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Abstract: Implementing models able to estimate house values accurately is a great challenge for real estate 

market stakeholders. This concerns homeowners, buyers and sellers, real estate agents and policymakers. This 

paper presents a powerful novel approach to this problem by utilizing a model based on Kolmogorov-Arnold 

Networks (KANs). KAN Networks are Neural Networks (NNs) based on Kolmogorov-Arnold theorem which 

is a mathematical concept with wide applicability. The experimental findings indicate that the KAN-based 

model can be used to predict housing prices with great success. Two different datasets were used to test the 

validity of the KAN model, and the results show that the model can outperform existing state-of-the-art 

methods that are used to predict house prices. One of the key contributions of this study is that by achieving 

more precise house price forecasts, the model can support better decision-making processes for various real 

estate stakeholders. Furthermore, the findings suggest the broader applicability of Kolmogorov-Arnold 

Networks beyond just real estate. This modeling approach holds promise for addressing other complex 

prediction tasks in data science. Overall, this study presents an innovative solution to the longstanding 

challenge of accurate house price estimation. The strong performance of the KAN model underscores its 

potential to deliver tangible benefits for the real estate industry and beyond. 

Keywords: Kolmogorov-Arnold Networks (KANs); real estate forecasting; house price prediction; 

Neural Networks (NNs); deep learning; regression; artificial intelligence; machine earning 

 

1. Introduction 

The real estate sector plays a vital role in the economy and includes various domains such as 

residential, commercial, industrial and retail. It relates to a broad spectrum of activities centered on 

purchase, sale, rental, lease, and management of properties [1]. Its dynamics and developments have 

a pertinent impact on people, companies, and state authorities around the globe [2]. 

The residential real estate sector is clearly an integral part of the overall property market. 

Specifically, this is for the purchase and sale or leasing of residential property (single-family homes, 

townhomes, condominiums)[2]. This segment has a huge impact for the overall economy [3]. 

Residential properties represent about 65% of the entire real estate market in the USA. Home sales in 

the United States hit an all-time high of nearly seven million in 2021, after consistently increasing 

from a low level that year. The average price per square foot of floor space in new single-family 

housing fell after the great financial crisis and then stagnated for several years. Since 2012, the price 

has continuously increased, reaching approximately 144 U.S. dollars per square foot in 2021. In the 

same year, the average sales price of a new home was over 454,000 U.S. dollars and in 2022, house prices 

increased further1. 

The above indicate that understanding its current state, trends, and prospects is essential for both 

industry participants and investors. Like the broader real estate market, the house real estate domain is 

 
1 https://www.statista.com/statistics/682549/average-price-per-square-foot-in-new-single-family-

house s-usa/ 
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subject to various factors that influence its growth and performance. Searching for the factors that 

have an impact on the prices of houses has been a topic of interest for many years. House prices are 

one of the most important economic indicators and their values are a vital economic gauge. Changes 

in prices have substantial consequences for households, policymakers, investors etc. Understanding 

the dynamics of house prices is important for assessing the health of the housing market and crucial 

for evaluating its state [4]. Also knowing how house prices work helps investors predict trends, 

forecast future changes and make successful decisions about buying and selling property [5]. 

Some factors and trends that influence the price of a house are the following [5]: 

• Factors 

o Location and accessibility 

o Size and layout of the house 

o Condition and age of the property 

o Amenities and features of the property 

o Supply and demand in the local market 

o Interest rates and mortgage availability 

o Economic conditions and job growth in the area 

o Tax laws and regulations 

• Trends: 

o Use of technology in the industry 

o Increasing demand for sustainable and energy-efficient homes 

o Impact of the COVID-19 pandemic on housing preferences and work-from-home options 

o Development of smart homes and home automation technology 

o Growing interest in walkable neighborhoods and urban areas 

o Rising demand for affordable housing options 

o Fluctuations in interest rates and overall economic conditions. 

Researchers and industries are actively working on projects related to predicting house prices 

[5]. Machine learning techniques and Deep Neural Networks (Deep NNs) have been widely 

employed for this purpose [6]. In this study, a novel approach using a Kolmogorov-Arnold Network 

(KAN) is proposed. Unlike the static, non-learnable activation functions in MLPs, KANs incorporate 

univariate functions that act as both weights and activation functions, adapting as part of the learning 

process. By decentralizing activation functions to edges rather than nodes, KANs align with the 

Kolmogorov-Arnold representation theorem, enhancing model interpretability and performance [7]. 

