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Article
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Abstract: In this paper, the optimal control theory is applied to a temperature optimization problem by coupling

finite element and finite volume codes. The optimality system is split into the state and adjoint system. The direct

problem is solved by the widely adopted finite volume OpenFOAM code and the adjoint-control equation using a

variational formulation of the problem with the in-house finite element FEMuS code. The variational formulation

of the problem is the natural framework to capture accurately the control correction while OpenFOAM guarantees

the accuracy of the state solution. This coupling is facilitated through the open-source MED and MEDCoupling

libraries of the SALOME platform. The code coupling is implemented with the MED libraries and additional

routines added in the FEMuS and OpenFOAM codes. We demonstrate the accuracy, robustness and performance

of the proposed approach with examples targeting different objectives using distributed and boundary controls in

each case.

Keywords: heat equation; optimal control; coupling codes; FVM; FEM

It is well-known that mathematical modeling of physical phenomena represents an alternative
approach, often advantageous in terms of time and resources, compared to experimental methods for
studying complex systems. These problems, modeled through PDEs, depend on the input dataset,
such as material physical properties, boundary conditions, and source terms. In many engineering
applications, the correct boundary conditions that suit a target interior solution are found by a try and
fail approach with high computational costs. On the other hand, the optimal control approach aims to
determine these parameters by minimizing a cost function that represents some target condition of the
system [1].

The use of optimal control theory requires the introduction of the inverse problem. The direct
solution of the inverse problem, which allows rapid achievement of the goal and innovative solutions
to the problem, can be carried out with the variational formulation of partial differential equations [2].
With respect to direct simulations, the resolution of an optimal control problem requires solving the
optimality system formed by state, adjoint, and control coupled systems. For this reason, several
specialized codes in solving specific physics cannot implement directly the optimality control, although
using a well-validated code would greatly increase the reliability of the optimization. The solution
could be to keep this standalone code for solving the specialized physics and another one for the
remaining part of the optimality system. The validated code, which solves for the state system, takes
data from the control equation. For that reason, the two codes must be coupled.

In this paper, we present a simple temperature optimization achieved by coupling our in-house
FEMuS code with the widely adopted OpenFOAM code. This coupling is facilitated through the use
of the open-source MED and MEDCoupling libraries. The coupling is performed using MED libraries
and ad=hoc routines added in the FEMuS and OpenFOAM codes [3,4]. Regarding optimal control
problems involving different physics (FSI, turbulence modeling, boundary control with fractional
operators, etc.) the interested reader can consult [5–7] for details on the FEMuS code and [8,9] for the
OpenFOAM code.

We demonstrate the accuracy, robustness, and performance of the proposed approach with an
example targeting different objectives with distributed and boundary control for each case. In the
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first scenario, the control parameter corresponds to a volumetric heat source. In the second scenario,
depending on whether the control is located, it can either be the wall temperature (Dirichlet type) or a
heat flux (Neumann type). The paper is organized as follows. First, we describe the optimal control
problem with distributed or boundary controls. After that, we recall the coupling algorithm between
the employed CFD codes and the MED library as a supervisor. Finally, we present the numerical
results obtained with the coupled and uncoupled algorithm in order to draw some conclusions.

1. Optimal Control Problem

The finite-volume framework, of which OpenFOAM is a prime example, is traditionally well-
suited for flow applications of any kind. On the other hand, optimal control theory stems from the
finite element framework and leverages many concepts that are naturally evaluated in that approach.
In this section, we introduce the variational formulation of the optimal control problem to better
understand what components are required for the implementation of an objective-oriented framework
such as the one we display later in the paper. Each type of control is described considering the final
equation system to be solved, and then the minimization algorithm is enforced by using a standard
conjugate gradient method.

We recall some standard notation of functional spaces [10]. Let O be a domain Ω ⊂ Rn, with
n = 2, 3, or its boundary Γ, or a part of it. Also, let Hs(O) be the standard Sobolev space of order s.
Naturally, we have H0(O) = L2(O). We now consider a cost function, or functional, in the following
form

F (u) = 1
2
||ϕ− ϕ0||L2 +

λ

2
||u||HS , (1)

where ϕ is a generic state variable subject to the control, ϕ0 is the target, u is the control parameter and
λ represents a penalty coefficient. With the latter parameter, the regularization term can increase or
decrease the penalization by different weights on the functional. We underline that regularization
terms that involve the derivative of the control variable are not considered in this paper. Naturally, the
first term in (1) represents the objective term or objective functional.

The control is performed on a steady-state temperature distribution without the convective term.
Therefore, considering the gradient operator ∇ and the Laplacian operator ∆, the state equation to be
satisfied by the temperature T ≡ ϕ is





−α∆T = Q in Ω

T = gd on ΓD

α∇T · n = gn on ΓN ,

(2)

where n represents the outward normal unit vector to the considered boundary, α is the thermal
diffusivity, Q the volumetric source term, and gd and gn are two suitable functions defined on ΓD and
ΓN , respectively. The boundary ∂Ω is split into two parts: ΓN and ΓD, with Neumann and Dirichlet
boundary conditions applied. All the constraints of the problem are expressed in the Lagrangian, an
auxiliary function defined as

L(Q, T, Ta) = F (T, Q)− ⟨(−∆T −Q), Ta⟩L2 , (3)

where Ta is the Lagrangian multiplier or, in this case, the adjoint temperature. Naturally, we denote by
⟨·, ·⟩ the dot product.

