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Abstract: Enhancing sustainable agricultural practices and water resources management calls for 
this study, which focuses on calibrating and validating the SWAT model using data from CMIP6. 
The SWAT model was validated using Bernam streamflow data from 1985-2022, divided into three 
categories: category 1 (10 years calibration- and 5 years validation), category 2 (15 years calibration- 
and 10 years validation), and category 3. The SWAT model performed "GOOD" in the Bernam 
watershed, as indicated by statistical analysis during calibration and validation phases, utilizing 
statistical indices. The results for the p-factor, r-factor, R2, NSE, PBIAS, and KGE were 0.82, 0.88, 
0.72, 0.70, -1.1%, and 0.85 during the calibration period and 0.8, 1.04, 0.75, 0.65, -6.6%, and 0.79 
during the validation period. The result of the simulation after adjusting the SWAT model 
parameters with calibrated best-fit values indicated that the inflow (rainfall) and the outflow (water 
yield + ET) are 2,873.36mm and 2,592.78mm respectively, with difference of 9.8% for the period of 
1991-2005 while 2,921.98 mm and 2,586.07 mm for the inflow and outflow, during 2006-2020 period 
with difference of 11.5%. The SWAT model effectively predicts agro-hydrological processes, aiding 
decision-makers in UBRB's agricultural water management and guiding sustainable agriculture 
through advanced climate projections. 

Keywords: SWAT model; calibration and validation; streamflow; projections; agro-hydrological; 
Upper Bernam River Basin 

 

1. Introduction 

Water, the second most essential natural resource after air, has dominated the world agenda for 
decades [1–3]. Most of the earth's surface is water. Still, only a small portion is usable, making this 
resource extremely limited and vulnerable to climate change, rising demand for food, feed, and 
energy, and water scarcity and drought [1,3–6]. Agriculture uses 70% of global freshwater, while 
other sectors use the rest [3]. As agriculture competes with different sectors of the economy, extensive 
water use for agriculture and irrigation is likely [1,7,8].  

Climate change and population development will continue to increase water demand for 
various activities. The Columbia University Climate School's Urban Climate Change Research 
Network (UCCRN) report predicts that by 2050, 685 million people in over 570 cities will face a least 
10% drop in freshwater availability owing to climate change [9]. Climate change affects our 
environment and community health. That's why the Sustainable Development Goals (SDGs) require 
the United Nations (UN) to take drastic steps to fight food security and sustainable agriculture, a 
sustainable human environment, and climate change and its impacts. Individuals, groups, private, 
public, and academic institutions were to help transform the world for sustainable development. By 
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2050, agricultural food demands were expected to rise by 60% [6,10]. These demonstrate the 
importance of irrigation water management for agriculture's well-being, especially in developing 
nations where agriculture drives economic growth [6]. Due to rising temperatures and diminishing 
precipitation in many regions, irrigation water management and conservation are crucial.  

On this basis, irrigation water consumption should be efficient. Irrigation involves artificially 
applying water to crops to make up for low/erratic rainfall. Due to insufficient/erratic rain and rainfall 
pattern changes, effective and efficient water resources management is needed. To attain this 
management aim, the projection of future agro-hydrological processes of the irrigation supply basin 
is necessary, and this can be achieved by adopting the Soil and Water Analysis Tool (SWAT) model 
evaluation of the respective basins. The SWAT model exhibits uncertainty, which can be significantly 
minimized by calibration and validation [11–13]. The Integrated Agricultural Development Area 
(IADA), Selangor, is one of Malaysia's largest Rice Irrigation Schemes, and the significant irrigation 
supply comes from the Upper Bernam River Basin (UBRB). 

The UBRB is a critical source of irrigation water for IADA agricultural activity, and the water 
resources are essential for sustaining crop production and supporting the local economy. However, 
the basin is increasingly vulnerable to the impacts of climate change, including changed precipitation 
patterns and extreme weather events. ArcSWAT was used to project future UBRB basin hydrological 
processes using CMIP5 for the existing hydrological models [14,15]. However, the ArcSWAT was not 
comprehensively calibrated and validated, including the use of the most recent Coupled-Model-
Intercomparison-Project Phase 6 (CMIP6) data for the basin, leading to uncertainties in projecting 
future agro-hydrological processes and water availability for agricultural productivity. Given the 
global importance of accurate climate projections, there is a pressing need to refine regional or local 
agro-hydrological models using advanced climate datasets such as those from CMIP6. This study 
addresses these gaps by calibrating and validating the SWAT model for the UBRB in the tropical river 
basin, providing reliable projections of agro-hydrological processes under future climate scenarios. 
The outcomes will assist policymakers and stakeholders in devising effective strategies to mitigate 
climate risks and ensure sustainable water resources management, thereby enhancing the resilience 
of the agricultural industry. 

2. Materials and Methods 

2.1. Study Area 

Figure 1 describes the study location, the IADA in Selangor, Northwest Malaysia, 98 km north 
of Kuala Lumpur. The Bernam and Tengi rivers are this scheme's sole irrigation water sources. The 
Southwest and Northeast monsoons dominate the humid tropical regions. The Northeast monsoon 
from October to December brings 70% of rainfall. In contrast, February to March and June to August 
during the Southwest monsoon season are dry. The dry or off-season (January–June) and main-
season (July–December) irrigated rice plan is employed. The project region gets more than 1500 mm 
of rainfall annually, generally between October and January, with October having the most and June 
the least (data for 1971–2020).  

