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Abstract: An X-ray Diffraction pattern consists of the relevant information (the signal) and the noisy background.
Under the assumption that they behave as the components of a two-dimensional mixture (bicomponent fluid)
having slightly different physical properties related to the density-gradients, a Lattice Boltzmann Method is
applied to disentangle the two different diffusive dynamics. The solution is numerically stable, computationally
not demanding and, moreover, it provides an efficient increase of the signal-to-noise ratio for patterns blurred
by poissonian noise and affected by collection data anomalies (fiber-like samples, experimental setup, etc.). The

model has been succesfully applied to different resolution images.
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1. Introduction

X-ray tomography is a versatile technique for investigating the internal structure of nano(bio)-
materials with applications in energy research [1], life sciences [2], medicine [3-5] and many other
fields, both at synchrotron radiation facilities and at microfocus laboratory sources [6].

In recent years, advancements in X-ray diffraction (XRD) image denoising have continued to
evolve, driven by both traditional [7]' and machine learning approaches, particularly (convolutional)
neural networks and techniques alike [8-10].

In spite of the prominence recently gained by deep learning techniques, it is worth stressing that
these models have to be trained on large datasets to learn to distinguish between noise and signal,
and improving the clarity of XRD images. For instance, new benchmark datasets and evaluation
metrics are being developed to standardize the assessment of denoising techniques and, to enhance
model performance, researchers use data augmentation techniques: this involves artificially increasing
the size of the training dataset through transformations like rotations, scaling, and noise addition,
which helps in training more robust models [11]. On the other hand, the integration of advanced
machine learning techniques with traditional denoising methods is significantly enhancing the quality
of X-ray diffraction images, leading to more accurate analyses and interpretations in various scientific
and industrial applications. This is particularly the case of real-time processing, where advances in
hardware and software are making it feasible to perform denoising in real-time, which is particularly
useful for high-throughput XRD applications. Also combining machine learning with traditional signal
processing techniques is becoming more common (hybrid approaches). For example, pre-processing
steps might use classical denoising methods, followed by machine learning techniques for further
refinement.

Furthermore tackling the problem of image restoration solely from an algorithmic perspective
may even include generative aspects, that can bias the ground truth: noise profiles are unknown
and often include noise from multiple distinct sources, substantially reducing the applicability of
simulation-based approaches. Therefore, techniques like wavelet transform and Physics inspired
adaptive filtering are still being refined to handle varying types of noise and different XRD data

1 The interested reader may refer to the papers cited herewith for further theoretical analysis.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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characteristics. In order to accomplish the task of preserving important features while reducing noise,
focusing on a genuinely Physics-grounded method is still worth.

2. A Fluidistic Approach

An XRD two-dimensional pattern is described as a fluid representing the signal and the noise;
the denoising process can be thought of as the result of the motion of such a fluid towards a steady
state (the original noisy image): due to internal friction (viscosity) and thermal conduction, the effect
of energy dissipation, occurring during the motion of this fluid, on that motion itself, results in the
thermodynamic irreversibility of the motion. The different diffusive dynamics of signal/noise finally
smears the noise and this process is irreversible. In order to obtain the equations describing the motion
of a viscous fluid, some terms must be added to the Euler’s equations modelling an ideal fluid.

The Navier-Stokes equations are fundamental mathematical equations in fluid mechanics that
describe the motion of viscous fluid substances. They are derived from the principles of conservation
of mass, momentum, and energy. These nonlinear partial differential equations account for various
factors, including pressure, velocity, and external forces, making them essential for understanding
fluid behavior in diverse applications, from weather patterns to aerospace engineering. Solving the
Navier-Stokes equations provides insights into complex fluid dynamics, although they are known for
their mathematical challenges and are central to the unsolved problem of turbulence in fluid flow [12].

The diffusion equation and the Navier-Stokes equations are both fundamental in fluid dynamics
but describe different physical phenomena.

1. Diffusion Equation. This equation models the process of substance spreading due to concentration

dc
gradients. It is typically written as — = DV?c, where c is the concentration of the substance, D

ot

is the diffusion coefficient, and V2 is the Laplacian operator. It captures how substances diffuse
through a medium over time.

2. Navier-Stokes Equations. These equations describe the motion of fluid substances and account
for viscosity and external forces. They can be expressed as:
Jdu

5 +(u-V)u= —:)Vp +vV?u + f, where u is the fluid velocity, p is the pressure, v is the

kinematic viscosity, p is the density, and f represents external forces.