For each type of control, the system of equations to be solved is derived, considering the state, the
adjoint, and the control equation.
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1.1. Distributed Control

The distributed control parameter is a volumetric heat source Q. Therefore, the functional is
written as

F (T, Q) =
1
2

∫

Ωd

(T − Td)
2 dΩ +

λ

2

∫

Ω
Q2 dΩ. (4)

The adjoint problem is derived from the variational differentiation of the Lagrangian over the state
variable. Thus, the equation for the adjoint temperature reads





α∆Ta = −(T − Td)ΘΩd on Ω ,

Ta = 0 on ΓD ,

α∇Ta · n = 0 on ΓN ,

(5)

where ΘΩd is the Heaviside function that is equal to one only in the target region Ωd. The adjoint
equation is identical to the state formulation since we only consider the Laplacian operator. The
right-hand side term is different from zero only in the target regions, as indicated by the Heaviside
function.

The optimal control problem can be formulated as finding the minimum of the functional (4),
condition for which the variables are considered optimal. We denote the optimal solution with an
overline. Thus the optimal control Q must satisfy the Euler equation

F ′F
(
Q
)
= 0 , (6)

where naturally F ′F represents the Fréchet derivative of the functional F computed along the direction
given by the control Q. Thus, deriving the functional with respect to the control parameter Q we
obtain the following optimal control equation

Q = −Ta

λ
. (7)

The optimal control parameter Q follows exactly the optimal adjoint temperature Ta with an opposite
sign and scaled by the parameter λ.

Although the Euler equation provides a definition of the optimal control variable, it is not
sufficient for the numerical solution of the problem since it shows the behavior of the optimal solution
of the optimization problem without any information on how to reach it. For most of the methods,
the knowledge of the functional gradient is sufficient to calculate the direction for the functional
minimization. For this reason, we consider the functional gradient

F ′F(Q) = λQ + Ta . (8)

1.2. Neumann and Dirichlet Boundary Controls

For the Dirichlet boundary control, the control parameter is the imposed wall temperature Tc.
Therefore, the state problem becomes





−α∆T = Q in Ω ,

T = gd on Γi ,

T = gd + Tc on Γc ,

α∇T · n = gn on ΓN ,

(9)
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where Γc is the controlled boundary. Note that for the Dirichlet boundary case, ΓD can be interpreted
as the union of Γi and Γc. The functional is rewritten as

F (T, Q) =
1
2

∫

Ωd

(T − Td)
2 dΩ +

λ

2

∫

Γc
T2

c dΓ , (10)

where the regularization term is calculated again in L2. Note that, considering the temperature variable
T ∈ H1(Ω), its boundary value should be theoretically sought in the fractional space H1/2. On the
other hand, since the computation of fractional operators is not straightforward, we assume to compute
the regularization term considering a standard L2-norm. In this way, we expand the solution space for
the control variable, considering less regularized solutions.

Similarly to the distributed control, the adjoint problem and the control equation are obtained
through the differentiation of the Lagrangian functional. Therefore, we have the system for the adjoint
variable 




α∆Ta = −(T − Td)ΘΩd on Ω ,

Ta = 0 on Γi, Γc ,

α∇Ta · n = 0 on ΓN .

(11)

Again, writing explicitly the Euler equation, it is possible to find an optimal control definition for
the problem as

Tc = α
∇Ta · n|Γc

λ
, (12)

and the resulting functional gradient can be written as

F ′F(Tc) = λTc − α∇Ta · n|Γc . (13)

For the Neumann boundary control, the control parameter is the heat flux H imposed at the wall.
Therefore, the state problem and the functional are redefined as follows.





−α∆T = Q in Ω ,

T = gd on ΓD ,

α∇T · n = gn on Γi ,

α∇T · n = H on Γc ,

(14)

where naturally now we have that ΓN = Γi ∪ Γc. Therefore, the functional reads as

F (u, T, g) =
1
2

∫

Ωd

(T − Td)
2 dΩ +

λ

2

∫

Γc
H2 dΓ . (15)

Again, from the Lagrangian, the adjoint problem and the control equation can be derived and the
adjoint system reads 




α∆Ta = −(T − Td)ΘΩd on Ω ,

Ta = 0 on ΓD ,

α∇Ta · n = 0 on Γi, Γc .

(16)

From the Euler equation, the optimal control expression results

H = −Ta

λ
, (17)

and the functional gradient becomes

F ′F(H) = λH + Ta . (18)
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1.3. Conjugate Gradient Method and Numerical Solution

To solve the stated problems numerically, we employ the conjugate gradient (CG) method [11]. This
minimization technique belongs to the gradient descent family, along with the more common steepest
gradient. These techniques are used for unconstrained optimization, where the control variable q is
sought in the entire control space Rn. The CG method approximates the optimal control Q through a
sequence (Q(n))n∈N such that, given a solution Q(n) at the n-th step, the solution at the following step
is calculated using the formula

q(n+1) = q(n) + ρ(n)d(n) , (19)

where the direction d(n) is computed as

d(n) = −∇F
(

q(n)
)
+ β(n) d(n−1) . (20)