The MMD recorded an average dry season temperature of 28°C to 35°C (January to June). The 
humidity is over 75% year-round [14–22]. Malaysia is situated north of the equator in Southeast Asia, 
which has an equatorial, hot, and humid climate with 21–32oC daily temperatures [23]. Annual 
rainfall in Peninsular Malaysia is 2500 mm [24]. The off-season (March–July) and main-season 
(August–February) are when major rice-growing regions cultivate rice.  

The northeast monsoon's heavy rainfall causes high air humidity in the main-season and low 
humidity in the off-season [18–20]. These granaries generated 74% of Malaysia's rice in 2016. 
However, climate, cultivation areas, and agricultural techniques impact granary productivity per 
hectare [25].  
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Figure 1. IADA Selangor study area. Source: M.K. Rowshon. 

2.2. SWAT and SWAT-CUP 

The evaluation of the SWAT model has become imperative due to its intended application in 
simulating the agro-hydrological processes of the UBRB and the downstream of the basin for 
agricultural productivity in Malaysia. The SWAT model was evaluated to ascertain the capabilities 
of simulating the climate change impacts on the agro-hydrological processes of UBRB [23–25], which 
supplies water to the IADA Selangor Rice Irrigation Scheme. As a result, analyzing the SWAT model 
before carrying out the projection was critical to understanding how the model works and 
establishing the ability and reliability of the model for future predictions.  

The SWAT model is compatible with a variety of computer programs. This study used the 
QSWAT3_9 version 1.5.10 model with an interface in QGIS 3.28.13 Firenze [26]. In addition, SWAT 
Editor software [27] was used for model computations. The SWAT model is a deterministic model 
developed by the US Department of Agriculture [28–30]; it maps physical, chemical, and biological 
processes using mathematical equations. The model was developed to predict the impact of basin-
scale management methods on water and agricultural chemical yields [28,30–32].  

The SWAT Calibration and Uncertainty Programs (SWATCUP-premium) version (Abbaspour, 
2015) was used to calibrate the SWAT model to the natural environment of the research area. The 
SWATCUP program was used to calibrate the SWAT model. The program evaluates the SWAT 
model's calibration, validation, Sensitivity, and uncertainty [11,12,28]. The SUFI-2 method was used 
since it works well for small catchments [11,28,33,34]. 

2.3. SWAT Model Data and Setup 

A comprehensive collection of geographical data from multiple sources was used to evaluate 
the SWAT model's capabilities to predict climate change's effects on UBRB's agro-hydrological 
processes: Digital elevation models (DEMs) were downloaded from the Shuttle Radar Topography 
Mission (SRTM) website and processed in QGIS (Figure 2(a)). The DEMs used in the catchment area 
have a 30-meter spatial resolution. 
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River Basin 
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Figure 2. SWAT Model's Spatial data for the Upper Bernam River Basin. 

The area's digital soil map was downloaded from the FAO Map Catalogue's Digital Soil Map of 
the World (DSMW) in ESRI shapefile format and processed using QGIS software (Figure 2(b)). The 
study area's land use and land cover map were obtained from the ESRI website (Global Land Cover; 
Sentinel-2: 10m land use/land cover; 2022) and processed using QGIS (Figure 2(c)). The Malaysian 
Department of Irrigation and Drainage (DID), Water Resources and Hydrology Division provided 
meteorological data for this research, and this study considered climate simulations for the historical 
periods of 1985 to 2022.  

The "Edit Inputs and Run SWAT Model" window was filled with meteorological data necessary 
for executing the SWAT model. The data included daily precipitation sums [mm], daily minimum 
and maximum air temperature [°C], average daily wind speed [m/s], daily mean relative humidity 
expressed as a percentage [%], and daily sums of total solar radiation [MJ/m2]. The SWAT input 
meteorological data were obtained from the Division of Water Resources and Hydrology, 
Department of Irrigation and Drainage (DID), Malaysia. After delineating and developing the UBRB 
model using SWAT, the model gave 107,712.74 ha of UBRB size, 23 subbasins, 1,396 HRUs, and 227 
channels. Due to diverse land use and soil types, the SWAT model divides sub-basins into numerous 
hydrological response units (HRUs) to increase simulation accuracy with identical land use, 
management, and soil characteristics [35,36]. SWAT mimics the land phase of the hydrological cycle 
using the water balance equation (1):  𝑆𝑊௧ ൌ 𝑆𝑊଴ ൅ ∑ ൫𝑅ௗ௔௬ െ 𝑄௦௨௥௙ െ 𝐸௔ െ𝑊௦௘௘௣ െ 𝑄௚௪൯௧௜ୀଵ   (1)

where 𝑆𝑊௧ is the soil's final water content, 𝑆𝑊଴ is its initial water content, t is time in days, 𝑅ௗ௔௬ is 
daily precipitation, 𝑄௦௨௥௙ is daily surface runoff, 𝐸௔ is daily evapotranspiration (ET), 𝑊௦௘௘௣ is daily 
percolation and 𝑄௚௪ is daily return flow; all units are in mm. Figure 3 depicts the hydrological cycle 
process of the SWAT model output for UBRB from 1985 to 2005 with a 6-year warm-up period 
inclusive. 
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Figure 3. The hydrological cycle process of the SWAT model output for UBRB (1991-2005). 

2.4. Calibration and Validation of the SWAT-CUP 

The SWATCUP premium program calibrated the SWAT model to match reality better [28,30,37–
39]. This helped overcome GCM and SWAT output uncertainties and inadequacies in the 
hydrological process modeling. Average monthly flow velocities surrounding the study area's inlet 
were utilized for 1991-2000, 2001-2010, 2011-2020, 1991-2005, and 1991-2010. Longer simulation 
durations and pre-processing times do not usually improve data quality or performance, nor do 
higher-resolution data [30].  

