid composition. Hydrophobicity was determined by multiplying the frequency of each amino acid in each P450 with its Kyte and Doolittle hydropathicity index [47] and summing up the resulting values.

Pepstats groups amino acids into nine categories: Tiny (A, C, G, S and T); Small (A, B, C, D, G, N, P, S, T and V); Aliphatic (I, L and V); Aromatic (F, H, W and Y); Non-polar (A, C, F, G, I, L, M, P, V, W and Y); Polar (D, E, H, K, N, Q, R, S, T and Z); Charged (B, D, E, H, K, R and Z); Basic (H, K and R) and Acidic (B, D, E, Z). Pepstats was run with the default parameters setting. MATLAB scripts were used to extract features values from the output files and determine corresponding statistical values (MATLAB. (2024). Version R2024a. Natick, Massachusetts: The MathWorks Inc.).

Genomic properties. Genomic data (gene, CDS, intron/exon lengths) were obtained from VectorBase. %CG content data were obtained from the Ensembl Metazoa release 60 (<http://metazoa.ensembl.org/index.html>). For genes with multiple transcripts, the longest length transcript was used to determine the number of exons and total exon length. The intron length of a gene was calculated by subtracting the total exon length from the corresponding gene length.

Phosphorylation. Protein phosphorylation was predicted using PhosNet 3.0 [44]. The program predicts serine, threonine or tyrosine phosphorylation sites in eukaryotic proteins using neural networks. Kinase-specific predictions were used for serine and threonine, and generic predictions were used for tyrosine. In all cases, the confidence score used was > 0.7.

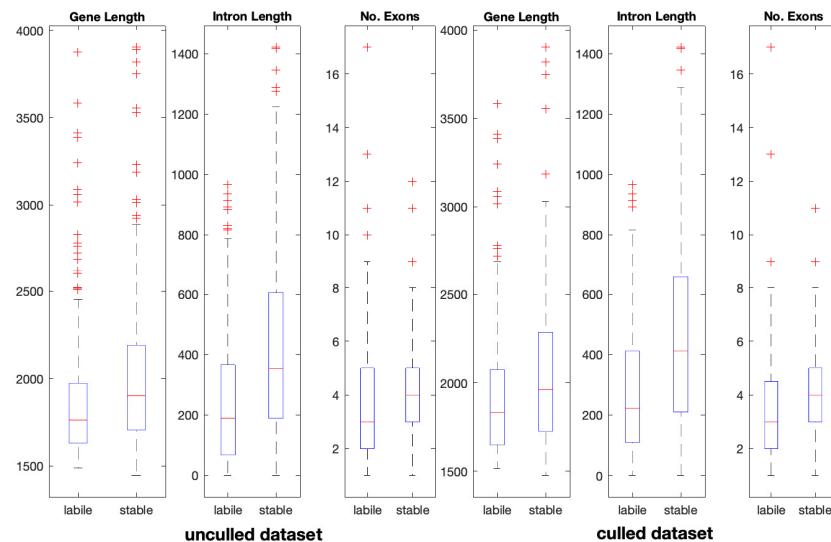
Signal peptides, transmembrane domains and protein localisation. Signal peptides, transmembrane domains and protein subcellular localisations were predicted using BUSCA [45]. The program runs as a web server which integrates several resources to predict sub-cellular localisation including protein feature predictors (DeepSig, TPPred3, PredGPI, BetAware and ENSEMBLE3.0) and protein localisation predictors (MemLoci, BaCelLo, SChloro). In addition, BUSCA annotates relevant protein features, such as signal/transit peptides, GPI anchors and transmembrane domains.

Gene ontology terms. GO term enrichment was obtained using the web-based application NetGO 3.0. The program predicts molecular function ontology from sequence using protein language models [46]. NetGO addresses shortcomings of GO functional annotations and is considered as one of the best methods at predicting function ontology [48,49]. Contextual visualisation of the GO terms was performed using GOATOOLS [50].

Statistical analysis. Statistical tests were carried out throughout using the statistics toolbox of MATLAB. The sequence properties did not show a normal distribution and the statistical significance of each property was determined using the two-tailed nonparametric Wilcoxon rank sum test. The test is equivalent to a Mann-Whitney U-test. Statistical significance was determined at the 0.05 level and the Bonferroni correction was applied to calculate corrected p-values. The Chi-squared (χ^2) test

was also carried out to check whether the frequencies of a particular feature in “stable” and “labile” genes differ from each other.

3. Results


3.1. Analysis of Genomic Features

Gene length, %CG content, transcript and exon numbers, as well as intron and exon lengths were analysed in all datasets. The results are shown in Table 4. Compared to “labile” P450s, “stable” genes were shown to be generally longer and have a greater number of exons. The opposite is true for intron lengths, where introns in the “labile” dataset are on the average considerably shorter (Table 4). The same trends are observed in the subsets of “culled” genes (Figure 1). The GC content of the “stable” CYPs is less than that of the “labile” CYPs but the difference may not be statistically significant.