The parameter β(n) ∈ R is obtained such that the directions d(n) and d(n−1) are conjugate with respect
to the Hessian matrix H, satisfying (

d(n)
)T

H d(n−1) = 0, (21)

and where H is constant, i.e. for a quadratic functional, we obtain the following expressions for β

β(n) =
∇F

(
q(n)

)T
H d(n−1)

(
d(n−1)

)TH d(n−1)
. (22)

In order to make the computation easier, the formula (22) can be rewritten with the Fletcher-Reeves
expression [12]

β
(n)
FR =

||∇F
(

q(n)
)
||2

||∇F
(
q(n−1)

)
||2 , (23)

that has been implemented in our numerical algorithm.
In (23) bold symbols have been used for scalar variables. Nevertheless, for the conjugate gradient

method, the vectors must be interpreted as numeric vectors, i.e., the collection of the variable values
on the degrees of freedom of the computational grid. Therefore, q represents the numeric vector
that contains this value for each node, or a suitable numeric vector of values based on the specific
discretization technique adopted for the system.

The numerical algorithm used for the minimization problem can be described in a number of
steps. Initially, the vectors of the state variable T, the adjoint variable Ta, and the control variable q are
initialized, along with the functional F and the auxiliary variable gold, which represents the functional
gradient at the previous iteration. For the first iteration of the time loop, the descent direction d(0) is
initialized as the anti-gradient direction, similarly to the steepest gradient method.

After that, the time loop starts and the variables T, Ta, q and the functional F are updated.
Naturally, the time loop must be interpreted as an iteration loop since our system is considered to be
stationary. At this point, if the convergence conditions are not satisfied, the new search direction d is
found calculating the current functional gnew and the parameter β. Otherwise, if the convergence is
reached, the while loop is terminated, and the number of iterations and the value of the functional are
collected.

Algorithm 1 illustrates only the mathematical aspects of the application since the coupling
algorithm between the codes is shown in the next section. Therefore, this scheme does not take into
account which code solves a specific numerical field but shows the logical order to find the numerical
solution considering the necessary steps of the minimization procedure.
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Algorithm 1 - Optimal Control

1: procedure main()

Variables initialization.

2: n← 0
3: q(0) ← 0
4: T(0) ← T(q(0))

5: T(0)
a ← Ta(T(0))

6: F (0) ← F (T(0), q(0))

7: gold ← ∇F (q(0), T(0)
a )

8: d← −gold

Time loop.

9: while not stop do
10: q(n+1) ← q(n) + ρ · d
11: T(n+1) ← T(q(n+1))

12: T(n+1)
a ← Ta(T(n+1))

13: F (n+1) ← F (T(n+1), q(n+1))
14: if convergence then
15: stop
16: end if
17: gnew ← ∇F (q(n+1), T(n+1)

a )

18: β← ⟨gnew, gnew⟩
⟨gold, gold⟩

19: gold ← gnew
20: d← −gnew + β · d
21: n← n + 1
22: end while
23: end procedure

2. Coupling Algorithm

In this section, we briefly recall the algorithm for code coupling employed in this work, where
an optimal control problem has been implemented considering two different numerical codes. The
codes used in this work are FEMuS [13] and OpenFOAM [14], while the coupling interface has been
built to exploit the MEDCoupling library [15]. While the first two codes are used to manage CFD
problems, the MEDCoupling library is a module of the SALOME platform that is developed by CEA
(Commissariat à l’énergie atomique et aux énergies alternatives) and EDF (Électricité de France) to
share data at the memory level, avoiding the use of external files. The interested reader can consult [3]
and reference therein for more details on the use of the library for coupling CFD codes.

Having in mind the mathematical setting of an optimal control problem as explained in Section 1,
we briefly recall the coupling procedure between OpenFOAM and FEMuS in the optimal control
context. The main idea presented in this work is to solve the state equation for the temperature field
with OpenFOAM and the adjoint equation and the control q with FEMuS. Data transfer between
state and adjoint variables is achieved through a class interface based on specific MEDCoupling
functions. Specifically, following the equations described in Section 1, the state equation requires the
evaluation of the control parameter q solved by FEMuS. In particular, for a distributed control, q is
exchanged as a volumetric source for the temperature equation in OpenFOAM, while for the boundary
control, q is transferred as a boundary condition. For the purpose of this specific paper, we added
the possibility to exchange a normal gradient boundary condition from FEMus to OpenFOAM, as
requested by the Neumann boundary control formulation in (14). A schematic representation of the
coupling algorithm is presented in Figure 1, where ΩD and ΩN denote the Dirichlet and Neumann
boundaries, respectively.
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State code State variables

Control parameter Control code

Figure 1. Coupled algorithm diagram.

OpenFOAM

State equation

T

FEMuS

Control

q =





Q on Ω

TC on ΓD

H on ΓN

Adjoint equation

Ta

MED

routines

MED

routines

Figure 2. Coupled algorithm diagram.

We remark that, in the coupling between a finite volume and a finite element mesh, the interpola-
tion between the two computational grids assumes a pivotal role. Therefore, for the temperature field
T solved in OpenFOAM, we exploit a P0 − P2 interpolation towards FEMuS, where with Pi we denote
the polynomial of order i−th that approximates a numerical field. On the other hand, having solved
q after the conjugate gradient step, we apply a P2 − P0 interpolation from FEMuS to OpenFOAM, in
order to set the control q as the volumetric source/boundary condition for T.