These models are designed to handle complex, non-linear relationships within the data, capturing 

intricate patterns that traditional models might miss. KANs excel in representing highly non-linear 

functions, making them particularly suited for customer behavior analysis, where interactions 

between features can be complex and multi-faceted. By leveraging the Kolmogorov-Arnold 

representation theorem, these networks can approximate any continuous function, providing high 

flexibility and accuracy in prediction problems[8]. 

The scientific and potential social contributions of this study can be summarized as follows: 

1. Advancement in House Price Estimation: This research introduces a novel approach to house 

price estimation by utilizing Kolmogorov-Arnold Networks (KANs), a method that effectively 

models complex, nonlinear relationships. By outperforming state-of-the-art techniques, the 

study demonstrates KANs’ ability to deliver more accurate predictions, which are crucial for 

various stakeholders in the real estate market, including buyers, sellers, investors, and 

policymakers. 
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2. Economic and Social Impact: By improving prediction accuracy in housing price estimation, this 

research contributes to a more transparent and informed real estate market. Enhanced predictive 

capabilities help stakeholders make better decisions, optimize investments, and mitigate risks. 

Furthermore, the insights gained from the study can lead to the development of smarter urban 

planning and housing policies, ultimately benefiting society by fostering equitable and 

sustainable growth in the housing sector. 

3. Methodological Contribution: The study expands the methodological landscape in regression 

problems by showcasing KANs as a powerful alternative to traditional models such as gradient 

boosting algorithms, neural networks, and ensemble methods. The work highlights KANs’ 

capacity to generalize well in scenarios with high-dimensional, intricate datasets, providing a 

robust framework for tackling similar regression challenges across domains. 

4. Broader Applicability Across Industries: While the focus is on house price estimation, the 

versatile nature of KANs offers potential applications beyond real estate. KANs can be applied 

in areas such as financial modeling, healthcare predictions, environmental analysis, and supply 

chain optimization. The study underscores the adaptability of this approach, setting a precedent 

for its application in diverse regression and prediction tasks. 

This work not only establishes the utility of KANs in regression problems but also sets the stage 

for future exploration of their potential across a wide range of applications. Section 2 provides an 

overview of related works in the field of KANs and house price prediction, while section 3 explains 

the research methodology and the proposed KAN model in detail. In sections 4 and 5, the 

experiments are described, and the results are discussed. Finally, section 6 concludes the paper and 

provides insights for future research in this area. 

2. Literature Review and State-of-the-Art 

2.1. Kolmogorov Arnold Neural Networks Approaches 

Liu et al. introduced Kolmogorov-Arnold Networks (KANs), a novel neural network 

architecture inspired by the Kolmogorov-Arnold representation theorem, and showed that it has 

significant advantages over traditional Multi-Layer Perceptrons (MLPs)[8]. KANs are designed to 

effectively capture compositional structures in data, enabling them to approximate complex 

functions, such as exponential and sine functions, with greater efficiency and accuracy. The authors 

demonstrate that KANs not only outperform MLPs in terms of accuracy, particularly in small-scale 

AI and science tasks, but also enhance interpretability by revealing the underlying compositional 

structures in symbolic formulas. Furthermore, KANs can utilize grid extension techniques to further 

improve their performance, positioning them as a promising foundation for future AI applications in 

scientific discovery and mathematical exploration. 

Moradi et al. (2024) investigate the potential of Kolmogorov-Arnold Networks (KANs) as a 

transformative approach to deep learning, particularly in the context of autoencoders for image 

representation tasks. The study compares KAN-based autoencoders against traditional 

Convolutional Neural Networks (CNNs) across several datasets, revealing competitive 

reconstruction accuracy and suggesting KANs' viability in advanced data analysis applications [9]. 