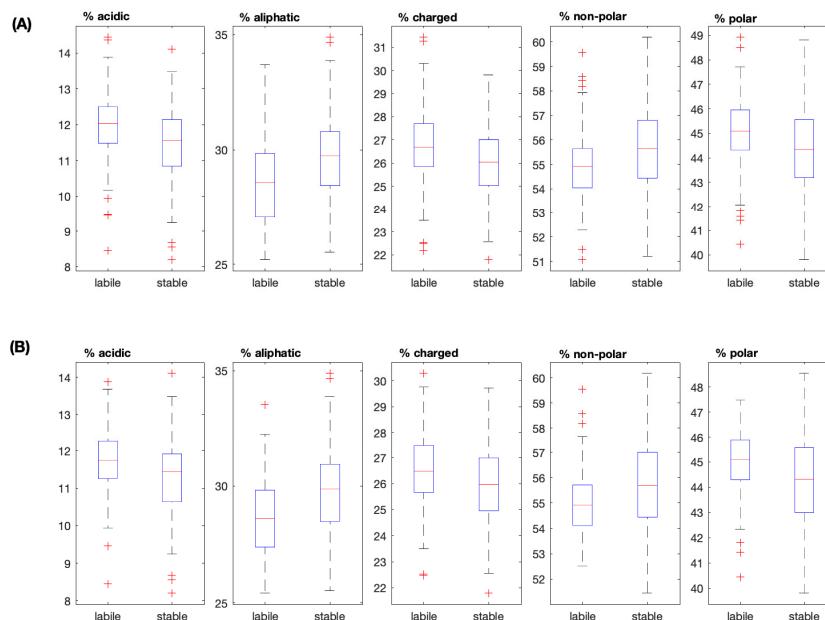
Table 4. Median gene length, GC contents, number of transcripts, number of exons, exon length and intron length for essential and viable genes*.

Datasets	Gene length (bp)	No. of exons	Exon length (bp)	Intron length (bp)	No. transcripts	% GC content
Non-culled	“labile” 1840	3	1524	311	1	47.20
	“stable” 2149	4	1518	612	1	44.78
	p-value 2.8034e-07	1.0212e-08	0.0209	7.6899e-09	0.3531	0.0270
Culled	“labile” 1890	3	1527	359	1	46.48
	“stable” 2165	4	1521	612	1	45.63
	p-value 7.1450e-04	4.4157e-06	0.0302	1.5198e-04	0.6973	0.3718

* The median value of each feature is reported. p-values are determined from a Mann-Whitney U test. Statistically significant results were evaluated based on the Bonferroni corrected p-value of 0.0083. They are shown in bold typeface.

Figure 1. Distributions of the total gene length, number of exons, total length of exons, total length of introns, number of transcripts, and percentage of GC content in “stable” and “labile” genes.

3.2. Analysis of Protein Features


Protein average molecular weight, charge, isoelectric point and frequencies of different amino acid categories were analysed statistically to determine significant differences in the two groups of P450 (Table 5). “Labile” proteins were found to have greater proportions of acidic, basic, charged and

polar amino acids. In the case of charged amino acids, the p-value in the culled dataset was marginally above the Bonferroni correction. “Stable” proteins had a higher median value for aliphatic amino acids and hydrophobicity. Differences between the protein features examined follow the same trend in the culled datasets (Figure 2).

Table 5. Median values of different protein features and the p-values of their distribution calculated using the Mann–Whitney U test *.

Property	Unculled			Culled		
	“Labile”	“Stable”	p-value	“Labile”	“Stable”	p-value
MW	5.8236e+04	5.8106e+04	0.0124	5.8454e+04	5.8162e+04	0.0249
IEP	8.3088	8.1503	0.2324	8.2718	8.3542	0.4991
Charge	9	9.5000	0.4037	10	10.5000	0.0724
Hydrophobicity	-19.6450	-16.0583	4.3384e-08	-18.7226	-15.5340	2.7720e-04
Aromatic	13.2110	13.1148	0.5403	13.2110	13.1417	0.6721
Aliphatic	28.5714	29.7619	3.4826e-10	28.6299	29.8651	3.1629e-06
Acidic	12.0240	11.5686	3.5141e-08	11.7530	11.4458	3.8132e-05
Basic	14.7810	14.6000	0.0258	14.6535	14.6939	0.6806
Charged	26.6791	26.0521	1.2929e-06	26.4706	25.9669	0.0056
Polar	45.0980	44.3340	6.3566e-07	45.0902	44.3137	2.4062e-04
Non-polar	54.9020	55.6660	5.1469e-07	54.9098	55.6863	2.4062e-04
Small	44.6000	44.6939	0.6356	44.6680	44.4890	0.6232
Tiny	23.3202	23.5887	0.0306	23.5409	23.8095	0.3240

* The median value of each feature is reported. p-values are determined from a Mann–Whitney U test. Statistically significant results were evaluated based on the Bonferroni corrected p-value of 0.0038. They are shown in bold typeface.

Figure 2. Distributions of acidic, aliphatic, charged, non-polar and polar residues (%) between “labile” and “stable” P450s. Unculled and culled datasets denoted as (A) and (B), respectively.

Variations in the frequencies of amino acids found in “stable” and “labile” P450s are shown in Table 6. Statistically significant variations were observed in 11 amino acids (8 in the culled dataset). The relative proportion of Cys, Arg, Leu, and Trp is higher in “stable” P450s, and that of Glu, Lys, and Met higher in “labile” proteins. Variations in four of these (Ala, His) were not statistically significant in culled datasets of proteins.

