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1. Summary of Eshelby’s Inclusion and Inhomogeneity Problem

Eshelby’s Inclusion and Inhomogeneity problem is a fundamental concept in the field of con-
tinuum mechanics, particularly in the study of elastic fields and material science. It deals with the
elastic behavior of a region within a homogeneous material (the matrix) that has different material
properties or experiences different strains compared to the surrounding matrix. This problem is crucial
in understanding how inhomogeneities such as voids, inclusions, or other defects within a material
affect its overall mechanical properties.

1.1. Basic Definitions

¢ Inclusion: An inclusion is a region within a material that has different elastic properties (stiff-
ness, for example) from the surrounding material (the matrix). The inclusion is assumed to be
embedded in the matrix and can have its own distinct material properties.

¢ Inhomogeneity: An inhomogeneity refers to a region within a material where the material
properties differ from the surrounding matrix. It is a broader term that includes inclusions but
also refers to regions where properties such as density, thermal expansion, or other physical
characteristics differ.

1.2. Eshelby’s Inclusion Problem

¢ Eshelby’s Tensor: At the core of Eshelby’s inclusion problem is the Eshelby tensor, which
describes the elastic field inside and around an inclusion when it is subjected to an external stress
or strain. This tensor is a fourth-order tensor that relates the applied strain to the strain inside
the inclusion.

¢ Ellipsoidal Inclusions: Eshelby’s work showed that for ellipsoidal inclusions, the strain inside
the inclusion is uniform and can be related to the external strain through the Eshelby tensor. This
remarkable result simplifies the analysis of inclusions significantly, as it reduces the complexity
of the problem.

¢ Inclusion vs. Matrix: The key idea is that when an inclusion is subjected to a uniform external
stress or strain, the strain field inside the inclusion remains uniform, although different from the
strain field in the surrounding matrix. The specific relationship between these strains is governed
by the shape of the inclusion and the Eshelby tensor.

1.3. Mathematical Formulation

¢ Eigenstrain: The concept of eigenstrain (or transformation strain) is central to Eshelby’s analysis.
Eigenstrain refers to a strain that would exist in the inclusion if it were isolated from the matrix
and allowed to undergo a strain freely. When the inclusion is embedded in the matrix, the
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surrounding material restricts this strain, leading to an interaction between the inclusion and the
matrix.

¢ Elastic Field Equations: The elastic field due to an inclusion is governed by the equations of
elasticity. For a linear elastic material, these equations are linear partial differential equations
(PDEs) involving the stress and strain fields, which are solved subject to boundary conditions at
the inclusion-matrix interface.

¢ Eshelby’s Solution: Eshelby provided an analytical solution for the elastic field both inside and
outside an ellipsoidal inclusion in an infinite medium. His solution showed that the strain inside
the inclusion is constant and can be calculated using the Eshelby tensor.

1.4. Inhomogeneity Problem

¢ Difference from Inclusion: In the case of an inhomogeneity, the material properties of the
region differ from those of the matrix, leading to a more complex interaction between the region
and the surrounding material. Unlike an inclusion, where the material inside the inclusion can
be imagined as having the same properties as the matrix, an inhomogeneity represents a real
difference in material properties.

¢ Complexity: The solution to the inhomogeneity problem is more complex than the inclusion
problem because the contrast in material properties must be accounted for. This typically requires
solving the elasticity equations with variable material coefficients.

¢ Perturbation Techniques: In practice, solutions to inhomogeneity problems often involve pertur-
bation techniques, where the problem is treated as a small deviation from the homogeneous case,
or numerical methods, where the equations are solved using computational techniques.

1.5. Applications

¢ Material Science: Eshelby’s inclusion theory is widely used in materials science to predict how
inclusions and inhomogeneities affect the mechanical properties of composites, polycrystals, and
other heterogeneous materials.

* Micromechanics: The theory forms the basis for many micromechanical models that predict the
behavior of materials with microstructural features such as voids, fibers, or precipitates.

¢ Fracture Mechanics: In fracture mechanics, Eshelby’s theory is used to understand how cracks

and other defects influence the stress distribution in materials, which is crucial for predicting
failure.

1.6. Extensions and Generalizations

¢ Non-Ellipsoidal Inclusions: While Eshelby’s original work focused on ellipsoidal inclusions,
subsequent research has extended the theory to non-ellipsoidal shapes, though these cases
generally require numerical solutions or approximations.

* Anisotropic Materials: The theory has also been extended to anisotropic materials, where the
material properties differ in different directions, adding another layer of complexity to the
problem.

1.7. Limitations and Challenges

¢ Finite Boundaries: Eshelby’s solution assumes an infinite medium, which is an idealization. In
real-world applications, the finite size of the material can influence the stress and strain fields,
requiring corrections or alternative methods.

¢ Nonlinear Materials: The theory is based on linear elasticity, and its application to nonlinear
materials is limited. In such cases, more advanced models are needed.

In summary, Eshelby’s Inclusion and Inhomogeneity problem provides a powerful framework for
understanding how embedded regions within a material interact with their surroundings and affect
the material’s overall properties. The theory’s simplicity and analytical nature make it a cornerstone of
material science, despite the challenges in extending it to more complex scenarios.
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We start with the derivation of the 2 double derivatives dx;(dx;(r)) and dx; (dx;(dx; (dx; *))), where r

is the radius in Cartesian coordinates r = y/x3 + x3 + x3 and their integration over the surface S of the
inclusion. These double derivatives and their integration over the surface S of the inclusion will be
used to find the displacement impressed on the material in stage III (using the Love 1927 equation
(shown in Section 6) of Displacement at r due to point force F; at t’) due to the application of the
force distribution F; = p].Tkn k over S to make the body free of external force (but in a state of self-stress
because of the transformation of the inclusion).

2. Derivation of Double Derivative and Their Integration over the Surface §

In this section, we compute the double derivative dx;(dx;(r)) where 7 is the radius in Cartesian

coordinates r = y/x? 4 x3 + x3 and their integration over the surface S. We start with computing
dxj(dxi(r)):

Step 1: The first derivative of the radius with respect to x; is:

ar X;
dxi(r) = Fr 71
1

Step 2: The second derivative is:

dx;j(dx;(r)) = aax] (%)

Applying the product rule:

S XX
(1)) = 2L = =]

where §;; is the Kronecker delta. Let’s now integrate the above double derivative multiplied with the
vector n; over the surface. Before doing note the following important identity for the solid angle w
- nz-ridS - n,-l,-dS

dw = = ——
3 2

= | nil;dS = r*dw

Therefore the integration of the above double derivative dx;(dx;(r)) multiplied with the vector n; over
the surface S shall be
) XX j

/de]-(dxi(r))n]-ds — /S(i — L )nyds

r

5 LI
= /de]-(dxi(r))njds:/S(Tj)nde—/s(Tj)nde

Substituting the relations n;/;dS = r?dw in the above boxed equation
:/dx-(dx-(r))n-ds—/(%)dS—/M(ﬁ)erw
R o 7

51']'1’1]' 4
= /de]-(dxl-(r))njds = /S(T)dS—/O Lirdw

= /S d(dx;(r))njdS = /S i 45— /0 M ) ldw()

r
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Let’s define the tensor F in indicial notation as follows
P
l] 7

Using the Gauss Divergence theorem we can therefore say that

/S(5ij”1)d5_/(Fn)dS—/(VF qv = / a”dV

r

Now note that
»
/a Yy = /‘S’Ja 2)av = /5,] 5 dv——/‘/(ﬁ)dv

= /S((Sijnj)ds = */V(%)dv

r

Let us compute the volume integral by integrating over an elementary cone d() centred on the direction
1= (lh,1p,13) = (I, m,n) with its vertex at x. The volume dV of this elementary cone is

dv = r2drdw

Therefore the integral [, ( —g, )dV can be therefore written as

4 ; 47 47 r 47
/V 5 / / i drdew = / / Lidrdew — / I /0 drdco = /0 (D) lideo(1)

N /S(‘Sif"f)ds _ —/()Mr(l)lidw(l)

r

51‘]‘1’1]‘ 4
/dej(dxi(r))njds = /S(T)dS—/O Lirdw

N /S doxj(dx;(r))nidS = — /0 M) de(1) — /0 M deo(1)

Therefore we have

= /S dj(dx; () )n;dS = —2 /0 7 ) lde ()

3. Derivation of Quadruple Derivative and Their Integration over the Surface S

In this section, we do the derivation of the double derivative dx; (dx; (dxi(dx; r*))), where r is the

radius in Cartesian coordinates r = /x? 4 x3 + x3 and their integration over the surface S using 3
different methods.

3.1. Method 1: With Using the Exchanging of Integration and Differentiation Operator

We now derive dx; (dx;(dxi (dx; r*))), where r = |/x3 + x3 4 x3. Therefore we have

P = (23 + 2% + x3)%/?

Step 1: The first derivative of > with respect to x; is:

or’ X
3\ _ _a2¥
dx; (r ) = o 3r = 3rx;
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Step 2: The second derivative is:

or axl
dxy(3rx;) = 3(8 o X+ axk>

= 3(ﬂxl + r&,k)

- 3(x"x’ + ns,k)

Therefore the integration of the second derivative shall be
/ dx (dx, (r))mydS = / (P 4 vty myds = /5 3(xpl; + 1oy )mdS
= /dek(dx,(r3))n,d5 :3/S(llxk)nld5—|—3/S(r5lk)nld5

0 0 0 0
3 —
= /dek(dxl(r ))mdS = 3/V o (Iixx)dV + 3/‘/ o (rép)dV = 3/‘/ o (Iixp)dV + 3/V o (r)dv

P
= | [ dxp(dx, (P d5:3/—l av 3/ldV
Jdwldn(P)mas =3 | (ixav +3 [

Now note that we have

]

2 T DN
aTCl(llxk) = llaTc,(xk) +xka71(ll) = lzaxl (k) +xkaxl( )
9 9 (ro-(x1) —xiz%r) g (3r — 21 GBr—1)
= Tm(llxk> = llai.le(Xk) + xk ! r2 ! — ZZTM(xk) + kar — ll5kl —|— xk 1’2

= i(llxk) =3l
X

Therefore we have

= /dek(dxl(r3))nld5 = 12/Vlde

Differentiating both sides with respect to x; and x; we get

2
s (s ()

Integration | and differentiation i can be exchanged since they are linear operators
& Bxlax] g y P

82 3 82
T, [, Al ()mds) =12 | e 04V

The differentiation 55— a (I¢) can be written as

2 2
= 2y 22y 0 U e
0x;0X; ox;0x; T ox; oxj  r ' ox 72
0 9 (rop—"0) 9 Gk X

= axiax]_ (lk) = axi< 7’2 )_ aixl( 7 7’3 )
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02 9 1 9 XkX; Opxi 1 d 0 9 1
axar, 0 = ey ()~ (5a) = T — (e N T Rigg ™)~ iy ()
82 5.kx. 1
axiaxj(k)—— I = 5 (i + xjdk) — x5 (3)
02 ‘Sjkxz kx Xi
0? 1 kx Xi

= W(lk) = — 5 (X + x¢0ji + xj04i) +3

aZ

1
m (I) = ﬁ(_(liéjk + lk5]‘j + ljéki) + BZkljll')

Therefore we have

02 1
s A () mdS) =12 [ (=g + by + o) + 31l 1)V
]

Let us compute the volume integral by integrating over an elementary cone d() centred on the direction
1= (l1,1p,13) = (I, m, n) with its vertex at x. The volume dV of this elementary cone is

AV = r2drdw

Therefore we have

4t pr 1 )
ax > / dx (dx) (P))mdS) = 12 /0 /0 3 (= U+ 1 + 1) + 3l Prdco

92 4 r
= axlax](/s dxk(dxl(r3))nld5) = 12/0 (—(11‘5]']( + lké‘j,‘ + lj‘ski) +3lkl]'ll‘)/0 drdw

- E)xzax] ([, dxe(d(r)mas) = 12 / — (1635 + 1y + 1i6y) + 3l dew

3.2. Method 2: With Using Exchanging of Integration and Differentiation Operator
We now derive dx; (dx;j(dxi (dx; r*))), where r = |/x3 + x3 4 x3. Therefore we have

P = (a2 4 13 +x3)%/2

Step 1: The first derivative of > with respect to x; is:

or3 x
3\ _ _ 22X
dx; (r ) = 2 3r = 3rx;

Step 2: The second derivative is:

ar axl
dxy(3rxp) _3<8 o [+ axk>

3(ﬂx, +r51k)

3(@ + 75zk)
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Therefore the integration of the second derivative shall be

/dxk(dxl(r3))n1d5 :/ (@ +1’(slk)1’lld5 = /3(ka1 +1’51k)1’lld5
S S S

= /dek(dxl(r3))nld5 :3/5(11”1)xkd5+3/S(7’5lk)nld5

We know that
LmdS = r(1)%dw

Here 7(1) is the distance between the point inside the volume V to the surface dS in the direction of
1= (I1,1,13) = (I, m,n). Therefore we have

4
/dxk(dx,(r3 YndS = 3/ 1)2xdw —1—3/ rdw
s

Differentiating both sides with respect to x; and x; we get
02 3 92 4 32
axiax]_(/s dxi(dx;(r’))mdS) = ST ax; (/ r(1)2xdew) + 33’“1‘93‘1'(/5 r(1)nidS)

= az(/ dx (dx; (7)) mdS) 332(/4"r2x dw)+3az(/( 9 )av)
axiaxj S k ! ! N axiaxj 0 k axiaxj axk

dxi(dx) (r3))n,dS) = 3 i (/4ﬂr2xdw)+3 ik (/(ﬂ)dV)
ax,ax] s k(dx (r7))mdS) = dx;0x; Jo k axiax]» vor

02 3 02 4,
= axlax](/s dxi(dx;(r°))n;dS) = Baxiax]-(/o roxdw) + / 1. dV)

Let us compute the volume integral by integrating over an elementary cone d() centred on the direction
1= (I3,15,13) = (I, m,n) with its vertex at x. The volume dV of this elementary cone is

dv = rdrdw
> 3 02 ar 92 mcoer
= axlaxj(/s dxi(dx;(r”))ndS) = 38xiaxj(/o rxpdw) +38xi6xj(/o /0 (Igrt)drdw)

47
_ 2
ax ax; /dxk dx;(r*))mdS) = 38x gy (/ rxdw) —|—3 ax / lk/ drdw)

P ([ dng(dn (P)ymids) = 32— ([ o) + —o— ([T 1drd
:axiaxj% el (7)) mds) = 3555 ([ Pxdw) + 55 ([ )

82 3 82 47T )
N axiaxj(/sdxk(dxl(r nidS) = 4o > (/ Prdw)

We shall now show that the Integration operator [ and Differentiation operator %;r can be exchanged
i0%]

if and only if when the measure of the integration variable is independent of the Differentiation
operator variables x;, x;. We shall explain this concept using 6 different cases which are as follows

1. Assuming that the incremental solid angle measure dw is independent of the Differentiation
operator variables x;, x;.

2. Assuming that the incremental volume measure dV = @dw (subtended by a cone emanating
from a point inside the volume V to the surface dS which is at a distance (1) in the direction
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1= (lh,15,13) = (I, m,n) from the point) is independent of the Differentiation operator variables
Xi, X i

3. Assuming that the incremental surface area measure dS = r(1)?dw (subtended by a cone emanat-
ing from a point inside the volume V to the surface dS which is at a distance r(1) in the direction
1= (lh,15,13) = (I, m,n) from the point) is independent of the Differentiation operator variables
Xi, X i

4. Assuming that the incremental volume measure dV = r?drdw is independent of the Differentia-

tion operator variables x;, x;.
5. Assuming that the incremental angular direction measure dw and incremental volume measure

dV is independent of the Differentiation operator variables x;, x; in the first integration and

second integration respectively.

6. Assuming that the incremental angular direction measure /ydw is independent of the Differentia-
tion operator variables x;, x;.

We shall prove that all the above-mentioned 6 cases except the Case 4: "Assuming that the incremental

volume measure dV = r2drdw

is independent of the Differentiation operator variables x;, x;" will lead to a wrong answer. Only
Case 4: "Assuming that the incremental

volume measure dV = r?drdw is independent of the Differentiation operator variables x;, x;" will lead
to the Correct answer as derived in Method 1.

3.2.1. Assuming that the Incremental Solid Angle Measure dw is Constant with Respect to the

Differentiation Operator Variables x;, x;

In this subsection, we shall show that Integration operator | and Differentiation operator %gx,
19%]

cannot be exchanged when we assume that the incremental solid angle measure dw is independent of
the Differentiation operator variables x;, x;. Note that we have earlier derived

02 3 9? 47 )
g,y dxedn (P )mas) = 455 ([ )

. . . - 2
Let’s see what happens when we interchange Integration operator [ and Differentiation operator %ax]-

in the RHS of the above equation

92 e (d 3 J 02 4 20 4 52 2\
axiaxj(/s X (dx; (r°))mydS) _4E)JciE)3cj(/() rxdw) = 4( | W(r xp)dew)

92 5 4 2
g U e mas) = 4( [ 55

(rzxk)dw)

]

The first differentiation %ij (r?x}) can be written as

L I R R T ,
a0, (r°xe) = aTCi(aij(f X)) = aTci(xkach(r )+ E)ch(xk)) = aTCi(Zx]xk+T dix)

aZ

d d d 0
_ 7 (42 7 ) 25\ _ 9. 2 ' 25
= 9x;9%; (r"xx) ox; (Zx]xk +r (5]k) 2x; ax; X+ Zxk—axi xj+ o (r 5]k)

P 0 , 5
= I, (r°x) = 2x;0%; + 2xx0j; + ijaTCi(r ) = 2xi0k; + 2x¢0ji + 2x;0j%
?
= (rixg) = ijékl- + Zxk(Sﬁ + in(S]-k = Zr(ljéki + lkéji 4 li5jk)

axiax]-
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Therefore we can write

4 2

92
7axiaxj (/S dxk(dxl(r3))nld5) =4( (r2xk)dw) = 8/51’(1]'(5](1' + lkéji + li‘sjk)dw

0 axiax]-

02 3
= axlaxj(/s dxi (dx; (r°))ndS) = S/Sr(lj(Ski + Idji + Lidjp)dew

As we discussed earlier in Section 3.1, the correct answer for the %;xj ([s dxie(dx;(r®))ndS) shall be

xkx]-xl-
>—)dw

r

82 3 47
= g [, el (r)mas) = 12 [ (= (s + x0i + xidg) + 3

. . . . 2
Therefore exchanging the Integration operator | and Differentiation operator ﬁ under the as-

sumption that the incremental solid angle measure dw is independent of the Differentiation operator
variables x;, x; leads to wrong answer. Hence Integration operator | and Differentiation operator

%Sx cannot be exchanged under the assumption that the incremental solid angle measure dw is

independent of the Differentiation operator variables x;, x;.

3.2.2. Assuming that the Incremental Volume Measure dV = gdw is Independent

of the Differentiation Operator Variables x;, x;

In this subsection, we shall show that Integration operator | and Differentiation operator %;x
19%]

cannot be exchanged when we assume that the incremental volume measure 4V = Zdw (subtended
by a cone emanating from a point inside the volume V to the surface 4S which is at a distance r from
the point) is independent of the Differentiation operator variables x;, x;. Note that we have earlier

derived
A dx; (dx; (r3))n,dS 432 4”211
([, el (r))mas) = axiax]x/() Prdw)

axiax]-

Let’s see what happens when we interchange Integration operator | and Differentiation operator %gx,
(e}
in the RHS of the above equation

92 3 92 4 ) a2 )
Bxiax]-(/s dxi(dx; (r°))ndS) = 48xi8x]-(/0 rxdw) = 4/0 axiax]- (rrxgdw)

0? p 3 @2, )
=g st (P mas) =4 [ 55 (o)

Since we have assumed that dV = %dw is independent of the Differentiation operator variables x;, Xj,
the differentiation with respect to x; shall be zero i.e. %d V = 0, therefore we can write

9 o o fi

) 0,3 d r 3

0 X r 3
:>a—xidV—r (r)dqur 38xi(dw)
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0 9
= | =—dV =rx;dw + 3on

o, (dw)

The incremental volume 4V remains constant irrespective change of x;, i.e %d V = 0 therefore we
have
r 9
3 axi
—3rx; d
( 3 Ydw =

0 =rxjdw + (dw)

axi (dw)

rzxi )dw

= ) = (

This shows that the solid angle integration measure dw is not independent of Differentiation operator
. . 3L
variables x;, x; when we assume that the incremental volume measure dV = 7dw is independent

of the Differentiation operator variables x;, x;. The differentiation %;x. (r?xpdw) within the integral
19%]

2 .
f04" axa,ax, (r?x3dw) can be written as
i9%j

2
(rPxdw) = i( 9

(rPxdw)) = %(xkai(”2dw) + ﬂdwi(xk))

axiaxj axi Tx] Xj axj
= — —_— PR d —_—
= Bxiax]-(r xpdw) ox, (xx(r o, (dw) +dwaxj (1)) +r “’axj(xk>)
82 2 d 2 d 0 2 2 d
axiaxj(r Xpdw) = aTci(xk” E)ch(dw) +xkdwa—xj(r )+ dwa—xj(xk))
= & (rzx dw) = o (x rzi(dw) + 2x x:dw + r2dwé )
0x;0X; k ox; K ox; k= kj
Substituting the equation a% (dw) = %da) which we derived earlier into the above boxed equation
we get
02 5 )
= W(T Xkd(U) - axi (*3XJXkd(,() —+ 2xkx]dw +7r d(UCSk])
= > (rzx dw) = —(—xx dw + r*dwé ) = i(—x‘x dw) +9 -i(rzdw)
axiaxj k axi jrk kj axi jxk kfax,-
92 5 ] J 9 p) ) 5 9
= axiaxj(r xdw) = (—xkdwa—xixJ - x]dwa—xixk - xkx]a—xidw) +5k](dwa—xi(r )+ a—}q(dw))
> 2 d d 0 , 9
= W(r xpdw) = (—xkdwa—xix] - x]dwa—xixk - xkx]a—xidw) + O (2xidw + 1 (_Txi(dw))
Substituting the equation 32 (dw) = 13;’6" dw which we derived earlier into the above boxed equation
we get
Car XpXjX;
W(r xpdw) = (—xidijdew — xjddw +3—73—dw) + 5t;(2xidw — 3x;dw)

XXiX;
(szkdw) = (—xkéijdw — xjéikdw +3 K 2] d

0
= axiaxj . dw) — xiékjdw
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92 5
= W(T xkdw) = —(xkéi]- + X]'(Sik + xl-&kj)dw +
Therefore we can write
a2 4 X XiXi
ax ax / dxy dxl nldS) = 4( A axiax]' (szkda))) = 4/0 (—(xkéij+xj(5ik+x,~(5kj) +3%)dw

xkx X;

= axlax] / dxk dxl ))nlds = 4/ Xkéz] + x; 5zk + x; 5k]) +3 )dw

As we discussed earlier in Section 3.1, the correct answer for the ﬁng ([ dx(dx (r3))n;dS) shall be

Xk ]xz

471'
= ax ax] / dxk(dxl( ))nlds = 12/ xk51] + x](slk + X; 5](]) +3 )dw

. . . - 2
Therefore exchanging the Integration operator [ and Differentiation operator %axj under the assump-

. . 3 : .
tion that the incremental volume measure dV = "zdw (subtended by a cone emanating from a point
inside the volume V to the surface dS which is at a distance r from the point) is independent of the
Differentiation operator variables x;, x; leads to wrong answer. Hence Integration operator [ and

Differentiation operator #va cannot be exchanged under the assumption that the incremental volume
10%;

3
measure dV = =dw.