This study used data from Malaysia's Water Resources and Hydrology Division's Department 
of Irrigation and Drainage (DID). After a suitable calibration, the model was validated using monthly 
average flow velocities [m3/s] near the research area's mouth (Jambatan Kuala Slim (SKC)) for 2001–
2005, 2011–2015, 2021–2022, 2006–2015, and 2011–2020. The accuracy requirements of calibration and 
validation were examined for the best-fit parameter ranges [11,28,40–45]. Calibrating the model 
employed the p-factor, r-factor, NSE, PBias, Kling-Gupta Efficiency (KGE), and coefficient of 
determination (R2) for evaluating the model performance.  

3. Results 

3.1. Parameter Sensitivity Analysis 

Before calibration and validation, an experiment was undertaken to understand how the SWAT 
model responds and analyzes the sensitivity and uncertainty of factors affecting streamflow in the 
UBRB at the SKC gauge station. Based on the catchment's hydrology, 26 parameters were selected, 
and a global sensitivity analysis was carried out. Table 1 lists these 26 parameters.  

Reducing calibration runs and parameter fittings to avoid overparameterization is crucial 
because excessive calibration runs or settings might cause unrealistic catchment conditions or model 
sensitivity to specific input data; on this basis, an experiment was done, and Table 2 shows the results.
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Table 1. SWAT parameters for sensitivity analysis and calibration. 

S/N Parameter code Parameter description Object type Range t-Stat P-Value Method 

1 CN2 SCS runoff curve number mgt -0.2-0.2 -23.4601 0 r 

2 ESCO Soil evaporation compensation factor. hru 0-1 -12.3956 0 v 

3 ALPHA_BNK Baseflow alpha factor for bank storage. rte 0-1 -8.2881 0 v 

4 CANMX Maximum canopy storage. hru 0-100 5.7818 0 v 

5 HRU_SLP Average slope steepness hru 0-0.7 -4.6095 0 v 

6 SUB_ELEV Elevation of subbasin sub 0-6,000 4.3778 0 v 

7 GWQMN Minimum water depth in the shallow aquifer needed for return flow to happen (mm). gw 0-10,000 3.1901 0.0015 v 

8 CH_N2 Manning's "n" value for the main channel. rte -0.01-0.3 3.1237 0.0019 v 

9 RCHRG_DP Deep aquifer percolation fraction. gw 0-1 2.9187 0.0037 r 

10 CH_K2 Effective hydraulic conductivity in main channel alluvium. rte -0.01-1,000 2.6109 0.0093 v 

11 SOL_K Saturated hydraulic conductivity. sol 0-2000 -1.5428 0.1235 r 

12 SOL_BD Moist bulk density. sol 0.9-2.5 1.5034 0.1334 r 

13 SLSUBBSN Average slope length. hru 10-150 -1.3440 0.1796 r 

14 CNOP SCS runoff curve number for moisture condition mgt 0-100 1.3038 0.1929 r 

15 GW_DELAY Groundwater delay (days). gw 0-500 -1.2816 0.2006 v 

16 EVLAI Leaf area index threshold for zero evaporation from the water surface. bsn 0-10 1.1153 0.2653 r 

17 ALPHA_BF Baseflow alpha factor (days). gw 0-1 -1.0837 0.2790 v 

18 GW_REVAP Groundwater "revap" coefficient. gw 0.02-0.2 1.0390 0.2994 v 

19 DEEPST Initial water depth in the deep aquifer measured in millimetres. gw 0-10000 0.9622 0.3364 r 

20 SURLAG Surface runoff lag time. bsn 0.05-24 0.6097 0.5424 v 

21 EPCO Factor of compensation for plant absorption hru 0-1 0.3762 0.7069 r 

22 REVAPMN Minimum water depth in the shallow aquifer required for "revap" to take place (mm) gw 0-1000 0.3566 0.7215 r 

23 SOL_AWC Capacity of available water within the soil stratum sol 0-1 0.2299 0.8182 r 

24 FFCB Initial soil water storage is represented as a proportion of the water content at field capacity bsn 0-1 0.1816 0.8559 r 
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25 OV_N The "n" value of Manning for overland flow hru 0.01-4.0 0.1462 0.8838 r 

26 GW_SPYLD Shallow aquifer's specific yield (m3/m3) gw 0-0.4 0.0597 0.9524 r 

Table 2. SWATCUP experiments on the Bernam watershed. 

SET1 Variable p-factor r-factor R2 NS bR2 MSE SSQR PBIAS KGE RSR MNS VOL 

_FR 

Mean 

_sim 

Mean 

_obs 

StdDev 

_sim 

StdDev 

_obs 

STATUS No. of Par 

Sensitivity Analysis=500 FLOW_OUT_7 0.84 2.02 0.69 0.61 0.5749 2.40E+02 5.60E+01 -12.3 0.79 0.62 0.42 0.89 51.59 45.94 24.75 24.85 Initial Par 26 

Iter1=100 FLOW_OUT_7 0.78 1.77 0.68 0.62 0.5911 2.20E+02 2.20E+01 -5.8 0.81 0.62 0.41 0.95 51.03 48.24 25.03 23.81 Initial Sensitive Par 10 