Table 6. Differences in the amino acid frequency of usage between the P450 proteins of the two groups in the culled and non-culled datasets.

Aa*	Unculled			Culled		
	“Labile”	“Stable”	p-value	“Labile”	“Stable”	p-value
A	5.6711	6.1100	4.0438e-04	5.8601	6.2500	0.0145
C	1.1811	1.5238	1.9760e-10	1.2048	1.5385	2.8718e-05
D	5.4409	5.3465	0.0230	5.4104	5.2427	0.0963
E	6.4338	6.1151	8.9284e-06	6.3241	6.0362	0.0012
F	6.5476	6.2000	0.0014	6.4833	6.1100	0.0150
G	5.6075	5.3254	0.0125	5.6863	5.3407	0.0966
H	2.1696	2.3301	4.2799e-05	2.2018	2.3297	0.0233
I	6.1185	6.0827	0.8018	6.1185	6.0038	0.7398
K	6.4639	5.4000	1.3464e-14	6.0998	5.3360	3.4017e-05
L	10.0616	11.0656	2.6111e-12	10.2970	11.0891	7.5251e-07
M	3.3730	2.9851	4.2922e-05	3.4068	3.0364	0.0015
N	4.0161	3.9448	0.3603	3.9062	3.8076	0.1330
P	5.0710	5.1081	0.2145	4.9900	5.0813	0.1682
Q	3.4765	3.5849	0.1371	3.6290	3.6735	0.5681
R	6.0852	6.6202	1.0888e-04	6.3116	6.7308	0.0013
S	5.3435	5.4104	0.4267	5.3465	5.4409	0.4281
T	5.4326	5.2104	0.0015	5.4902	5.1383	0.0011
V	6.5056	6.2745	0.0128	6.4885	6.2622	0.0318
W	0.9452	1.1236	4.8193e-06	0.9328	1.1494	3.9031e-05
Y	3.5185	3.6072	0.5588	3.4926	3.6000	0.5164

* amino acid (aa). The p-value for the Bonferroni correction is 0.0025. Statistically significant differences are shown in bold typeface.

3.3. Phosphorylation

Protein phosphorylation plays crucial roles in the regulation of cellular and metabolic processes such as cell differentiation and cell division. Cytochrome P450 have been shown to be subject to phosphorylation mediated by different protein kinases, cAMP-dependent protein kinase A being the most prominent one. In insects, phosphorylation is thought to play a role in the control of genotoxic metabolites [51]. P450 phosphorylation was predicted using NetPhos-3.1 [44] (SI2.xlsx). The median number of phosphorylated residues was 3 with the exception of threonine in the unculted “labile” dataset (median=4). The statistical differences between “labile” and “stable” P450s in the culled and unculted datasets were not statistically significant.

3.4. Signal Peptides, Transmembrane Domains, and Protein Location

Insect P450s are transmembrane proteins bound either to the endoplasmic reticulum (ER) or the inner mitochondrial membrane by means of the N-terminal transmembrane helix (TMH) [52]. In mitochondrial CYPs, the N-terminal anchor is missing. Instead, a topogenic sequence present at the nascent enzyme serves as a signal peptide to ensure the enzyme is transported and incorporated into the mitochondrial membrane [53]. Both transmembrane and mitochondrial P450s share the same fold and very similar tertiary structures [54]. The transmembrane domains usually adopt an α -helical structure while passing through the lipid bilayer once (single-pass proteins) or multiple times (multiple-pass proteins). In non-mitochondrial P450s, the catalytic domain of the enzyme is on the cytosolic side of ER and the N-terminus α -helix protrudes on the luminal side of ER. This posture of CYPs in relation to the membrane is stabilised by hydrophobic interactions between the residues of the N-terminal helix and the lipophilic ER environment. The N-terminal anchor has been associated with CYP trafficking into the ER or mitochondria, in interactions with different phospholipids, and as a mediator of CYP heteromer formation.

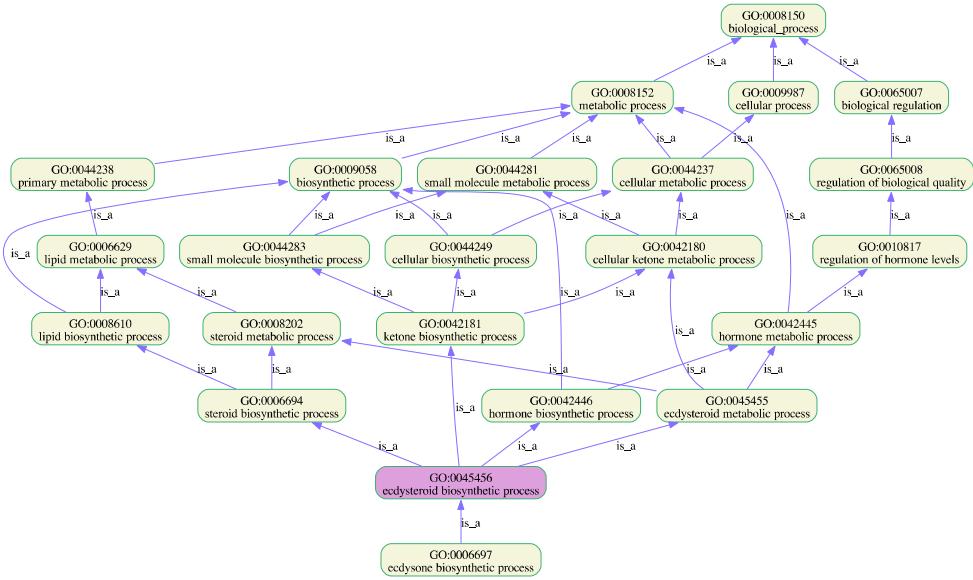
Signal peptides, subcellular localisation and number of transmembrane helices were predicted using BUSCA [45] (SI3.pdf). A summary of the results is given in Table 7. All CYPs were predicted to have at least two transmembrane domains. Approximately 80% of CYPs, both in the unculled and culled datasets, were predicted to lack the N-terminal helix. The differences between the datasets were not statistically significant.