In Algorithm 2 we have reported a schematic overview of the coupling algorithm between FEMuS
and OpenFOAM, including the routines employed. A brief description of each routine is reported on
the right. The interested reader can find details in[3].

The coupling algorithm can also be divided into two main steps. The first collects the routines
useful for the initialization of the interface between the two codes. Then, we have the iteration loop
with the data transfer between the two codes, including the convergence criterion. Regarding the first
block, the information related to both meshes is taken into account with the routine init_interface().
In fact, a MED mesh copy for each mesh is built knowing the connectivity map and the coordinate
point set (create_mesh()). After that, MED fields for all relevant variables in the exchange can be
built on top of the MED meshes. Each field is populated by the source code to prepare the transfer to
the target code. This step can be done considering a cell/node-wise initialization depending on the
source field type.

The first step of the iteration loop is to solve the state variable T in OpenFOAM and then extract
its values. After that, these values, centered on cells, are interpolated into the biquadratic finite
element mesh of FEMuS (P0 − P2) and then stored in the corresponding data structure of the latter
code. With this information, after the functional is evaluated, a convergence check is performed.
Subsequently, the FEMuS code is equipped with all the information to solve its set of equations, i.e.
the adjoint variable Ta and the control q. The finite element solutions of these numerical fields are then
interpolated from biquadratic FEM elements to piecewise value (P2 − P0) in order to transfer these
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data into the OpenFOAM data structure. Naturally, only the control q is transferred, using the routine
set_q_to_OF().

Algorithm 2 - Code Coupling

1: procedure main()
2: Initialization of OpenFOAM and FEMuS structures.

Initialization of interfaces both for FEMuS and OpenFOAM.

3: function init_interface()
4: Set interface name for reference at the supervisor level.
5: conn← get_mesh_connectivity() ▷ Get interface mesh connectivity
6: coords← get_mesh_coordinates() ▷ Get coordinates of mesh nodes
7: set_map_CodeFromToMED() ▷ Map mesh nodes↔MED mesh nodes
8: end function
9: function create_mesh()

10: insert cells with conn information into the MED mesh structure.
11: setup coords information into the MED mesh structure.
12: creation of MED mesh copy from the mesh of FEMuS/OpenFOAM.
13: end function
14: function init_med_field_on_nodes/cells()
15: assigns the MED field to the corresponding interface MED mesh.
16: allocate_med_array() ▷ MED array memory allocation
17: init_med_field() ▷ Set MED field values to zero
18: end function

Iteration loop

19: it = 0
20: while non stop do
21: Solve system of equations (T) with OpenFOAM.
22: get_T_from_OF() ▷ Extract field T solution from OpenFOAM
23: fill_med_array() ▷ Write field T solution into MED array
24: update_med_field() ▷ Set MED array values into MED field T
25: interpolation() ▷ Interpolate form P0 to P2 field from OF to F
26: set_T_to_F() ▷ Set field T solution into FEMuS
27: Evaluate Functional.
28: if convergence then
29: stop
30: end if
31: Solve system of equations (Ta, q) with FEMuS.
32: get_q_from_F() ▷ Extract field q solution from FEMuS
33: fill_med_array() ▷ Write field q solution into MED array
34: update_med_field() ▷ Set MED array values into MED field q
35: interpolation() ▷ Interpolate form P2 to P0 field from F to OF
36: set_q_to_OF() ▷ Set field q solution into OpenFOAM
37: it += 1
38: end while
39: end procedure

3. Numerical Results

In this section, we present some numerical results that outline the mathematical framework and
numerical implementation described above. Specifically, we compare an optimal temperature control
problem solved with two strategies. The first approach, which serves as a benchmark case, shows the
results of the uncoupled case, i.e. only the FEMuS code is employed. The second approach exploits
the coupling between FEMuS and OpenFOAM through the external library MEDCoupling for data
transfer, as explained in Section 2.

In both cases, we consider a square cavity as the problem domain, where a Poisson equation,
i.e., the transport equation for the temperature field, is treated as the state equation and ΓD and ΓN
represent boundaries with Dirichlet and Neumann conditions, respectively. The problem domain
with the boundary conditions is reported in Figure 3. In particular, the steady-state case with a null
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convective term has been implemented and solved, leading to a Laplacian term equal to a right-hand
side term in the form

∆T = Q . (24)

∇T · n = gn

∇T · n = gn

T
=

g d

T
=

g d

Q

ΓN

ΓN

Γ
D

Γ
D

Figure 3. Temperature problem on the cavity.

The source field Q and the boundary conditions are described according to the different types of
optimal control approach in the following sections. The boundary conditions gd, gn are considered
constant in ΓD and ΓN , respectively. Boundary-type controls, which involve boundary conditions,
are still initialized with gd or gn, so at each step, we impose at the boundary gd (or gn) plus Tc (or H),
where the control variable is initialized to zero.