Iter1=200 FLOW_OUT_7 0.83 1.91 0.64 0.54 0.5149 2.80E+02 7.20E+01 -14 0.76 0.68 0.33 0.88 52.35 45.94 24.71 24.85 Initial Sensitive Par 10 

Iter1=300 FLOW_OUT_7 0.85 1.85 0.71 0.68 0.5955 1.80E+02 1.10E+01 -2.3 0.84 0.56 0.49 0.98 49.35 48.24 23.74 23.81 Initial Sensitive Par 10 

Iter1=400 FLOW_OUT_7 0.82 1.89 0.68 0.65 0.5749 2.00E+02 1.20E+01 -0.9 0.83 0.59 0.44 0.99 48.66 48.24 24.22 23.81 Initial Sensitive Par 10 

Iter1=500 FLOW_OUT_7 0.82 1.85 0.7 0.64 0.6005 2.00E+02 2.50E+01 -6.8 0.82 0.6 0.44 0.94 51.5 48.24 24.45 23.81 Initial Sensitive Par 10 

Iter1=300 FLOW_OUT_7 0.85 1.85 0.71 0.68 0.5955 1.80E+02 1.10E+01 -2.3 0.84 0.56 0.49 0.98 49.35 48.24 23.74 23.81 Initial Sensitive Par 10 

Iter1_1=400 FLOW_OUT_7 0.91 2.17 0.7 0.68 0.5592 1.80E+02 1.40E+01 -3 0.83 0.56 0.48 0.97 49.66 48.24 22.69 23.81 New Par of Iter1 10 

Iter1_2=500 FLOW_OUT_7 0.91 1.69 0.72 0.69 0.6095 1.80E+02 9.00E+00 2.8 0.84 0.56 0.49 1.03 46.87 48.24 23.86 23.81 New Par of Iter1_1 10 

Iter1_3=600 FLOW_OUT_7 0.82 0.88 0.72 0.7 0.6147 1.70E+02 8.30E+00 -1.1 0.85 0.55 0.5 0.99 48.79 48.24 23.85 23.81 New Par of Iter1_2 10 

Iter1_4=700 FLOW_OUT_7 0.68 0.63 0.72 0.7 0.6081 1.70E+02 9.20E+00 -0.9 0.85 0.55 0.5 0.99 48.67 48.24 23.64 23.81 New Par of Iter1_3 10 
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The 26 parameters were simulated 500 times throughout a 21-year (1985-2005) data period, 
including a 6-year warm-up, 10-year calibration, and 5-year validation phase. A global sensitivity 
analysis following the simulation showed 10 parameter sensitives. Table 2 shows the remaining sets 
of runs at 100, 200, 300, 400, and 500 with default data from a project backup of the TextInOut folder. 
The 300 default simulations performed better, so further calibrations and validations were set to start 
from 300 simulations. After 300 simulations, 400-, 500-, 600-, and 700 iterations were run, and the 
model performed best at 600 simulations, as shown in Table 2. This was the optimal iteration for 
subsequent calibrations and validations. This technique helps the researcher understand the 
catchment's behavior with the starting parameters, save time, and determine the best SWATCUP 
program iteration level for the modeled basin. According to Table 1, only 10 parameters were 
sensitive in the basin discharge simulation. Table 3 lists the most sensitive parameters and their best-
fit values. The table also shows whether parameters are replaced ('v') or proportionately changed ('r'). 

The parameters were modified according to the SWAT handbook [46] and other relevant 
literature [42,47–49] suggested range.  The sensitive parameter must have a p-value below 0.05 (tStat 
> p < 0.05) and below the matching t-Stat, as indicated by [37,49]. The parameter is increasingly 
sensitive as the absolute t-statistic increases. Table 3 shows the best-fit values used in validation and 
future simulations without change. The sensitive parameters, ranked in order of descending 
sensitivity, are SCS runoff curve number (CN2), Soil Evaporation compensation factor (ESCO), 
Baseflow alpha factor for bank storage (ALPHA_BNK), Maximum canopy storage (CANMX), 
Average slope steepness (HRU_SLP), Elevation of subbasin (SUB_ELEV), Minimum water depth in 
the shallow aquifer needed for return flow to happen (mm), (GWQMN), Manning's "n" value for the 
main channel (CH_N2), Deep aquifer percolation fraction (RCHRG_DP), and  Effective hydraulic 
conductivity in main channel alluvium (CH_K2) on flow in the UBRB.  

Nonetheless, other parameters on the basin streamflow were insensitive, as shown in Table 1. It 
is worth noting that in the same catchment, Alansi, Amin [50], and Ismail [17] used a subset of Table 
1 parameters: CH_N2, GW_DELAY, ALPHA_BF, CH_K2, CN2, GW_REVAP, ESCO, SOL_BD, 
GWQMN. This study's sensitivity analysis shows that only 5 factors (CH_N2, CH_K2, CN2, ESCO, 
and GWQMN) are sensitive. Both tests found that CH_N2, CH_K2, and CN2 were sensitive, but 
GW_DELAY, ALPHA_BF, GW_REVAP, and SOL_BD were not. In Malaysia's Langat River Basin, 
ALPHA_BF and GW_REVAP are non-sensitive, partly supporting Khalid, Ali [51]. This study found 
that the ESCO and GWQMN are sensitive. However, Ismail [17] found those parameters non-
sensitive. ESCO was also one of the most sensitive parameters in the watershed, as studied by Alansi, 
Amin [50]. DEM, soil map data, and land use–land cover changes considered in this research may 
affect soil evaporation and the minimum water level in the subsurface aquifer needed for return flow 
to transpire, affecting catchment streamflow. 