3.2.3. Assuming that the Incremental Volume Measure dV = r?drdw is Independent of the
Differentiation Operator Variables x;, x;

. . . . L 2
In this subsection, we shall show that Integration operator | and Differentiation operator ﬁ
i0Xj

can be exchanged when we assume that the incremental volume measure dV = r?drdw is independent
of the Differentiation operator variables x;, x;. Note that here r is not the distance between the point
inside the volume V and surface dS. We have earlier derived that

782 dx;(dx;(r))n,dS) = 47az ! 1)2xdw
axiaxj (/S k( 1(7’ )) 1 ) axiaxj (/0 1’( ) k )
This can be alternatively written as

92 5 B 92 47 3 _ 9?2 47 r(1) ) _ 92 47 r(1) 2
W(/s dxy (dx; (r*))ndS) = 4W(/0 Lr(1)°dw) = 4axi8xj(/o 3lk/0 redrdw) = 128xi6x]- (/O lk/0 redrdw)

Since the direction cosine I; remains constant as we integrate from 0 to r(1), we can take the direction cosine I} inside the second

integral [, M Therefore we can write the above equation as

92 i 3 9?2 4 pr(l) )
axidx; (/s dxy(dx; (r*))n,dS) = 128xi8xj (/0 /0 r*drdw)

Let’s see what happens when we interchange Integration operator [ and Differentiation operator % in the RHS of the above
19%j

equation

92 de (e (P rd 9?2 470 r(l)l 240 am or(l) 92 L v
axiaix;(/s xg (dxy (r”))mdS) = uiaxiax]' (/0 /0 Wrodrdw) = 12/0 /0 ax;0x; (Ler*drdw)

Since r2drdw is independent of the Differentiation operator variables x;, x i, we have ﬁ (rzdrdw) = 0. We can therefore write
i9%;

92 3 am () 2 ,
e [ dnan()mas) =12 [ [ (e WP
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2
The differentiation %axj (Ix) can be written as

9?2 (l)f 92 (xk)i d d (xk)), 9 (raixixkkaaixjr)
T T A T A A
i d (ré]'k B @) d 5jk XkX;j
= ax,‘ax]' (lk) B aixl(riz) = 87)61(7 — 1’73)
32 0 1 a9 ka] 5]'kxi 1 ) 3 5 1
= W(lk) = 5]]‘373:,4(;) T rT) =5 " r?(xka—xix] .:,.x]aTCixk) _xkxfaixi(ﬁ)
32 Spxi 1 9 1
m(lk) = - A r?(xkdji +xj5ki) — xkx]vaixi(ﬁ)
92 Saxi 1 .
- W( K) = 7;73’ - ﬁ(xk5ji+xj5ki) +3=
[y
az 1 xkx]-xi
= W(lk) = _ﬁ(xifsjk + xk6ji +x]-<5k,-) +3 5
92 1
= W(lk) = rf(_(ligjk +lk5ji + ljéki) +3lkl]'li)
[y

Therefore we have

92 1
o /5 A (dx, () mdS) = 12 /V > (— (i + i+ idwi) + 3Ll 1) dV
i9X;

Let us compute the volume integral by integrating over an elementary cone dQ) centred on the direction1 = (I4,1,13) = (I, m,n)
with its vertex at x. The volume 4V of this elementary cone is

AV = r*drdw

Therefore we have

92 4 pro
Yo (/S dxy (dx, (7‘3))111115) = 12/0 /() rfz(*(l,ﬁjk -+ lij,' + ljéki) + 3lkljl,')1’2d1’d(d
[add]

9?2 4 r
= m(/s dxk(dxl(r3))nld5) = 12/0 (7(1,‘5]‘]( -+ lkéji + l]dk,) +3lkl]l,)/0 drdw

82 47
= W(/S dxi(dx; (r¥))mdS) = 12/0 (= libj + ki + 16ri) + 3lil;li)dew

As we discussed earlier in Section 3.1, the correct answer for the %;X_ (fs dxi(dx; (r®))n;dS) shall be
10X

92
E)ijxj

4 XpXiX;
(/S dxk(dxl(r3))n1d5) = 12/0 (f(xkéij +xj‘5ik +xi5k]‘) +3 1’2] 7)dw

Therefore exchanging the Integration operator [ and Differentiation operator ﬁ under the assumption that the incremental
0%
volume measure dV = rdrdw is independent of the Differentiation operator variables x;, xj leads to correct answer. Hence
. . . 92 . .
Integration operator [ and Differentiation operator 5.%>— can be exchanged under the assumption that the incremental volume
19%]

measure dV = r?drdw is independent of the Differentiation operator variables x;, Xj.

Reason why we are getting different answers

The reason why we get a different answer than when we consider the incremental volume measure dV = édw to be in-

dependent of the Differentiation operator variables x;, xj is due to the following reason: If we consider incremental volume

measure dV = r?drdw to be independent of the Differentiation operator variables x;, xj, i.e % (r?drdw) shall be zero. Then we
1

get

Dy i) = i 2 ) 4 2 e
axidvf xi(r drdw) =r drBXi(dw)+r deXi(dr)—&-dwdraJCi(r)
D () 4 e
= B—XidV =r draxi (dw) +r dwaXi (dr) + dwdraxi (r7)

= idV = r2dr J

o a—Xi(dw) + 2x;dwdr
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change of x;, i.e %d V = 0 therefore we have

=0= rzdri(dw) + 2x;dwdr
axi
= 2xdw = rzi(dcu)
! ax,-
J 2
= a—xi(dw) = ——d

But if we consider the incremental volume measure dV =

xi, Xj, i.e ax (5 dw) shall be zero. Then we get

3

(3

]

or

9 9
w = am

e)
ﬁa—xidvf

9

dw

(Far

gdw to be independent of the Differentiation operator variables

r 9
?wa

0
ETd

9 3
)7371,(3)'1 w+
3

-(r)dw +

Xi

2 av =
= ox;

r 9
—)dw + — — (dw
o + 7 5 ()

0 9
E)x, —dV =rxjdw + — 3 (dw)

The incremental volume dV remains constant irrespective change of x;, i.e ax dV = 0 therefore we have

(i’

5]
0 =rxjdw + ?T(dw)
—3rx; 0
= ( 3 Ydw = o (dw)
d o 733{,‘
= a—xi(dw) = 2 Ydw

The a%- (dw) is different for different assumptions of integration measure independence with respect to the Differentiation
1

operator variables x;, x;. This leads to different values of %;x/ (f5 dxi(dx; (r%))mdS).

3.2.4. Assuming that the Incremental Angular Direction Measure lydw is Independent
of the Differentiation Operator Variables x;, x;

In this subsection, we shall show that Integration operator | and Differentiation operator %éx_ cannot be exchanged
i9%]

when we assume that the incremental angular direction measure [dw is independent of the Differentiation operator variables
Xi, Xj. Note that here r is not the distance between the point inside the volume V and surface dS. We have earlier derived that

92 5 92 an
W(/S dx(dx (r7))mydS) = 4W(/0 r(1)%xpdw)
Let’s see what happens when we interchange Integration operator f and Differentiation operator ax?;xj in the RHS of the above
equation
& 3 92 47 41 )
0x;0x; (/5 dxi(dx) (7)) mdS) = 48xi8xj (/O r()*xdw) = 4/ ax,Bx]( (D) xdw)

Since we have assumed that the incremental angular direction measure /,dw is independent of the Differentiation operator
variables x;, x;, the differentiation with respect to x; shall be zero i.e. % (Ikdw) = 0, therefore we can write
1

82 47T 82 az
s s (Pns) = [ 52 00 = o[ 55 00800 =8 [ 5T )
82 7T 82
= | g staatrmas) =4 [ s 104
We know that 2
XiXi
) =3( T ) =30 )

aZ

_T () = 1.+ 5.
= axiax]-(r) 3r(lilj + )
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Therefore can write

=

(/S dxk(dxl(r3))n1d5) = 12(/047T1’(ll'ljlk + 5,]lk)dw)

ax,-axj

As we discussed earlier in Section 3.1, the correct answer for the %;x, (fs dxi(dx; (r®))n;dS) shall be
9%

xkx/x,

= ax ax, /dxk dx; (P3))mydS) 712/ — (i + X0 + Xidkj) + 3 Ydw

Therefore exchanging the Integration operator f and Differentiation operator %ij under the assumption that the incremental

angular direction measure /xdw is independent of the Differentiation operator variables x;, x; leads to wrong answer. Hence

. . - 2 . .
Integration operator [ and Differentiation operator 3 ;’ax_ cannot be exchanged under the assumption that the incremental
i9%

angular direction measure [ydw is independent of the Differentiation operator variables x;, x;.

3.2.5. Assuming that the Incremental Angular Direction Measure dw and Incremental
Volume Measure dV is Independent of the Differentiation Operator Variables x;, x; in the First

Integration and Second Integration Respectively

In this subsection, we shall show that Integration operator [ and Differentiation operator %;Cv cannot be exchanged
19%]

when we assume that the incremental angular direction measure dw and incremental volume measure dV is independent of the
Differentiation operator variables x;, x; in the first integration and second integration respectively. Note that here r is not the
distance between the point inside the volume V and surface dS. We have earlier derived that

02 (7 92 4m ;
axiaxj(/s dxy(dx;(r°))ndS) = 38xi8xj (/0 xpdw) + / dV)

Let’s see what happens when we interchange Integration operator | and Differentiation operator %‘27"/ in the RHS of the above

equation
92 dr(d 3 p a2 ) p 2 L
75,361_5,%(/S xi(dx; (r7))n,dS) _3/0 PrETS (rx w)+3/vw(k V)

Since the incremental angular direction measure dw and incremental volume measure dV is independent of the Differentiation
operator variables x;, x; in the first integration and second integration respectively, we can write the above equation as

47
— ax, /dxk dx, () mdS) _3/ — ax] (Px; dw+3/ ax,ax] (1,)dvV

o L 2 .
The first differentiation #Bx]' (r?x;) can be written as

9?2 5 9 d , 5 5 0 9 5
m(" x) = BTci(xkach(r )+ aTc]-(xk)) = BTQkax]_i_r ;)

= 782 (") = i(2x xj+126) = 2(x ix-—i—x-ix )+9 -irz
axiaxj k)= axi k% ki) = kaxi ] ]axi k k’axi

%;xj(fzxk) = a%i(zxkxj +r28;) = 2(x0 + X;03) + 2x;6%
= a72(#9‘1() = 2(xxdij + xj0ik + Xik;)
0x;0x; 7 /
2
= Bx,ax] (rx;) = 27 (Ixdij + 1o + 1i0x;)

. . 2 .
The second differentiation ﬁ (k) can be written as
i9%;

92 (xk 0 ( b} (xk)), 9 (rocxk—xkger)
ox;0x;  r’  0x; 0x; r ax; 72
82 Xk J (7‘5}( — 7) ] 5jk xkxj
Sy ) T ) Ty )
2 x 9 1 kX dpxi 1 9 1

é<3Jc,-aac]-(7): jkaTc,-(r) ax,(
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= ax?;xj' (%) = _(5]:3751' _ %(xkt%i + Xj0ki) — xkx]-ai}q(%)
N %;x](%) _ _5]:3351' B %3(35145 x6) +3xkx]x,
ax?;x] (xk) 1 5 (i + 005 + j6) +3 kx;xl
- %;C/(%) - rlz(’(l"‘sfk + i + 10) + 3heljli)

Note that we have dV = gdw. Therefore can write

Bx,ax/ /dek dx, (%)) mdS) —6/ P + 163 + Li6y) dw+3/ — (16 + s + 1;0y) + BLiL;))dV

ax . /dxk(dxl( ))mdS) = 6/ F(li + 10 + id) dw+/ — (18 + kb + Lidws) + 3l i) )dw
[aged]

92 3 4
= m(/s dxk(dxl(r ))nldS) :/0 5r(lk5”+l]51k+ll§k])dw+/v(31kl]l,)dw

As we discussed earlier in Section 3.1, the correct answer for the %;x_ (fs dxg(dx; (r®))n;dS) shall be
i9%]

xkx]x,

Ydw

3
axi0%; (/s dx(dx;(r*))ndS) = 12/ —(xkdij + X0 + x;0k;) +3

Therefore exchanging the Integration operator | and Differentiation operator ﬁ under the assumption that the the incremen-
i9%j

tal angular direction measure dw and incremental volume measure dV is independent of the Differentiation operator variables
x;, xj in the first integration and second integration respectively leads to wrong answer. Hence Integration operator | and

Differentiation operator xa-ax cannot be exchanged under the assumption that the incremental angular direction measure dw
19%j

and incremental volume measure dV is independent of the Differentiation operator variables x;, x; in the first integration and
second integration respectively.

3.2.6. Assuming that the Incremental Surface Area Measure dS = r(1)?dw is Independent
of the Differentiation Operator Variables x;, x;

In this subsection, we shall show that Integration operator | and Differentiation operator %;Y_ cannot be exchanged
i0%]

when we assume that the incremental surface area measure dS = r(1)2dw (subtended by a cone emanating from a point inside
the volume V to the surface dS which is at a distance r(1) in the direction1 = (14, I, 13) = (I, m, n) from the point) is independent
of the Differentiation operator variables x;, x;. Note that we have earlier derived

/dxk dx; (r(1)?))mdS —3/ In xde+3/ 1)6,)m,dS

= /dek(dx,(r( ) ))nldS —3/ Iy xg n,d5+3/ 5[[( n;dS

Using Gauss Divergence theorem on the first integration, we can write the above equation as

= /dxk dxl )nldS 73/ a l;xk dV+3/ §Ik nldS
X1

Now note that we have

2 Cd I 9 x
aTcl(llxk) _Z’Tm(xk)+xk7m(l’) = Zlax (xk)+xka (<)
2 2
0 9 (rag (xi) — X1 55.7) 9 (3r — 1) (3r—r)
= Tn(llxk) = llTﬂ(xk) + xk—l 2 ! = lle(Xk) + kar = 10k + xi. 2

= i(llxk) = 3l
X]

Therefore we have

= /dek(dx,(r() ))n,dS —9/ lde+3/ (5lk n;dS

= /dxk dx,(r(1)3))mydS —9/ lde+3/ 1)ndS
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Now not that we have a5 (r) = I. Therefore using the Gauss Divergence theorem, we can write

/Vlkdvz/va%(r)dvz/sr(l)nkds

= /lde:/r(l)nde
1% S

Therefore we can write

= /dek(dxl(r3))n1d5 = 12/Sr(1)nkd5

Let’s see what happens when we interchange Integration operator | and Differentiation operator r{; in the RHS of the above
i0%
equation

_ 62 d d 3 d E)Z d 47 32 p
ax,'ax]' (/S xk( X](T(]) ))1’1] S) 712?33@(/5 7’(1)1’lk S) = 12/0 m(;’(l)nk S)

2 T 2
e oA )nas) =12 [ S ()

=

Since we assumed that the incremental surface area measure dS = r(1)2dw (subtended by a cone emanating from a point inside
the volume V to the surface dS which is at a distance r(1) in the direction1 = (I4, I, 13) = (I, m, n) from the point) is independent

of the Differentiation operator variables x;, x;, we have ﬁ (dS) = 0. Therefore the above-mentioned boxed equation becomes
0%

=

92 et (73 a2 .
axiaxj (/S xk( xl(r ))nlds) = 12/0 m(r(l)nk) S

Now we know that

Ling = r(1)%dw = dS
Differentiating both sides of the equation with respect to x; we get

d 3
ach(lk”lk) = a7}_(115)

Since we assumed that the incremental surface area measure dS = r(1)?dw is independent of the Differentiation operator
)
variables x;, xj, we have

a—xj(ds) =0

d d
= lkﬁ”k +i’lk§lk =0
] ]

) J ,x
= lkgnk-i-ﬂkg(?k)
j j

F) )
(rijxk - xkaTjr)

= lkink + 1y
ox; r2

)

T

]
?lkaijnk-i-nkirz =0

n; Ny XpX;i
(5 = ")

= Zpy=-r 7
ax]- k lk
( _ nkxkx])
_ Y 2
= —— N =
ax]- Xk
9 nj NX;
== ———F5

ox; T r2

Similarly, we also have | [;n; = r(1)?dw = dS |and J

, therefore we can similarly write

reprints202412.0855.v1
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XiX,
9 (réi — =)
= l]afxﬂ’l] + n; ) 0
nix;Xx,
Lo, G-
ax,' / lk
nix;x;
I o
ox; ! Xj
d o n;Xx;
= ox; Ty TR
. . 92 _ 32 . . . F) )
To compute the double derivative Fon; (rng) = e ( % (rng)). We need to first compute the 2 derivatives % (rng) and e (rnj).

Note that we can write using the product rule
—(rng) = rin +n ir
i k)= ox i k k ox 7

]

d 9
=—(rnj) =r=—n; + n/-B—Xir

axi Bx,»
Substituting the expression for a%jnk that we got earlier in the above equation a%]_ (rmg) = ra%jnk + ng a%]_r we get
] n;  Ngx;j NgX;i ™m;  NEX;  NEXi
= () =r(L -+ L=
ox; Xk r r Xk r r
d m;
=| s— () = —
ax; (rmg) = —

Substituting the expression for a%in ; that we got earlier in the equation a% (rnj) = raixin i+ 1 a%ir we get

n; njx,-

9 nix; m; nix; nix;
= —(m)=r(= — =
s 1) = (2

r2 ) r Xj r r

rm;

= a—xi(rn]-): X,

. . . R 2
Using the expression for aixj (rng) that we derived earlier, we can write the double derivative ﬁaxj (rny) = a%i ( a%j (rng)) as

92 d ,0 9
= 7ax,-ax]- (rng) = BTC,-(BTc]-(mk)) ~ o x7k)
_| @ (rmy) = (xk g (rmj) — g (%))

0x;0x; M) = x,%

Using the expression for 3%1‘ (rnj) that we derived earlier,

rn;x
9?2 ( ) ( ;/ — rnjéki)
= m =
ax,»axj k x}%
92 TNl
= ——(rmg) = -
axii)xj ( k) XjXk x%

2 .
0 g Tn

=

—(rng) =
axiaxj( k XXk x%

Now we have derived earlier that

P ([ () ymd e ds
g,y e (P)mas) =12 [ 5 ()

Substituting the above-mentioned boxed equation into the previous equation we get

™m; mj

2 7T
aa—a]( [t (mas) =12 [
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As we discussed earlier in Section 3.1, the correct answer for the %;xj ([s dxi(dx (r®))n;dS) shall be

32
ax,ax]-

xkx]-xi
72

47
( /S dx(dx, (7)) mdS) = 12 /O (— (xed3j + X0 + x:0%) +3 Ydw

Therefore exchanging the Integration operator [ and Differentiation operator 52— under the assumption that the incremental
i9%]

surface area measure dS = r(1)2dw (subtended by a cone emanating from a point inside the volume V to the surface dS which

is at a distance r(1) in the direction 1 = (I4,1,13) = (I,m, n) from the point) is independent of the Differentiation operator

aZ
0x;0x;
under the assumption that the incremental surface area measure dS = r(1)?dw is independent of the Differentiation operator
variables x;, x;.

variables x;, x; leads to wrong answer. Hence Integration operator [ and Differentiation operator

cannot be exchanged

3.3. Method 3: Without Using Exchanging of Integration and Differentiation Operator

We now derive dx; (dxj (dxk (dx, r3) )), where r = 4 /x% + x% + x%. Therefore we have

P = (¥ + 3 +x3)%?
Step 1: The first derivative of r*> with respect to x; is:
or’ X
dx; (rS) = g2t o 3rx;
dx; r

Step 2: The second derivative is:

_ or dx;
dxp(3rx;) = B(Ex, + ra>

= 3(%xl + rélk)

Step 3: The third derivative is:

i (32 ) =3 2 (%2) 4 )

9 (xkx,> _ O+ xexpx;

BTCJ- r r r3
d X
35 (o) = 7/5lk
]
4 XpX] B §jkxl +§ﬂxk _ xkx,xj ﬁ
dx] (3(7}’ +1’(51k)> = 3( p T3 + p Jlk
Step 4: The fourth derivative is:
J-kxl +5-1xk XEX1Xj X
fs(Enrsn s 1))

For the first term:

. <5ij] + (5]-lxk> _ 5jk5i1 + ‘Sjlfsik B ((5ij1 + 6j1xk)xi
! r N r 3

For the second term:

kalx]' xkxlij,' (5ikxlxj + (5i1xkxj + 5ijxkx1

dxz- —— 3 =-3 5 + 3
r T T

For the third term:

dx,-(xj&lk) _ (5,‘]‘(511( _ xjélskxi
r r r

Combining all the terms, we get:

dx; (dx; (e 73))) _ 3((5jk(5il + 010 + 6ij0ik B SikX1xi + 0juxkX; + 8i Xk Xj + S X1 Xj + Ok X Xi + 6ij X X) n 3xkx1x/xi>

r r3 r>

Therefore the integral [g dx; (dx;(dx, (dx; r®)))ndS shall be

/dei(dxj(dxk(dxl 7)) mdS = /53(

5jk5il + (571(5,‘)( + (Silfslk 5]-kx1xi + Jﬂxkx,- + (5,-1xkx]- + (5,-kx1xj + (SIkX]'X,' + 15,-]-xkx1 + Sxkxlxjxi ) dS
1
r r’

73

r r

/S'dx,. (dx; (dxe (dx) 7)) )ymdS = /;3<5’

i+ G Gy Gl Gl + Sl + il + bl + Sylely | 3l )n is
- 1
T
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Note that we can write
nilidS = r*dw

Therefore we can write

Adxi(dxj(dxk(dx, r*)))mdS = /53(

We shall compute each of the 2 surface integrals on the RHS one by one. Let us start by computing the 1st surface integral
0101 +01 0+ 01k
r

Js3(=

Sulil + Sulil + Slil;
POl — 3(83cls + Oy + Gyl ) o — / (AR T O T O s
S

Oixdit + 010k + 51]‘51k mdS + /
r r

)n;dS. For this we define a tensor F in indicial notation as follows:

Ojkbit + 0j10ix + bijoik )

Fijpr = 3( p

Using the Gauss Divergence theorem we can write
oF; z]kl
/(F n)ds = /(v F)dV = / )dv
z/kl

Prs )dV can be written as

The volume integral fj,

X,
))AV = 3(idu + 510 + dijdn) / Fr dV 3901 + 610 +51]5Ik)/( Té)dV

an]kl / ]k‘szl +0j16ik + 6ijdik
Bx; ax1 r

Let us compute the volume integral by integrating over an elementary cone dw centred on the direction 1 = (I, I, 13) = (I, m, n)
with its vertex at x. The volume 4V of this elementary cone is

AV = rdrdw

Therefore the integral [, % dV can be therefore written as

x; 4 rr(l) 47 r(l) 47
/ Iy / / M drde — / / LdrdQ) — / I / drdcw — / Lr(1)dew
v r 0 0 0 0 0