Table 7. Summary of predicted signal peptides, subcellular localisation and transmembrane helices.

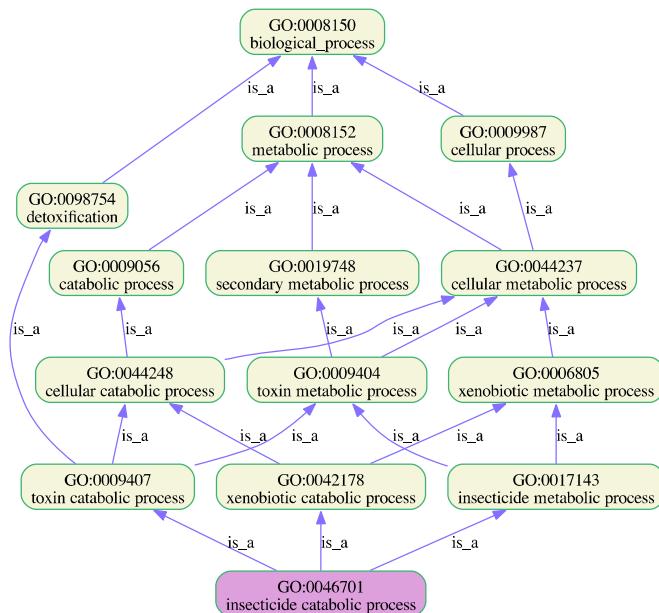
Biological feature	Non-culled		Culled	
	No. "labile" CYPs	No. "stable" CYPs	No. "labile" CYPs	No. "stable" CYPs
Signal peptide	19 (7.9%)	28 (11.4%)	8 (7.0%)	18 (11.2%)
Mito transit	11 (4.6%)	5 (2%)	7 (6.1%)	2 (1.3%)
Mitochondrial membrane	11 (4.6%)	5 (2%)	7 (6.1%)	2 (1.3%)
N-terminal helix	198 (82.2%)	196 (80.0%)	95 (82.6%)	132 (81.5%)

3.5. Gene Enrichment Analysis

Gene Ontology (GO) [55]enables the classification of gene functions through the application of controlled vocabularies (ontology) to annotate the functional properties of gene and gene products across species. Each GO term is annotated with information which includes the type of gene product (e.g., protein, tRNA, etc.) and an evidence code describing the type of evidence (e.g., experimental, phylogenetic, text mining etc.). Annotations that are not curated manually are described as 'IEA' (inferred from electronic annotation). GO is structured as a graph comprising nodes representing each GO term. Edges between the nodes represent relationships between terms. The GO graph is hierarchical with 'parent' and 'child' terms, but unlike strict hierarchy, a given term may have more than one 'parent'. Genes are annotated by (a) molecular function (b) cellular component and (c) biological process. One of the most common methods to perform GO term gene-set enrichment analysis is through the identification of common functions in a group of genes by means of over-representation analysis (ORA). The method compares the GO terms corresponding to a test list of genes to the functions of selected background genes (for example, a database with functionally annotated genes). If the number of functions in the test list is greater than the number of functions obtained by chance, then these functions are considered to be over-represented.


NetGO 3.0 [46] was used to predict enrichment of GO terms of the "stable" and "viable" P450s (SI4.xlsx). "Stable" and "labile" proteins were differentially enriched in the terms shown in Table 8. Although individual proteins in both datasets can show enrichment in the same GO term, the relative proportions of proteins in each set are substantially different. Comparing the numbers of "labile" and

“stable” P450, considerably more “stable” P450s showed enrichment of GO terms related to biosynthetic and developmental processes. This trend is reversed in the case of detoxification catabolic processes. GOATOOLS [50] was used to generate graphical views of enriched GO terms in biosynthetic, developmental and catabolic processes. These are shown in Figures 3 and 4, respectively.


Table 8. Gene enrichment in GO terms related to biosynthetic, developmental and detoxification metabolic processes.