However, this study partially agrees with Dlamini, Kamal [14], Ismail [17], Alansi, Amin [50], 
which found a similar pattern of sensitivity in the same catchment. Only 10 of 16 parameters studied 
by Thebe [52] in Poland of Czech Republic were sensitive. In central Poland, Smarzyńska and 
Miatkowski [32] explored 26 parameters and identified 10 sensitive ones, similar to our study. In 
Tanzania, Mollel, Mulungu [49] found that 14 of 20 parameters in their "Assessment of climate change 
impacts on hydrological processes in the Usangu catchment of Tanzania under CMIP6 scenarios" 
were sensitive, and about 43% of these parameters were also sensitive in this study.  

Moreover, 10 of 21 parameters studied by Khalid, Ali [51] in Langat River Basin, Malaysia, were 
non-sensitive. Please note that sensitive parameters vary by land use and watershed. Thus, sensitive 
parameters in specific catchments may not be sensitive in others. However, hydrologic conditions 
differ greatly between catchments. CN2, ESCO, ALPHA_BNK, CANMX, HRU_SLP, SUB_ELEV, 
GWQMN, CH_N2, RCHRG_DP, and CH_K2 were found to be more significant in streamflow 
modeling of the Bernam catchment than in previous studies of the same catchment, as shown in the 
calibration and validation discussion section.
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Table 3. SWAT-sensitive parameters and their "best fit"-values. 

S/N Parameter code Parameter description Object type Range "Best fit"-Values t-Stat P-Value Method 

1 CN2 SCS runoff curve number mgt -0.2-0.2 0.082182 -23.4601 0 r 

2 ESCO Soil evaporation compensation factor. hru 0-1 0.149648 -12.3956 0 v 

3 ALPHA_BNK Baseflow alpha factor for bank storage. rte 0-1 0.18104 -8.28811 0 v 

4 CANMX Maximum canopy storage. hru 0-100 31.875715 5.781076 1.3E-08 v 

5 HRU_SLP Average slope steepness hru 0-0.7 0.645705 -4.60945 5.2E-06 v 

6 SUB_ELEV Elevation of subbasin sub 0-6,000 5643.671387 4.377764 1.48E-05 v 

7 GWQMN Minimum water depth in the shallow aquifer needed for return flow to happen (mm). gw 0-10,000 9160.946289 3.190084 0.001517 v 

8 CH_N2 Manning's "n" value for the main channel. rte -0.01-0.3 -0.073626 3.12361 0.001896 v 

9 RCHRG_DP Deep aquifer percolation fraction. gw 0-1 0.236758 2.918687 0.003683 r 

10 CH_K2 Effective hydraulic conductivity in main channel alluvium. rte -0.01-1,000 753.380676 2.61088 0.009318 v 

r_ denotes relative; the fitted value is added by 1 and then multiplied by the given value existing parameter in the SWATEdit. v_ denotes replace; a given value in the SWATEdit will replace the 
existing parameter. 
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3.2. SWAT Calibration and Validation 

Figure 4 shows that the uncalibrated runoff model has a Nash-Sutcliffe Efficiency (NSE) of -0.33 
and a Pearson correlation value of 72%. Though it overestimates discharge, the model shows a 72% 
linear connection between simulated and observed flow. Before calibration, the model overestimated 
runoff, which accounted for all catchment water volume.  

 
Figure 4. Comparison between observed and simulated discharge at SKC gauge station, UBRB, for 
the calibration period 1991 to 2022. 

The model was calibrated at four iterations by adjusting parameter ranges. Each iteration had 
300-600 model simulations with diverse parameters (new parameters from previous iterations) given 
by SWATCUP. Simulations were run in 300, 400, 500, and 600 simulations. The model performed 
satisfactorily at 600 simulation runs during the experiment.  

The calibration and validation summary results, which cover January 1, 1985, to December 31, 
2022, with a 6-year warm-up time, are presented in Table 4. The calibration and validation periods 
were split into 3 categories: Category 1 (10 years calibration- and 5-year validation period: 1991-2000: 
2001-2005; 2001-2010: 2011-2015; and 2011-2020: 2021-2022); category 2 (15 years calibration- and 10-
year validation period: 1991-2005: 2006-2015); and category 3 (20 years calibration- and 10-year 
validation period: 1991-2010: 2011-2020). These categories were subjected to 2 sets of parameter 
settings; thus: Set 1 (26 parameters chosen based on catchment hydrology and trimmed down to 10 
after a comprehensive global sensitivity analysis) and Set 2 (9 parameters previously adopted by  
Dlamini, Kamal [14], Ismail [17], Alansi, Amin [50] in the same catchment) were applied to these 
categories. 

Table 4 shows that the 1991-2000 and 2001-2005 calibration and validation periods 
yielded acceptable model performance. Table 5 shows iterations and performance indicators from 
Table 4. The experiment showed that indicator performance deteriorated after the fourth iteration. 
Thus, calibration was terminated. The P-factor, r-factor, R2, NSE, PBIAS, and KGE indicators 
demonstrated satisfactory values. 
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Table 4. Calibration and validation summary. 