Jiang et al. present a novel hybrid model combining Kolmogorov-Arnold Networks (KANs) and 

Artificial Neural Networks (ANNs) for short-term load forecasting (STLF), addressing the limitations 

of traditional ANN approaches. By leveraging KANs to identify essential periodic and nonlinear 

patterns in load data, while utilizing ANNs to fit the residual components, the proposed method 

enhances both interpretability and predictive accuracy. The integration of regularization techniques 

ensures that KAN-derived predictions maintain dominance, leading to clearer analytical expressions 

for forecasting. Experimental validation against various models demonstrates superior performance 

of the hybrid approach, marking a significant advancement in STLF methodologies [10]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2024 doi:10.20944/preprints202412.1280.v1

https://doi.org/10.20944/preprints202412.1280.v1


 4 

 

Yang et al. propose the Kolmogorov–Arnold Transformer (KAT), an innovative architecture that 

enhances traditional transformer models by substituting multi-layer perceptron (MLP) layers with 

Kolmogorov-Arnold Network (KAN) layers [11]. This approach significantly improves 

expressiveness and performance, addressing key challenges in integrating KANs into transformers 

and paving the way for more efficient deep learning models. 

Hollόsi et al. present a study focused on enhancing road safety by detecting mobile phone usage 

among bus drivers [12]. The research utilizes Kolmogorov-Arnold Networks (KAN) to improve the 

accuracy of driver monitoring systems (DMS) in compliance with regulations against phone use 

while driving. 

2.2. Literature Review House Price Prediction 

Predicting house prices is a popular task in machine learning, and there are numerous state-of-

the-art papers that use neural networks (NNs) and other machine learning techniques for this task. 

Limsombunc et al. is one of the first researches that demonstrated that the artificial neural network 

model has significant potential in predicting house prices The purpose of this research is to evaluate and 

compare the effectiveness of the hedonic model and an artificial neural network model in predicting 

house prices. The study uses a sample of 200 houses in Christchurch, New Zealand obtained 

randomly from the Harcourt website, taking into account factors such as house size, age, type, 

number of bedrooms, bathrooms, garages, amenities, and location [13] 

Afonso et al. propose a hybrid model that combines deep learning RNN networks and random 

forest algorithms for predicting housing prices. The model uses features extracted from images and text 

data of the houses, along with other relevant numerical data. The results show that the proposed model 

outperforms both standalone deep learning and random forest models for prediction of housing prices 

in Brazil [14]. 

Nouriani et al. propose a novel approach for estimating housing prices using a combi- nation of 

interior and exterior images of houses, as well as satellite images. The proposed method utilizes deep 

convolutional neural networks to extract features from images and then (along with other house features) 

employs multiple regression models to estimate house prices based on these features [15]. 

Mora_Garcia et al. present a study on the use of machine learning algorithms for housing price 

prediction in California during the COVID-19 pandemic. The authors analyzed different regression 

models, including linear regression, decision trees, and other to predict the price of houses in different 

regions of California. The study also evaluated the impact of the pandemic on the housing market 

and the performance of the different models [6]. 

Kim et al. explore the application of various machine learning algorithms, including support 

vector machine, random forest, XGBoost, LightGBM, and CatBoost, as automatic real estate valuation 

models. The study involves analyzing approximately 57,000 records on apartment transactions in 

Seoul in 2018 and proposes combination methods to improve the models' predictive power. The 

findings suggest that ML-based predictors outperform conventional models, and an efficient 

averaging of the predictors can improve their predictive accuracy. Additionally, ML algorithms can 

recommend which algorithm should be selected for making predictions [16]. 

Joshi et al. proposed to use multiple different model which can be used for prediction and 

focuses on more accurate results. They proposed to use ensemble learning method and combine 

multiple ML models to improve the results [17]. 

Ragb et el. propose a hybrid GRU-LSTM model for real estate price prediction. The model 

combines the strengths of both GRU and LSTM recurrent neural networks. The results of these 

experiments in Boston dataset showed that the proposed model has better performance when the 

networks are used in the fusion process than when they act individually [18]. 

3. Materials and Methods 

The research methodology consists of the following phases (Figure 1): 

1. Literature Review 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2024 doi:10.20944/preprints202412.1280.v1

https://doi.org/10.20944/preprints202412.1280.v1


 5 

 

First, a thorough literature review was made to identify state-of-the-art models and available 

datasets. This step was crucial for deciding which models will be implemented and compare the 

proposed KAN-based model with them in the corresponding datasets. 

2. Data Collection and Preprocessing 

After that, data collection, preprocessing and cleaning to ensure the quality and consistency of 

the data for subsequent analysis. Next section provides all the necessary details. 