Dy = [T
=1 [ Chav = [ rwnde

Therefore the volume integral shall be

0F;ix x 4
/v( a; AV = 3(6jxdit + 610k + 0301k /V(—r%)dv = —3(jdi + 5 + 5ij51k)/0 r(Dhdw(1)

aF"kl 47
= /V( E)Zl )dV = *3/0 r(l)(éjkli +5,‘kl]‘ +(5;]~lk)dw(l)

Therefore the surface integral shall be

3301 + S0k + 030
/s (LI I s = —3 / )(Giels + Guel; + Syl )deo (1)

( Sulidi+6ulid+ 0T
r

Let us now compute the 2nd surface integral [ )n;dS. For this define a tensor G in indicial notation as follows:

Sulil; + Sulgl, + Sylil;
r

ijkl =
Using the Gauss Divergence theorem we can write

25
/(G n)ds = /(vc )dV = / gy
. 9x;

The volume integral | V( ;gk' )dV can be written as
aGZ‘/'k[ 9 (5ﬂlkl + (Slllkl + (slkl il
/ ( x; )av = v ox; ( r )

Salili+8ull+oull;
r

We need to do differentiate ( ) before doing the volume integral. Given the function:

Sjt Ikli + 63 Ikl + O 1l
r

Substituting I; = I, I = ?, and [y = “ into the above expression for 1, we get:

1 Xk Xi Xk Xj

— (s Yk A Xk Xj i
u—r((Sﬂ +(51 +5

)
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1
= |u= ﬁ (5ﬂxkxi -+ Jilxkxj + 5klxjx,-)

Now, let’s compute the differentiation of u with respect to x;:

ou J0 (1 1 0
= (,,-73) ((5]‘1ka1‘ + 5,‘1ka]' + 5k1x/‘x,') + 7’73 e (5]~1xkxi + 5,‘1ka]' + 5k1xj'x,')

ox;  dx %)
ou Jd /1) 0 1 9
= a—XI = 5 (r—S) a—m(r) (5]‘1ka1 + (5i1xkxj + 5k1x]'xi) + 3 TXI ((5j1xkxi + 51‘1ka]' + (Sk,xjxi)
ou 3x 1 90
Mt —751 (Gjxxx; + Sixex; + duxjxi) + P (Gjxxxi + Sixex; + O xjx;)

Now, let’s compute the differentiation 3%1 ((Sﬂ XX + i1 XX + O x]-x,-) term by term. For the first term we have:

d d d d
aTCZ(ijlxkxi) = jlaTCl(xkxi) =d (xiafxlkarxkaqui) = 0j1(Okixi + dirxx)

d
= aixl ((Sjlxkxi) = OjkX; + éﬁxk

For the second term we have:

d 0 0 ]
aTCl(tsizxkxj) = 51‘137[(ka;) = 5:‘1(37[(%)?6]‘ + aTCI(xj)xk) = 0y (O xj + 0j1xk)

d
= TJCI (5i1kaj) = 51‘ka + (Si]-xk

For the third term we have:

J d d d
F (buxjxi) = 5k1371(xjxi) = 5kl(xiaTCl(xj) + xfaTcl("")) = 0 (Ojx; + 0yx;)

d
= aixl (éklxjxi) = éiji =+ (Skix]‘

Therefore we have

Jd
af-x[ ((5]-1xkx1- + 51‘1ka]' + 5k1x]‘x,‘) = 2(5](]'361‘ + szl-xj + 51']'xk)

Therefore the differentiation a% (Ojxkx; + 6ip X Xj + S xjx;) shall be

ou 3x 2
TXI = *Tsl (25/-1xkxi + 5,‘[ka]‘ + (5k1xjx,v) -+ r—3((5ij1 -+ 5kl‘x]‘ + (5ijxk)
ou 2 5 5 5
TXI = fr—S(x]-xkx,- + xl-xkx]- + xkx]-xl-) + 73( iji + kix]- + jjxk)
ou 9 2
aTcl = —ﬁxikaj + ﬁ((gij,' + ék,-xj + 51‘]')(]()
ou 9 2
= TXI = *rleilkl]' -+ ﬁ(5k]ll + 5](,‘1]' +5ijlk)
A/ Sulel; + Sulili + oulil; 1
= qu( Lt lr / “) = 3 (=Ml + 28li + 20,4l + 253l

This is the fully simplified expression for the derivative. Therefore the volume integral shall be

d [ Oalili + 6ulili + Silil; 1
A(E( Jlk i ; j ] 1))dV = /V r—2(79l,lkll + 25kjli + 25kilj + 2(5i]'lk)dV

Let us compute the volume integral by integrating over an elementary cone dw centred on the direction 1 = (I, 1, 13) = (I, m, n)
with its vertex at x. The volume dV of this elementary cone is

dv = drdw
Therefore the volume integral shall be
/ ( d ((Sjllkl,‘ + ‘5illklj + 5](]1]‘1,‘
v

dx; r

rdrt pr(1) 1 2

Oulili + dulili + olil; 47 r(1)
= / (% ( kT llrk ! K 1>)dV = / (*9lilkl]' +25ij,' +25k,‘l]' +25i]'lk) / drdw
\4 1 0 0
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d [ Oulli + 6ulkli + lil; 47
= / (TXI ( Jk llrk / K >)dV = /0 r(l)(79lllkl] -+ 25}(111 -+ 25](11] -+ 25,]lk)dw

Therefore the surface integral shall be

/(5ﬂlkli + Sulil; + dueljl; Jmd
s

47
; S= /0 7’(1)(—91,1}(1] + 2(skjli + 2(skilj + Zé,jlk)dw

Now we earlier derived that

(5jzlkl,' + ‘;illkl/ + (SIkl/l,'

; )nldS

~ 5204 + 610w + 616
/dxi(dxj(dxk(dxl #)))mids :/ (w d5+/ P(OLlil; — 3(S5cls + Oy + Sy ) ) dew — /3(
S S S

Substituting the expressions of the 2 surface integrals that we derived earlier into the above equation we get

47
/dei (dx] <dxk <dxl r3)>>n,d5 = *3/0 T( ]kl + (slkl + 5l]lk)dw +/ 9lkl il — ( jkli + 5,‘ij + 5,]lk))dw(1)

47
-3 /0 r(l)(—9lilkl]' + 25kjli + 25}“‘11‘ + Zél]lk)dw(l)

3 47
= /S dx,' <dx, (dxk (dx, r )))nldS = /0 ( )(36lkl l —126; kl — 12(51‘](1]' — 12(5ijlk)dw(1)

3 47
= /dei (dX] (dxk (dxl r )))I’llds = 12/0 1’(1) (3lkljl,‘ - 5jkli - Jiklj - 5,/lk)dw(l)

4. Betti’s Theorem and Reciprocity

Betti’s Theorem is a fundamental result in linear elasticity that provides a relationship between two different states of
stress and strain within an elastic body. The theorem states that if a body is subjected to two different sets of equilibrating forces,
the work done by one set of forces during the displacements caused by the other set is the same as the work done by the second
set during the displacements caused by the first set.

Let:

o u(V) be the displacement field due to traction force 1) and body force b( ).
* u(?) be the displacement field due to traction force +2) and body force b(?

Then Betti’s Theorem is expressed as:

/t dS+/b 24y — /t dS+/b
/t d5+/b 2y — /t d5+/b Vav (1.82)

To prove Betti’s Theorem, we begin by noting the stress-strain relationships in each state:

(71-(;) = Cijkle,g) and (71(]) = Cijklel(j)

Or, in component form:

The strain energy densities for the two states are given by:

(Tig-])esz) = Cijkle,((})ef]?) and 0'(]2)6‘1(;) = Cijkle,(c?)el(j})

Since Cjjy; is symmetric under interchange of the first and second pairs of indices (i.e., Cjjxr = Cyyjj), we have:

Integrating this over the volume V, we obtain:

/ 24y = / Dellav (1.83)
1,2 gy — [ o,
/VU’]-/- e dvf/vtrij Ui av
/,] u? av = / dV/W]

Using the equilibrium condition l(] I) + h( ) =

/ 2 4y — / dS+/b D4V (1.85)

Expanding the left-hand side:

Applying the divergence theorem:
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Similarly, for the second state:

/ b gy = / dS+/b

Equating these expressions gives Betti’s Theorem:

/t d5+/b 2 gy = /t d5+/b

Betti’s Theorem can be used to derive the reciprocity relation for the Green’s function in elasticity. The Green'’s function G;;(x, x")
represents the displacement in the i-th direction at point x due to a unit point force in the j-th direction at point x’. The reciprocity
relation states that:

Gij(x,x") = Gji(«',x) (1.86)

Consider two specific states:

o bV = Ed(x — x(M), i.e., a point force F; at x(1).
. bgz) = H;é(x — x?), i.e., a point force H; at x(?).

The corresponding displacement fields are:

ufl)(x) = Gij(x,x(l))l-’/- and ugz)(x) = Gij(x,xm)Hj

Substituting these into Betti’s Theorem:
/ Fis(x — x(1 )Gij(x, x(2 >)H av = / H;é( x—x ))Gji(x,x(l))FidV
Simplifying using the properties of the delta function:
FH;G;i(x,x?) = EH;G;(x®, xM)
Since F; and H; are arbitrary, this implies the reciprocity of the Green’s function:
Gij(x(l),x(z)) = Gj,v(x(2>,x(1>) (1.90)

The derivation provided above rigorously covers the theory and equations presented in Section 1.7 of the document. Betti’s
Theorem provides a powerful tool for understanding the relationship between different states of stress and strain in an elastic
body, and it leads directly to the important reciprocity relation for Green’s functions, which is essential in solving a wide range
of problems in elasticity.

5. Derivation of the Green’s Function for Isotropic Medium

To derive the Love 1927 Solution of Displacement we need to first derive the Navier-Cauchy equations. The Navier-
Cauchy equations describe the equilibrium state of an isotropic elastic medium under applied forces. The equilibrium equation
in the absence of body forces is:

V-eo+f=0
where ¢ is the stress tensor, and f represents the body forces. For an isotropic material, the stress tensor ¢ is related to the strain
tensor € via Hooke’s law:

‘ Oij = )L(Sijekk + 2]161']‘ ‘

where A and p are the Lamé constants, and the strain tensor €jj is:

e — 1( du; n ou 5
v 2 E)x] Bxi
Substituting the strain tensor into the stress tensor and then into the equilibrium equation gives:

d oy
ax (/\(5,]8 +2y€1]) +fi=0

Expanding this, we have:

3 dup  dPu %u;
Aaix,ﬁﬂ‘a] +Vax8x]+f'7

o Pu
Recognizing that T;;c- = aa 2 we simplify to:
i9%j

Jug

)
(A+y)a—a—+yvzui+ﬁ =0

In vector form, this is:

pViu+ A+ V(V-ou)+£=0
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This is the Navier-Cauchy equation in its general form. To find the Green’s function G;;(x, x), we consider the Navier-Cauchy
equation with a point force applied at x:

9 9G;(x,x0)
2G.. ] = —5:.:5(x —
uV=Gii(x,x) + (A + ) o, o 3ij0(x —xo)
Here, G;;(x,Xo) represents the ith component of displacement at x due to a unit point force in the jth direction at xo. We take the

Fourier transform F of the Navier-Cauchy equation. The Fourier transform of a function f(r) in three dimensions is defined by:

FU@IQ) = f) = [ e f(x)dr

We will now compute the Fourier transform of each term in the Navier-Cauchy equation separately. The term V?u is the
Laplacian of the displacement field. In three dimensions, the Laplacian of a vector field u(r) is:

%u;
2. i
V“(ax%>

F{TPu()} (k) = f{ P (x) }(k)

Taking the Fourier transform:

Using the property of Fourier transforms:

we have:

F{V2ui(r)} (k) = —K*0;(k)
where k? = kik;. The term V(V - u) involves the gradient of the divergence of the displacement field. First, compute the Fourier
transform of V - u:

F{V u(r)}(k) = ]-'{ g% } (k) = ik;t; (k)

Now, take the gradient:

FV(V-u)}(k) = f{a (a—) }(k) = ki (k)

dx i Bxi
For completeness, we also compute the Fourier transform of the body force term f:
F{E(r)} (k) = (k)
In the case of a point force applied at r = rp, this becomes:

F{o(r—ro)}(k) = e~

Substituting these results into the Navier-Cauchy equation:
(=K1 (k) + (A + p) (—kikj; (k) = — fi(k)
= —pk* (k) — (A + p)kikjij (k) = — fi(k)
= k1 (k) + (A + p)kik;; (k) = f;(k)

.

In matrix form, this can be written as:

(1026 + (A + pokiky (1) = fi(k)

To find i;(k), we need to invert the matrix A;; = ykzéi]- + (A + p)kik;j. The matrix A;; can be decomposed into:

Ajj = pk*5i; + (A + p)kik;
We need to find Ai? T such that AijAﬁ(l = Jjx. We propose the inverse to be of the form:

1 kik;
-1 _ ()
Aij = W(MSU +ﬁT>

Multiplying A;; with the proposed inverse Al.;lz

w0y + ‘Bkjkk
—1 2 jk K2
(Ai]'A,-]. = yk 5,‘]' -+ (/\ + ]/l)klk/> ( ]/lkz )
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A kik
:>Aiin;1 = ady + (ﬁ-ﬁ-a(/\er) + A +ﬂ)> ik

2 iz k2
For this to equal j, we need:

Therefore we have:

L Awk
Aij Touk? %ij A+2u k2

The displacement field #;(k) is then:
(k) = A7 (k)

Substituting the inverse:

R ek A+ kikj
(k) = uk? <(5’] CA+2u kT>

The Green'’s function Gj;(r, 19) in real space is given by the inverse Fourier transform:

Gi]-(r, r) = f*l{éij(k)}(r) = ﬁ /RS éij(k)eik(r—ro) dk

Substituting Cij (k):

1 1 At Kiki\ e
Gij(r,10) = (27)3 /]Ra W( i A+2u k2 ) di

The first integral involves [ps kizeik" dk. This is known to yield:

TG

Let’s rigorously derive the Fourier transform of \k% in three dimensions. The inverse Fourier transform of f (k) = ﬁ is:

=7 b b= e [ G

Here, k and r are three-dimensional vectors. The function \1%2 is spherically symmetric in k-space. Therefore, we can simplify

the problem by transforming to spherical coordinates. In three dimensions, the spherical coordinates are:

k = (ky, ky, k;) = (ksin 6 cos ¢, ksin 6 sin ¢, k cos 0)

where: k = |k, 6 is the polar angle (angle with the z-axis), ¢ is the azimuthal angle (angle in the xy-plane). The volume element
in spherical coordinates is dk = k? sin  dk df d¢. The integral becomes:

1 o T 27 eikrcosﬂ ) .
f(r):w/o /0 /O E oy KPsin0dg do dk

Here, r = |r| and without loss of generality, we have aligned r along the z-axis, so k - r = kr cos 6. Simplifying the integrand:

1 co pmT 27
f(r):W/o /O/O o108 i 9 dep do dk

The integral over ¢ is straightforward fozn d¢ = 2. This simplifies the expression to:

1 0 o,
£ = e /O /O okTe0s0 i 0 46 dk

Next, consider the integral over the polar angle 6:

T,
/ elk}’ cos 6 sin@do
0

Let u = cos 6, hence du = — sin 6 d6, and the limits change from 6 = 0 to 6 = 77 correspondtou = 1tou = —1:

/7T eikrcosﬂ sin@do = /_1 Eikm(fdu) _ /1 eikrudu
0 1 -1
(kr)

. . 1 2si
This is a standard integral [, edy = 2522

. Thus, the expression for f(r) becomes:

1 * .
f(r)= B /0 sin(kr) dk

Finally, we evaluate the integral over k:
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Thus:

The inverse Fourier transform of kiz is:

So, the first integral contributes:

19
udmnr

The second integral involves [ps %eik" dk. The Fourier transform of k;k;/ k* gives:
2
k,k/ eik-r dk — — 92 4£ _ 37‘1'7‘]' —r 51]
RS k* ar;or; \ |r| 7>

Combining the results, the Green’s function for an isotropic elastic medium is:

Ciro) = g

72

{(3 — 4v)5; + rir]}

where r = |r — 19| and v is Poisson’s ratio. This derivation rigorously follows from the Navier-Cauchy equations, through
the application of Fourier transforms, detailed inversion of the resulting matrix in Fourier space, and evaluation of inverse
Fourier transforms. The final Green’s function describes the displacement field due to a point force in an infinite isotropic elastic
medium.

6. Displacement due to Spontaneous Change of Form of Inclusion

The Displacement at r due to point force F; at ’ is (Love 1927)

1 F 1 02

Ui(r—r) = dmp r—r|  16mu(l fJ)Fjaxjaxi

’|

r—r

which is Equation (2.5) of Eshelby’s classic paper 1957. Note that we have earlier derived
Ois XiX;
doxj(dxi(|r — ') = — —

Tleorl kP

The Displacement (Love 1927) at r due to point force F; at r’ can be therefore written as

Uj(r—r) = % \rfir’\ - 1671;4(11 fU)Fj( r fjr’| B |r3ﬁtj’|3)
= Ui(r—r) = % |rFi5];’| a 1671;4(11 — (T)Fj( \rijir’\ a \rﬁ?’P)
= Ui(r—1) = lényl(:i —0) 4(‘1r:‘;,)“sﬁ B 1671;12 —0o)r iﬁr’ * 16ny(11 —0) b |rjiji'j’|3
= U(r—1) = 1671;{1(2 — (3‘;:11;)‘(5]‘1' + 16?1#(11 — i |ri?‘,|3
= | Ui(r—1) = 167ryg —0) ( (i:f’f\) %i + |rﬁtj'|3)

which is Equation (2.14) of Eshelby’s classic paper 1957. There are multiple ways to do the surface integral over S of the
above-boxed quantity. We shall mention 2 different methods in this article

6.1. Method 1: Simple Method using only Gauss Divergence Theorem

In Stage III, we apply a force distribution F; = pank over S to make the body free of external force (but in a state of
self-stress because of the transformation of the inclusion). The displacement impressed on the material in stage III is

u$ = /S U;(r—1)dS

xix]-

B F (3—40)
§u§7/5(16ny(170)( Sji +

k=] 7 r=rP

))dS
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1 (3—40) XiX;
€ _ . 3 j
W = =) /SF]( 5+ )ds

[r—r| |r—r|3
1 (3—40) XiX;
= A ; j
T 167tu(1— o) /sp]k( t—r| Jji + \rfr’|3)nkd5

Let’s proceed with a rigorous application of the Gauss Divergence Theorem to compute the given surface integral. We need to
evaluate the surface integral:
1 3—4do XX
C T j*i
= ; 0ij + — d
g 167ry(1—(7)/sp]k<< r > it )"k s
where:

e pl is the stress tensor, which is constant throughout the volume.
* 7n}'is the k-th component of the unit normal vector to the surface S.
* Jjj is the Kronecker delta.

e r=/x2 +x% + x} is the radial distance from the origin.

Let us now apply the Gauss Divergence Theorem. The Gauss Divergence Theorem states:

F
F dS:/ Uk gy
/5 kK v ax

where F; is a vector field. However, in this problem, we have a tensor field Fj defined as:
3—4c XjXi
_ T . ]t
Fik B p]k << r >61] + r3 >

I:/F,-knde
S

Using the Gauss Divergence Theorem for tensor fields, this surface integral can be converted into a volume integral:

The surface integral becomes:

I— - dF;

= av
\74 8xk

LT
dxy *

oF, 0 3—4o0 XjXi
ox, aTck(Pfk((f>‘5ﬁrT

oF 0 3—4c XjX;
ax, ~ Prag \\ 7 )%t s

Let’s differentiate each term of the above-mentioned boxed equation. The differentiation of the first term shall be

9 3—4175'_ _(5_'1 3—4o
Xy ro ) U ox r

O (1) %
ax\r/) 1

0 (3—4do\ | x(3-40)
o () =

9 (nx
oxe \ 13

9 XjX; _an X; J /x;
a(w )*aTk 73”7@(73)

. ox; . .
Since ﬁ = Jjk, the above equation can be written as

e} xjxi _ X ) J X
axk< 73 > TR +x]an (r3)

Note that for the second term of the above-equation we can write

We need to compute the divergence of the Tensor Field

Since pka is constant, it can be factored out:

Now note that we have

Therefore we can write

The differentiation of the second term shall be

This expands using the product rule:

d (ﬁ) _ Ok XXk

dxy \ 13 R
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Thus, the divergence of the tensor field F; becomes:

aF‘k T (3 4(7') 0; k Xi xk

The surface integral now transforms into a volume integral:

1 X, (3 —40) ik X xk
c T(_ ik A Xi v
= 16mu(l — o) %/ p]k( % 73 5]k x]( 3 d

Now note that the above volume integral can be written as

1 ¥y (4 —40) o; XX
C k ik iXk
" T )/ P]k( Jij 3 +5,J P +(5]k P +xj( 3 >)dv

> = W/ Pidi (4r3 Dav + 1671;4 / Pk (3 3 5+ 31 +5ik% *3Xij;;Xk)dV
= up = 71671;4(11—0 / Pik 4;34 Lav + 1671;4 / Pi (G 3 ) +5zk 3 3Xi:éxk)dV
= uic - 167‘(;4 / p’kl o r2 40) v + 167ry(11 / p/k ij lz + 0jk lz + ik 12 i lk)dV
= uf = m/ Plklk (4- e 4(7) a4+ = H(ll — /Vp]—g{ (0sjlx + Ol —:Z(Siklj - SIiljlk)dV
= |uf = —m / (P&l + pF1;) (1; 9 v+ 16”}4(11 — [ (il + Ojeli +r25iklf — 3l

Due to balance of the angular momentum, the transformation stress matrix pT is symmetric, i.e
T_ T
Pij = Pji

Therefore we can write

1 (1 — g’) 1 ((51"11( 4+ 0ili + 0l — 3lil‘lk)
c_ _ 7 \%j j i j
n= l6mu(l— o) /V(p”‘lk *Pii i i) 72 av+ 167tu(1—0) /v Pik 72 av

Now we can write

phle = PkatSijlk
piili = phoud;
Therefore we can write
1 2(1—0) 1 (51 Iy +06 kl +(51kl —3lllk)
c—__ - Ts.. Ts.1. j
R T [, (Phih+ phdudy) =52 av + 1= I vk p v

1 : 2(1 — 0’) 1 (51"11( + 0 l; + 5,-kl' — 3lil‘lk)
c___ - T(s.. 1 T\ J j i
T 167tu(1 —0) /V (Ol + 8udy) 72 av -+ 167tu(1 —0) /V ik r2 v

Since pka is constant inside the volume V, we can take pka outside the volume integral

T T
p'k 2(1 — (7) p‘k (5,"11( + 5‘kl,' + 5,‘kl‘ — 3llllk)
c__ e y 1 J ] ] J j
= 16tu(1— o) /v(‘s”lk +ulj) AV 16mu(1 — o) / r2 av
c pka / —2(0il + 8ixl;) (1 — o) + (8l + Ol + Ol — 3Liljly)
=3¢ = av
Lo lemu(l—o) r2

W Pik / —(8ijlx + 0ily) (1 — 20) — (il + L) + (8iilx + Ol + Sl; — BLilly) iV
tolemu(l—o) Jv 72
e Pik / — (8l + 03lj) (1 — 207) — &l — il + Syl + Ojili + Sy — 3lil 1k -
P lenu(l—o) Jv 72

W€ — Pﬁ / —(5i]~lk + (Siklj) (1 — 2(7) + (sjkli - 3liljlk av
P lermu(l—o) Jv 72
T
N uic _ P]'k / (l — 20’) ((Sijlk + 5iklj) - (sjkli + 31,'ljlk v
l6mu(l—o0) Jv 2
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which is the first part of the Equation (2.15) of Eshelby’s Classic Paper.