Period Set Settings Variable p-factor r-factor R2 NS bR2 MSE SSQR PBIAS KGE RSR MNS VOL_FR Mean_sim Mean_obs StdDev_sim StdDev_obs STATUS 

Cal-1991-2000 SET1 Iter1_3=600 FLOW_OUT_7 0.82 0.88 0.72 0.7 0.6147 1.70E+02 8.30E+00 -1.1 0.85 0.55 0.5 0.99 48.79 48.24 23.85 23.81 

New Par of 

Iter1_2 

Val-2001-2005 SET1 VAL2001-2005 FLOW_OUT_7 0.8 1.04 0.75 0.65 0.7376 2.40E+02 3.90E+01 -6.6 0.79 0.59 0.46 0.94 44.08 48.24 30.05 23.81 

New Par of 

Iter1_2 

Cal-1991-2000 SET2 Iter1_3=600 FLOW_OUT_7 0.68 1.17 0.73 0.73 0.5127 1.50E+02 2.80E+01 -2.7 0.77 0.52 0.52 0.97 49.53 48.24 19.44 23.81 

New Par of 

Iter1_2 

Val-2001-2005 SET2 VAL2001-2005 FLOW_OUT_7 0.45 1.14 0.73 0.62 0.6039 2.60E+02 8.40E+01 -19.4 0.76 0.61 0.35 0.84 49.37 41.33 25.36 26.22 

New Par of 

Iter1_2 

Cal-2001-2010 SET1 Iter1_3=600 FLOW_OUT_7 0.78 1.3 0.62 0.6 0.4583 2.30E+02 2.30E+01 -1.9 0.78 0.63 0.37 0.98 48.83 47.93 22.6 24.21 

New Par of 

Iter1_2 

Val-2011-2015 SET1 VAL2011-2015 FLOW_OUT_7 0.75 1.29 0.78 0.66 0.6701 2.00E+02 7.30E+01 14.7 0.81 0.58 0.42 1.17 45.19 52.99 23.61 24.04 

New Par of 

Iter1_2 

Cal-2001-2010 SET2 Iter1_3=600 FLOW_OUT_7 0.6 0.81 0.63 0.63 0.383 2.20E+02 4.90E+01 1.4 0.69 0.61 0.41 1.01 47.27 47.93 18.54 24.21 

New Par of 

Iter1_2 

Val-2011-2015 SET2 VAL2011-2015 FLOW_OUT_7 0.68 0.7 0.73 0.72 0.4655 1.60E+02 4.80E+01 2.6 0.71 0.53 0.47 1.03 51.63 52.99 17.94 24.04 

New Par of 

Iter1_2 

Cal-2011-2020 SET1 Iter1_3=600 FLOW_OUT_7 0.75 1.06 0.53 0.52 0.3234 3.00E+02 3.30E+01 -0.4 0.68 0.69 0.33 1 53.53 53.29 20.69 24.83 

New Par of 

Iter1_2 

Val-2021-2022 SET1 VAL2021-2022 FLOW_OUT_7 0.63 1.1 0.69 0.61 0.5131 2.00E+02 9.00E+01 9.3 0.78 0.62 0.34 1.1 58.66 64.65 20.29 22.6 

New Par of 

Iter1_2 

Cal-2011-2020 SET2 Iter1_3=600 FLOW_OUT_7 0.58 0.46 0.62 0.62 0.3771 2.30E+02 4.20E+01 0.9 0.69 0.61 0.42 1.01 52.83 53.29 19.04 24.83 

New Par of 

Iter1_2 

Val-2021-2022 SET2 VAL2021-2022 FLOW_OUT_7 0.63 0.58 0.7 0.68 0.4195 1.60E+02 7.00E+01 2.3 0.67 0.57 0.4 1.02 63.16 64.65 16.22 22.6 

New Par of 

Iter1_2 
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Cal-1991-2005 SET1 Iter1_3=600 FLOW_OUT_7 0.52 0.68 0.69 0.61 0.586 2.40E+02 5.10E+01 -10.1 0.8 0.62 0.41 0.91 50.57 45.94 25.52 24.85 

New Par of 

Iter1_2 

Val-2006-2015 SET1 VAL2006-2015 FLOW_OUT_7 0.71 0.79 0.61 0.49 0.4841 2.50E+02 4.50E+01 10.4 0.76 0.72 0.27 1.12 48.17 53.76 22.52 22.1 

New Par of 

Iter1_2 

Cal-1991-2005 SET2 Iter1_3=600 FLOW_OUT_7 0.63 1 0.71 0.69 0.5284 1.90E+02 3.60E+01 -7 0.79 0.55 0.48 0.93 49.13 45.94 21.88 24.85 

New Par of 

Iter1_2 

Val-2006-2015 SET2 VAL2006-2015 FLOW_OUT_7 0.83 1.1 0.67 0.67 0.4477 1.60E+02 2.80E+01 1.4 0.74 0.57 0.42 1.01 52.99 53.76 17.98 22.1 

New Par of 

Iter1_2 

Cal-1991-2010 SET1 Iter1_3=600 FLOW_OUT_7 0.82 1.24 0.64 0.58 0.5265 2.40E+02 2.60E+01 -3 0.79 0.65 0.4 0.97 49.53 48.08 24.83 24.01 

New Par of 

Iter1_2 

Val-2011-2020 SET1 VAL2011-2020 FLOW_OUT_7 0.77 1.24 0.58 0.47 0.4713 3.30E+02 4.10E+01 8.5 0.74 0.73 0.3 1.09 48.74 53.29 26.17 24.83 

New Par of 

Iter1_2 

Cal-1991-2010 SET2 Iter1_3=600 FLOW_OUT_7 0.6 0.8 0.65 0.65 0.4166 2.00E+02 3.90E+01 -1.7 0.71 0.59 0.44 0.98 48.88 48.08 18.96 24.01 

New Par of 

Iter1_2 

Val-2011-2020 SET2 VAL2011-2020 FLOW_OUT_7 0.71 0.76 0.63 0.63 0.4125 2.30E+02 2.80E+01 -0.9 0.73 0.61 0.42 0.99 53.75 53.29 20.61 24.83 

New Par of 

Iter1_2 
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Table 5. Overview of model performance indicators for the Iterations performed. 