GO term	Description	Subset ¹	All CYPs ²	<i>Dmel</i> ²	<i>Agam</i> ²	<i>Aaeg</i> ²	<i>Cqui</i> ²
1. GO:0048856	Anatomical structure development	S	135 (55.1)	27 (11.0)	26 (10.6)	33 (13.5)	49 (20)
		L	75	7	18	23	27
2. GO:0008610	lipid biosynthetic process	S	141 (57.5)	26 (10.6)	26 (10.6)	38 (15.5)	51 (20.8)
		L	24 (9.9)	4 (1.7)	3 (1.2)	8 (3.3)	9 (3.7)
3. GO:0008202	steroid metabolic process	S	95 (38.8)	11 (4.5)	29 (11.8)	37 (15.1)	18 (7.3)
		L	10 (4.1)	2 (0.8)	1 (0.4)	1 (0.4)	6 (2.5)
4. GO:0042445	hormone metabolic process	S	53 (21.6)	12 (4.9)	15 (6.1)	15 (6.1)	11(4.5)
		L	4 (1.6)	-	-	-	4 (1.6)
5. GO:0007275	multicellular organism development	S	91 (37.1)	19 (7.7)	18 (7.3)	22 (9.0)	32 (13.0)
		L	25 (10.4)	2 (0.8)	7 (2.9)	9 (3.7)	7 (2.9)
6. GO:0009791	post-embryonic development	S	19 (7.7)	6 (2.4)	4 (1.6)	6 (2.4)	3 (1.2)
		L	-	-	-	-	-
7. GO:0002165	instar larval or pupal development	S	17 (6.9)	6 (2.4)	6 (2.4)	3 (1.2)	2 (0.8)
		L	-	-	-	-	-
8. GO:0045456	ecdysteroid biosynthetic process	S	10 (4.1)	4 (1.6)	4 (1.6)	1 (0.4)	1 (0.4)
		L	-	-	-	-	-
9. GO:0006805	xenobiotic metabolic process	S	24 (9.8)	2 (0.8)	5 (2.0)	6 (2.4)	11 (4.5)
		L	69 (28.6)	9 (3.7)	11 (4.6)	28 (11.6)	21 (8.7)
10. GO:0046680	response to DDT	S	30 (12,2)	8 (3.3)	5 (2.0)	8 (3.3)	9 (3.7)
		L	86 (35.7)	10 (4.1)	22 (9.1)	29 (12.0)	25 (10.4)
11. GO:0009404	toxin metabolic process	S	12 (4.9)	3 (1.2)	2 (0.8)	2 (0.8)	5 (2.0)
		L	28 (11.6)	7 (2.9)	2 (0.8)	10 (4.1)	9 (3.7)

¹ S denotes “stable”; L denotes “labile). ² values in () denote %

Figure 3. Plot of the enriched GO terms and their ancestors (Table 7, GO terms 1-8).

Figure 4. Plot of the enriched GO terms and their ancestors (Table 7, GO terms 9-11).

4. Discussion

The non-culled dataset was split into two subgroups which contained a total of **245 defined as phylogenetically “stable”** and **241 phylogenetically “labile”**. The genes were obtained from VectorBase database and cross-referred to Ensembl (Metazoa Genes 60 database). To avoid bias in statistical analyses, redundant proteins were removed from the datasets to generate non-redundant or culled datasets of “labile” and “stable” P450s. The culled and non-culled datasets were compared for a number of genomic and protein sequence properties. In general, sequence redundancy did not affect the overall picture and all sets follow similar statistical trends. Table 8 shows the gene and protein features that are strongly associated with “stable” P450 genes.

Table 9. Summary of characteristics likely to be associated with essential or viable genes.

“Stable” gene tendencies	“Labile” gene tendencies
Longer genes; longer introns; more exons	Simpler, shorter gene structure
More hydrophobic; relative proportion of aliphatic amino acids higher; enriched in Cys, Arg, Leu, and Trp	Less hydrophobic; relative proportion of charged and polar amino acids higher; enriched in Glu, Lys, and Met
Involved in biosynthetic and developmental processes, such as biosynthesis of lipids and hormones essential for instar larval or pupal morphogenesis	Involved in cellular catabolic processes, detoxification of xenobiotics and insecticide metabolic processes

Analysis of genomic features of CYPs showed that “stable” genes are longer, have more exons, and longer intron lengths. This is consistent with recent findings showing that longer genes correlate with functions that are important in the development stages of an organism [56,57]. Additionally, “stable” CYPs the average intron length was shown to be almost twice the size of introns in “labile” P450s. This is in agreement with research showing intonic “burden” plays an important role in the evolutionary conservation of genes [58]. “Stable” CYPs were shown to have lower GC content than the “labile” ones and although the difference was not statistically significant it is noted that GC content varies inversely with intron and exon length [59].

Analysis of physicochemical and protein sequence features revealed several differences between “labile” and “stable” P450s. “Labile” proteins were found to have a greater proportion of polar and charged residues and be less hydrophobic than “stable” P450s which were relatively enriched in aliphatic amino acids. It is noted, however, that the method used to determine the relative hydrophobicity of P450s is a poor predictor as it does not take into account protein folding. It is known that the aggregation propensity of proteins is frequently linked to imperfect folding. In terms of amino acid composition, “stable” P450s were found to have Arg, Cys, Leu, Trp in greater proportion than “labile” P450s. Arg is a known chaotrope associated with the prevention of protein aggregates and increasing the solubility of hydrophobes [60]. Recent studies have shown that Trp/Tyr chains are common in enzymes utilising O₂ as a substrate and that redox active Trp/Tyr chains extend the functional lifetimes of P450s [61]. The relative enrichment of “stable” P450s in Cys residues may have a two fold importance. On one hand, Cys residues may impose structural constraints necessary for specific, rather than promiscuous, protein-ligand interactions as in the case of interactions that are developmentally important [62]. On the other, Cys has a tendency to behave as a hydrophobic residue in folded proteins, despite possessing a polar sulfhydryl group [63].