6.2. Method 2: Eshelby’s Method of using the Gauss Divergence Theorem and a special variation of
Stokes’s theorem

Note the following 2 important identities in spherical co-ordiantes (r, 6, ¢)

19,,0 1 9 9 1 2
2 1d o L o b=
2o ar T agngaa 05 )+ maeae ) =5
10,,0,3 1 o d 3
2o )+ g aa 056 )+ Zrg a0
The above-mentioned 2 identities can be written in cartesian co-ordinates as

v2r3 —

a2 2
axlaxl (1’) a ;
92 3
E)x,axl (i‘ ) =12

The Displacement (Love 1927) at r due to point force F; at ’ can be therefore written as

Ue—x) = g R T R T ()
! T 8mu ' 9x0x; 1927tu(1 — o) ]ijax,- 0x;0x;

, 1 02 1 ot 5
= Ui(r—r) = %Fi dx;0x; (r) = 1927tu(1 — o) Fjaxjax,-xlaxl ()

, 1 0? 1 ot 3
= Ui(r—1) = %Fﬂsﬁ ox;0x] (r) - 1927tu(1 — o) Fjax]-axixlaxl (r

1 2 ot 3
= | Uilr—r) = 1927tu(1 — o) F(24(1-0) 9x;0x; (r)%i = 0x;0x;x]0x; ()

Now note that we have F; = pkank. Therefore the above-boxed identity can be written as

2 a4

) — 1 T _ 4.9 o 3
= | Uilr—r) = 1927tu(1 — o) ij(24(1 o) x;0x; (r)jim 0x;0x; X0 (r)me)

In Stage I1I, we apply a force distribution F; = P};Jlk over S to make the body free of external force (but in a state of self-stress
because of the transformation of the inclusion). The displacement impressed on the material in stage III is

ué = _/S U;(r—1’)dS

Substituting the equation of displacement U; (r — r’) that we got earlier in the above equation we get

1 92 o4
€ [ — — g 3
o /5(1927TH(1 —0) P4 =) g 10 (r)djim = 0xj0x;X;9%, ()m))ds
P rk P
uC = D j 5
M 87t axlax, C192mu(1-o / ax]ax,xlax,( )i)dS

We need to simplify the 2 integrals [ ( ax, axl (r)ng)dS and [o( m (r3)n;)dS. For this, we use the Gauss Divergence Theorem
twice once to convert the surface integral to volume integral and then convert the volume integral back again to surface integral
but with a different surface vector. The integral [( % (r)ny)dS can be written as

0? 02 0?
/s(ax;8x1 axk Bxlaxl dV - 1% Tm(axkaxl (i‘))dV - /5(E)xkax, (r)nl)dS

9?2 92
éﬂwmymngwmymw

The integral [, m( 3)n;)dS can be written as

o 3 o R ) o R o

7 (3 = _(— = _(— = 7 (43
/s(ax,-ax,x,axl (r)me)ds /V oxy (axjaxixlaxl nav v 0x; (axjaxixkaxl (rpav s(axjaxixkaxz (r)m)ds
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ot 3 ot 3
- /S(BXjaxiX]axl (i‘ )nk)ds B /S(ijaxixkaxl (r )nl)ds

From the above 2 boxed equations, we can write the displacement u$ as

r3)n;)dS

Ts.. T
uf = Y S
! 8ty Js 9x;0x; 1927tu(1 — o) Js* 0xj0x;x; 9

Note that we earlier derived the following 2 identities

47
/del(dxk(r))nlds - —2/0 r(1)ldeo(1)

9?2 47
s L () mds) =12 [ 1= (130 + 1+ i) + 30l deo )
(g

Substituting the above 2 identities in the equation for the displacement ¢, we get

T
Pjk

Ts..
c ijfs;z 47 4
_ (72/0 r(l)lkdw(l)) - W (12/0 r(l)(*(l,‘(Sjk + lkéji + ljéki) + 3lkl]l,)dcu(l))

i_87'[]/l

c p};ctsﬂ A p;[;( 4m
=>uy =— dy (/0 r(Didw(1)) — m(/o (D) (= lidj + Ledji + 1;0;) + Blidil;)dew (1))

T T p
ol = #)(/04 r(D4(1 — o) kdw(1)) — 16”:(%0)

4
- (L rO(= 05+ i+ i) + 30 deo (1)

Since p}, is constant throughout the volume of the inclusion, we can take p}, inside of the integral. Therefore we have

4 T 4n
=uf = _m;z(lﬁ(/o r(1)4(1 — o) pflde (1)) — %(/O r(1) (= (Lidjk + Wdji + Liow) + 3llli)dw(1))
c 1 i T T Pi 4
=|u = _m(/o r(12(1 = o) (picl + pijlj)dw (1)) — m(/o r(1) (= (lidjx + kdji + 1) + 3Lkl;li)dw (1))

Due to balance of the angular momentum, the transformation stress matrix pT is symmetric, i.e
T_ T
Pij = Pji

Therefore we can write

1 Pk

= uf = T Toma(i—0) (/047T r(02(1 — o) (pih + pjilj)de(1)) — (1 =) (/047T r(1) (= (lidjx + Ledji + 1i0ki) + 3Lil;li)dw (1))

Now we can write
T; _ T
Picle = pidijl
T; _ T
Pjili = ol
Therefore we can write

T
Pjk

_ m(/:" r(1) (= (L8 + Ikdji + 1i0ki) + 3liljli)dew (1))

1 41
= = qemmay ) 20— ) Bhosh o+ PR 1)

S h
167tu(1— o)

T .
—uf = L)(/: r(1)2(1 - 0) (8l + 6xl;)deo (1))

4
T 6mu(l—o (/0 (D) (= Lidjk + Ikdji + 1i0ki) + 3l )dew (1))

T
Pjk A
_ m /0 r(l)(2(1 - 0') ((Sijlk + Jiklj) -+ (*(liéjk + lk(Sj,‘ + liji) + 3lkljli))dw(1)

T
p.k 47
=uf = —le_g) /0 (D) (1 —20) (il + dulj) + (8l + 6ixl;) — (Lidjp + Ikdji + 1;0;) + 3il;l;)deo (1)

= uf =

T

Pik 47
c—___ Tk _ y 1) — 8l 1.
=|uf = 16”}4(170)/0 r()((1 = 20) (il + bl;) — Sjeli + 3l ) dew (1)

To convert this into volume integral we note that the incremental solid angle is related to the incremental volume by the

following relation
av
r(l)dw(l) = / e
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Therefore the equation for displacement u$ can be written as

N Pk / (1 —20) (il + Oul;) — Ol +3lkljli)dv
! lonu(l—o) Jv r(1)2

which is the first part of the Equation (2.15) of Eshelby’s Classic Paper. To derive Equation (3.1) and also the second part of the
Equation (2.15), we need to first state Hooke’s law

pka = Ae,{lm&jk + 2;4e/Tk

Substituting the above equation into the equation of displacement ul.C that we derived earlier we get

(Ael,.6jk +2uel)  pam
uxc = 77167‘[]4(1 70')] /0 7‘(1)((1 720’)(5,']'1;(4»(5,'1(1]‘) 7(5]')(1,‘ +31kljli)dw(1)
Co L )= 20) AT bk + 20T (Blk + Oly) — (el G+ 206T) S5l + B(AET, 8y + 26T )il deo (1
= U = Toru(l—o) Jo r(D(( 7) (A ik 1 F‘e/k)( ijle + 1k/) (Aepm ik 1 F"ejk) ikli + (A ik + Vejk)k]t) w(1)

We can simplify the first term of the integrand in the above equation as
r(D)(1 = 20) (Aeg S + 2uef) (Sijli + Silj) = r(1) (1 — 20) (Aep,6ijle + 2pefSijl + Aewndjdixl + 2uefil;)
= r(1)(1—20) (Aefdp + 2pef) (ile + 0ly) = r() (1 — 20) (Aeg,,u Sk + 2pefili + Aey,,jily + 2piejil;)
=r()(1- 2{7)()\85,"57‘]( + 2;18/’-[,{)(6,-}-11( +63l;) = r(1)(1 — 20) (el 1 + 2pel i + Ael, 1 + 2]/18]’-’;1/')

= | r(1)(1 = 20) (Aeqdji + 2pefi) (Sijli + Sulj) = r(1) (1 = 20) (2Aepli + 2p(efli + efl;))

Similarly the second term of the integrand in the above equation can be simplified as
r(l)(/\ezméjk + 2]46’};{)(5]‘](1,‘ = T(l) (Ae,z,méjké/-kl,' + 2}16};((5/'](1,')

= r(l)()\e,f,m&jk + Zyejrk)éjkli = r(l)(/\e;,mé]'jl,' + 2;46,{,(11)

= r(l)(/\eﬂm&]'k + 2]46};{)(5]‘](1,' = r(l)(3/\e,{,mli + Zye,fkli)

Similarly the third term of the integrand in the above equation can be simplified as
r(l) (3(Ae£1m5]k + Zyeﬁc)lkl]ll) = 1’(1) (3/\ez-nm5jklkljli + 6]46/’1,‘€lkl]ll)
i‘(l) (S(Aemméjk + Zyejk)lkl]‘li) = 1’(1) (3Aemml]‘ljli + 6]/l€jklkl]‘l,‘)
X]‘X]' 1.2

Since l]-l]- = 2 = - =r, we can write the above equation as

‘ r(1) (3(Aemmdix + 2 lili) = r(1) (BAewml; + 6peiclilil;)

Therefore we can write the equation of displacement uic that we derived earlier as

1 47T
=uf = T = o) /0 r()((1 = 20) (2Aeguli + 2 (efli + efi1;)) — BAeqli + 2pefli) + (BAeqli + 6pefililili))dew (1)

c____ -
M= 167tu(1 — o)

1 rdTT
=uf = — 6mpu(i=0) /0 r(D((1 —20)(2Ael, 1) +2u(1 — 207) ek I + e/-T,-l]-) —2uell; + 6]4@,‘Tklkl/l,ﬂ)dw(1)

47
/o r()((1— 20) (2Ael 1 + Zy(e},;lk + e]-TIlj)) —3Ael, L — 2]4615{1,' +3Ael, L + 6yekalkljl,-)dw(l)

T

Now note that we have el I; = ef,1;. Therefore we can write the above equation as

1 47T
c_ T T T T
= uy = “Temp(i—o) /0 (1) (e i (A1 = 20) — ) + 2u(1 — 20) (ejlic + ejil;) + 6pelidjl)dw(1)

Now note that we can express the first lame parameter A in terms of Poisson’s ratio ¢ and the second lame parameter y as

2uc

M)

Therefore we can write
= A(1—-20) =2uc
=A1-20)—p=2ur—pu=pu2o—1)

;»\A(l—za)—y:y(za—l)‘
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Therefore we can write the equation for displacement u$ as

1 47T
= = ey T @ehli(2 = 1)+ 20— 20) (el + €fy) + Gpef o)

1 47
=|uf = —m/o F(1) (el (1 = 20) + (1 — 20) (eh + €l1;) + 3l 1) da (1)

Now note that we have el l; = ekaéjkl,-, eiTkl k= eﬁd,-]-lk, eﬂl ;= e]Tké,kl Therefore we can write the equation for displacement u as

1 47T
uS = ~ 8= /0 r(1) (—ehduli(1— 20) + (1 — 20) (ef il + efdul;) + 3eflljl;) dew (1)

Note that ejT,( is constant throughout the inclusion volume. Therefore we take ej; outside of the integral

el 4
c_ ik
= Uy = —m /0 r(l)(—éjkli(l - 2(7) + (1 - 20’) (5ijlk +€jk5iklj) + 31kl]l,)dw(1)
c e;( 47T
=|u; = 7m /0 1’(1)((1 — 20’)((5l]lk + ejkéiklj — 5]1(11) + 3lkl]l,)d(d(l)

which is the Equation (3.1) of Eshelby’s Classic Paper. To convert this into volume integral we note that the incremental solid
angle is related to the incremental volume by the following relation

() = [ r‘zl‘;z

Therefore the equation for displacement uic can be written as

c e]]';c / ((1-20) ((Si]'lk + ij(sl‘klj — 5jkli) + 3lkljl,) av
v

g R A7 ¢ g r(1)2

which is the second part of the Equation (2.15) of Eshelby’s Classic Paper.

(5-»xkxl XiXiXX] 5‘[X'Xk +(5‘1X'xk +5k[X'X‘
mwwwwb%u—vg+’]’g ’ﬂ

7. Strain due to Spontaneous Change of Form of Inclusion

In the previous section, we stated that the Displacement at r due to point force F; at 1" is (Love 1927)

1 F 1 F 02 |
dmp fr—r'|  16mp(l—o)  0x;x;

Ui(r—1') = r—r’|

In Stage III, we apply a force distribution F; = pkank over S to make the body free of external force (but in a state of self-stress
because of the transformation of the inclusion). The displacement impressed on the material in stage III is

ué = /S U;(r—1’)dS

T
1 Pidij
C _ J ’
= 4ty Js |r7r’\nkds 167[;4 /p]k 0x;0x; — vlmdS

Since p].Tk is constant throughout the surface S of the inclusion we can take p, ik outside the integral. Therefore we can write

T 2
C _ plk p]k / 9 -
i 4y Js \r i C16mu(1-0) Js 0x;0x; fr = x'lmydS

We have earlier proved using the Gauss Divergence theorem that the 2 integrals can be written as

/|r ws—— 2 ([ 4V,

o v -]

Gl b 93
/Sm‘rfr |nedS = W(/V\rfr |dV) = 7W(%/|rir ldV)
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Therefore the displacement impressed on the material in stage III can be written as

T
Pk pi
c__ Tk . Fik
=|u = 167T]4(1—U’)1p’1]k 47_[H‘P,k
where
1[1—/ av
Cvie-r
= —r'|dV
o= [ lr=r]

are the ordinary Newtonian potential and the biharmonic potential of attracting matter of unit density filling the volume V
bounded by S. We also proved earlier that
Vi =2¢
V41p _ 2V2¢ _ —87m, inside S
0, outside S

The strain in the material on stage III can be written as

c 1.9 ¢ 9

e = E(E)Tclui + aTc,»ulc)
e = L o )+ (e L)
= ef = %(Wﬁd + ki) — %(P,kz - %EPM
=|ef = 1671;2%0)%”" - %fmz - %%i

Therefore the dilatation in the material shall be

T T T

Pk v; v;

C _ ] o ik L ik .
% = Tomu(1— o) Pk T B PH T gy P

R S
i Temu(1— o) Wik 47ry¢’k’

Now we know that

Vi =2¢
aZ
= axiaxi ll) a 24)
02 02 02
- axjaxk (axiaxi l/)) - zanaxk¢
ot 02

= Bx,»axiaxjaxk IIJ - Zaxjaxk ¢

- [fo=]

Therefore the dilatation in the material shall be

T T
O S P SO
T temu(l—o) ™M 4™ 8mu(l—o) T At
Due to the balance of angular momentum, the stress tensor is symmetric i.e. p% = pl.. Therefore we can write the above
equation as
T T
o Ph Py P, Phg
P 8ru(l—o) ™ Amu ™M 8mu(l—o) T A

Repeated indices 7, k on the second term can be given in any other name like k, j. Therefore we can write the above equation as

Pik Pi Pk
c_ Pk Pk Pk o
€ji 87'[]4(17(7) (P,]k 47(]/{4)’]}( 87'(]4(170’)4)'%(1 2(1 U'))
c_ Pk . Pk Ph

- m‘l’,jk = *m‘l’,;‘k(l —20)


https://doi.org/10.20944/preprints202412.0855.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 December 2024 d0i:10.20944/preprints202412.0855.v1

33 of 77

Pa
c j .
Cii 8rtu(l—o) ‘P’]k(l 20)

We have earlier derived that the strain in the material in stage III shall be

T
C Pik
= =

T
)ll)/ijkl - Bpf’kll’ - plk o ki

16tu(l1—o M 8
Now note that for isotropic materials, we have
p]-Tk = /\eTszk + Zyeka, pl-Tk = AeToy + Zye,-Tk, pITk = AeToy + ZyelTk

Substituting the above relations in the equation for the strain in the material in stage III shall be

o (Ae" 3y + 2pey) (A€ot 2pef)  (AeToy +2yelTk)¢ _
i lemu(l—o) '™ 8y K 8y ki
AeToy 2pel AeT 2uel AeTs 2uel
c_ j B j N ik . Ik Heye
= e = (167ry(1 o) Pk + T6r(l — o) Wiik) — ( 87(;4 K+ 87u $x) —( Cye ki + S P ki)
AeT ea T o
C_(__ ™ .. [ LA l Cik
=€ = (167'(}1(1 — [7) l/’,:];l + 8ﬂ(1 — 0_) I1",z]kl) (87'[]44)11 + Cpkl) (87_(#4711 ﬂ,(pb,kz)
AeT el AeT AeT el el
C_ (™ .. I (2. 2 ) — (Zik Zlk g
=€ = (167_[#(1 — (7) l/’,]]zl + 87I(l — (7) w,z]kl) (87'[‘11 ¢+ 87‘[}4 ‘P,Zt) (47_[47,1(1 + 47_[¢,k1)

Now we know that‘ P it = 2¢i ‘and‘ b= ‘, we can therefore the equation as

= ef = (Smj(wT 0)4711 + (1]% ) Piikt) — %4’/1 - (%%1 + %4’,“)
= = (%4’/1 - %%z) (417’;45 + %4’,]{1‘ - %lp,zjkl»
== (Wia)ip,ﬂ(l -2(1-0))) - (%‘P,kl + %4’1«' - %%jk!))
== (%%z) - (%‘P,kl + %4’,}@ - %lp,ijkl))
=|ef = (%%z) - (%le + %‘P,ki - %w,ijkl))

If T is a pure dilatation eT5, j, then we have

17 17 17
e?,; 36 51k/elk = e ‘Slk/ ik = —e 6

Therefore the above boxed equation can be written as

AM20 —1)eT el eTop eToy
C _ 2) — _ ] y
e = ( 87'[}1(1 _ (T) ,tl) ( 1271 1271 5 Pk 247_[(1 — 0_) Il’,z]kl))
A2 —1)eT el el el
C _ 2 — . ;
= e = ( 87'[,”(1 —0) (P,ll) (1271,4),;1 + 127_[‘]5,11 247_[( )1/’1]11))
Since ¢ ;; = ¢ ;;, we can write the above equation as
Ao —1)eT el el
C _ _ . _—
= e = ( 87‘[]1( ) 4’,11) (67'[4]’11 247_[( )ll’]]ll))
Now we know that | ¢ j;; = 2¢;; | we can therefore the above equation as
Ao —1)eT e el
C _ ) - .
= e = ( 8ru(l—o) Pi) (6714)”’ 127(1—0) )
A(20 — 1) 1 1
C _ _ _ T,
= (Grui—o) e~ ma o))" ¥4

(BA(20 — 1) — 2 + 4po)
i = 247tu(1 — o)

c ((SA(ZU—I) 4;1(1—17)-‘,-2;1))

_ T
= |6 = 24nu(1— o) Je i
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Now the first lame constant A can be written in terms of second lame constant i and poisson’s ratio o as

2uoc
A= Ilza
= A20—1) = —2uc
=3A(20—1) = —6uc
= 3A(20 —1) = 2u +4po = —6puc — 2u +4puo = —2p —2uo = —2u(1+0)

3M20 —1) —2u+4pc  2u(l+0)
24nu(l— o)  24mu(l1-o0)
N BM20—1) —2u+4pc _ (1+0)
247u(1 —0) T 12n(1-0)

Therefore the strain eg an be written as

(BA(20 —1) —4u(1—0) +2u) (BA(20 — 1) — 2 + 4po) (1+0)

C _ Ty, Ty, — Ty .
= ¢ _( 247'(,14(1 —Cf) )e (P,ll _( 247_[”(1 —(T) ) Qi = 1271,(1 —(T)e ¢l
c_ 1 (Q+0) 7
== T 31— ) i

8. Discontinuities Across Inclusion Interface

The second derivative of a scalar function U in a given direction, with the direction specified by a unit vector n = (n;, nj, ng),
can be calculated by applying the directional derivative operator twice in that direction. Given that the direction vector is
n=nitn i 74 nik, the first derivative of U in the direction of n is given by:

ou_ ou ou. ol
an  ax;  Tax; | Foxg

To find the second derivative, we take the derivative of the above expression again in the direction of n:

on2  on

@u_ o ou  ou  ou
’axi ]ax]' kaxk

Applying the directional derivative operator again:

eu _ (oeu . eu euN e U U eu U U
on> '\ ox? J 9x;0x; k oxi0xy, T\ oxjox; ]Bx/? "ax]-axk K\ 9o J 9x,0x; k ox2
This can be simplified as:
azu 3 3 2u
> =2 ) My
on oo | 0xp0x,

Where p and q run over the components 7, j, k. This expression gives the second derivative of the scalar function U in the
direction of the vector n. In indicial notation, the above formula can be written as

U U

= = nin;
on2 axiax]- wi

To prove the theorem, we proceed step by step, ensuring that each part of the proof is mathematically rigorous. The theorem can
be formally stated as:

Theorem (Poincaré 1899): Let U(r) be a potential function that satisfies Poisson’s equation in three-dimensional space,

’ V2U(r) = —47mp(r)

where p(r) is the mass density. If there is a surface S with normal n across which the density p(r) undergoes a discontinuity Ap,
then the second derivatives of the potential U(r) undergo a jump discontinuity given by

{ 22U

= —4mnn;A
ax,»axj] nnl”] O,

where the bracket [-] denotes the difference in the second derivative as one crosses the surface S. Given Poisson’s equation:

V2U(r) = —4mp(r),
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where p(r) is the mass density distribution, the potential U(r) is related to the density p(r) by the integral:

U(r) :/ |f(j/r)/‘d3r'.

Suppose that the density p(r) has a discontinuity across a surface S. Let p™ and p~ denote the density values on either side of
the surface. The discontinuity in p is given by:

bp=p"—p.
Consider the surface S with a unit normal vector n at each point. We need to investigate the behavior of the second derivatives
of U(r) as r crosses the surface S. The second derivative of U(r) in the direction n;n; is:

2u _ o (ou
axiax]-_ax]- Bxl- ’

To find the jump condition, we apply the divergence theorem over a small pillbox-shaped volume V that straddles the surface S.

The pillbox has faces parallel and perpendicular to the surface S, with height € in the direction normal to S. Integrating Poisson’s
equation over V, we have:

/VZLIdV:len/ pdVv
14 \%4

Using the divergence theorem, the left-hand side can be rewritten as:

/vzwvzf VU -dA
\%4 1%

where dA is the area element on the boundary 9V of the volume V. Let’s do the Evaluation on the Faces of the Pillbox. The
contribution to the surface integral comes from the faces of the pillbox parallel to the surface S. Let the area of these faces be A,
and the small height of the pillbox in the normal direction be €. Then, the surface integral is dominated by the contributions
from the faces perpendicular to n:

j’{ vu-dA:A{aﬂ],
F1% on

where %—lj is the derivative of U in the direction of n. Let us find the Relation Between the Jump in Density and the Jump in the
Second Derivative. Now, consider the contribution of the jump in p to the integral:

T
/VpdV = Ae(%) = AeAp.