There are relationships between the two equations, namely viscous effects, transport phenomena
and limits. Indeed, the diffusion equation can be seen as a simplified version of the Navier-Stokes
equations when considering mass transport in a viscous fluid. In this context, the term representing
diffusion can be derived from the viscous effects of the fluid motion. Furthermore, the Navier—Stokes
equations govern fluid flow, while the diffusion equation describes how quantities like temperature,
concentration, or species disperse within that flow?. Finally in low Reynolds number flows (where
inertial forces are negligible compared to viscous forces), the Navier—Stokes equations can approximate
diffusion-like behavior.

In summary, while both equations are foundational to understanding fluid behavior, the diffusion
equation focuses on concentration changes, whereas the Navier—Stokes equations address the overall
dynamics of fluid motion.

2 In many applications, the two can be coupled, especially in cases involving heat transfer or pollutant dispersion in fluids.
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2.1. A Navier-Stokes Inspired Model

In the Field Theory, the relevant functions (i.e. Lagrangian £ and Hamiltonian H densities) to
describe the model of a dynamical field (1), having a mass (o w~ 1) and interacting with an external

field (p), read:
e L Lo — ot uw) - af plu—plP+
+ qu*-Vu—i—)\z(w_lnw)}; v
def.
ey 2‘ [natu+H*atu*—£] (el ar )™ T
= W = (7” )
= a|plu—pP +w Vit Vit A (w-Inw)] . ?

The model time evolution follows from the minimization of the functionals energy (£) and action (S):
e[u, vu,w| = [[ @z (ut), vul,w), 3)
/dt/ 2% £(u), Vut), w), 4)

where the functional dependence on the dynamical fields ut) (together with their conjugate momen-
tum densities, Vu(*)) and on the non—dynamical3 field w is made explicit.
Finally the equations of motion for the field(s) promptly read:

S[u(*),Vu(*),w]

beut) = —afptp—ut) +

V(w vul)
55:0}:> +|V(wvu)

T =1t
3 Vit - Vu) !
v=\1t—) |

7

[

(5)

where the boxed expressions represent the density (e.g. XRD image) gradient-dependent diffusive
term. While this approach has been fruitfully applied to the subject in the past [7], its feasibility
is undermined by the difficulty in separating the different time-scales, in particular the collision
time-scale and the propagating one.

2.2. Lattice Boltzmann Method: Overview

The Lattice Boltzmann Methods (LBM) is a numerical approach used to simulate fluid dynamics
[13-15]. Unlike traditional methods like the Navier—Stokes equations, LBM models fluid flow by
simulating the movement of particles on a discrete lattice grid as follows.

1. Discrete Lattice. The fluid is represented by particles moving on a fixed grid with discrete
directions: the lattice dimensions (D) and the neighborhood (Q, the number of nearest neighbors,

including the site itself) define the particular lattice Boltzmann method: e.g. D2Q9 means nine

nearest neighbors for each site on a two-dimensional lattice e\ T/—>

2. Collision Step. Particles collide and exchange momentum according to probabilistic rules.
3. Streaming Step. After collisions, particles move to neighboring lattice sites.

3 ie. without kinetic term in the Lagrangian.
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4. Macroscopic Variables. From the particle distribution functions, macroscopic quantities like
density and velocity are computed.

While LBM is particularly useful for complex boundary conditions and multiphase flows due to
its straightforward implementation and ability to handle irregular geometries, this method allows
for better handling of noise at different scales by adapting to varying noise levels across the two-
dimensional X-ray patterns.

2.3. Lattice Boltzmann Method: Application

Due to the equivalence between the hydrodynamic model (transport equation) and the fluid-
mechanics (Hamiltonian), an approach is explored where the two dynamics can be explicitly and
straightforwardly disentangled. In the hydrodynamic model, indeed, the (microscopic) distribution

f = f(t,%,p) satisfies the Boltzmann transport equation e C[f], where the total time derivative
. a . . .
reads % = %—1— X -Vy+ P -Vp, while C[f] is the collision integral accounting for the particle

interactions*. The change to macroscopic equations is achieved by integrating out the degrees of
freedom which are integrals of the motion between two collisions (in the absence of an external field),

eg. u(%,f) = // P25 F(Z,7,1).

According to the Hamilton’s equations [18] f)’: E,xt, being the latter one the external force acting on
the fluid particle (the two-dimensional X-ray pattern image pixel).

c g o e) _1pP
feq(x’ p) - 271, exp 2 4 (6)
where f,; satisfies the transport equation with E,xt = —VU and the external potential U = — In(p).