Functional analysis of “stable” and “labile” P450s was studied by enrichment analysis of GO terms. “Stable” P450s were predicted to be enriched in GO terms relevant to the biosynthesis of lipids and hormones. These biosynthetic processes are also essential for instar larval or pupal morphogenesis and play essential roles in the growth, reproduction and defence systems of insects [64,65]. “Labile” P450s were predicted to be enriched in GO terms related to biological processes involving the detoxification of xenobiotics. As a cautionary note, it is pointed out that GO gene enrichment analysis is not without methodological challenges and pitfalls [66–68] and results can be unreliable due to inadequate coverage and resolution of the annotation databases [69,70].

The analysis of biological features, such as signal peptides and cellular localisation, was inconclusive and merits additional investigation. For example, proportion of “labile” CYPs predicted to be located in the mitochondrion is higher than that for “stable” CYP, albeit the fact that the absolute numbers are small to draw an definitive conclusions. This is contrary to phylogenetic studies showing that mitochondrial CYPs are relatively well conserved [22]. However, the name “mitochondrial” referring to the CYP clan should not be taken as definitive evidence of subcellular localisation and CYPs of this clan can be microsomal or have dual localisations [11]. Another important feature is the composition of transmembrane domains. The reducing power of CYPs depends on the coupling of the

endoplasmic reticulum N-terminal transmembrane helix with membrane-anchored NADPH-dependent cytochrome P450 oxidoreductase [71]. Bioinformatic analysis of sequence conservation of transmembrane anchors and the characterisation of motif patterns of signal and transit peptides can provide useful insights on the localisation and function of CYPs [72].

5. Conclusions

“Stable” and “labile” P450s were shown to be significantly different in a number of genomic and protein features. The interdependency of these features implies that multiple aspects of biology unite to determine whether a gene is “stable” or “labile” in mosquitos. The range of features analysed and discussed in this paper can be broadened and expanded to other organisms thus gaining further insights into gene “essentiality”. Broadening the scope of the bioinformatic analysis presented in this paper may enable the functional classification of insect CYPs by training machine learning classifiers for the functional identification of insect P450s. Last but not least, the identification of “stable” genes associated with “lethality” may facilitate the identification of non-viable null mutants thus the identification of new insecticide targets.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper posted on Preprints.org.

References

1. Nelson, D.R. and D.W. Nebert, *Cytochrome P450 (CYP) Gene Superfamily*, in *Encyclopedia of Life Sciences*. 2018. p. 1-19.
2. Klingenberg, M., *Pigments of rat liver microsomes*. Arch Biochem Biophys, 1958. **75**(2): p. 376-86.
3. Mistry, J., et al., *Pfam: The protein families database in 2021*. Nucleic Acids Res, 2021. **49**(D1): p. D412-D419.
4. Werck-Reichhart, D. and R. Feyereisen, *Cytochromes P450: a success story*. Genome Biol, 2000. **1**(6): p. REVIEWS3003.
5. Hannemann, F., et al., *Cytochrome P450 systems--biological variations of electron transport chains*. Biochim Biophys Acta, 2007. **1770**(3): p. 330-44.
6. Fujiyama, K., T. Hino, and S. Nagano, *Diverse reactions catalyzed by cytochrome P450 and biosynthesis of steroid hormone*. Biophys Physicobiol, 2022. **19**: p. e190021.
7. Pavlidi, N., J. Vontas, and T. Van Leeuwen, *The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors*. Curr Opin Insect Sci, 2018. **27**: p. 97-102.
8. Wu, C., et al., *Insect ATP-Binding Cassette (ABC) Transporters: Roles in Xenobiotic Detoxification and Bt Insecticidal Activity*. Int J Mol Sci, 2019. **20**(11).
9. Nelson, D.R., *Cytochrome P450 diversity in the tree of life*. Biochim Biophys Acta Proteins Proteom, 2018. **1866**(1): p. 141-154.
10. Zhang, Y., et al., *P450Rdb: a manually curated database of reactions catalyzed by cytochrome P450 enzymes*. J Adv Res, 2023.
11. Dermauw, W., T. Van Leeuwen, and R. Feyereisen, *Diversity and evolution of the P450 family in arthropods*. Insect Biochem Mol Biol, 2020. **127**: p. 103490.
12. Nelson, D.R., *Cytochrome P450 and the individuality of species*. Arch Biochem Biophys, 1999. **369**(1): p. 1-10.
13. Nelson, D.R., *The cytochrome p450 homepage*. Hum Genomics, 2009. **4**(1): p. 59-65.
14. Pankov, K.V., et al., *The cytochrome P450 (CYP) superfamily in cnidarians*. Sci Rep, 2021. **11**(1): p. 9834.
15. Shi, Y., et al., *Involvement of CYP2 and mitochondrial clan P450s of Helicoverpa armigera in xenobiotic metabolism*. Insect Biochem Mol Biol, 2022. **140**: p. 103696.
16. Nelson, D.R., *A world of cytochrome P450s*. Philos Trans R Soc Lond B Biol Sci, 2013. **368**(1612): p. 20120430.
17. Li, F., et al., *Insect genomes: progress and challenges*. Insect Mol Biol, 2019. **28**(6): p. 739-758.
18. Strode, C., et al., *Genomic analysis of detoxification genes in the mosquito Aedes aegypti*. Insect Biochem Mol Biol, 2008. **38**(1): p. 113-23.
19. Yan, L., et al., *Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families*. BMC Genomics, 2012. **13**: p. 609.