This leads to: 5
A{—u} = —4mAeAp.

Simplifying, we obtain:

{a2u

W] = —4mAp

We have earlier proved that the second derivatives in arbitrary directions x; and x; are related to %TLZI using the following relation

#u_ 2u
on?  9x;0x;
Therefore the above boxed equation can be written as:
02U
= —4mnin;A
ax,-ax i 7'[71,11] r

where 1; and 7; are the components of the normal vector to the surface S. We just proved the Poincare 1899 theorem which
states that the second derivatives of a potential function satisfying V2U = —47p will have a jump

ALI,ij = —47'L'Ap1’l,'11]'

on crossing a surface with normal #; across which there is a change of density Ap. Let us consider the Potential function U = ¢.
Note that V2U = V2¢ = —47 inside S and 0 outside S. There is a jump of density Ap = —1 across the surface S. Therefore we
can write using the Poincare 1899 theorem that

¢,ij(out) — ¢ ;;(in) = 47tn;n;
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‘pl/

Let us consider the Potential function U = 4 ;;. Note that ViU = V2y; ij = 2¢,ij = —471(—z"). Therefore the Potential function

U = 1 ; satisfies V2U = —4mp with p = % There is a jump of density

(‘P,z‘j(in) — gb,ij(out)) 47'[1’[,'11]'
e = 2r o 2t

across the surface S. Therefore we can write using the Poincare 1899 theorem for the Potential function U = v ;; that

P ik (out) — ¢ ;i (in) = —4mApngn; = 8mninnn,
] ] ]

= | i (out) — ¢ i (in) = 87ninjnen,

We have earlier derived that the strain in the material at stage III shall be

A2 —1)eT el el el
C _ (A\EY T H)C oy (Zik ik g J y
€ = ( 871'}!(1 — U) (P,Il) (47T¢’k[ + 47_[¢,k1 87'((1 — U) lp,zjkl))
The trace of the strain tensor shall be
Ao —1)eT el el ea
C_ (A T H)C poy (kg oo Tik g J o
i = ( 87'(]1(1 — 0) ¢,ll) (47'[4)’}“ + 47‘(¢’k1 871'(1 — 0_) lp,z]kl))
T
Ao —1)eT el ejk
C _ N (ko T
i = ( 871"‘1/[(1 — 0_) ‘Pﬂl) (27.[4),1(1 87'[( )lpt]kt))

Since | ¢ = ¢ix |and | Pijr; = Pijjk = 2jx | the trace of the strain tensor shall be

c_ A2 - 1)eT ) el.Tk _ eka _
e = (m i) — (E‘P,zk - m%k))

Repeated indices i, k in the second term can be renamed as j, k. Therefore we can write the equation as

T T
A20 —1)eT ik €k
e = (m‘i’,ii) - (i%‘k TG U)‘P;k))
A2o —1)eT 1 1 A20 —1)eT 2(1—0)—1
C_ el (— — = —
=€ = ( 871’]/1(1 — 0_) ¢,ll) e]k¢,]k(27.[ 47.[(1 ))) ( 8717’[( 0_) ¢,ii ) ]k()b]k( a7 (1 — (7) ))
A2 —1) 1-20
C _ Tp .. -
= |6 = (87'(]1(170')6 47/11) ]k¢]k(47'[(170'))
Now the first lame constant A can be written in terms of second lame constant ¢ and poisson’s ratio o as
T
A
= A20—1) = —2uc
AM2o=1) _ 2uo _ o
8nu(l—c)  8mu(l—0c)  4n(l—o0)
Ao —1) o
= =_
8mtu(l—o) 4n(l1—0)
Substituting the above equation in the trace of strain equation we get
1-20
C _ — [ ———
= i = (47r(1 o "9.) fk¢fk(4n(1 ) )
We know that there is jump for both ¢ ;; and ¢ jx (according to Poncaire’s 1899 Theorem). The jumps are
‘ Agji = ¢pii(out) — ¢i(in) = 47 ‘
‘ A ji = ¢ ji(out) — ¢ jx(in) = d7onjny ‘
Substituting the above equations in the previous equation for the trace of strain we get
C(out) — eC(in) = 4 TV (b (out T (¢ . (out - (i 1-20
= ¢j;(out) — ¢ (in) = *(471(17_0)3 )(¢,ii(out) — ¢;;(in)) — ejk(fP,;k(OU ) — ¢,]k(1n))(m)

= | €5 (out) — €5 (in) = _(ﬁg) —eﬂﬂjnk(%

)
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The strain tensor can be written in terms of hydrostatic and deviatoric components

1
T _ -, Tgs. 1 ,T
ek = 3¢ i+ ey

Substituting the above equation into the previous boxed equation we get

ef(out) = e i) =~ ) = (3670 +' R T—oy)
= e (out) = in) = —( 53¢ — (3670) = e F—o) = ek =)
= e (o) — 5 in) = (7 55¢") = (G (T g) ~' et =)
= low) — e in) = (1275 )~ (5 )~ ehmyne( %)
= lout) 5 m) =~ (s + ) ! ehl )
= e out) i) = — 5 (10) ey, (L=2)

We have earlier derived that the strain in the material at stage III shall be

T
A20 —1)eT A el ey

C _ N (_ik 1k L ] B
e = ( Su(— o) i) = (g + g i 871 — o) Dijk))
We know that there is jump for both ¢, ¢ 41, ¢ x; and jjx (all 4 of them are according to Poncaire’s 1899 Theorem). The jumps
are

‘ Agi = ¢ (out) — ¢ (in) = dmrnm ‘

‘ A¢,kl =¢u (out) —Pu (m) = 4mnny ‘

‘ Ay = pri(out) — ¢xi(in) = drimgn;

‘ A i = @i (out) — ¢ i (in) = 87Tnnjmgm ‘

Therefore the jump in ¢§ shall be

A5 = e (out) —e§(in) = (227D (0 o) — ga(in)) — (E (gaout) — (i) + % (gs(out) — ga(in)
il il il 87T}4 (1 _ 0) il il 47_[ 'kl 'kl 47_[ ki ki

el

+kaﬁ) ($ijua (out) — ¢ (in)))

Substituting the boxed equations into the previous equations we get

20 —1) el
Aeg = eg(out) — eg(in) = m@%m, — elmeny — elmen; + ﬁninjnkn,
We have earlier derived that
Mo =1) o
8rnu(l—o) 4n(l—o0)
N Mo—-1) @
2ul—o)  (1-0)
Therefore we have
o e
Aeicl = eg(out) — eg(in) = —meTninl — eiTknkn; — elTknkni - uiia)nmjnknl

The strain tensor can be written in terms of hydrostatic and deviatoric components
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Therefore we can write
_ v 1 1 (3785 +' )
Aeﬁ = 95(0‘“) - eﬁ(m) =- ) eniny — (geTtsfk + E&)"kﬂt - (§€T5Ik + ell;()”k”i + Sdfa)]"i”f”km
T
Ae§ = e§ (out) —e§(in) = — g eTning — leTéiknknl — el men; — leT&knkn,» —' el men; + i niningn; + inin-nm,
il il il <1 _ 0.) 3 ik 3 13 3(1 _ 0) ] (1 _ 0.) ]
. o 1 1 e el
Aeicl = eﬁ(out) - eicl(m) 7meTn,-n, — geTn,'m ! egcnkn, — geTn,ni ! elTknkni —+ m"i"j”j”l + ﬁninjnkm
. - 1 1 el el
Ae§ = € (out) — e (in) = e elniny — geTn,'m " ehmgn; — geTn,n,' ~efmgn; + -0 ning + (e 7](7) nin gy
. - 2 1 ek
Aeff = eff(out) — eff(in) = —"mim( a-o) + 3 3(1-0) ) =" efemny =" efyngn; + F/v)ni”f”knl
) 3r+2(1-0)—1 el
Ae = € (out) — € (in) = 7eTn,-n1((3((1$) " ehngny —' elngn; + ﬁninjnknl
T
. (1+0) e
Ac§ = ¢ (out) — e (in) = “3—0) elnny — elmgny —' elongn; + ﬁninlnkm
Now note that Aeicl shall be
1 1
C C C C C
Ae§ = A(ge S+ ef) = géilAe + Aef;
We have earlier derived that Ae€ shall be
T
c /. et 1+o, , 1 1-20
Ae" = ejj (out) — e (in) = *g(l - U) - ejknjnk(ﬁ)
Therefore Aeg shall be
1 el 140 1-20
C _ 1, T 1,C
Aejj = §5il(*?(m) - ejknjnk(ﬁ)) + A
T
c_ e 140 T 1-20 ' C
Aeil = —g(m)(sﬂ — ejknjnkéil(m) +A 1

Therefore we can write the change in the deviatoric component of the strain tensor A’ eg as

T
c c. e 1+0 T 1-20
A’eﬂ = Aej; + 9 ( 1= U)(sil +/ ejknjnk5i1(73(l — ‘7) )
1,T T
c (1+0) r T T ik e 1+c T 1-2¢
= A/eil = —me nin; _! eiknk}‘ll _! elkﬂkﬂi + mﬂiﬂjﬁkﬂ] + ?(m)éll +’ Ejkn]'ﬂk@‘[(m)
140 1 1/ 1-20 '
= | el = —ﬁﬁj(ﬂmz — 391) ~ elngny =" efnen; + () ejinin;nny + 31=0) ejijnedii

9. Elastic Field in a Spherical and Ellipsoidal Inclusion

In this section, we shall analyze the elastic field due to the spontaneous change of form of an ellipsoidal inclusion within
an isotropic elastic solid. We assume that the equation of ellipsoid is

X: y? 72
Zpta=l
Let’s assume a point inside the 1’ = (x,y,z) within this ellipsoidal inclusion. We define the distance of the point r’ to the
incremental surface dS in the direction1 = (I4,1,13) = (I, m, n) as r(1). Therefore (1) is the positive root of

(x+ rz(l)l)2 N (y+ r(zl)m)2 N (z+ rgl)n)2 _
a b c
(2 +r)22 +2xr()]) | (2 +r(0)2m? +2yr(Om) | (2% +r(1)%n +2zr(Dn) 1
= > + 7 + 3 =
2 m?  n? xl m . zn x? 2 22
2 y ¥ —
=|r(1) (a—2+ﬁ+C—2)+2r(1)(u—2+ﬁ+c—2)f(1fa—2—b—2—C—z)_0
Let us define the following quantities
2 m? n?
8=ty ta
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The above boxed equation can therefore be written as
= ’ g2+ 2fr(1) —e=0 ‘
Therefore the solution of the above boxed equation shall be
—2f £ \/4f% + 4ge
r(l) =
2
— 2
I ) e Y
8 & 8
In the earlier section we derived that
c e};( 4 E};( 4
- uf =g | r O =200 + et = 83k) + 3hh)deo(1) = ) [ g mdeot
Substituting the expression (1) = % + é—z + § in the above equation we get
= uf 7i/4”(;f L 4 S dew) = — i /4" —F8i) 4oy + G YL S g Ddaolt)
- h g T T Tl h g sn(l—0) oo @ g EH

[FW2 4 e)y i ; f2 ey _ [fED2 L e(=D)

Note that ( 207 T g ) is an even function. To prove that we just need to show that (\/g(l)2 +2m )= (\/8(71)2 + 20 ). That
is easy to show once we realize that f(-1) = —f(1), hence f(-1)2> = f(1)2. We can also easily show that g(-1) = g(1),e(-1) = e(1)
and hence g(-1)2 = g(1). But gijk(1) is an odd function. Note that Integration of the Product of an even function ( oy —))

and odd function g;j (1) shall always be zero. Therefore we can write

T T e
st G+ Ssdom —o

Therefore we have

G el
u$ = _87r(1]—17) /0 g] dw(1)

=lu

c ek /04" f8ijk(1) deo(l)

i :871(170) g

Defining A1 = aiz,)\z = hﬂz,)\3 = C% we can write f(1) as follows

xl  ym  zn
Therefore we can write the above boxed equation as
el 47 X Angin (1
uic _ jk / m mgl]k( )da](l)
8n(1—0) Jo g

Since the point (1) = (x,y, z) inside the volume V is a fixed point, x,, can be taken out of the integral. Therefore, we can write
the above equation as

T
Xm€; AT N O (1)
c_ jk m&ijk
w= 87(1—0) /0 g deo(l)
T
Xmejy 47 Amgrjk(1)
C _ J )
T g1 —0) /o g dw(l)

The strain es shall be therefore

1.0uf  ouf Smie /4” Amgijic(1)
0

Smich 4 Agr(1)
1 _ j mgljk
2( ox;  0x; 167(1—0) deo(l) + /0

S =
il g 167(1 — o) g

dw(1)

c_
=|e =

eka /4” (Mgijk (1) + )‘igljk(l))dw(l)
0

167t(1—0) g

We can write the relation between the constrained and stress-free strains in the inclusion as

o T
eii = Sijkeji
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where Sjji is the Eshelby Tensor defined as

B 1 4 (M8 (1) + Aigre (1))
Sitjk = 1672(1 o) /0 g dew(1)
9.1. Spherical Inclusion
Let’s first compute the for a spherical inclusion where we havea = b = ¢
4 (A g (1) + A g7 (1 4 (L (1) + Leya (1
Suje = 1 / (M&ik (1) + Aigrji( ))dw(l) _ 1 / (11gix(1) : 181 ( ))daz(l)
167t(1—0o) Jo g 167t(1—0) Jo a?g

Now note that we have
ik = (1= 20) (Gijli + Ol — Ojli) + Bl
Sijk = (1—=20) (0l + Ol — 0cly) + 3Lk

Therefore we can write

1 A (L((1 = 20) (8l + Oily — Ojly) + 3Lililk) + 1;(1 — 20) (&l + Sl — Sly) + 3Ly ))
Sitjk = Torni= / 5 dw(1)
n(l—0o) Jo a2g
1 41 ((1 72(7)(5[1'1;(1[ +§ikljll +§[/'lkl,‘ +(51kl/'l,‘ 72(5/1(1111) +6l,l]lkl[>
R 1
= | Sk = Tex = o) /0 a2g dw(l)

o (1720’) 5 /47{ Il ) /4” l]ll ‘/4/7 Il /47{ l]l, Y /47{ il
= SzI/k = m(&,] Jo ﬁdw(l) + (51)(. b ﬁdw(l) + (51] Jo @dw(l) + (51](. b ﬂzgdwO) 25]k. ) ﬁd(d(l))

T 3 /4” l,‘l/lkll
8n(l—o)Jo a2g

Using the Routh Integrals we can reduce the solid angle integral f04

dw(1)

§ %dw(l) to simple integrals

47 I, 4 112 o du
—— 1) = — 1) = 2 —
/0 angcu( ) 5k1/0 azgdw( ) =6 mzbc/o @ +u)A)
4 Il _ e du
= /0 @dw(l) = 5kl(2nubc/0 m)

where A is given by the expression
A= (+u)(B?+u)2 (3 +u)?

For a spherical inclusion where we have a = b = ¢, the A shall be

A= (a2+u)%

/“ du _ /°° du

0o (a2+u)A 0 (u2+u)%

To solve the integral fooo m du, we can use a standard technique for integrals of this form. Let’s set u = a2 tan?(6). Then,
du = 242 tan(8) sec?(6) df. Substitute this into the integral:

Therefore the integral shall be

o 1 7 1
— :/ . 24%tan(0) sec?(0) do
/0 (a% +u)5/2 “=h (4% + a2 tan?(9))>/2 a” tan(6) sec’(6)

The term inside the integral simplifies as follows:
a*(1+tan?(9)) = a?sec?(0)

Thus, the integral becomes:

00 T 2 2 S 2 2
/ ;duz/fwdgz/fwdezi/f tan(6) dgzz/fsinw)cosz(g)dg
o ( Jo Jo 0 a3 Jo

a2 +u)3/2 (a2 sec?(0))5/2 a° sec®(0) a3 Jo  sec?(0) 3
We can evaluate the integral fog sin(0) cos?(6) d6 using the substitution x = cos(6), dx = — sin(6) d6:
2 0, 2031 2 1 2
= = —xdx === ==.2 ==
a3 )1 3], a® 3 348

The value of the integral is:

/°° -2
o (a2+u)¥2"" " 348
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Therefore the solid angle integral f(;l T fz’g—lédw(l) shall be
S i du
K a1 = 60(2 et
/0 uzgdw() Sl ( mzbc/o (a2+u)A)
For spherical inclusion a = b = c, therefore the solid angle integral f04 " %dw(l) shall be
47 lkll . 3 g du o 3 2 7 4
/ g deo(l) = by 2 / s = o ss) = oy
4n lkll 4
Klawa) = 2=
= /0 uzgdw( ) 3 O
Similarly, we shall have
4 ] 47
i = s
= [ gt = 50y
4 lkli 4
= /0 o) = o
4 | 477
]t —
47 lill 4
= [ g de) = 5o
Using the Routh Integrals we can reduce the solid angle integral f(;l i %da](l) to simple integrals
4m liljlkll 1 > 4 l? 1 3 ad du
/0 de(l) = §(5ik5jl + 60k + 6ij0y )a /0 @d(ﬂ(l) = g(‘sik(sjl + 610k + 601 )a (27Tabc/0 m)

ar 110 2861 + 850 + 80y ) tah 0
é/ llzjkdw(l): (ki1 + 63105k + i) wa C/ 2duz
o a’g 3 o (a%2+u)A

where A is given by the expression
A= @ +u)d (0 +u)d(P+u)l
For a spherical inclusion where we have a = b = ¢, the A shall be
A= (a®+ u)%

Therefore the integral shall be

/°° du _ /°° du
o (@+uPAJo (g2 4 y)s
To solve the integral f0°° m du, we can follow a similar approach to the one used for the previous integral. Let u =
a%tan?(6). Then, du = 2a® tan(8) sec?(8) df. Substituting into the integral:
o 1 7 1
= [ s 207 an(0) sec?(6) dB
/0 (a2 +u)7/2 "= (a2 + a2 tan?(0))7/2 a” tan(6) sec” (6)

The expression simplifies as follows:

T

o0 1 (7 2tan(0)sec?(0) (7 2a%tan(f)sec*(®) ,, 2 (% tan(f) . 2 [T 4
/o (a2 +u)7/2 du = /0 (a2 sec2(0))7/2 0= /0 a7 sec” (0) a9 = a5 /0 sec®(0) 49 = a5 /0 sin(6) cos™(6) do

We can evaluate the integral fog sin(8) cos*(6) df using the substitution x = cos(6), dx = — sin(f) d6:

2 0 2{3(5}0 2
1

=5 | —xtdx=3 2
a

5

21
T 4% 5 545

The value of the integral is:

/w du 7/°° 12
Jo (a2+u)2A  Jo (a24u)?27" 545

Therefore f04 " l"ifzgll dw(1) can be written as
A Ly 2(8udji + udjk + 0ijoy) ma’be o du 47tbe
dw(l) = = (8.0 4+ 810 + 6107 ) ———
/0 aZg w( ) 3 /0 (az +M)2A ( ik9jl + 94 ]k+ i lk) 1542
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For a spherical inclusion where we have a = b = ¢, therefore we have

4 l,‘ljlkl] 47T
/0 g dw(l) = 3= (Sudjt + uji + o)

Therefore the Eshelby Tensor S shall be
oo (=20) oo I L [ Lk o, [T
Sk = T =gy ”/o uzgdw(1)+5,k/0 azgdwu)m,j/o angw(l)+51k/() el zéjk/o (1))

i L
3 [
0

8n(l—0) ., a?g
(1-20) 4m 4m 4r 4m 4m 1
= Sijk = m(5i/5kl 3t Oidjt 5t 51]'5/«'7 + Oidji 3 20641 ?) + 00 -0 (00j1 + Gudjk + 0ijow)
1-20 8 81 8m 1
= Sijk = % (650 = ol — Onda ?) + 01-0) (601 + 6 + diir)

1-20 1
= Sijk = ﬁ(‘sﬁékl +0ixdj1 — Ojxdin) + 01 =0)

+

(0ikdj1 4 Gudjx + ijonc)
1-20 1 1 1-20
= Sitjk = (0ijou +5ik5ﬂ)(é(l — ‘7; + 001 =0) )+ Gudjk( 0i=0) é(l = a; )
5(1—-20)+3 —5(1—-20)+3
= Sijk = (0ij0k + o) ( (30(1 _)U) )+ 51‘1%(%)
100 —2

8 — 100
= Sje = (0ij0u + (Sik‘sil)(30(1 — ) +5il‘5jk(30(1 —o) )

. 4—50 50 -1
= | Suje = (030 + diwdj ) ( BA—0) ) + i ( 15(1—0) )

Notice that there is no term of 4, b, c in this equation. We can therefore say that the Eshelby tensor does not depend on the

radius of the spherical inclusion.