3. Model Development and Validation 

State-of-the-art models found in the literature were developed and validated, specifically 

tailored for regression and house price prediction task. 

In detail, the following deep learning neural network models were implemented:  

• Proposed ΚΑΝ 

Kolmogorov–Arnold Networks (KANs) are designed based on the Kolmogorov–Arnold 

theorem, which asserts that any multivariate continuous function can be represented as a finite sum 

of univariate functions. This philosophy forms the backbone of KANs, where the network 

architecture is structured to decompose a complex multivariate function into simpler univariate 

components and their interactions. The mathematical representations for the multivariate function 

and the output neuron are given below: 

𝐌𝐮𝐥𝐭𝐢𝐯𝐚𝐫𝐢𝐚𝐭𝐞 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧: 𝒇(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) =  ∑ 𝜱𝒒

𝟐𝒏+𝟏

𝒒=𝟏
(∑ 𝝋𝒑,𝒒(𝒙𝒑)

𝒏

𝒑=𝟏

) (𝟏) 

𝑶𝒖𝒕𝒑𝒖𝒕 𝑺𝒕𝒂𝒕𝒆: 𝒚 =  ∑ 𝜱𝒒

𝑸

𝒒=𝟏
(∑ 𝝋𝒑,𝒒(𝒙𝒑)

𝒏

𝒑=𝟏

) (𝟐) 

Where Φq(u)=tanh(u) or Φq(u)=max(0,u) (ReLU) 

• Multilayer Perceptron (MLP) 

The Multilayer Perceptron (MLP) is a type of feedforward neural network comprising an input 

layer, one or more hidden layers, and an output layer. Each layer is fully connected to the subsequent 

layer, and neurons use an activation function to introduce non-linearity. The mathematical 

representation for a neuron in a hidden layer is given by: 

h = f(Wx + b)   (3) 

Where: 

- h is the output of the neuron 

- W is the weight matrix 

- x is the input vector 

- b is the bias vector 

- f is the activation function (e.g., ReLU, sigmoid) 

• Gated Recurrent Unit (GRU) 

The Gated Recurrent Unit (GRU) is a variant of the Recurrent Neural Network (RNN) that 

addresses the vanishing gradient problem through gating mechanisms[19]. GRUs utilize reset and 

update gates to control the flow of information. The mathematical formulations are the following: 

Update Gate: 𝒛𝒕 =  𝝈(𝑾𝒛 ·  [𝒉{𝒕−𝟏}, 𝒙𝒕] + 𝒃𝒛) (4) 

Reset Gate: 𝒓𝒕 =  𝝈(𝑾𝒓 ·  [𝒉{𝒕−𝟏}, 𝒙𝒕] +  𝒃𝒓) (5) 

Candidate Hidden State: 𝒉𝒕̃ = 𝒕𝒂𝒏𝒉(𝑾𝒉 · [ 𝒓𝒕 ⊙ 𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒉) (6) 

Hidden State: 𝒉𝒕 = (𝟏 − 𝒛𝒕) ⊙ 𝒉𝒕−𝟏 + 𝒛𝒕 ⊙ 𝒉𝒕̃ (7) 

• Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) network enhances the RNN by incorporating memory 

cells and three gating mechanisms: input, forget, and output gates[19]. These gates enable the model 

to retain long-term dependencies. The mathematical operations are provided below: 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2024 doi:10.20944/preprints202412.1280.v1

https://doi.org/10.20944/preprints202412.1280.v1


 6 

 

Forget Gate: 𝒇𝒕 =  𝝈(𝑾𝒇 ·  [𝒉{𝒕−𝟏},  𝒙𝒕] + 𝒃𝒇) (8) 

Input gate: 𝒊𝒕 =  𝝈(𝑾𝒊 ·  [𝒉{𝒕−𝟏}, 𝒙𝒕] + 𝒃𝒊) (9) 

Candidate Cell State: 𝑪𝒕̃ = 𝒕𝒂𝒏𝒉(𝑾𝒄 · [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒄) (10) 

Cell State Update:  𝑪𝒕= 𝒇𝒕 ⊙  𝑪𝒕−𝟏 + 𝒊𝒕 ⊙ 𝑪𝒕̃ (11) 