The objective functional, which relates the state variable T with the desired temperature Td,
remains the same for each type of control. In particular, we have

F (T) = 1
2

∫

Ωd

|T − Td|2 dΩ , (25)

where Ωd is made up of two square subregions of the domain Ω. In Figure 4, a schematic representation
of the domain is depicted, where we have Ω = [0, L]2, with L = 0.01 m. In addition, for the target
regions, we have Ωd,1 = [L/5, 2L/5] × [L/5, 2L/5] and Ωd,2 = [3L/5, 4L/5] × [3L/5, 4L/5] with
targets Td,1 and/or Td,2, respectively.

ΩΩd,1

Ωd,2

Td,1

Td,2

Figure 4. Domain problem Ω with the target regions Ωd,1 and Ωd,2.

For each simulation, we have considered Td1 = −Td2.
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Regarding the controlled regions, for each simulation, the regularization term is assumed to be
solved on Ω. Therefore, the considered functional is

F (T, q) =
1
2

∫

Ωd

|T − Td|2 dΩ +
λ

2

∫

Ω
|q|2 dΩ . (26)

We recall that in the case of boundary control, the second integral on the right-hand side of (26) has a
meaning only on the controlled portion of the domain, which is a portion of Γ, thus on the Dirichlet
boundaries or on the Neumann ones.

Moreover, for each type of control, the results obtained with the coupled and uncoupled algo-
rithms have been compared. In particular, we have considered the same λ, ρ, and the same criterion
for the convergence. Specifically, considering the average functional of 10 iterations F̄i at the iteration
i, the convergence has been obtained by

|F̄i − F̄i−1|
Fi

< ε , (27)

where ε has been set equal to 10−9. The average functional F̄i has been used instead of Fi to avoid
false exits due to local plateaus encountered during oscillations in conjugate gradient descent.

A dimensionless formulation for the optimal control system is proposed to better show results with
different dimensions or physical constants. Thus, the dimensionless state variable T, the dimensionless
adjoint variable Ta and the dimensionless control q are introduced as

T∗ =
T − gd

Tre f − gd
, T∗a =

Taα

(Tre f − gd)L2 , q∗ =





Q∗ =
QL2

α(Tre f − gd)
,

T∗c =
Tc

Tre f − gd
,

H∗ =
HL

α(Tre f − gd)
,

(28)

where Tre f = |Td,1| = |Td,2|. Therefore, in our case, T∗ tends to −1 or 1 inside the controlled regions
Ωd,1 and Ωd,2, respectively. Similarly, the space coordinates x are adimensionalized via the the square
domain side L in x∗ = x/L. In order for the optimal control system to remain coherent during
the transition to these dimensionless variables, also the regularization factor λ must be considered.
Specifically, the following dimensionless transformations apply to the three types of control

λ∗dist =
λα2

L4 , λ∗Dir =
λ

L
, λ∗Neu =

λα2

L3 . (29)

In the following results, for the sake of simplicity, the parameter λ will always be presented with its
dimensional value, i.e., the value used in the simulations. However, its dimensionless value can be
derived using formulas (29), with L = 0.01m and α = 1.433 · 10−7 m2

s .
As mentioned in Section 2, one of the main issues related to the coupling of different codes

is the interpolation of the numerical fields between two different computational grids. Therefore,
it is important to take into account this aspect when we compare the numerical results between
an uncoupled and a coupled algorithm. If we consider the temperature field obtained through the
interpolation between the finite volume and the finite element grid, thus into FEMuS data structures,
we should rewrite the functional in the case of the coupled algorithm. Therefore, considering the
interpolator I(T) : T(P0)→ T(P2) we have

F (I(T), q̃) =
1
2

∫

Ωd

|I(T)− Td|2 dΩ +
1
2

∫

Ωc
|q̃|2 dΩ , (30)
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where the control q̃ is obtained from the adjoint equation computed with the interpolated temperature,
i.e.

∆T̃a = I(T)− Td . (31)

It is easy to understand that we have two different effects from the interpolation routine on the
system of equations. The first interpolation acts directly on the functional, since we compute, in the
FEM grid, the distance from the target temperature considering directly the interpolated temperature.
The second interpolation, which indirectly arises from the control q̃, is evaluated considering a different
equation for the adjoint variable. In fact, the effect of the interpolation can be seen on the right-hand
side of (31), even if the Laplacian operator on the left-hand side acts as a smoother function, thus the
error coming from the interpolation is lower. Naturally, we should also consider the interpolation error
coming from the data transfer in the opposite direction, i.e. from FEMuS to OpenFOAM.

Regarding the computational grids employed for the coupling algorithm, we set to have the same
number of degrees of freedom between the two codes. For this reason, to clarify the notation when the
size of a grid is built with even numbers, e.g., 40× 40, we refer to the finite element grid, where these
numbers represent the elements’ number nel . As a result, the corresponding FV grid size is represented
by odd numbers, such as 81× 81. Indeed, we recall that, considering biquadratic elements for finite
element grids, its degrees of freedom are equal to (2 nel + 1)2 when considering a square domain with
a structured quadrilateral mesh.

3.1. Distributed Control

In this section, we report the numerical results related to the distributed control, with both
numerical methods, i.e. the coupled and uncoupled algorithm. We recall that for the distributed case,
the control q acts as the volumetric source on the right-hand side of the temperature equation, i.e.,
Q. Regarding the boundary conditions, we have homogeneous Dirichlet and Neumann boundary
conditions on ΓD and ΓN , respectively.