20. Feyereisen, R., *Arthropod CYPomes illustrate the tempo and mode in P450 evolution*. *Biochim Biophys Acta*, 2011. **1814**(1): p. 19-28.
21. Feyereisen, R., *Evolution of insect P450*. *Biochem Soc Trans*, 2006. **34**(Pt 6): p. 1252-5.
22. Dulbecco, A.B., G.M. Calderón-Fernández, and N. Pedrini, *Cytochrome P450 Genes of the CYP4 Clan and Pyrethroid Resistance in Chagas Disease Vectors*. *Frontiers in Tropical Diseases*, 2022. **3**.
23. Ranson, H., et al., *Evolution of supergene families associated with insecticide resistance*. *Science*, 2002. **298**(5591): p. 179-81.
24. Dulbecco, A.B., et al., *Integument CYP genes of the largest genome-wide cytochrome P450 expansions in triatomines participate in detoxification in deltamethrin-resistant *Triatoma infestans**. *Sci Rep*, 2018. **8**(1): p. 10177.
25. Sezutsu, H., G. Le Goff, and R. Feyereisen, *Origins of P450 diversity*. *Philos Trans R Soc Lond B Biol Sci*, 2013. **368**(1612): p. 20120428.
26. Good, R.T., et al., *The molecular evolution of cytochrome P450 genes within and between drosophila species*. *Genome Biol Evol*, 2014. **6**(5): p. 1118-34.
27. Schumann, I., et al., *Halloween genes in panarthropods and the evolution of the early moulting pathway in Ecdysozoa*. *R Soc Open Sci*, 2018. **5**(9): p. 180888.
28. Chung, H., et al., *Characterization of *Drosophila melanogaster* cytochrome P450 genes*. *Proc Natl Acad Sci U S A*, 2009. **106**(14): p. 5731-6.
29. Feyereisen, R., *Insect P450 inhibitors and insecticides: challenges and opportunities*. *Pest Manag Sci*, 2015. **71**(6): p. 793-800.
30. Vontas, J., E. Katsavou, and K. Mavridis, *Cytochrome P450-based metabolic insecticide resistance in *Anopheles* and *Aedes* mosquito vectors: Muddying the waters*. *Pestic Biochem Physiol*, 2020. **170**: p. 104666.
31. Balabanidou, V., et al., *Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in *Anopheles gambiae**. *Proc Natl Acad Sci U S A*, 2016. **113**(33): p. 9268-73.
32. Yahouedo, G.A., et al., *Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector *Anopheles gambiae**. *Sci Rep*, 2017. **7**(1): p. 11091.
33. Saavedra-Rodriguez, K., et al., *Transcription of detoxification genes after permethrin selection in the mosquito *Aedes aegypti**. *Insect Mol Biol*, 2012. **21**(1): p. 61-77.
34. Nauen, R., et al., *The Role of Cytochrome P450s in Insect Toxicology and Resistance*. *Annu Rev Entomol*, 2022. **67**: p. 105-124.
35. Ren, H., Yang, G., Winberg, G., Turin, L., Zhang, S., *Crystal Structures of an *Anopheles gambiae* Odorant-binding Protein AgamOBP22a and Complexes with Bound Odorants*, to be published.
36. Mobegi, F.M., et al., *Advances and perspectives in computational prediction of microbial gene essentiality*. *Brief Funct Genomics*, 2017. **16**(2): p. 70-79.
37. Tian, D., et al., *Identifying mouse developmental essential genes using machine learning*. *Dis Model Mech*, 2018. **11**(12).
38. Aromolaran, O., et al., *Machine learning approach to gene essentiality prediction: a review*. *Brief Bioinform*, 2021. **22**(5).
39. Giraldo-Calderon, G.I., et al., *VectorBase.org updates: bioinformatic resources for invertebrate vectors of human pathogens and related organisms*. *Curr Opin Insect Sci*, 2022. **50**: p. 100860.
40. Li, L., C.J. Stoeckert, Jr., and D.S. Roos, *OrthoMCL: identification of ortholog groups for eukaryotic genomes*. *Genome Res*, 2003. **13**(9): p. 2178-89.
41. Fischer, S., et al., *Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups*. *Curr Protoc Bioinformatics*, 2011. **Chapter 6**: p. 6 12 1-6 12 19.
42. Sikic, K. and O. Carugo, *Protein sequence redundancy reduction: comparison of various method*. *Bioinformation*, 2010. **5**(6): p. 234-9.
43. Rice, P., I. Longden, and A. Bleasby, *EMBOSS: the European Molecular Biology Open Software Suite*. *Trends Genet*, 2000. **16**(6): p. 276-7.
44. Blom, N., et al., *Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence*. *Proteomics*, 2004. **4**(6): p. 1633-49.
45. Savojardo, C., et al., *BUSCA: an integrative web server to predict subcellular localization of proteins*. *Nucleic Acids Res*, 2018. **46**(W1): p. W459-W466.