Output Gate: 𝒐𝒕 =  𝝈(𝑾𝒐 ∗  [𝒉𝒕−𝟏, 𝒙𝒕] +  𝒃𝒐) (12) 

Hidden State: 𝒉𝒕 =  𝒐𝒕 ⊙ 𝐭𝐚𝐧 𝐡(𝑪𝒕) (13) 

• Regression-Based Models 

These models are primarily focused on fitting data through regression techniques. First, Linear 

Regression (LR) was utilized. Linear Regression tries to fit a straight line to minimize errors between 

predictions and actual values. Also. Random Forest Regressor was developed and tested. This 

algorithm combines multiple decision trees by averaging predictions for robustness. 

• Boosting-Based Models 

These models use boosting techniques to combine weak learners (e.g., decision trees) into a 

strong ensemble. XGBoost, CatBoost and LightGBM were implemented and tested [20–22]. 

4. Integration and Testing - Experiments 

Comprehensive testing was conducted to evaluate the performance of the models. Two widely-

used datasets were utilized for conducting the experiments, namely the Greece listings2 and the 

California house pricing 3 . Metrics such as MAE RMSE and SMAE were used to assess model 

effectiveness. Based on testing outcomes, iterative refinement of the models was undertaken to 

enhance their performance and reliability. The next section provides detailed information about the 

experiments and the results. 

 

Figure 1. Research Methodology. 

4. Results 

The performance of the models was evaluated using Mean Absolute Error (MAE) Mean Squared 

Error (MSE) and Symetric MAE (SAME). In both situations, 90% of the records were randomly 

assigned for training the models, while 10% were used for testing. The experiments were carried out 

in Google Colab using the Python programming language and its relevant libraries (e.g. Deep-KAN 

for implementing the Kolmogorov-Arnold Network and TensorFlow for MLP and GRU-LSTM). To 

ensure a fair comparison between the models in predicting the house prices the study adhered to the 

following principles: 

 
2 https://www.kaggle.com/datasets/argyrisanastopoulos/greece-property-listings 

3 https://www.kaggle.com/code/ahmedmahmoud16/california-housing-prices 
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(a) Exclusion of Feature Extraction Models: No feature extraction methods, such as autoencoders or 

Boltzmann Machines, were used beforehand. This decision was made to focus exclusively on the 

performance of the neuron classes themselves. 

(b) Model Optimization: The most effective configuration parameters (number of layers, neurons, 

optimizer, regularization, biases etc.) for each model were identified through hyperparameter 

tuning, which is a critical aspect of model development and validation. Hyperparameters play 

a pivotal role in defining both the structural and operational characteristics of a model, 

significantly influencing its performance. The prediction models underwent meticulous 

hyperparameter tuning using a combination of techniques. The process began with simpler 

methods, such as manual trial-and-error, and progressed to more systematic approaches, such 

as grid search. Grid search involves selecting a subset of the hyperparameter space and 

exhaustively testing different combinations. Table 1 below shows the optimal values for the 

KAN-based model in Datasets A and B. 

Table 1. Optimal Parameters for KAN. 

Parameter 
Optimal Values 

Dataset A 
Optimal Values Dataset B 

Model Architecture 256-128-64-32-1 50-40-30-20-1 

Optimizer Adam Adam 

Activation Function ReLU ReLU 

Number of knots 5 5 

Spline Layer 9 9 

Learning Rate 0.001 0.01 

Batch size 8 8 

Number of Epochs 200 200 

Dataset A – Greece Listings 

The Greece House Listing dataset provides information on numerous properties for sale in 

Greece. The dataset comprises 20,000 rows and 25 columns, where each row represents a distinct 

property for sale. The columns that are included are the following: 

• location_name (Municipal of the house. Categorical feature. 73 unique values. Most common 

Athens 21%). 

• location_region (Region of the house. Categorical feature. Possible values: Attiki/Thessaloniki. 

Most common Attiki 94%). 

• res_type (Type of the property. Possible values: Building, Apartment etc. 5 unique values). 

• res_address (Secondary location attribute. This stands for the exact neighborhood of the 

property. Categorical feature. 987 unique values) 

• res_price (Advertised Price for the property (in euro). This is the feature that the model has to 

predict. Mean value is 367000. 