In Figure 5 the control Q∗ and the non-dimensional state variable T∗ are reported considering
different values of the parameter λ, from 102 to 10−2. In particular, the plots show the variables as a
function of the dimensionless length r∗ = d/L, which corresponds to the diagonal of the domain (from
the lower left corner to the upper right corner), with a value ranging from 0 to

√
2 L. The coordinate r∗

allows us to evaluate the state and the control variable in both controlled regions. In the following, we
denote by UC the uncoupled results (circular marker), while with the label C the coupled codes results
(solid line). The target value Td = ±1 is represented with the solid line (red).

In Figure 5 we show the different behavior of the control parameter Q with different values of λ

and the corresponding effect on the state variable in the controlled regions. As λ decreases, the control
Q∗ becomes less smooth and produces a sharp behavior near the controlled regions, as expected. In
fact, the case with λ = 10−2 represents the less regularized solution, with corresponding temperatures
in the controlled region very close to the target value. Otherwise, with a λ = 102 the control Q∗ has a
low effect on the state variable that cannot reach the target value in the controlled regions.

In Figure 6, a surface plot of the non-dimensional temperature and the non-dimensional control
over the whole domain is reported. Specifically, we display only the case with the lowest λ, considering
a 40× 40 finite element grid. The symmetric behavior of these variables is shown. Moreover, a sharp
trend of Q∗ is present near the target regions, where several peaks can be observed. Regarding the
temperature field, as expected, two plateaus are present in the target regions, with opposite values
close to 1 and −1.
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Figure 5. From left to right, control Q (top) and temperature T∗ (bottom) for different λ = 102, 100, 10−2

as a function of the non-dimensional diagonal r∗, for a 40× 40 grid. On the right, the case with a grid
80× 80 is also reported.
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Figure 6. Dimensionless temperature T∗ (on the left) and Q∗ (on the right).

Table 1 reports the functional value and the number of iterations for the three different cases
previously presented. the table lets us understand better the numerical results depicted in Figure 5.
Indeed, for different λ cases, the first column represents the minimum of the functional, while the
second column reports the number of iterations needed to reach the convergence condition. The first
row reports the results for the coupled case, while the second row represents the uncoupled scenario.
We recall that these results refer to a computational FEM grid with n× n elements and a corresponding
2n + 1× 2n + 1 grid for the FVM to have the same number of degrees of freedom. Regarding min(F ),
with larger λ values, we get a good match for both algorithms, while a larger difference can be noted
for the lowest value of λ.

For λ = 10−2, we observe some discrepancies between coupled and uncoupled results. This
phenomenon can be explained by considering the errors introduced during field interpolation and data
transferred from one code to the other. As the optimal state is approaching, the distance |T− Td| of the
state from the desired temperature decreases, making the interpolation error on T, at first negligible,
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increasingly important. This interpolation error limits the achievement of the real optimum state since
we are not able to obtain a sufficiently accurate control.

Table 1. Minimum of the functional and number of iterations for the different cases of the distributed
control with both algorithms. In the last column, for the lowest λ value, the results for the refined grid
are also reported.

λ 102 100 10−2 − 10−2(refined)

min(F ) · 106 niter · 10−2 min(F ) · 107 niter · 10−2 min(F ) · 109 niter · 10−3

C 6.97 50.9 1.87 19.9 3.24− 3.02 2.1− 4.1

UC 6.91 6 1.83 4 2.96− 2.95 2.7− 1.2

The interpolation error can be improved by increasing the number of degrees of freedom. In fact,
in Figure 5 on the right, we have also reported the same case of λ = 10−2 obtained with a refined
grid, with a dashed line for the coupled case and with square markers for the uncoupled one. For
the uncoupled case, small differences can be noticed because the simulation has already found its
optimum, but in the coupled approach, improvement can be obtained to stir Q very close to the
uncoupled results. These conclusions can be drawn from Table 1, where the distance between the
two minima decreases considering the refined solution. In addition, the relative errors between the
functional minimum increase by decreasing the value of λ, going from 1 to 10%. However, the latter
value corresponding to the lowest λ can be improved until around 2% with a refined grid.

A measure of the quality of the optimization convergence can be obtained using the Euler
expression defined in (7). In Figure 7 we compare the obtained control Q with its analytic optimal
expression − Ta

λ . We can notice that, for the uncoupled approach, there is a perfect agreement between
the two lines, while some differences are present for the coupled case. As said before, we obtain
better results considering the refined coupled approach, which is shown on the right. This analysis
reflects the considerations made earlier about the functional minimum and validates the accuracy of
the uncoupled simulation, which is used as a reference case.
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Figure 7. Optimal control Q and its analytic expression at the optimum state. Uncoupled case at the
left, coupled case in the middle and the refined coupled case on the right.

The number of iterations is different between the two algorithms. Actually, this is true considering
the first two values of λ where the coupled case needs more iterations to satisfy the convergence
condition. For example, considering λ = 102, we have an increase of almost one order of magnitude
for the coupled case. However, this difference decreases when λ decreases since for the most controlled
case, i.e., λ = 10−2, the number of iterations is similar. In the last column, we report for the lowest λ

the results for a refined case. Refining the grid, we notice that we reach a lower functional value while
the number of iterations increases.