The collision integral has been approximated by the Bhatnagar-Gross—Krook model [19], where
the linear collision time-scale (w~!) has been spotted as the relaxation of the time dependent X-ray
two-dimensional pattern f(t, X, j) to the constant noisy one fe;(¥X, f) « p(¥). Such an evolution
accounts for the different diffusion dynamics of noise/signal to improve the signal-to-noise ratio. The
lattice (Boltzmann) method simulates the evolution through a cycle of propagation and collision on a
regular lattice where the microscopic distribution function propagates to the nearest neighbor sites in
precisely one time-step, once a suitable discrete momenta set has been chosen. By performing such a
spatio-temporal discretization, the Boltzmann transport equation reads

fiZ+pistt+6t) — fi(%t) = —@ ' [fi(%t) = fo ()], )

where @~ is the re-scaled relaxation time and the index i refers to the set of momenta {#;} chosen
to connect the lattice sites”. The anisotropic diffusive term (the boxed expressions in Equation (5)) is
added by hand. The algorithm straightforwardly follows: updating a few number of floating-point
arithmetic operations is computationally not demanding and the task can be easily parallelized®.

Its explicit expression represents the detailed balancing between the two processes responsible for the violation of the
Liouville’s theorem [16], beyond the statistical equilibrium, i.e. in the physical kinetics regime [17].

In the singular limit, i.e. @ — oo, one can retrieve the original Equation (5) by performing the standard Chapman-Enskog
multi-scale analysis, e.g. in [20].

Unlike the numerical methods solving the system of linear equations traditionally used to describe the Navier-Stokes
equations (e.. gaussian elimination and back-sostitution).
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3. Results and Conclusions

The only parameters that are left in the numerical solution of Equation (7) are & and S (the
parameter A, related to the non-dynamical field w, is proportional to the norm of the conjugate
momentum density |Vu| and it adiabatically changes [21]). While a = 1.15 is the highest value that
can be used to guarantee stability without slowing down the convergence when the method is applied
to an image affected by a gaussian noise (e.g. the classical Lenna image of Figure 1), « = 0.85 appears to
be the optimal solution for an application of the technique to the XRD two-dimensional patterns (e.g.
Figures 2-4). In fact, one has to balance between the need to use the highest possible value of @~ of
the Equation (7) to reduce the number of iterations to achieve the final reconstructed image and the
stability requirement that fixes an upper bound for @~!. The efficiency in image filtering is evaluated
by measuring the peak-to-signal noise ratio (PSNR) defined as

— 2
PSNR ‘<" 20 log;, (M) , (8)

where p is the original image without noise and (...) denotes a sum over all the pixels of the images.
This quantity is measured in decibels, and higher values correspond to a better denoising. The
parameter  was varied in the method to obtain the highest possible values of PSNR.

Beside the gaussian-noise affected images, the XRD experimental setups collect data on two-
dimensional arrays, where a Poisson counting statistics accordingly needs a noise reduction.

Wide Angle X-ray Diffraction (WAXD) patterns are used to study the crystalline structure of
materials, including fibers [6]. When fibers are analyzed using WAXD, the diffraction patterns provide
information about the spacing and orientation of the crystalline regions within the fiber. In a typical
WAXD pattern for fibers, one observes:

1.  diffraction peaks, that indicate the presence of crystalline regions while their position and intensity

can help determine the fiber’s crystallinity and the arrangement of its molecular chains;
2. intensity distribution of the peaks in the pattern, that can show how the crystalline regions are

distributed and oriented relative to the fiber axis;
3. azimuthal scans, that can be used to study the orientation of the crystallites around the fiber axis,

revealing information about fiber alignment and texture.

By analyzing these patterns, one gains insight into the structural properties of the fiber, such as
its crystallinity, orientation, and potential mechanical properties. Thus, in order to investigate the
present approach in such noisy data, the model is applied to denoise XRD patterns collected on
collagen molecules in tendon-derived collagens, where, under a number of biochemical conditions,
a superorganization of tissue into triple helices (with a preferred orientation displayed by the 7-
symmetric partial arcs of Figure 2 replacing the fully 27-symmetric circles) and a high crystalline
domain can trigger mechanical stiffness [5]. In Figure 2 the noisy XRD pattern (central panel) has
been integrated on a collection time of 2400s, resulting in a maximum counts below 1000, while the
noiseless one (left panel) required 327350s, with maxima reaching some 60000. The input image was
processed for several values of the parameter . The results for PSNR (initial and final values) for the
optimal f are illustrated in Table 1, while the algorithm outcome is shown in Figure 2 (right panel).
The PSNR has trends similar to the case of Figure 1 with gaussian noise: it can be seen that the PSNR
stays constant for the optimal § value, after an initial stagger (essentially similar to the PSNR vs time
plot, as a funtion of j, illustrated in [7], although the LBM-inspired algorithm outperforms the one
used in the reference”). Another example of WAXD fiber pattern denoising is illustrated in Figure 3,
where the close-up images on the upper right corner show the improvement of the diffraction arc/ring
details. The improvement of the corresponding figure of merit (PSNR) is reported on Table 1.