• res_sqr (Square meters of the property. Mean value is 169). 

• construction_year (Construction year of the property). 

• levels (levels for the property e.g. 1st floor, 2nd floor etc.). 

• bedrooms (Number of bedrooms. Mean is 2.58). 

• bathrooms (Number of bathrooms. Mean is 1.48). 

• status (Current status for the property. Categorical feature. Possible values such as ‘good’, 

‘renovated’ etc.8 unique values). 

• energyclass (Categorical feature. The energy class is from the lowest level (H) to the highest (A+) 

in the following order: Η, Ζ, Ε, Δ, Γ, Β, Β+, Α, Α+. There are also 3 possible values for the energy 

class: Non-effective, Excluded and Pending) 

• auto_heating (Autonomous heating: 1 for Yes, 0 for No) 
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• solar (Solar Water heater: 1 for Yes, 0 for No) 

• cooling (Cooling: 1 for Yes, 0 for No) 

• safe_door (Safety door: 1 for Yes, 0 for No) 

• gas (1 for Yes, 0 for No) 

• fireplace (1 for Yes, 0 for No) 

• furniture (1 for Yes, 0 for No) 

• student (Is it appropriate for students? 1 for Yes, 0 for No) 

Beginning with the data cleaning process, dependent columns, such as price per square meter, 

and columns that showed no statistically significant correlation (e.g. parking) were removed. Also 

rows that contained empty fields were also removed. Additionally, 5% of the outliers with respect to 

the price were removed, including the minimum and maximum values. Categorical variables were 

encoded using one-hot encoding and ordinal encoding techniques. Numerical variables were 

standardized using a standard scaler. Table 1 and Figure 2 below demonstrate the results sorted by 

performance (error), showing KAN outperforming significantly all the existing state-of-the-art 

approaches. 

Table 2. Results in Dataset A. 

Model Name MAE RMSE SMAE (%) 

KAN 35861 52158 16,53 

GRU-LSTM 36972 53763 16,92 

CatBoost 37615 54918 17,14 

XGBoost 

 
38157 55711 17,41 

LGB 38961 55906 17,98 

MLP 
39123 

 
57034 18,07 

Random Forest 46124 67341 
21,16 

 

LR 46451 68176 21,65 

 

Figure 2. Models’ Performance in Dataset A. 

Dataset B – California Housing 

The California Housing Prices dataset is a popular dataset from Kaggle that contains information 

on the median house prices for various districts in California. The dataset contains a total of 20,640 

records, with each record representing a different district in California. The dataset has a total of 10 

0
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Results - Dataset A

MAE RMSE
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columns, with each column representing a different attribute of the district. The attributes included 

in the dataset are as follows: 

• longitude: Represents the longitude coordinate of the district. Mean value is -119.57. 

• latitude: Represents the latitude coordinate of the district. Mean value is 35.63. 

• housing_median_age: Represents the median age of the houses in the district. Mean value is 

28.64. 

• total_rooms: Represents the total number of rooms in the district. Mean is 2643.66. 

• total_bedrooms: Represents the total number of bedrooms in the district. Mean is 538.43 

• population: Represents the total population of the district. Mean is 1425.48. 

• households: Represents the total number of households in the district. Mean is 499.54. 

• median_income: Represents the median income of the households in the district. Mean value is 

3.87. 

• median_house_value: Represents the median house value in the district. 206855. 

• ocean_proximity: Represents the proximity of the district to the ocean. It contains five different 

categories. 

Regarding the data cleaning process, rows that contained empty fields were removed. 

Additionally, 5% of the outliers with respect to the median house value were removed, including the 

minimum and maximum values. The Categorical variable was encoded using one-hot encoding. 

Numerical variables were standardized using a standard scaler. Table 2 and Figure 3 below 

demonstrate the results sorted by performance (error), showing KAN outperforming significantly all 

the existing state-of-the-art deep NN approaches. Traditional machine learning algorithms XGBoost 

and LGB have better slightly better results because of the nature of the dataset. California housing 

has few input variables and also not so many rows, which makes it hard for NN-based models to get 

their full potential. 

Table 3. Results in Dataset B - California Housing. 