For the distributed case, we also investigate the influence of the difference between the degrees of
freedom of the two meshes. This comparison aims to evaluate the impact of the MED-interpolating
function on the overall behavior of the algorithm, especially for the shape of the control Q∗. Therefore,
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we consider three different grids of the FVM code (OpenFOAM), by fixing the FEM computational
grid with the same degree of freedom as the intermediate FVM grid. On the other hand, the same
simulations have been performed considering a fixed FVM grid and varying the FEM one. The results
have been reported in Figure 8, where F denotes the FEMuS grid and OF the OpenFOAM grid. For
these results, we have considered only the case with λ = 10−2, and the control Q∗ is reported as a
function of the dimensionless diagonal coordinate r∗.
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Figure 8. Control Q for different combinations of degrees of freedom between the two codes as a
function of r∗. On the left the FEM grid (F) is fixed, on the right the FVM grid (OF) is fixed.

From Figure 8, one can see the difference in the control Q∗ as a function of the computational
grids. On the left, the change of the FVM grid seems to have a small influence on the solution of the
equation systems. On the right side, the situation is different when considering the coarsest FEM grid,
while for finer grids, the results are comparable with the picture on the left.

We deduce that, at least for this application, the OpenFOAM grid has much less influence
compared to the FEMuS grid on the shape of the control. The interpolation error occurs when the
projected field no longer provides a good approximation of the original one, i.e. when the target grid is
not fine enough. Reconfirming the observations made earlier, this shows that the error occurs when the
temperature field is projected from the P0 grid to the P2 of the FEMuS grid, so when the interpolation
control is not sufficiently detailed the error becomes significant.

In table 2, we can confirm the effectiveness of grid refinement in the two codes: we have a much
greater impact on the minimum of the functional by varying the FEMuS mesh compared to varying
the OpenFOAM mesh. Moreover, it is interesting to note that the minimum number of iterations
corresponds to the case where the two meshes have the same degrees of freedom.

Table 2. Minimum of the functional and number of iterations for the case λ = 10−2 varying the
grid ratio of the two codes. In the first row, the FEMuS mesh is kept fixed (case A: F 40×40) and the
OpenFOAM mesh is varied. In the second row, the opposite situation is reported (case B: OF 81×81).

OF 41×41 OF 81×81 OF 161×161

min(F ) · 109 niter · 10−3 min(F ) · 109 niter · 10−3 min(F ) · 109 niter · 10−3

A 3.30 4.4 3.24 2.1 3.22 2.9

F 20×20 F 40×40 F 80×80

min(F ) · 109 niter · 10−3 min(F ) · 109 niter · 10−3 min(F ) · 109 niter · 10−3

B 4.47 6.2 3.24 2.1 3.04 3.0

3.2. Boundary Control

In this section, we report the boundary control cases, for two types of boundary conditions,
Dirichlet and Neumann. The volumetric source of the state equation is equal to zero, leading to
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a Poisson equation for T. The boundary conditions correspond to the control q separately for the
Dirichlet and the Neumann case, where the uncontrolled pair of boundaries stay homogeneous.

3.2.1. Dirichlet Boundary Control

For the Dirichlet boundary control, we have also performed a standard grid convergence test
to verify the goodness of the numerical results. In Figure 9, on the left, the state variable T∗ in the
controlled domain, that is, the control parameter q (T∗c ), which is imposed as a boundary condition, is
reported. Since the simulation is symmetric with respect to the y axes, we report only one boundary.
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Figure 9. Grid convergence for the Dirichlet boundary control for λ = 10−6 for the coupled (left) and
uncoupled (right) case. Non-dimensional temperature T∗c on the left controlled boundary for three
different grid sizes.

From Figure 9, a good grid convergence can be seen for both algorithms, confirming the reliability
of the numerical approach. In fact, the finest grid presents a solution that tends to be smooth also close
to the boundary of the control region. The boundary of Γ, corresponding to the corner nodes of the
domain, is the most problematic region due to q being set to zero there.

In Figure 10, the control T∗c and the state variable T∗ have been reported for the Dirichlet boundary
control for three values of λ equal to 10−4, 10−6 and 10−8. The notation adopted in the graphs is the
same of the distributed case. Since the results are symmetric with respect to the line x = 0.5, the control
is reported only for the left boundary, while for the state variable, the plot has been made considering
the match with the target region Ωd,1.

We can draw similar conclusions to those in the distributed case. Specifically, a good match with
the temperature target value can be obtained with a low value of λ, which corresponds to the less
regular trend of the control T∗c . For this case, it can be noticed a flat behavior of T∗ very close to 1, i.e.
the red line, in correspondence with the controlled region Ωd,1. The distance with the target region is
higher considering the case with λ = 10−4, while with λ = 10−6, the temperature T∗ is able to only
intersect Td without reproducing its constant value in the entire Ωd,1 region.

In Table 3, the functional minimum and the number of iterations are reported for the Dirichlet
boundary control. We can observe a better behavior of the coupled code with respect to the uncoupled
case on both the minimum reached and the number of iterations. In any case, the differences between
the two cases are minimal.

Table 3. Minimum functional and number of iterations for the different cases of the Dirichlet boundary
control with both algorithms for a 40× 40 grid.