Calibration Validation 

Parameter Iter 1 

(300 

simulations) 

Iter 2 

(400 

simulations) 

Iter 3 

(500 

simulations) 

Iter 4 

(600 

simulations) 

Val 

(600 

simulations) 

p-factor 0.85 0.91 0.91 0.82 0.8 

r-factor 1.85 2.17 1.69 0.88 1.04 

R2 0.71 0.70 0.72 0.72 0.75 

NSE 0.68 0.68 0.69 0.70 0.65 

PBIAS -2.3 -3.0 2.8 -1.1 -6.6 

KGE 0.84 0.83 0.84 0.85 0.79 

During calibration, the p-factor (0.82), r-factor (0.88), R2 (0.72), NSE (0.7), PBIAS (-1.1), and KGE 
(0.85) are statistical extracts of model performance. During validation, extracts of model performance 
are p-factor (0.8), r-factor (1.04), R2 (0.75), NSE (0.65), PBIAS (-6.6), and KGE (0.79). Abbaspour [42] 
states that the p-factor and r-factor are statistical parameters determining calibration performance or 
goodness of fit in each iteration. The p-factor indicates model accuracy and ranges from 0 to 1. It 
represents the percentage of observed data inside the 95PPU range (Figure 5). The model error is 1 
minus p-factor. Model uncertainty, represented by the r-factor, is the mean thickness of the 95% 
prediction uncertainty divided by the observed data standard deviation. It may range from 0 to 
substantial value. A favorable r-factor value is about 1, the observation's standard deviation. Two 
parameters fully describe the calibrated model's performance. A calibrated model better captures 
observations when the p-factor is closer to 1, and the r-factor is closer to 0.  

According to Abbaspour [42], around 70% of river discharge data should fall within the 95PPU 
range (p-factor ≥ 0.7, r-factor ≤ 1.5). This study's calibrated model estimated UBRB streamflow data 
well with p-factor (0.82), r-factor (0.88), and 95ppu (Figure 4.4). The Porijogi catchment of Estonia by 
Kmoch, Moges [30] has a p-factor of 0.27-0.86 and an r-factor of 0.1-1.75, which closely agrees with 
some of these findings. Mollel, Mulungu [49] presented a Tanzanian study with a p-factor of 0.58) 
and an r-factor of 0.55. The r-factor is better than this study's, while the p-factor is better than the 
Tanzania study's. However, this study's different catchments and pre-calibration tests caused the p-
factor and r-factor discrepancies. 

The calibration period produced R2 (0.72), NSE (0.7), PBIAS (-1.1), and KGE (0.85). The model's 
suitability was evaluated using Moriasi, Arnold [13], Moriasi, Gitau [53] statistical criteria: NSE > 0.65 
(Very good: 0.75 < NSE < 1.00), good: 0.65 < NSE < 0.75, satisfactory: 0.5 < NSE < 0.65, or unsatisfactory: 
NSE < 0.50), R² > 0.5, and |PBIAS| ≤ 25%. The calibration and validation findings showed a successful 
simulation with good to satisfactory and efficient model performance. 

In this study, the PBIAS value of -1.1 simulates streamflow and is closer to observed data than 
Dlamini, Kamal [14], and Ismail [17], which are -9.4 and -5.4, respectively. It shows that a shorter 
usage period may increase model performance. It could also depend on the watershed. Figure 6 
shows the calibration and validation streamflow plot, showing a close correlation between simulated 
and observed flows. Overall, the calibration (PBIAS = -1.1) and validation (PBIAS = -6.6) periods 
overestimated flow by less than 10%, within the tolerance level. During calibration, flow was 
underestimated in November for most years, from 1991 to 1997 and from March 1994 to March 1995. 
The model accurately predicted peak discharge but overpredicted certain months. The Complexity 
of the UBRB basin, with several manmade ponds for flood controls and other activities, may create 
excess and deficit simulations. The model can underestimate or overestimate discharge levels to fit 
observations.  
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Figure 5. The 95ppu plot of all variables for the calibrated model. 

The model accurately replicated monthly discharge data throughout validation, except for the 
overestimations of July 2002–November 2002 and November–December 2005. Validation findings for 
R2 (0.75), NSE (0.65), PBIAS (-6.6), and KGE (0.79) align with calibration trends. As stated by Moriasi, 
Arnold [13], Mollel, Mulungu [49], Moriasi, Gitau [53], the simulation was successful with values 
beyond 0.5. This study's R2 value is 17% higher than Dlamini, Kamal [14]'s 0.62 and 15% higher than 
Ismail [17]'s 0.64. Recent research has indicated that model assessment statistical results are poorer 
during validation than calibration; however, this study demonstrated that the statistical indices are 
similar during both phases. During the validation period from October 2004 to January 2005, which 
falls within the Malaysian Northeast monsoon period of November–February every year [54], and 
from April 2005 to July 2005, which falls within the Malaysian Southwest monsoon period of May-
August every year, the flow was consistently overestimated. The Northeast monsoon has shifted 
backward by one month (October to January instead of November to February), and the Southwest 
monsoon has also shifted backward by a month (April to July instead of May to August). This shift 
could be attributed to climate change, so farmers in this region, especially those who depend on 
rainfall agriculture, should plan their farming season early. Nevertheless, the SWAT model replicated 
Malaysia's seasonal cycle, proving it is reliable for simulation and projections. 