9.2. Ellipsoidal Inclusion
Let’s now compute the Eshelby tensor for Ellipsoidal Inclusion. The S1111, S1122, S1133, S1212, S1112, S1223, S1232 components

of the Eshelby Tensor shall be
_ /'4” (g1 (1) +1g111(1)) dew(1)

_ 1 0 (Mg (1) + Mg (1)
Sug = 16n(1_g)/0 18111 : 1S (1) = A 3
St = 1671(1 - /04" (Mg122(1) ;:Mgm(l))dw(l) _ /04” wd(ﬂm
Siiss = (1 ) /4” (M1g133(1) +)\1g133(1))dw(1) _ /4” (18133(1);18133(1))‘1“](1)
lort(1—o0) Jo g . a’g
T (M 1
Sio1p = 1671(; — /04 (/\28112(1);/\18212(1))‘1‘0(1) _ /04 (bzgllz(l);r ”28212(1))11(4;(1)
Siis = 1 /4” (Mgina(1) +)\18112(1))dw(l) _ 1 /4” (Ign2(1) * 18112(1))dw(1)
16m(1—0) Jo g 16m(1—0) Jo a’g
S = 1 /4" (A28123(1) +/\18223(1))dw(1) _ (1 /4” (§28123(1) + u%gzzs(l))dw(l)
167t(1—0) Jo g 167t(1—0) Jo g
4 7 (M a13n(1) 4+ 5 gam(l
S1asp = 1671(; — /04 (A2g132(1) ;Algzsz(l))dw(l) _ 1671(1 — /04 (r8132( );r 2823( ))dw(l)

Now note that we have
Sije = (1 —20) (Ol + Ol — Ojli) + 3liljlx

Therefore the components of the 3rd order tensor g111, §112, 122, §123, $132, §223, 232, §133, §212 shall be
g = (1 — 2(7)(51111 + ol — (51111) + 3111 = (1 — 2(7)11 + 31:13

:>‘8111 = (1*2‘7)l+313‘

L1112 = (1 — 2(7') (51112 + 0101 — 51211) =+ 31%12 = (1 — 20’)12 =+ 31%12
:>‘g112 = (1 —20’)7”’!-‘1—3[2111 ‘

g122 = (1= 20)(812l2 + d12l2 — 6011) + 3hloly = —(1 — 20)13 + 31113
= \ 2122 = —(1 = 20)1 + 3lm? \

8123 = (1 =20) (01213 + d13l2 — d3l1) + 3l1 113 = 3111513
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- [e =5

8132 = (1 =20)(d13l2 + 1213 — d3211) 4 3l1131 = 3l11x13

- [ae =5

g223 = (1 — 2(7) ((52213 + (52312 - (52312) —+ 3121213 = (1 — 2(7)13 + 3121213

:>’g223 = (1—20)n+3m2n‘

8232 = (1—=20)(23l2 + 02213 — 03202) 4 Blal3ly = (1 — 20) 13 + 3La 131,

= ’ g0z = (1 = 20)n + 3m?n ‘

g133 = (1 —20)(d13l5 + d13l5 — 3301) + 3hlals = —(1 — 20)11 + 31113

= \ g133 = — (1 —20) + 31n? ‘

o120 = (1= 20) (8a1lp + 6xly — b12l) 4 3lolily = (1 — 20)1; + 31413

= ‘ go12 = (1 —20)1 + 3lm?® ‘

Before we compute the components of the Eshelby Tensor we would like to state that all integrals of the form f04n limink d?“’

shall vanish if any one of the i, j, k are odd, i.e we have

4,
/ l’m]nkd?w = 0if any of the 7, j, k is odd
0

Therefore the S111; components of the Eshelby Tensor shall be

Siy = 1 ) /04” (Ig11 (1) +18111(1))dw _ 1 /04" Ig111(1) deo(l) = 1 /04” 1((1 —20)1 +3l3)dw(1)

16m(1—c a2g = 8r(1—o0) a2g 87(1—0) a2g

1 4 (1 2012 1 4 34
= Sy = 871(17‘7)/0 g del) + A gl

— 4 ]2 2 4 14
g, 2(7)/0 Pdol) , 3 /0 B dw(l)

8r(l—0) a2 g 8r(1—0) g

Therefore the S1122 components of the Eshelby Tensor shall be

Snn =

1 47 (19120 (1) + Igaa (1)) _ 1 47 19190 (1) _ 1 47 ](—(1 - 20)1 + 3Im?)
1671(1~0) / = a’g el 8n(l-0) /0 %d‘”(l) " 8n(l-0) /0 g 4l

B 1 47 (1 — 202 1 4 3122
= Stz = - 8n(l1—0) /o a2g da(l) + 8n(l—0) /0 a2g deo(1)

_ A 2 2 A 2 2
s = — (1-20) / de(1)+ 3b /0 12 m* dw(1)

8n(l—o)Jo a* g 8r(1—0) 2P g

Therefore the S1133 components of the Eshelby Tensor shall be

Sy = 1 ) /04" (Ig133(1) +lg133(1))dw(1) 1 /04" lglsa(l)dw _ 1 /04” I(—(1-20)! +3l”2)dw(1)

16m(1—0c a’g T 8n(l—-o0) a’g = 8m(1—o0) a2g
_ 1 4 (1 —20)12 1 4 3122
= S = - 8n(l—0) /0 a2g dw(l) + 8m(l—0) /0 a2g dw(1)
I P (1—-20) /4” P dw(l) 3c2 /4” P n? dw(l)
BT T8l —0) o @2 g 8n(l—o) Jo a>c2 g
Therefore the S1312 component of the Eshelby Tensor shall be
_ 1 4 mgnz(l) 1 4n lgzu(l)
Siz12 = 167(1 —0) ./o b2g deo(l) + 167t(1—0) /0 a2g deo(1)
B 1 4 m((1 — 20)m + 31%m) 1 47 1((1 —20)1 4 3Im?)
= Stz = 167t(1—0) /0 b2g dw(l) + 167(1—0) /0 a?g dw(l)
= Sy = (1-20) /4" m? dw(1) N 3a? /4” P m? dw(l) (1-20 /4” P daw(1) 302 /4" P m? dw(l)
2T l6n(1—0) Jo B2 g 1on(1—0) o a2 02 g lon(1—0) Jo a2 g 16n(1—0) Jo a> 0> ¢

)
_ (1-20) pmede(l) | 3@+1) 7P eRdw(l) | (1-20) (4P dw(l)
=| S22 = /0 b2 g m/o /0 —_

167(1—0) 2 b a g

az b> g 167t(1—0)

Therefore the S1112 component of the Eshelby Tensor shall be

S = 1 ; /047r (Ig12(1) +lg“2(l))dw(1) _ 1 /04” lgllz(l)dw(l)

167t(1—o a2g 8m(1—0) a2g
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_ 1 4 1((1—20)m + 31%m) ~ (1=20) ¥ Im 3 4 B
= Surz = 87(1—0) ./o a2g da(l) = 81(1—0) /o a2g wil) + 8m(1—o0) ./o a2g wl)
Now note that both the integrals on the RHS of the previous equation have [, m raised to odd powers. As we previously stated,
all integrals of the form [, Tl pk de d“’ shall vanish if any one of the i, j, k are odd. Therefore we can write

47T 4 13
/ lﬂd -0, / l -0
0

Therefore the 5111, component of the Eshelby Tensor shall be

_ (1-2) /“ﬂ 3 /4”1311 _
:>511127871(1—0) A azgdw(1)+ =0 Jo uzgd“’(l)*o

NEmEn

Therefore the S1223 component of the Eshelby Tensor shall be

_ 1 47 (Aag123(1) + Agas(1)) _ 1 4 (1123(1) + Hgas(1))
S = 1 g / g dw(l) = 16m(1—0) /0 g deo(1)
1 an 1 1 4T [gs (1
= 58 = 1 g /o mgblzz;( L)+ e 2) /0 gzjié D deo(r)
3 4T Im?n 1 4 (1 —20)n + 3m?n))
= S123 = Ton(i—0) /0 s dw(1) + 6n(1—0) /0 a3 dw(1)
3 A% Im?n (1-20) (4 In 3 4 2l
>Sen = =g | w0 om0 iy fy e )

Now note that all the 3 integrals on the RHS of the previous equation have I, m raised to odd powers. As we previously stated,

all integrals of the form f AT i ke dw d“’ shall vanish if any one of the 7, j, k are odd. Therefore we can write

4T [m2n 47 In 47 2l
/O g o) = 0’/0 2o =0, dw(1) =0

Therefore the 51523 component of the Eshelby Tensor shall be

3 47 Im%n (1-20) (4 In 3 47 m2nl
S = ity g 0 Gen o)y g Ty fy g ) =0

~[m=1]

Therefore the S13, component of the Eshelby Tensor shall be

_ 1 AT (Aagiz (1) + Mg (1)) _ 1 i (a(l) + 28 (1)
12 = Jer o) / 8 W)= Ten(i—0) /o 8 ot
- 1 47 mgin (1) 1 47 19232 (1)
= 51232 = 167‘1’(1 70) /0 bzg dw(l) + 167t(1 — (T) /0 uzg dw(l)
- 3 A7 12n 1 4 (1 —20)n + 3m?n)
= Sz = 16m(1—0) /0 ﬁd“}(l) + 16m(1—0) /o a%g el
3 AT Im’n (1-20) (* In 3 el
= Si3 = m/o de(l) + m/o @dw(l) * 167(1—0) Jo de(l)

Now note that all the 3 integrals on the RHS of the previous equation have I, m raised to odd powers. As we previously stated,

all integrals of the form [, Tl pk de d“’ shall vanish if any one of the i, j, k are odd. Therefore we can write
47T 41 A7 43,2
/ lm —o, / ln w(l) =0, mznldw(l) —0
0 0o a%g
Therefore we can write
3 A7 ImPn (1—-20) /47 In 3 4T 2l
= 522 = 1o g /o g W+ g /o 2Vt ey i g e =0
-
Let us define the terms (- 20) 3
— 20
Q= (1—0)'R* 87 —0)
4n l2 dw(l n 14 dw(l) 47 12 m? dw(1) 47 12 12 dw(1)
Ia:/ raa—/ :/ 332 rIaL‘:/ e, B
0 o a*b o a’c* g


https://doi.org/10.20944/preprints202412.0855.v1

doi:10.20944/preprints202412.0855.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 December 2024

450f 77

Therefore the S1111, S1122, S1133, S1212 components of the Eshelby Tensor can be written as

‘ S1111 = Rl + Qa* Iy

‘ S1122 = —RI; + Q¥

|51 = Rl + Qe

R
S12120 = E(Ia +1p) + %(ﬂz +0%) Iy

The rest of the nonzero terms can be found by cyclic permutation of the above formulas. Notice that we should alsoleta — b — ¢
together with 1 — 2 — 3. Using the Routh Integrals, The I, I}, I terms can be written in terms of standard elliptic integrals,

I, = /47r E Lu(l) 2mabe /Dc du = drabe where 6 = arcsin uz — Cz L
b - o ( T (a® - 02) (a2 — 2)12[F(6,k) — E(6,k)] - a2 —c

2 g a2 +u)A
A7 m? dw(1) © du 4rtabe . a2 — 2 a2 — b2
I, = /0 Wog 27mbc/ GEI = I [F(6,k) — E(6,k)] | where 6 = arcsin W L k= R
47 12 dw(1 ©  du 47tabe . a2 — b2 a2 —c?
c*/ — 727Tubc/0 RN A T [F(6,k) — E(6,k)] ,whereﬁfarcsm( T),kf o

Using the Routh Integrals, The 144, Iyp, Icc terms can be written as
4 14 dw(1) ©  dy 47 it de(1) ©  du
I ., b/ S f/ . b/ __a
aa /0 jtabc b ( +u)2A bb g taoc A (b2+u)2A

at g
47t dow(1) ©  du
Iec = /0 cjig = 27mbc/0 @+

Using the Routh Integrals, The I, Iuc, Iy terms can be written as

I 7/4”ﬁm72dw7(1)7%mlbc/°°7du I */Mﬁ—zidw(l)*gnabc/midu
vy 21 g 3 o (@+u)B2+u)A" T Jo a2 g 3 o (a2 +u)(2+u)A

I ,/“712@,2”[,%/&&17“
T e g 3 o (24 u)(c2+u)A

The I terms also satisfy the following properties:
2 12

47 12 dw(1) 4 m? dw(1) T do(l) T2 om dw(1) AT dw(l) A B
2 g +/0 ¥ og +/0 R 7/0 (ZtEta) 4 /377/0 w(l) = 4n

=S| L+1+1 =4n

L+h+L= [

4 14 A 2 40,2 4 72 4,2 4 ]2 4 2 4 2
Plua + Pl + e = | %ﬂﬂ9+y/ %gﬂﬂﬂ+g/ %g@ﬂﬂz/ %¢&@+/ %mﬂg9+/ P pdol)
0 a g 0 az b g 0 as c g 0 a g 0 a g 0 a g
T 4 ]2
éfw+wm+&m:/ lm+m+ ﬂ“”:/ Pdoll) _ )
0 g o a* g
:>‘ ﬂzlﬂu + bz[ab + CZInc =1
A 14 dw(1) 4 12 m? dew(l) 4 12 02 dw(1) dm 2 2 om? n? dw(l) A 12 dw(l)
Iaa+lab+lac—'/0 1»747 /0 ;ﬁ? /0 aTCTT_/O aﬁ(ﬂj+b7+c7)7_/[) [72(8')T
47T lZ 47T
= | loa + Iab + loe = /0 uizdw(l) = @
47T lZ 47T
Proof of . ;zdw(l 32 f

For direction cosines, the integral over the solid angle can be expressed in spherical coordinates where | = cos 6, with 6
being the polar angle. The differential solid angle element dw in spherical coordinates is given by: dw = sin 0 df d¢ where 0

varies from 0 to 7t and ¢ varies from 0 to 27r. Thus, the integral can be rewritten as:

4m ]2 1 [2m gm 2.
/0 a—zdw:a—z A /Ocos 0 sinfdo d¢
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Let’s evaluate the integral step by step. First, integrate with respect to 6:

us
/ cos” § sin 6 do
0
Let u = cosf, so du = —sin@df. The limits of integration change from § = 0to 6§ = mwtou = 1tou = —1. The integral
1

becomes:— ffl wdu = fil u?du. This integral evaluates to: {g] L= i- (7%) = 2. Now, integrate with respect to

¢: f027r d¢ = 27t Multiply the results of the two integrals: f04 ﬂ 3722 dw = ”iz X % X 27 = ;17”. So, the result of the integral is:
4m ]2 47T
fy =5

dn |2 4
=>|\In+h+hLz= /0 afzdw(l) =32

Therefore we have

27mbc/0o _du + z7'mbc/DQ S
o (a2+u)32A 3 o (a2 +u)(b2+u)A
® o 2 2 2 2 2 2
+g7mbc/ du =7'mbc/ (6(b% 4+ u)(c* 4+ u) + 2(a® + u)(c* + u) + 2(a* + u) (b* + u))
3 0o (@24u)(2+u)A 0 3(a% +u)2A
3ﬂ2111 + bzllz + C2113 = 311

_h-5
Ilzfaz_bz

and the standard elliptic integrals are defined as

dw

0
F6.0) = /0 (1 — K2 sin® w)1/2
0

E(8,k) :/0 (1 — K2 sin® w) " 2dw

9.3. Elliptic Cylinder Inclusion

For an elliptic cylinder inclusion (c — ). The components of Eshelby tensor are

1 b% + 2ab b
St = 20—v) {(a+b)2 +(1—2‘/)7a+b}
1 a® + 2ab a
Som = 5 {(a—&-h)z +(1_2V)a+b}
S3333 =0
1 b?
Stm = 20-v) {7(u+b)2 - (1*2‘/)7”_”]}
S _ 1 2va
23T ol —v)a+b

1 a? a
Soo11 = -v) {7@ FSvA (1- ZV)m}

S3311 = S3322 =0

g 1 a2 + b2 N (1—2v)
2= 50 =) [2(a+0b)2 2
S _ 1 2vb
8= 20 =v)a+b

S _ a
2323 = 2(u+ b)

S3131 = m
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9.4. Flat Ellipsoid Inclusion
For a flat ellipsoid (a2 > b > c). The I integrals in this limiting case reduce to

47t (F(k) — E(k))bc

L= 2 _ b2
k F(k) — E(k))bc
R

)

e 47rb2[E(Ck) Z(F(k‘)l;_fsg))bc}
Iy = 4;; [1 2@+7(P(ki;j(f))bc}

where E(k) and F(k) are complete elliptic integrals defined as

/ 1—k25mw
= /7 V1= k2 sin? wdw
Jo

9.5. Penny Shaped Inclusion

We have a penny shaped inclusion when a = b. We can compute the S1111, S1122, S1133, S1212, S1112, S1223, S1232 components
of the Eshelby Tensor by computing the values of I, I, Isa, Ip, Isc which were defined in the previous subsection.

Using Routh Integrals we can reduce the solid angle integral [ 12 m?n?* d?“’ to simple integrals.

4 12 dew(1) 4 4 dow( o du
L,f/0 a72772 ubc/o a2+u ,,m / ——727mbc/0 @+ A

8
I, 7/4”ﬁm727dw(1)72nabc/°°7du I, 7/4”ﬁn:7dw(l)7g7mbc/°°7du
vy 21¥ g 3 o @+u)P2+u)A”" " Jo a2 g 3 o (22+u)(2+u)a

where A is given by the expression

A=(@+uw)E (B +u)2 (A +u)? = (a®+u)(P+u)t

=|A= (u2+u)(c2+u)%

The 51111, 51122, 51133, 51212, 51]12, 51223, 51232 components of the Eshelby Tensor for Penny shaped Inclusion are

m(13—8v) ¢
St = Sz = m;
m(l—-2v)c

Sz =1— 4((1 — V))

w8y —1)c

S1122 = Spo11 = ﬁ;

m(2v—1) ¢

S1133 = Sx233 = ﬁ;

4 m(4v+1)c
Sz = Sm2 = 7 {1— ( 3 )E}

P n(7—8v)c
227 31 —v) a

1 m(v—2)c
53131 = 52323 = 5 [1+ ﬁ;]

10. Eshelby’s Tensor for 2-Dimensional Inclusions

This derivation focuses on Eshelby’s tensor in the context of 2-dimensional (2D) elliptical inclusions in an isotropic
elastic medium under plane strain conditions. Consider a 2D elliptical inclusion in an infinite, homogeneous, isotropic elastic
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medium. The inclusion is characterized by an eigenstrain e*, which is the strain the inclusion would undergo if isolated from
the surrounding matrix. The 2D elliptical inclusion is defined by:

2 2
x X
1 2
-+ =<1
a2 = b2

where a and b are the semi-axes of the ellipse along the x; and x, directions, respectively.
For an isotropic elastic medium, the stress-strain relation (Hooke’s law) in 2D under plane strain conditions is:
gij = Cijriex

where 0;; is the stress tensor, ey is the strain tensor, and Cyj is the elastic constant tensor given by:

‘ Cijit = A0ij0 + (bt + 00k ‘

Here, A and y are the Lamé constants. The inclusion undergoes an eigenstrain ej;,

fields inside the inclusion:

leading to the following stress and strain

’ 0ij = Cijua (ex — efy) ‘

The goal is to determine the Eshelby tensor S;j;, which relates the elastic strain ¢;; inside the inclusion to the eigenstrain ej;:
eij = Sijkiey

The Green'’s function G;;(x) represents the displacement at point x due to a unit force applied at x". For an isotropic, infinite
elastic medium in 2D, the Green'’s function in Fourier space is:

gij(k) = 2

where z = % The Green'’s function in real space is then:

1 [exp(—ik-x), . _
Gij(x) = H/T(zz)..ldk

The auxiliary tensor Djjy relates the gradient of the Green’s function to the eigenstress inside the inclusion:
Djju(x) = /V Gijii (x —x") dV (x')
IV

Using the Fourier representation of the Green’s function:

. 22) 7z
D () = ~ 5z exp(it- 1) k) g

where the integral Q(k) is defined as:
Q(k) = /V expl(ik-x') dV (x')
0

where Vj is the volume (in this case, area since we are in 2D) of the inclusion. For an elliptical inclusion, the domain V; is given

by:
2 2
1,5
2tp =t

Here, x1 and x, are the coordinates within the inclusion, and a, b are the semi-major and semi-minor axes of the ellipse,
respectively. We perform a change of variables to transform the elliptical domain into a circular domain, making the integral
easier to handle. Define new variables:

In these new variables, the elliptical domain becomes:

X/2+Y/2 S 1

which represents a unit circle in the X’Y’-plane. The differential volume element transforms as:
av(x") =a-bdX' dY’

Thus, the integral Q(k) can be rewritten in terms of X’ and Y”:

Q(k) = ab/ exp(iky - (aX') + iky - (bY')) dX' dY'

X"24+Y2<1
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Here, k1 and k; are the components of the wavevector k in the x; and x, directions, respectively. Expressing k - x" in polar
coordinates:
k-x' =kix; +koxy = ak; X + bkyY’

Let us define
Ay = aky, Ay = bky

Then we have

‘k-x’z/\xX’Jr/\yY"

We now express X’ and Y’ in polar coordinates (R, 6):
X' =Rcosf, Y =Rsin@

Therefore we can write

‘k~x’ = R(Aycosf+ Ay sinf) = RACOS(])‘

where ¢ is the angle between A = (Ay,A,) and (X’,Y”). Integrating Over the Elliptical Domain. The integral Q(k) now becomes:

1 21
Q(k):ab/o/0 exp(iRA cos ¢)RdO dR

The integral over 6 can be recognized as a standard Bessel function of the first kind Jo:
27
/ exp(iRA cos ) df = 27Jo(RA)
0

Thus, Q(k) simplifies to:

1
Q(k) = 27ab /0 RJo(RA)dR

The integral over R can be evaluated using the known result for the integral involving the Bessel function:
1 1 .
/0 RJo(RA)dR = ﬁ(sm)\ — AcosA)

Substituting back, we get:
Q(k) = 27ab - %(sin)\ — AcosA)

Finally, the expression for Q(k) is:

Q(k) = ZKZZ’ (sinA — AcosA)

Here, A = /(aky)? + (bk2)?.

Let’s now do the Eshelby Tensor Derivation. Substituting Q(k) back into the expression for D;j; and using polar coordi-
nates to evaluate the integrals:

(sinA —AcosA)db

abc [T (Zz)j;lzkzl
Diji(x) = *ﬁ/o 3

For a circular inclusion (where a = b):

—1
1 /27‘( (z2);; 2z 0
0

D= ——
ijkl o 7

The Eshelby tensor Sjjy; for Circular Inclusion is obtained using:

1
Sijmn = _Ecklmn (Ditj + Diiai)

Substituting the expression for Djjy:

v 1
Sijmn = 2(1 — 1/) ‘Sijfsmn + 16(1 — 1/) [(6 - 81’)(‘5in‘5jm + 5jn5im) - 2§ij5mn]
For a circular inclusion, this simplifies to:
4v—1 3—4v
Sijmn = méijémn + m(éinéjm +5jn§im)

The Eshelby tensor S;j,, for a 2D inclusion (circular or elliptical) in an isotropic elastic medium has been derived rigorously.
This tensor allows us to determine the strain field inside the inclusion given the eigenstrain e};. The derivation used the Green's
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function approach, combined with Fourier transforms, change of variables, and integration techniques to arrive at the final
expressions.

11. Derivation of the Green’s Function for Anisotropic Medium

To begin, we derive the Green'’s function G;;(x — ') for an infinite, homogeneous, and anisotropic elastic medium. This
Green'’s function represents the displacement in the i-th direction at point x due to a unit point force applied in the j-th direction
at point x’. We start with the Equilibrium Equation for an Infinite Body. The Green’s function satisfies the following equilibrium
equation:

BZka(x)

Ciji axj0x, +0imé(x) =0

where Cyjy is the fourth-order stiffness (elasticity) tensor, and 4(x) is the Dirac delta function representing the point force at the
origin. To solve this equation, we take the Fourier transform. The Fourier transform f (k) of a function f(x) is defined as:

f0) = [, fee s,

with the inverse Fourier transform given by:

£ = G foo FOOE

Applying the Fourier transform to the equilibrium equation, we have:

’ Cijirkikigim (k) = dim ‘

where g;; (k) is the Fourier transform of Gij(x). The equation simplifies to:
(Zz)ikgkm (k) = dim
where (zz)x = Cjjukik;. Taking the inverse of (zz);, we find:
gij(k) = (zz)l.;l,

Thus, the Green'’s function in Fourier space is:
(z2);'
8ijk) = —3

The real-space Green’s function G;;(x) is obtained by taking the inverse Fourier transform:

1

Gij(x) = PIE /112{3 8ij (k)™ * dk.

Substituting the expression for g;;(k):

1 (z2);" .
Gij(x) = @ /IRS 2 e dk

To evaluate this integral, we switch to spherical coordinates in Fourier space:
ky =ksinfcosp, ky =ksinfsing, k. =kcos6,

with the volume element given by k? sin 8 dk d6 d¢. The integral becomes:

% sin(kR
Gys) = a1 g

where R = |x| is the distance from the source point. After evaluating the integral, the Green'’s function in real space is:

1 _
Gij(x) = 877:7R(ZZ)’71

For isotropic materials, this can be further simplified using the Lame constants A and y:

oy 1 A+3pY A+ XiXj
Gij(x) = 87rptRK)\—|—2y>(5’/jL <A+2y) R2

This Green’s function represents the displacement field in an infinite, homogeneous, and isotropic elastic medium due to a point
force.
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12. Derivation of the Auxiliary Tensor D;jy;

Using the derived Green’s function, we now derive the auxiliary tensor Dy that relates the constrained displacement
gradients to the eigenstress inside an inclusion. The auxiliary tensor Djjy; is defined by:

uj; (x) = —0og;Dijga (x)

where u{, (x) is the constrained displacement gradient, and a,fj is the eigenstress. The tensor Dy is related to Eshelby’s tensor
Sijki:
Sijmne;;m = Ef]-,

where the constrained strain ¢f; is given by:

1
ef]- =5 (uﬁj + “;C',i)-
The constrained displacement gradient can also be expressed using the Green’s function as:

s (x) = /S 0 oG j(x — x') dS(x')

By comparing this with the earlier definition, we identify:
Djyj(x) = — /s G j(x — x')dS(x'),
JSo

or equivalently:

Dljkl /Gz]lex)nkds( )

Using Gauss’s theorem, this surface integral is converted into a volume integral:
Dyu(x) = [ 50z Gl =€)V ().