λ
10−4 10−6 10−8

min(F ) · 106 niter · 10−2 min(F ) · 107 niter · 10−2 min(F ) · 107 niter · 10−3

C 7.09 9 6.77 5 1.17 3.4

UC 7.18 5 6.91 13 1.19 8.3
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Figure 10. From left to right, control T∗c (top) and temperature T∗ (bottom) for different λ =

10−4, 10−6, 10−8 as a function of the non-dimensional coordinate y∗ respectively on the left wall
for the control (at x∗ = 0) and in the middle of the target region 1 for the state variable (x∗ = 0.3), for a
40× 40 grid.

3.2.2. Neumann Boundary Control

We present now the numerical results obtained with the Neumann boundary control, follow-
ing (17). In this case, three values of λ have been used to test the influence of the control H on the state
equation. In Figure 11, the numerical results for the Neumann boundary control are reported with the
considered λ. Due to symmetry, we report only one of the two boundaries (the bottom one) for the
control H.

Similar comments of the previous cases are true for the Neumann boundary control as well. A
good agreement between the state variable and the target temperature can be obtained only with small
values of λ since, for higher values of this parameter, the control H∗ does not sufficiently influence
the temperature T∗. This consideration is graphically represented in Figures 11, where the variables
are plotted as a function of the distance between the red line and the solutions for T∗. For low values
of λ, the major difference is present near the target region, whereas for the uncoupled control, H∗

seems to be more flat with respect to the coupled result. Once again, we have reported the same case
of λ = 10−1 obtained with a refined grid, with a dashed line for the coupled case and with square
markers for the uncoupled one. Similarly, as in the distributed case, we can observe that the coupled
and uncoupled results become similar as the grid becomes finer. On the other hand, these differences
do not influence the state temperature T∗, which is in perfect agreement with the desired value for
both algorithms. Small differences can be noticed for x∗ ≈ 0.8 (far from the target region), where the
uncoupled algorithm T∗ reaches a lower value.

In Table 4, the functional minimum value and the number of iterations for both algorithms are
reported. For the lower case of λ, which is the last column on the right, the results on a refined grid
are also investigated. In this case, the number of iterations increases both in the coupled and in the
uncoupled codes, decreasing the value of λ. For high values of λ, the functional minimum is similar in
both algorithms, while the coupled case presents a higher number of iterations. A slightly different
min(F ) can be seen for the lowest value of λ. The case with λ = 10−1 shows the same pattern as
the distributed case above. For finer grids on the coupled code, we obtain a lower minimum of the
functional with a higher number of iterations, while in the uncoupled case, the number of iterations
decreases. With refined meshes, the difference between the values of the functional minimum decreases,
confirming the improvement of the results considering finer computational grids. This similarity
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can be justified considering the fact that both distributed and Neumann cases share the same control
expression based on the adjoint temperature. In fact, this behavior is not present in the Dirichlet control
since the gradient of the adjoint temperature is used as the control parameter.
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Figure 11. From left to right, control H∗ (top) and temperature T∗ (bottom) for different λ =

101, 100, 10−1 as a function of the non-dimensional coordinate x∗ respectively on the lower wall for H∗

(at y∗ = 0) and in the middle of the target region 1 for T∗ (y∗ = 0.3), for a 40× 40 grid. For the case
λ = 10−1 the results for a 80× 80 grid are also reported.

Table 4. Minimum of the functional and number of iterations for the different cases of the Neumann
boundary control with both algorithms for a 40× 40 grid. In the last column, for the lowest λ value,
the results for the refined grid are also reported.

λ
101 100 10−1 − 10−1(refined)

min(F ) · 106 niter · 10−3 min(F ) · 107 niter · 10−3 min(F ) · 107 niter · 10−3

C 1.27 1.1 6.09 5.2 2.24− 2.16 19.2− 96.4

UC 1.28 3.8 6.12 18.1 1.99− 1.97 39.0− 10.5

4. Conclusions

In this work, an optimal control problem has been presented considering the steady-state heat
equation with a vanishing convective term. Specifically, the minimization problem has been solved
with the adjoint equation, while the control parameter is handled with a standard conjugate gradient
technique.

Moreover, we have compared the simulation results considering also a numerical code coupling
between the finite element FEMuS code and the finite volume code OpenFOAM. In particular, while
the state equation has been solved in OpenFOAM, the adjoint and the control are solved in FEMuS.
The data transfer has been managed by the external library MEDCoupling, which is able to take the
state variable T from OpenFOAM for the FEMuS adjoint equation. The inverse path is followed by
the control variable Q, obtained from FEMuS and transferred to OpenFOAM as the RHS (distributed
control) or as a boundary condition (boundary control).

The numerical results obtained with the coupling framework are compared with the ones resulting
from the standalone FEMuS solution. For the three types of control problems, a good agreement
between the numerical solutions of the two algorithms has been obtained. Regarding the interpolation
error, some differences can be seen considering low values of λ since, for these cases, the result of the
grid interpolation of T affects the control q, which is very sharp.
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Extension to other systems of equations, from Navier-Stokes to turbulence modeling, will be
studied in future work, with the purpose of searching boundary data that optimize multiphysics
problems already validated in open-source codes such as OpenFOAM.
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