The model replicated months with high peak discharges, unlike Dlamini, Kamal [14] and Ismail 
[17], who used ArcSWAT to predict streamflow in the same basin. To assess the SWAT model's 
reliability in simulating historical and future projections, the Kling-Gupta efficiency (KGE) [43,44] 
was used, comprehensively evaluating the model's capacity to replicate the observed flow regime 
while considering timing, volume, and variability. The KGE was 0.85 and 0.79 for calibration and 
validation periods, respectively, indicating that the SWAT model could sufficiently simulate the 
streamflow in the UBRB basin.  
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Figure 6. SWAT Model Monthly Streamflow for Simulated and Observed. 

Figure 7 (a and b) shows UBRB streamflow at the SKC gauge station during calibration and 
validation. The SKC gauge station data points were reduced from 120 to 12 for calibration and 60 to 
12 for validation using Microsoft Excel to show how the model predicted streamflow. Figure 4.6a 
shows the monthly average streamflow. The graph indicates a close match and steady pattern 
between observed and simulated streamflow during calibration, especially from April to November. 
In December, the model predicted less flow than in January to March. Figure 4.6b indicates a 
significant connection between observed and simulated streamflow during validation, especially 
from January to April and July to November. The model overestimated May–June and December 
flow. In this investigation, the SWAT model performed well with values beyond 0.5, as suggested by 
Moriasi, Arnold [13], Mollel, Mulungu [49], Moriasi, Gitau [53]. 

 
(a) Average Monthly Observed and Simulated Streamflow for SWAT Model (Calibration period) 
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(b) Average Monthly Observed and Simulated Streamflow for SWAT Model (Validation period) 

Figure 7. UBRB streamflow at the SKC gauge station during calibration and validation. 

3.3. Simulation of UBRB Using the SWAT Model 

The result of the SWAT simulation after adjusting the model parameters with calibrated best-fit 
values is presented in Figure 8. The results indicated that the inflow (rainfall) and the outflow (water 
yield + ET) are 2,873.36mm and 2,592.78mm, respectively. This shows a difference of 9.8% for 1991-
2005, while 2,921.98 mm and 2,586.07 mm for the inflow and outflow, during the 2006-2020 period 
with a difference of 11.5%.  The overall result, with a difference of 10.6% between the inflow and 
outflow within the simulation period of 1985 to 2020 with a 6-year warm-up period, has shown that 
the SWAT model can project future UBRB simulations.  
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(b) 2006-2020 

Figure 6. SWAT Simulation Output (Average Monthly Basin Values for 1991-2005 and 2006-2021). 

4. Discussion 

The sensitivity analysis identified CN2, ESCO, ALPHA_BNK, CANMX, HRU_SLP, SUB_ELEV, 
GWQMN, CH_N2, RCHRG_DP, and CH_K2 as key parameters influencing streamflow in the UBRB. 
The results showed partial alignment with previous studies, with some parameters such as CH_N2, 
CH_K2, and CN2 consistently sensitive, while others: GW_DELAY and ALPHA_BF were non-
sensitive here but sensitive elsewhere. Variations in sensitivity were attributed to differences in land 
use, soil properties, and hydrological conditions, emphasizing the need for context-specific modeling 
and calibration. 

The SWAT model’s calibration and validation (1985-2022 with a 6-year warm-up) used three 
periods (10/5, 15/10, and 20/10 years) and two parameter sets: Set 1 (26 refined to 10) and Set 2 (9 from 
prior studies). The model achieved strong performance: p-factor (0.82, 0.8), r-factor (0.88, 1.04), R2 
(0.72, 0.75), NSE (0.7, 0.65), KGE (0.85, 0.79), and |PBIAS| (-1.1, -6.6). The model accurately captured 
UBRB streamflow with 95% prediction uncertainty (95PPU). Seasonal flow patterns were well-
replicated despite monsoon period overestimations, indicating reliability for historical and future 
projections. Climate change-driven monsoon shifts underscore the need for adaptive agricultural 
planning. Performance exceeded key benchmarks (NSE > 0.65, |PBIAS| ≤ 25%).  

5. Conclusions 

Calibration and Validation of the SWAT model at UBRB for Agro-Hydrological Process 
Projections in Malaysia was successfully carried out using the QGIS environment. A multifaceted 
approach was employed, and the calibration and validation were divided into three categories. 
Category 1, with 10-year calibration and 5-year validation data, has shown that the 1991-2000 and 
2001-2005 calibration and validation periods yielded the best model performance. The result analysis 
demonstrated that the Northeast monsoon shifted backward by one month (October to January 
instead of November to February), and the Southwest monsoon shifted backward by a month (April 
to July instead of May to August). This shift could be caused by climate change, and thus, farmers in 
this region, especially those who depend on rainfall agriculture, should plan their farming season 
early. The overall result of the simulation showed a difference of 10.6% between the inflow and 
outflow between the simulation period of 1985 to 2020 with a 6-year warm-up period, implying that 
the SWAT model can project future UBRB simulations. Nevertheless, this study demonstrates the 
SWAT model's capability to predict agro-hydrological processes of Malaysia's seasonal cycle, 
proving it is reliable for simulation and projections and providing a valuable tool for decision-makers 
in the UBRB to optimize agricultural water resource management. 
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