7 eg. PSNR 34.76 vs 34.52 for Lenna image.
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The LBM-based denoising scheme can also be fruitfully applied to the XRD patterns collected at the
synchrotron radiation facilities. The Pilatus Il is a single photon counting pixel detector, e.g. used at the
PSI facility [22], renowned for its high spatial resolution and efficiency in detecting low-intensity X-ray
beams. It features an advanced hybrid pixel array that counts individual photons, offering exceptional
precision and dynamic range. This detector is pivotal for experiments requiring detailed imaging
and analysis, such as those in structural biology and materials science. Its performance is enhanced
by its low noise and high count rate capabilities, making it a versatile tool for cutting-edge research
in various scientific fields. However, low statistics two-dimensional images, sometimes affected by
artifacts (e.g. experimental setup shadows), could benefit from a pre-processing denoising: in Figure
4 the application of the LBM-inspired denoising algorithm is illustrated in such a case, while the
slight improvement of the PSNR is still appreciated in Table 1. In that respect, in order to stress the
algorithmic efficiency, the values of another figure of merit are added, namely the structure similarity
(SSIM), as defined for instance in [23] and implemented in MatLab: PSNR/SSIM values increase
for all cases analysed in this paper; they are in agreement with the visual inspection of the images
before/after applying the algorithm, as reported in Figures 1-4.

In summary, while LBM-based image denoising is still an evolving field, it shows significant
potential due to its ability to model complex noise processes and preserve the quality of important
features in the images. Moreover, this study highlights its effectiveness in dealing with specific types of
noise, such as gaussian noise or poissonian noise. Finally, advances in computational techniques and
hardware have enhanced the efficiency of LBM-based X-ray diffraction image denoising: on one hand
improved algorithms and parallel processing have made it feasible to apply these methods to high-
resolution images and real-time processing scenarios, on the other hand its ability to model diffusion
and transport processes leverages the inherent properties of LBM to effectively remove noise on a well
established multiscale and adaptive Physics-grounded approach. Ongoing research and development
are likely to further enhance its capabilities and broaden its applications. Studies have compared LBM-
based denoising methods with traditional approaches such as gaussian filtering, wavelet denoising,
and non-local means: LBM methods often show improved performance in preserving edge details
and structural information while effectively reducing noise. Furthermore, there is growing interest in
combining LBM with machine learning techniques for image denoising: machine learning models are
used to optimize LBM parameters or to refine denoising results, leading to improved performance
and more adaptive solutions. Finally this versatile method could be efficiently embedded in a suite of
integrated programs for X-ray imaging, e.g. in [24].

Figure 1. Noiseless image (left): original Lenna image with clear details and no visible distortion.
Noisy image (centre): the same image affected by gaussian noise 5%, compromising detail and clarity.

Denoised outcome (right): improved image after applying the denoising algorithm. The close-up
images on the upper right corner reveal restored details and reduced noise.
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Figure 2. Noiseless image (left): high statistics rat tendon image with clear details and a preferred
orientation displayed by the r-symmetric partial arcs. Noisy image (centre): the same image affected
by a poissonian noise due to a collection time of 2400s only. Denoised outcome (right): improved image
after applying the denoising algorithm.

Table 1. Improvement of the PSNR and SSIM values with the use of the denoising procedure in the
cases of images with gaussian (Lenna) and poissonian (XRD) noise with the corresponding values of

and B.
image Lenna rat tendon sam4 S043XX
resolution 512x512 1024x1024 1600x2500 1679x1475
o 1.15 0.85 0.85 0.85
B 2.0 1.25 1.25 1.25
noise 0.05 - - -
PSNR (ini.) 31.33 25.94 30.91 18.10
PSNR (fin.) 34.76 30.76 34.75 18.28
SSIM (ini.) 0.59 0.10 0.60 0.12
SSIM (fin.) 0.64 0.27 0.67 0.14

Figure 3. Noiseless image (left): original high count rate sam4 XRD image with clear details. Noisy
image (centre): the same image affected by a poissonian noise due to a low count statistics. Denoised
outcome (right): improved image after applying the denoising algorithm. The close-up images on the
upper right corner spot the reduced noise.
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Figure 4. Noiseless image (left): high statistics S043XX image collected at the PSI synchrotron radiation
facility with clear details. Noisy image (centre): the same image affected both by a poissonian noise due

to a short collection time and by a shadowing anomaly. Denoised outcome (right): improved image
after applying the denoising scheme.
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