This simplifies to:

Djju (x) = /V Giju(x —x")dV (x')
0

where G;; iy (x — x') is the second derivative of the Green’s function. Substituting the Fourier-transformed Green’s function into
the expression for D;j (x), we get:

Dij(x) = - L/ex [—ik- (x —x")] (22)51 av(x")
KA [ oxgax | (2m)3 P 12 '
Taking the second derivatives with respect to x; and x;, we obtain:
Dija(x) = s / /(—ik )(—ik;) exp|—ik - (x — x')] (z2); (')
ijkl = (27_[)3 Vo k 1 P K2 .
Simplifying, this becomes:
(z2); keky
Dijua(x) M / /exp —ik- (v = 2)] L dkdv ()
Recognizing that kyk; = |k|?z;z;, where z; and z; are the components of the unit vector in the direction of k, we rewrite the
equation as:
(22 ), 2Kz
]
Djjpa (x 27_[ / /exp (x—x)] —e dkdv(x")

The function Q(k) is defined as the Fourier transform of the characteristic function of the inclusion Vy:

Q(k) = /Vo exp [—ik - x']dV (x')

For an ellipsoidal inclusion, the region V is defined by:

2 2

2
X
+5 <1,
c

y
o+

I3
where 4, b, and ¢ are the semi-axes of the ellipsoid. The Fourier transform Q(k) can be computed as follows. Let:

x' = aX, y’ =bY, 7z =cZ,


https://doi.org/10.20944/preprints202412.0855.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 December 2024 d0i:10.20944/preprints202412.0855.v1

52 of 77

where X, Y, and Z are dimensionless variables that satisfy X2 + Y2+ 72 < 1. Thus, the region Vp can be expressed as:

Vo = {(X,Y,Z) ER: X2+ Y2+ 72 < 1}

The volume element transforms as:
dV(x') = abcdXdY dZ.

The Fourier transform Q(k) is then given by:

Q(k) = abe /V exp[—i(akeX + bk, Y + ck,Z)|dX dY dZ

0

This integral can be separated into three independent integrals over X, Y, and Z:

Q(k) = abc </711 exp(—iakxX)dX) </j1 exp(—ibkyY)dY> </jl exp(—iCkZZ)dZ>.

Each integral is of the form:
1 . 2sin(A
[ ew(-ingag = 22,

006 — abe <2sil;]£:kx)> (ngky)) <2$i1£1k(zckz) >

Alternatively, the Fourier transform can be expressed in spherical coordinates:

Q(k) = L%C (471(812)\ — cosA))

where A = /ak% + b?k2 + c2k2. Substituting the expression for Q(k) into the formula for Dy (x), we get:

where A = aky, bky, or ck,. Thus:

abe. / (ZZ)i;lezl
272 A3

To simplify the integral, we switch to spherical coordinates in Fourier space:

Djj(x) = — (sin A — A cos A) exp[—ik - x]dk.

ky =ksin®cos®, ky=ksin®sin®, k,=kcos®,

where A becomes:

’A =kVa2cos?2 O + b2 sin? @sin @ + ¢? cos®> O

The integral expression for D;j;(x) then becomes:

abc 27 ZZ ZkZl s .
Djj(x) = 27_(2/ / ﬂ3/2 (sin A — A cos A)e”**k2 sin ® dk d® dd

where 8 = /a2 cos? © + b2 sin? @ sin? @ + ¢? cos? ®. To further simplify the expression for Djjx1, we integrate over the angular
coordinates ® and &. This yields:

ubc 27 ZZ ZkZl sin® sin(kA .
Dijkl(x) = / </ / ‘33/2 d@d(p) K2 (# _ COS(k/\))E ik-x g

This integral simplifies further when evaluated within the ellipsoid due to its symmetry, leading to:

27‘[ ZZ
Diju = _ abe / / 53/2 sm<I>d® dd

After evaluating the integral, Djj; inside the ellipsoid becomes a constant tensor, and the final expression is given by:

Diju = ﬁ/exp[ ik - x](ZZ) 2z Q(k) dk

Thus, the auxiliary tensor D;j; for an ellipsoidal inclusion is a constant value inside the inclusion, given by:

abc 27 ZZ
Djj = / / ‘33/2 sm<I>d®d<D
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This derivation shows that the auxiliary tensor becomes a constant within an ellipsoidal inclusion, providing insights into the
behavior of materials with embedded inclusions and forming the basis for understanding internal stress and strain fields within
such materials.

13. Derivation of Inclusion Energy in an Infinite Solid

We start by defining the elastic fields inside the inclusion (denoted by superscript I) and outside the inclusion in the
matrix (denoted by superscript M). These fields include stress (03;), strain (e;;), and displacement (u;). For a homogeneous
infinite solid, these fields are given by:

For Matrix: ef}A e aé‘/l = af,

P | I * I _ ¢ x..
For Inclusion: ¢;; = e,J i 0= (71] Oij U = UG — e
The total elastic energy E stored in the solid due to the inclusion is given by the sum of the energies inside and outside the

,el

inclusion:
-1 cheIdVJr MMdV
- 2 ij=ij l]
Rewriting E in terms of displacements:
1
4/ ”u +u )dV—Q—4 chf}/[(uAf+uM)dV
Due to the symmetry of the stress tensor:
E= 1 Lav 4k .MuM. dv
) 1] Wi 2 1] Jii

Using the identity:
oyjtij = (Oiju;j) i — Oijttj
And assuming there are no body forces (so 0jj,; = 0):

2/ 3 ] dV—&—2 (Uf]\/IuJM),idV

Using Gauss'’s theorem, these volume integrals are converted to surface integrals:

2/ oluintds — / uMng*tds + 2/ otuMn ds

As Se tends to infinity, the surface integral over S, vanishes:

ouf
2/ (71]1/[]70' u]) ds

Since the traction across the interface Sy must be continuous (¢’ i ;’“‘ M "ut)

_ 1 o1 My, out
_i/soaij(ujfuj yntds

i I_yM — _e* xp:
Given that uj — U Xk

1
E= ~2 s U,?nf’“t H X dS

Transforming the surface integral back into a volume integral:

1
72/ el dv = 2;;/afjdv

For an ellipsoidal inclusion, where the stress inside is uniform:

1
Ee = — Etr,!je;‘j Vo
Thus, the total inclusion energy in an infinite solid is:
Ew=— > (TiI]-ei*] %)
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We know that the stress 0 i in the inclusion shall be
0y = o — o = A€ —eT)dy + 2 (el — i)
As we derived earlier, the strain eg in the material is given by
T
A20 —1)eT - e e
C_ (MY 78 oy Tk o Iy Tk
ez] - ( 871']/{(1 — 0) ,l]) (47T¢’k] + 47_[(P,k1 87'((1 — [7) lp,zjkl))
As we derived earlier, the trace of the strain tensor e shall be
M20 —1)eT el el el
C_ (22 7wy (Zkgy,q Tk Tk
& ( 87'[;1(] — 0.) ¢,11) (47_[47,k1 + 471,47,1(1 87‘[(1 — 0.) l1’7,zzl<l))
Ao —1)eT - el
C _ ) (kg Lk y
=i = ( 87'(]/{(1 _0) ,ll) (27T¢’kl 871'(1 — 0_) lp,ztkl))
We have earlier derived that ¢ ;; = —47 inside the inclusion. We also derived that ¢ ;;; = 2¢ 5;. Therefore the above boxed
equation can be written as
M1 —20)eT ek
C _
€ii _( 2]1(1_(7) ) ( (Pkl ( )(Pkl))

Repeated indices k, ! in the third term of the previous equation can be written as k, i.

Al —20)eT

T

T
c_ Gk ik )
i = ( 2‘,‘4(1 _0) ) (27_[4),7(1 47_[(1 — U') 4’,](1))
c L A(1—20) 1
= & = (m) zk4’k1( b m)
c_ A1-20) 2(1—-0)—1)
= e = (72y(1 — )) 1k¢k1(74n,(1 —o) )
Al =20 1—-20
| = G = i o)
Note that we have
A1 —=20) =2uc
Ml-20) @
2u(l—0o)  (1—-0)
Therefore the trace of the strain tensor e shall be
o 1—-20
eC:eS:me ezkfl’kl(m)
Therefore we have 1o
I —20
e“—el = (m —1)e’ - EITk‘P,kl(ﬂ)
20 —1 1-20
=>eC—el = ((170))” elk‘Pkl(m)
c T ”7(2(7—1)1- 1-20
=| (e —e')dy = =0 e’ djj elk¢k1511(74 (1_0))

For uniform expansion, we have 617;( = %eT(SIk. Therefore we can write the above boxed equation as

(20—-1) ¢

(EC—ET)&‘]' = (170) e (Si]'—

~eT o k15z;(

1-20

2i-0)

(20-1) ¢

= (1_0)35

(€€ —eT)syj =

e 4’kk51](

2i-0)

1-20

Inside the inclusion, we have ¢ ;x = —47. Therefore we can write the above equation as

(20-1)
(1-0)
(20 —-1)
(1-0)

= (ec — eT)éij =

= (eC —eT)é,-j =(

T‘SIJ + eT(Slj(

1-

(1-20)
3(1—0)

3(1-0)

2(7)

)ET(sij
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C_oTys, = (00 =3+ (A -20) rp _ (40=2) pp  2020-1) 1o
e = (g T 3a =) % T 3 ¢ %
2(20 —1)
C_ s — T
= (e —e )51] = m@ 51‘]‘
Similarly, we also have
T T
A2 —1)eT e
C_ T _ A i Sk Ik Ly _ T
eij €jj ( 87‘[}!(1 — ) ) ( ‘Pk] + ‘P 87‘[(1 _ (7) l/’,z]kl) €jj
For uniform expansion, we have ¢/, = % T 51k Therefore we can write the above equation as
M2o —1)eT 1 1 1
C_ T _ (Moo= e Ny T Ty _ ZoT5.
eij — € (87-[;4(1 ) }ij) — (12n‘51k4’,k] 12 e’ " 2= o) P iixde ) 3¢ i
AM20 —1)eT 1 1 1 1
C_ ol — (2 " Y (—pel 4+ — el — ———— el — Zels.:
G G (87r;4(1—(7) 2 (127147”]8 * 127t¢’7‘e 247t(1 —0) Pijeke’ ) 3¢ %ij

Now note that we have ¢ ;; = ¢ ;; and 9 ;i = 2¢;;, therefore we can write the above equation as

A0 —1)eT 1 1 1
C_oT (220 7 )% oy (el — ol _ 2T 5.,
ei] el] ( 871"‘14(1 _ ) 47 ]) (671'4)’1]8 1271_(1 — 0.) 4),1]3 ) 36 51]
A(20 —1)eT 1 1 1
C T (27 " (- — — — \pael — ZeTs
= e e = 8mu(l—o0) 9i) (671 127(1 — o) )¢ije 3¢ %
A20 —1) 21-0)-1) 1
C T _ (MY =) T N _ (Y)Y )Ny T 2 Ts.
=~ = (grua=o® ¢4~ Ciaga—o) %€ ~ 3¢ i
AM20—1) 1-20 1
c_, (Mol 7 =20 o7 LT
%5~ = Grua=o)® 99~ Qzra oy 95¢ ~ 3¢ %
Note that we have
AM20—1) = —2uc
- A20—-1) o
8nu(l—c)  4n(l—o0)

Therefore the above boxed equation can be written as

1,
3

- 7))3%’,1']‘ - (m

le_]_ — _

1-20

1
) )ET(P,Z‘]' — §€T5ij

_Ate g 1ors
(r—a))¢ i~ 3 %

1+0
o el i -

—35

Therefore the stress at the inclusion (Tig shall be

I cC_ T
o =0 — 03 =

-1
—0)

AeC

T‘sz])‘slj + 2]‘(

—el)o; + 2;1(65 -

e;g)

1
—eT§

( L ))€T¢,ij—3 i)

12n(1 -0

_2M20-1) 1 M

(1+0) 1 2u 1

ij —

31-0) ¢

67(1

—e (5,‘]'

3

— 0)6 Pij

Note that we have
AM20—1) =

—2uo

2A(20 — 1)

4uo

=

3(1—0)

- S 3(1-0)

Therefore we can write the stress at the inclusion o

ij as

duo

I
31-0)°

1
ol = Tl_j_ u(

I 40 2
= 0j = *(ﬁ + 3)145

40+2(1—0)
(73(1 O

67(1—0)

+0) 1 ZleT

e ‘P,ij_ 3 (51‘]‘
pl+o) 1.
67(1—0) ¢ i

wl+o) 1
on(1—0)¢ Vi

Ts..
gl

T51] _
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[ 2(0+0) . p(ld+o) 1
1% = 30— % en(i—0)® P

We derived earlier that the total inclusion energy in an infinite solid is:

For uniform expansion, we have 65 = %eT(Sij. Therefore the total inclusion energy in an infinite solid shall be

1 1
Foo = _7(75.(5?51.]») al]zslje Vo=~ LTV

Now note that

1 2040) 7. u(l+o) )
i = T 3A =) % T (i) P

Now we know that J;; = 3 and ¢;; = —47. Therefore (Tili shall be

1 2(040) 1 2(140) 1
e G T L
21+0) 2(140)
I_ _
= Ojj ( (1 _ (7) 3(1 _ (7) )Ve
6(14+0)—2(1+0)
= az'li - 7( 3(1 — U') )yeT
4(1+0
(= _3(1fa;”eT
Therefore the total inclusion energy in an infinite solid shall be
=L 140+0) 71, _200+0) 1o
Ew = 6011 Vo = 6(3(1*0')]16 )6 Vo = 9(170.)]1(‘3 ) Vo
_2(140) 1o
= | Ew = 9(1_U)H(e ) Vo

14. Derivation of Inclusion Energy in a Finite Solid

We begin by considering an inclusion in a finite solid. The stress-strain fields in this case can be solved by superposition.
Suppose the finite solid assumes the stress-strain fields of an infinite solid containing an inclusion. Then, to maintain equilibrium,
a set of traction forces T] must be applied to the outer surface Sy of the solid.

To obtain the solution for a finite solid with zero traction on its outer surface, we need to remove T] on Sey. This is equivalent to
applying a canceling traction force ﬁ = ,T on Sext. The resulting elastic fields due to this canceling traction force are called

image fields, denoted by the strain e , stress 0’]’", and displacement u”" fields. Thus, the elastic fields inside the matrix and the
inclusion are given by:

M_ im I _ im
e ef; i tei eijfe] e itei
M _ im I _ zm
i —ofj+¢7ij, 17]—0,] o +0jf
M _ ¢ im I _ i
ut = u; +ui", uj = uj — ]x]+ui .

The image fields satisfy the following conditions:

) = 5 () + ! )

‘TZ]"'( x) = Cijueyf (x)

where Cjjy; is the stiffness tensor of the material. Similar to the infinite solid case, the total elastic energy E in the solid can be
expressed in terms of surface integrals:

out M ext
2/ (leu]—(f u d5+/ ni**ds.

Using the free traction boundary condition on the outer surface Sy, (flf}/lnf’“ = 0, the second integral vanishes, leaving:

E; I(u]’—u])””tds
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M —

Substituting u} — U

—e;‘kxk, we obtain:
1 I % out
E= -3 /So oeqxen ds.

This is the same as the energy expression for an infinite solid except that the stress field inside the inclusion now contains the
image component. Let (Té.’m denote the stress field inside the inclusion in an infinite medium. Then the stress inside the inclusion
in the finite solid is:

o
ailj(x) = ‘71']‘00 + U}j'”(x)

The inclusion energy in an infinite solid is given by:

1
o ,00 %
E® = _Eaij e,»jVO

where V) is the volume of the inclusion. In the case of a finite solid, the inclusion energy E becomes:
E= wal/ olriel, dV
2 Jy, 0T

Converting the surface integral into a volume integral and averaging the image stress inside the inclusion:

1— .
E=E®— solejVo = E¥ + E™

where E/™ is the image contribution to the total inclusion energy, defined as:

. 1—
im _ _Eo_lg]me?jvo

and al?'j’” is the averaged image stress inside the inclusion:

im _ 1 im
ot = v /Vo o (x)dV (x).

The total inclusion energy in a finite solid can thus be expressed as:

I _ oo im
where 0y = 03 + i

15. Derivation of Inclusion Energy of Finite solid with Applied Tractions

Before deriving the Inclusion Energy of Finite solid with applied tractions, we first need to prove the Colonetti’s Theorem.
Let us consider a solid with volume V and outer surface S. We define two stress states:

e State 1: Purely internal, generated by an eigenstrain (or some inhomogeneity) inside the solid.
e State 2: Purely applied, generated by external tractions on the surface of the solid without any internal eigenstrain.

The total elastic energy in each of these states can be expressed as:

m_1 M (1)
EVY = Z/VUif €;; av

1 @) .2
Q@ — E/Vo‘l.]. €;; av

where 0;; and €;; denote the stress and strain tensors, respectively. When both states are present, the combined stress and strain
fields can be written as:

142 1 2
Ui(]. ) = Ui(]. ) + (Ti(j )

(1+2) _ (1) (2)
ei]. =€ + ejj

Thus, the total elastic energy in the combined state is:

q

1
(1+2) _ = (14+2) (142)
E(+2) 2/‘/(‘717' e ?)av

Expanding the integrand:

1

(a+2) _ 1 WM, W2 2 0, (2.2

E = /V[zr,-j el +oel + oPell) +aVel? | av
This can be separated into the sum of energies for individual states and an interaction term:

g(+2) — () 4 () 4 (1-2)
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where the interaction term is:

oy

-2 _ 1 ., .1
E = 2_/V<(71.]- € + 0 €;; )dV

Colonetti’s theorem:

Colonetti’s theorem asserts that this interaction energy E (1-2)

press Stress in Terms of Strain
0ij = Cijki€xi

where Cjjy is the stiffness tensor of the material. This allows us to write:

is zero. To prove this, we proceed as follows. We first ex-

2 (1) _ (2) (1)
7ij € = Ciju€y €
and similarly:
ot
gl
Since C;jyy is symmetric in (if) and (kI), it follows that:

eff) = Cimey ey,

We shall now Simplify Interaction Energy. Using the above equality, the interaction energy becomes:
(1-2) _ (1) .(2)
E = /V 7€l av
Given that 171.(].1)
surface integral:

is purely internal (i.e., it satisfies (71.(.1)

i = 0), we can use Gauss’s theorem to convert the volume integral into a

(1-2) _ (1),,(2)y . _ 1) ()
E 7/‘/(01./. u; ),ldV*/S”l‘Tij u” ds

) m

Here, n; is the outward normal to the surface S. Since c; i is internal, the traction tj=o; j 11 on the external surface is zero:

oV

i nj=0 onS

Thus:
E1-2) —¢
This concludes the proof of Colonetti’s theorem, showing that the interaction term between internal and applied stress fields
vanishes, meaning there is no cross-term in the total elastic energy between these fields.
The total elastic energy E in a finite solid due to an inclusion under applied tractions can be expressed as the sum of the
elastic energies due to the applied tractions E# and the elastic energy due to the eigenstrain in the finite solid E*:
E=E*+Ef

The elastic energy due to the applied tractions is given by:

1
A AA
E 75/‘/Uijeijdv

Here:

1. ¢/} is the stress field due to the applied tractions.

2. e is the strain field corresponding to cri?.

This expression comes from the standard formula for elastic energy density %(T,‘jei]‘, integrated over the volume of the solid. The
elastic energy due to the eigenstrain in the finite solid is given by:

1/ 10 ——
EF:—§<tTiI]-' +ol?]?")e;}Vo

Where:

1. ZLOQ is the stress field due to the inclusion in an infinite medium.

2. ol is the averaged image stress field due to the boundary effects of the finite solid.

3. e} is the eigenstrain in the inclusion.

4. V, is the volume of the inclusion.
This expression represents the interaction energy between the eigenstrain and the stress fields in both the infinite medium and
the finite boundary. The enthalpy H is defined as the difference between the total elastic energy E and the work done by the
loading mechanism AWp :

H=E—-AWrm
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The work done by the loading mechanism can be split into two parts: the work done due to the applied tractions alone AW},
and the interaction term AW{‘}\Z F.

AWpp = AW+ AW/ E

The work done by the loading mechanism due to the applied tractions is:
AWD = / oftuftn ds
Sext

By applying the divergence theorem, this surface integral can be converted into a volume integral:

A [ ALA
AWy = /V ol dV

Recognizing that this is twice the elastic energy E4 stored in the system due to the applied tractions, we have:
AW = 2E4

The interaction term between the applied tractions and the eigenstrain-induced fields is given by:

A—F _ A, F ext
AWy _/sgx,oijujni das

This represents the work done by the applied tractions on the displacements generated by the eigenstrain qu . This interaction
term can also be expressed as an integral over the inclusion volume Vp:

AWZ‘A;F:/ ofies; dv
Yo

Since the stress field ai‘]f‘ is assumed to be uniform over the inclusion, this integral simplifies to:

A-F _ _A
AW = dfie;Vo

To further explore the interaction energy, consider the integral over the matrix volume Vi =V —

A—F A %
AWA :/VMal-jeijdV

Using Gauss’s theorem, the volume integral over V), can be converted into a surface integral over the inclusion boundary S:

P Pl

AWALE :/ (UAuF’M faf’MuA)n?“t ds
So !

M

Here, u; and (75’M are the displacement and stress fields in the matrix due to the inclusion. The integral in the previous

equation can be transformed back into a volume integral over Vj:
AWALF = — / s dv
LM o ij “ij

Recognizing that this is negative of Equation 3.64, we conclude:

A—F A
AWP T = —e;}ai]- Vo

16. Ellipsoidal Inhomogenity

16.1. Application of Eshelby’s Inclusion Solution to Inhomogeneities

Eshelby’s solution, originally developed for inclusions, is applicable to various problems such as inhomogeneities, cracks,
and dislocations. This is achieved using the Equivalent Inclusion Method, where an eigenstrain is selected to model the specific
problem. This method is particularly effective for ellipsoidal inhomogeneities, where the stress and strain inside these inclusions
remain constant.

Example Problem: Liquid-Filled Void in an Infinite Solid

Consider a situation where a volume Vj is excised from an infinite solid and replaced with a liquid under pressure py.
The task is to determine the stress, strain, and displacement fields within the surrounding matrix.
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In principle, the problem could be addressed using Green’s functions, as shown in the equation:

ui(x) = /poékjnkéij(x,x')dx/

where Gij (x,x") is the Green’s function for an infinite body with a cavity. However, since the exact expression for Gij (x,x')is
unknown, this direct method is impractical.