46. Wang, S., et al., *NetGO 3.0: Protein Language Model Improves Large-scale Functional Annotations*. *Genomics Proteomics Bioinformatics*, 2023. **21**(2): p. 349-358.
47. Kyte, J. and R.F. Doolittle, *A simple method for displaying the hydropathic character of a protein*. *J Mol Biol*, 1982. **157**(1): p. 105-32.
48. Zhou, N., et al., *The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens*. *Genome Biol*, 2019. **20**(1): p. 244.
49. Ribeiro, A.J.M., et al., *Enzyme function and evolution through the lens of bioinformatics*. *Biochem J*, 2023. **480**(22): p. 1845-1863.
50. Klopfenstein, D.V., et al., *GOATOOLS: A Python library for Gene Ontology analyses*. *Sci Rep*, 2018. **8**(1): p. 10872.
51. Oesch-Bartlomowicz, B. and F. Oesch, *Phosphorylation of cytochromes P450: first discovery of a posttranslational modification of a drug-metabolizing enzyme*. *Biochem Biophys Res Commun*, 2005. **338**(1): p. 446-9.
52. Monk, B.C., et al., *Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer*. *Proc Natl Acad Sci U S A*, 2014. **111**(10): p. 3865-70.
53. Srejber, M., et al., *Membrane-attached mammalian cytochromes P450: An overview of the membrane's effects on structure, drug binding, and interactions with redox partners*. *J Inorg Biochem*, 2018. **183**: p. 117-136.
54. Gricman, L., C. Vogel, and J. Pleiss, *Conservation analysis of class-specific positions in cytochrome P450 monooxygenases: functional and structural relevance*. *Proteins*, 2014. **82**(3): p. 491-504.
55. Ashburner, M., et al., *Gene ontology: tool for the unification of biology. The Gene Ontology Consortium*. *Nat Genet*, 2000. **25**(1): p. 25-9.
56. Lopes, I., et al., *Gene Size Matters: An Analysis of Gene Length in the Human Genome*. *Front Genet*, 2021. **12**: p. 559998.
57. Brown, J.C., *Role of Gene Length in Control of Human Gene Expression: Chromosome-Specific and Tissue-Specific Effects*. *Int J Genomics*, 2021. **2021**: p. 8902428.
58. Gorlova, O., et al., *Genes with a large intronic burden show greater evolutionary conservation on the protein level*. *BMC Evol Biol*, 2014. **14**(1): p. 50.
59. Kabir, M., et al., *Properties of genes essential for mouse development*. *PLoS One*, 2017. **12**(5): p. e0178273.
60. Mamsa, S.S.A. and B.P. Meloni, *Arginine and Arginine-Rich Peptides as Modulators of Protein Aggregation and Cytotoxicity Associated With Alzheimer's Disease*. *Front Mol Neurosci*, 2021. **14**: p. 759729.
61. Ravanfar, R., et al., *Tryptophan extends the life of cytochrome P450*. *Proc Natl Acad Sci U S A*, 2023. **120**(50): p. e2317372120.
62. Lu, Y., et al., *Roles of cysteine in the structure and metabolic function of *Mycobacterium tuberculosis* CYP142A1*. *RSC Adv*, 2022. **12**(38): p. 24447-24455.
63. Iyer, B.R. and R. Mahalakshmi, *Hydrophobic Characteristic Is Energetically Preferred for Cysteine in a Model Membrane Protein*. *Biophys J*, 2019. **117**(1): p. 25-35.
64. Wronska, A.K., et al., *Lipids as a key element of insect defense systems*. *Front Genet*, 2023. **14**: p. 1183659.
65. Arrese, E.L. and J.L. Soulages, *Insect fat body: energy, metabolism, and regulation*. *Annu Rev Entomol*, 2010. **55**: p. 207-25.
66. Khatri, P., M. Sirota, and A.J. Butte, *Ten years of pathway analysis: current approaches and outstanding challenges*. *PLoS Comput Biol*, 2012. **8**(2): p. e1002375.
67. Geistlinger, L., et al., *Toward a gold standard for benchmarking gene set enrichment analysis*. *Brief Bioinform*, 2021. **22**(1): p. 545-556.
68. Zhao, K. and S.Y. Rhee, *Interpreting omics data with pathway enrichment analysis*. *Trends Genet*, 2023. **39**(4): p. 308-319.
69. Haynes, W.A., A. Tomczak, and P. Khatri, *Gene annotation bias impedes biomedical research*. *Sci Rep*, 2018. **8**(1): p. 1362.
70. Attrill, H., et al., *Annotation of gene product function from high-throughput studies using the Gene Ontology*. *Database (Oxford)*, 2019. **2019**.
71. Laursen, T., et al., *Membrane anchoring facilitates colocalization of enzymes in plant cytochrome P450 redox systems*. *Commun Biol*, 2021. **4**(1): p. 1057.

72. Sidorczuk, K., et al., *Characterization of signal and transit peptides based on motif composition and taxon-specific patterns*. Sci Rep, 2023. **13**(1): p. 15751.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.