Model Name MAE RMSE SMAE (%) 

XGBoost 30625 42477 15.81 

LGB 30792 42709 15.93 

KAN 31961 44191 16.45 

Random Forest 32774 45458 16.87 

GRU-LSTM 33174 46012 16.98 

MLP 
35723 

 
49548 17.14 

CatBoost 36345 50411 18.67 

LR 40452 56107 20.26 
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Figure 3. Models’ Performance in Dataset B. 

5. Discussion 

Starting with the first dataset, the Kolmogorov-Arnold Network (KAN) demonstrated its 

strength by achieving the lowest Mean Absolute Error (MAE) of 35,861, Root Mean Squared Error 

(RMSE) of 52,158 and SMAE 16,53%. It outperformed advanced architectures like GRU-LSTM and 

widely used machine learning models such as CatBoost, XGBoost, and LightGBM. These results 

underline KAN's capability to capture complex nonlinear relationships and deliver robust 

performance on intricate datasets. In contrast, in the California housing dataset XGBoost and 

LightGBM emerged as the top performers, achieving the lowest MAE (30,625, RMSE (42,477) and 

SMAE 15,81%. KAN, while competitive, registered a slightly higher MAE of 31,961, RMSE of 44,191 

and SMAE 16,45%. This difference highlights a notable aspect of KAN's behavior: its performance 

tends to excel with larger datasets and high-dimensional inputs, where its advanced approximation 

capabilities and ability to model intricate patterns shine. However, on smaller datasets like California 

housing, with fewer rows and limited input variables, ensemble-based methods such as XGBoost and 

LightGBM might be better suited due to their inherent ability to optimize simpler feature interactions 

and adapt efficiently to constrained datasets. 

These findings highlight both the strengths and the challenges of KANs in regression problems. 

KANs have demonstrated exceptional capabilities in scenarios that demand complex function 

approximation. This makes such models particularly transformative for datasets characterized by 

extensive variables and intricate high-dimensional relationships, such as those found in marketing, 

financial modeling etc. By modeling non-linear interactions and identify subtle patterns within data, 

KANs can often surpass conventional regression techniques in terms of accuracy and insight 

generation. 

However, one of their most significant challenges lies in its performance on small or low-

dimensional datasets. In such cases, simpler models like linear regression, decision trees, or ensemble 

methods (e.g., Random Forest or Gradient Boosting) can often outperform KANs and (NNs in 

general) due to their ability to effectively capture straightforward relationships with minimal 

computational overhead. The added complexity of KAN can lead to overfitting or unnecessary 

computational expenses when simpler methods suffice. Further challenges with KANs include its 

computational complexity, the need for careful hyperparameter tuning, and the expertise required 

for effective implementation. Addressing these challenges—by streamlining its computational 

requirements and enhancing its adaptability to diverse datasets—could unlock its broader 

application in predictive regression tasks, reinforcing its potential as a leading model in advanced 

machine learning applications. 

6. Conclusions 

0
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In this study, a custom KAN-based Deep Neural Network model is proposed for house price 

estimation problem. The network architecture supports a deep neural network, consisting of multiple 

layers. To evaluate the performance of the KAN network, we used two datasets: the Greek Listings 

dataset, which consists of real estate listings in Greece, and the California House dataset, which 

contains data related to houses in California. Both datasets were obtained from Kaggle and are 

available there. 

Based on the analysis conducted on the two datasets, the results show that the custom KAN-

based model can outperform the best regression algorithms and traditional neural network models 

in terms of predictive accuracy (regarding MAE and MSE metrics that were tested). These findings 

demonstrate that KANs have significant potential for improving predictive performance in real-

world applications. Furthermore, the outcomes prove the efficiency of spiking neural networks in 

modeling complicated, dynamic systems with incomplete and noisy data. Overall, the results provide 

strong evidence for the use of KANs as a powerful and adaptable tool for data analysis and decision-

making. 

Regarding the future directions of this research, multiple plans have been outlined to further 

extend this study. One direction is to conduct more experiments with various types of KAN-based 

architectures to explore their full potential in greater detail. Another potential approach is to 

investigate the applicability of KANs in other domains beyond housing price prediction, such as 

healthcare and finance, to identify any similarities or differences in their performance. Finally, it is 

hoped that this research will inspire new research directions and collaborations in the field of neural 

networks, opening the way for further innovation and breakthroughs in the field of artificial 

intelligence. 
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