Eshelby’s Equivalent Inclusion Method

A more feasible approach involves replacing the liquid with an inclusion whose eigenstrain e;‘j is chosen so that the in-
ternal stress within the inclusion matches that within the liquid (i.e., al.lj = —podij). Given the constant stress and strain in
both the inclusion and the liquid, the required eigenstrain can be determined using Eshelby’s tensor S;j;. The stress inside the

equivalent inclusion can be expressed as:

I c * c * * *
oy = 05 — 03; = Cyjua ety — efy) = Cijia (StmnCnn — €fr)

This leads to the equation:

Cijt (Skimn — OkmO1n)€mn = —Podij

From this set of six equations, the six unknown components of the equivalent eigenstrain e;fj can be solved.

Elastic Energy Considerations

Once the eigenstrain is known, the displacement on the void surface Sy can be computed:
u; = Mf = Sijkle,flxj

The elastic energy inside the matrix, which must be identical to that in the case where the equivalent inclusion replaces the
liquid, is given by:

1
E=E+Ey= —Eq!je;*ivo

where E| is the energy in the inclusion and Ey; is the energy in the matrix. Specifically:

1, 1,
Er= EaijeijVo = Eaij(efj - efj)Vo

And the matrix energy is:

1 1
Em=E—E = 7501-1]@?]-% = Eposijklezlvo

This section thus lays the groundwork for extending Eshelby’s methods to more complex scenarios involving inhomogeneities,
using the equivalent inclusion approach to simplify the analysis of elastic fields.

16.2. Transformed Inhomogeneity

We consider an inhomogeneity within an elastic matrix, where the inhomogeneity has different material properties
(represented by a stiffness tensor C; jkl) compared to the matrix (with stiffness tensor Cjj;). The inhomogeneity undergoes a
permanent transformation described by an eigenstrain e;;‘. The goal is to determine the stress, strain distribution, and total
elastic energy in the solid. The stress inside the inhomogeneity is given by:

/ ¢ Ix ! /c /s
0 =03 — 0y = Gy (e —ex)

where ¢} is the total strain inside the inhomogeneity, and ¢} is the eigenstrain specific to the inhomogeneity. To simplify the
problem, we introduce an equivalent homogeneous inclusion, which is assumed to be ellipsoidal, having the same material
properties as the matrix C;j, but subjected to an effective eigenstrain ef]f f that ensures the stress and strain inside the equivalent

inclusion are identical to those in the inhomogeneity. The stress inside the equivalent inclusion is given by:

— A€
U,']‘—O'-v

* c *
i — 0 = Ciju (e —er)

where ¢;; is the eigenstrain for the equivalent inclusion. For the equivalent inclusion to correctly represent the inhomogeneity,
both the stress and total strain must match between the two systems:

/o e ¢
i = 0jj and ejj = €j;
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Thus, substituting the stress and strain equations into these conditions yields:

Ciju (ex; — 1) = Cijua (efy — €1)

Since e/¢ =6 ], we substitute ef; = Sgjupne;, into the equation to get:

! /
Clix (Sktmn€mn — 1) = Cijea (Sktmn€mn — €1)

Rearranging the equation, we obtain the relation between the actual eigenstrain e} and the effective eigenstrain e}

! ! /
(Ciixr — Cijiet) Sitmn + Cijia )enn = Cijaia

This equation allows us to solve for the equivalent eigenstrain e}, in terms of the eigenstrain ¢}; of the transformed inhomogeneity.
The stress and strain fields in the matrix and inclusion can now be computed once the effectlve eigenstrain e}, is known. The
total strain inside the inhomogeneity and the equivalent inclusion are identical:

/C

— 0 *
ejj = €jj = Sijuey

The stress inside the inhomogeneity and the equivalent inclusion are also identical:
/
i = 0ij = Cijra (Skimn€mn — €51)

The elastic energy inside the matrix must be identical in both the transformed inhomogeneity problem and the equivalent
inclusion problem:

1
a,]e Vo

En =
M= ")

The elastic energy inside the inhomogeneity E} and the equivalent inclusion E; are given by:

1 1
/ o (e /
E; = 7(71181] VO l] (ei; - ei;)VO

1 1
2‘71]6 VO_ Uz]( ij i]')VO

Thus, the total energy for the solid with a transformed inhomogeneity is:

E; =

1
—50ijeii Vo

E=E/+Ey=
1t Em 3

This derivation rigorously connects the stress, strain, and energy fields for a transformed inhomogeneity with those of an
equivalent inclusion, providing a comprehensive framework for analyzing such problems in elasticity.

16.3. Inhomogeneity under Uniform Applied Loads

Consider a solid containing an inhomogeneity with no eigenstrain. The solid is subjected to external loads, and if it were
homogeneous (without the inhomogeneity), the stress and strain fields would be uniform throughout the solid. The primary
question is how the presence of the inhomogeneity affects the stress and strain fields. To solve this problem, we construct the
stress and strain fields by superimposing two sets of fields:

1. First Set: Suppose the solid with the inhomogeneity is subjected to a uniform strain e . The stress fields inside the matrix
and inhomogeneity are given by:

A_ A o
oft = Cjueyy and  off = Clyefy

However, this stress field does not satisfy equilibrium conditions unless a body force T; = ((7;;.‘/ — U{}‘)ni is applied on the
surface Sy of the inhomogeneity.
2. Second Set: To restore equlhbrlum, apply a body force F; = —T; on Sy. The corresponding stress and strain fields due to

this body force are Ufj and eij .

The elastic stress field inside the inhomogeneity, resulting from the superposition of these two sets of fields, is:

I A A A o
o =0 +05; = Ciyq(egg +er)

The total strain field inside the inhomogeneity is:

61-] +€

At the same time, consider an equivalent inclusion with eigenstrain e;‘j in a solid under the same uniform applied load. The
elastic stress field inside this inclusion is:

I _ A c * _ A C ok
o = 05 + 05 — 055 = Cyjua(ejg + el — €1)
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The total strain field inside the inclusion is:

efj = e{? + efj
To ensure that the elastic stress and total strain match between the inhomogeneity and the inclusion problems, the following
conditions must hold:

ALl A
Cijua (e + ¢fy) = Cijra (e + ey — €j)

A A c
ej tey =ejte

C.
ij’

From the second equation, efj/ = ¢f.,, which when substituted into the first equation gives:

A A
Ciju (e +¢iy) = Cijua (et + ey — ejy)

This can be rearranged to solve for the effective eigenstrain ¢;;:

(Clitt = Cijkt) Sktmn + Cigiat)epn = (Cijir — Clyg)efy

This equation expresses the equivalent eigenstrain ¢}, in terms of the applied strain e} and the difference in stiffness tensors
Cijkl and Cl{jkl'

Application of the Feynman-Hellmann Theorem:

The Feynman-Hellmann theorem is applied in the context of deriving the total elastic energy E and enthalpy H of the in-
homogeneous solid. This theorem relates the variation in the total energy of the system to the variation in the applied field.

Specifically, the Feynman-Hellmann theorem leads to the following result for the change in enthalpy AH due to the pres-
ence of the inhomogeneity:

1
AH = 5 (Cijy — Cijit )¢t et Vo

where V is the volume of the inhomogeneity, and e/, is the strain field within the inhomogeneity, which includes contributions
from both the applied strain ef} and the correction due to the presence of the inhomogeneity itself. The Feynman-Hellmann
theorem in this context is derived by considering the total energy E of the system as a function of the stiffness tensors and the

applied strain. The theorem states:
OE _9E _1 .4
aCijjr vt 2 7H
This expression allows us to compute the change in energy due to a small perturbation in the applied strain or stiffness tensor.
In this case, the enthalpy H is related to the total energy by:

JE

AH = ———AC;;
) Cijkl G jkl

Substituting the stress-strain relation into this expression gives the final form of the change in enthalpy as:
1 ALA
AH = Eécijkleij Ele()

where 6Cjjy = Cz{jkl — Cjji is the difference in the stiffness tensors of the inhomogeneity and the matrix. To compute the total

elastic energy of the system, consider a reversible path where the inhomogeneity is subjected to a uniform strain e;?. The elastic
energy for this state is given by:

1 44 1 w4 1 a4 1 a4 a4
Ei= 575 j Vm + 395 € Vo= 9% eV + i(tfij —07)efi Vo

Where V) is the volume of the matrix, Vj is the volume of the inhomogeneity, and V is the total volume of the solid. Gradually
removing the body force results in a final energy E,, which is the desired solution. The total elastic energy E of the inhomogeneous
solid is given by:

E=E =E+AWp

where AW, represents the work done during the transformation. This accounts for both internal and external work contributions.

Using the relation between the equivalent eigenstrain and the applied strain, the total elastic energy and enthalpy of the
system can be derived, yielding the following final expressions:

Toaay_ Lo o _ayr
E=3ajeiV —5(aj —aj)e;Vo
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The enthalpy H is obtained by subtracting the work done by the external loading mechanism from the internal energy:

H=E—AW.ym

This rigorous derivation, combined with the application of the Feynman-Hellmann theorem, provides a comprehensive
framework for understanding the stress, strain, and energy fields in an inhomogeneous material subjected to uniform loads.

17. Cracks

17.1. Ellipsoidal Void

17.1.1. Stress and Strain Relations for an Ellipsoidal Void

Given that the stiffness tensor C; i of the inhomogeneity approaches zero, the inhomogeneity becomes a void. The stress
field inside the void must be zero, so the stress-strain relation becomes:

Al A
0= Cli(ef + efg) = Cijua(ef + ey — €5y)

A c %
ep t e = ey

The applied strain e/} plus the strain inside the void ¢, must balance with the eigenstrain e}, of the equivalent inclusion.

This equation reduces to:

17.1.2. Eigenstrain in the Void

The equivalent eigenstrain, which generates no stress inside the void, is related to the applied stress:

1 4
et = —— 0
ij Cijkl kI

The total strain in the void, given by the eigenstrain of the equivalent inclusion, is:

This ensures zero stress within the void since the total strain equals the eigenstrain.

17.1.3. Enthalpy Calculation
The change in enthalpy AH of the system due to the presence of the void is given by:

AH Al

/ AL 1 4
(Cija — Ciju)eijenVo = — 5037 ¢5Vo

1
T2

A

j; can be explicitly solved using the applied stress o7;

The eigenstrain ej;

applied stress.

, reinforcing that the stress inside the void cancels the

17.2. Penny-Shaped Crack

A penny-shaped crack is modeled as an ellipsoidal void where the axis ¢ approaches zero while the other two axes, a and
b, are equal, i.e., a = b and ¢ — 0. This configuration leads to a circular disk-like crack in an infinite elastic medium.

17.2.1. Eshelby’s Tensor for Penny-Shaped Crack

Derivation of Eshelby’s Tensor Components:

Eshelby’s tensor S;j relates the eigenstrain ¢; within the inclusion to the resulting strain ef]- in the material:
¢ij = Sijkiey
For an ellipsoidal inclusion, Eshelby’s tensor is generally a function of the aspect ratios of the inclusion. In our case, for a
penny-shaped crack where ¢ — 0 and a = b, the non-zero components of the Eshelby tensor are determined as follows:
1. Component Sq111: Consider the geometry where the crack lies in the x1-x, plane. The component Sq11; is given by:
(13 —8v) ¢

St = e
M= "0 =) a

This expression is derived by evaluating the Eshelby tensor in the limit as ¢ — 0, which simplifies the general expressions for
the tensor components.
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2. Component Sq133: Similarly, for the component S1133, which relates the eigenstrain in the x3 direction to the resulting
strain in the x; direction, we have:
S1s3 = ™7 —8v)c
16(1—v) a
The derivation follows by considering the effect of the eigenstrain in the x3 direction on the strain in the x; direction for the
penny-shaped crack.
3. Component Sip12: The component Sy»1, which is related to shear deformation, is given by:
n(3—4v)c

S1212 = A=) a

This component is derived by analyzing the shear response of the material due to the eigenstrain in the x;-x; plane.

17.2.2. Eigenstrain and Stress in Penny-Shaped Crack

* o

Derivation of Eigenstrain ejj:

For a penny-shaped crack under an applied tensile stress 03}, the eigenstrain components are related to the applied stress and
Eshelby’s tensor:

2u 13pmc
— A f— —_— — ¥ Y
11 ( 1—v+16(1—v)a>eu+

To derive this, we start by considering the stress-strain relationship in the material:

0ij = Cijriex
where C;jy, is the stiffness tensor for the isotropic material. The total strain ¢;; in the material is the sum of the applied strain ef?
and the eigenstrain e;‘j. Therefore, the stress is:

aij = Ciju (e + €41)

Given that the stress inside the crack is zero, the applied stress must be balanced by the eigenstrain-induced stress:

A
o = —Cijuejy

Now, for the penny-shaped crack, the eigenstrain component ej; is derived considering the symmetry and the specific compo-
nents of Eshelby’s tensor:

—0n =

2u 13prtc
A _ It S P
( T—v " 16(1— v)a>ell + (other terms)

where y is the shear modulus, and the terms involving Eshelby’s tensor components are included to account for the interaction
between the applied stress and the eigenstrain.

17.2.3. Limiting Behavior of Eigenstrain e3;

As ¢ — 0, the eigenstrain e}, in the direction normal to the crack tends to infinity, but the product e};c remains finite. This
leads to:

2(1—v)a

Oy = o
33 umw

This expression is derived by considering the balance of forces and the boundary conditions on the crack surface, ensuring that

the stress inside the crack is zero.

17.3. Energy Considerations and Griffith Criterion
Derivation of Enthalpy Change AH:

The change in enthalpy AH due to the presence of the crack is calculated using the energy associated with the eigenstrain:
1
AH = E /V (T,‘jez‘]' av

Substituting the expression for 0;; and integrating over the volume of the crack, we get:

4(1—v)
AH = _4-v) 3 (o43)%a®

This result quantifies the energy difference between the cracked and uncracked states.

Derivation of Griffith Criterion:
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The Griffith criterion for crack growth is derived from the Gibbs free energy AG, which includes the enthalpy change AH and
the surface energy <y associated with the crack surfaces:

AG = AH + 2mrya®

To find the condition for crack growth, we set the derivative of AG with respect to a to zero:

doi:10.20944/preprints202412.0855.v1

dAG _ dAH | d(2mya?) 0
da ~ da da o
dAH
i +4mya=0
Substituting the expression for AH, we obtain:
8(1—v)

3u

(043)%a* +4tya =0

Simplifying, we get the critical stress o4} required for crack propagation:

A
033

Ty
(1-v)a

This is the Griffith criterion, which determines the stress at which the crack will grow, leading to material failure.

17.4. Slit-Like Crack

17.4.1. Derivation of Eshelby’s Tensor in the Sl

it-Like Crack Limit

Given the geometry of the slit-like crack, the limits ¢ — oo and b — 0 are applied to Eshelby’s tensor for an ellipsoidal
inclusion in an isotropic medium. The Eshelby tensor components are given as follows:

NRSEIE2 e
o = 2(11— v) [Ejziit)zf +(1- zv)aj-b
s = oy [~ 02t
S = 2(11—1/) _(aiizh)z -a _zv)aj-h_
As b — 0, these simplify to:
St — 2(11_ ”
Sam — @

S o 1-2v
1122 201—v)
S o 1-2v
2211 200—v)

17.4.2. Equivalent Eigenstrain

For the slit-like crack, we assume that the eigenstrain tensor components are given by ej; and e3,, with all other components
being zero due to the geometry and loading conditions. The equivalent eigenstrain in the limit b — 0 and ¢ — oo is obtained by
solving the following system of equations:

oA 2% + ab o ab ot
11— (1—V)(a+b)2‘u 11 (1_V)(a+b)211 22

oA — ab o ab + 2b? ot
2T T A a0 T @) r b2t
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Taking the limit b — 0 and assuming o{} = 0, we have:

R by
07_171/611_ (171/)41622
by
_ LA - _ * *
022 (1 — l/)uell (1 — V)anZ

Defining e* = limy,_,( e3,b and allowing ej; to remain finite, we solve these equations to obtain:

1—
ot = ( V)IZO’ZAZ
o = — (1 — 1/)0'2‘%
11 2]1

17.4.3. Griffith Criterion for Slit-Like Crack Growth

Using the derived eigenstrain, the total enthalpy per unit length of the crack can be computed as:

(1 —v)m(ogy)2a?

AH/c = — 2

The driving force per unit length for crack growth is then:

IrG/c _ (1- v)m(ogy)?a

a —
ftor = B " 4y
Setting the critical condition f{, = 0 gives the Griffith criterion:
4y
A
2= (1—v)ma

17.4.4. Stress Intensity Factors and Crack Tip Fields

To evaluate the stress intensity factors, we consider the stress field near the crack tip, denoted by r (distance from the
crack tip) and 6 (polar angle). The stress field is singular as ¥ — 0 and follows:

The stress intensity factor Kj is then defined as:

’KI:U,, 27mtr asr—>0‘

For the slit-like crack under uniform tension, the stress intensity factor simplifies to:

— /) rtacA
K; =/ macs;

17.5. Flat Ellipsoidal Crack

A flat ellipsoidal crack represents a case between the two extremes of penny-shaped and slit-shaped cracks. This type of
crack has an ellipsoidal shape where 2 > b and ¢ — 0. The goal is to understand whether the crack will tend to become more
elongated (slit-like) or less elongated (penny-shaped).

17.5.1. Eigenstrain Calculation

Let us consider a simple tensile stress applied in the 04} direction, with all other components of the applied stress being
zero. The key idea is to keep the product e3;c constant as ¢ — 0. The solution for the eigenstrain e* is given by:

* (17V)b A

T HE(R) 7B

where E (k) is the elliptic integral of the second kind, defined as:
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7T/2
:/ 1—k2sin® wdw
0

bZ
k=y1- 5

The eigenstrain e* is a function of the applied stress 03, Poisson’s ratio v, the semi-minor axis b, and the elliptic integral E (k).

and k is given by:

17.5.2. Enthalpy Change Calculation

The extra enthalpy due to the presence of the crack is calculated as:

1 4 4 27T 4
AH = ~3 43633 ?abc = —?0336*1117

Substituting the expression for e*:

2(1—v) ab?

AH = === — iy )

This expression captures the change in enthalpy due to the crack and shows its dependence on the crack dimensions a and b, the
applied stress 04}, and the material properties.

17.5.3. Gibbs Free Energy and Griffith Criterion

The Gibbs free energy, which includes the surface energy of the crack, is given by:

2m(1—v) ab?

AC = B

(048)? + 2myab

To find the conditions for crack growth, we differentiate the Gibbs free energy with respect to a and b:

IAG
20 0
JIAG
ob =0

These conditions provide the critical stresses required for crack growth in the 2 and b directions:

Aa Buyk?E2(k)
73 T\ b —v)[(—1 + 2K)E(k) + (1 — R2)F(K)]

Ab _ 3uyk*E2 (k)
733 T\ b1 —v)[(1 + K)E(K) — (1 — K2)E(K)]

Here, F(k) is the elliptic integral of the first kind:

/2 dw
F(k) = / v
0 1— k2 sin® w
These expressions indicate whether the crack will grow in the a or b direction, depending on which stress component reaches its

critical value first. If 0'3/;’[7 < 17543’“, the crack will tend to become more penny-shaped. Otherwise, it will become more slit-like.

17.6. Crack Opening Displacement: Rigorous Derivation

We consider the elastic fields (displacement, strain, and stress) of a slit-like crack under tensile loading stress (72‘42‘ The goal
is to determine the crack opening displacement d(x) as a function of position x.

Let d(x) be the distance between the crack faces as a function of x. In a purely elastic model, d(+a) = 0, i.e., the crack
tip opening displacement is zero. To determine the displacements along the crack face, we consider an equivalent inclusion
problem. The displacement field u;(x) for an inclusion is given by:

uj(x) = ejjx;

where efj is the eigenstrain of the inclusion. Since we are dealing with a slit-like crack, the displacement in the x-direction (1) is
zero, and the displacement in the y-direction (1) on the crack face is given by:

.
up = exny
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Here, ¢, is the eigenstrain component associated with the opening of the crack. The equivalent inclusion is an ellipse with
semi-axes a and b (with b — 0 in the slit-like crack case). The relationship between x and y on the crack surface is:

2

x+2
2

v
b2

The displacement field on the upper surface of the crack at x € [—a, 4] is:

=1

us(x) = ezpb - % =epy\l-—>

The eigenstrain e, is related to the applied stress o by:

ety = U'ZAZa(l 71/)
22 —
I3

where y is the shear modulus and v is Poisson’s ratio. Substituting the eigenstrain into the displacement expression:

up(x) = 702/;“(;71/) \1- z—; = 7021%(1”7 v) a? — x2

A
l_
= uz(x):LZ(y v) a2 — x2

The crack opening displacement d(x) is twice the displacement 1 (x):

A —
d(x) = 27(722(1 v) 2?2 —x2

This is the crack opening displacement in plane strain. In plane stress conditions, the displacement is modified as:

d(x) = 2”72[‘2 22
ul+v)

Using the expression for d(x), we calculate the enthalpy of the crack by measuring the work done while opening up the crack.
In plane stress, the enthalpy change is given by:

a
AH, = —1/ d(x)osh dx
2J-a

Substituting the expression for d(x) and evaluating the integral:

A 1— a
AHC:—%(TZAZQM/ Va? — x2dx
—a

I3

The integral evaluates to:
a 7.“12
/ Va2 —x2dx = —
i 2

Thus, the enthalpy is:

1—
AH. = 2 (o) 7ta?

This matches the previously calculated enthalpy, confirming the correctness of the derived crack opening displacement.

17.7. Stress Intensity Factors

Let r be the distance to the crack tip. The stress field in the vicinity of the crack tip exhibits a singularity of the form:

The stress intensity factor K; is defined as:

The three modes of crack opening are:

¢ Mode I: Tensile mode, Kj,
* Mode II: In-plane shear mode, Kjj,
* Mode III: Out-of-plane shear mode, Kjjj.
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Using Eshelby’s tensor, the stress intensity factors can be related to the eigenstrain inside an inclusion. The auxiliary tensor Di'ﬁd
is:

. ab 27 (Zz)ijlszlK(’Y)
ikl = "5 /0 Tde

with x(7y), B, and -y defined as functions of the geometry. For x > a, the stress field on the crack plane is derived using the
Eshelby tensor and auxiliary tensor components. The stress intensity factor for Mode I is:

A
K; = vmacy,,

where 03} is the applied stress normal to the crack plane, and  is the half-length of the crack.

17.8. Another Derivation of Crack Extension Force

Let’s Define the Problem and Initial Conditions. Consider a two-dimensional crack under uniform tension 02, = 4. The
crack half-size is 2, and we analyze the situation where the crack extends by a small amount da, making the new crack half-size
a+oda.

Initially, additional traction forces Tji are applied on the surfaces of the crack in the region [a,a + da] and [—a — da, —a]
to keep the crack shape unchanged. The traction forces are then removed gradually, allowing the crack to extend freely. The
work done by these forces corresponds to the change in system enthalpy éH. Let’s now Compute the Work Done by Traction
Forces. The applied traction forces on the surfaces of the crack are given by:

T (x) = (), T; (x) = —0p(x)

The crack opening displacement is defined as:
d(x) =uy; —uy

The change in enthalpy 6H is computed by the work done by the traction forces over the region [a,a + da]:

a+da
5H = / (Trut + T u7)dx
., B B

Since T]-* = ij*, the equation simplifies to:
a+oa
6H =2 / THut dx
Ja 1

Substituting T;r = 0 (x) and using the expression for d(x):

a+oa
0H = 2/ oo (x)d(x) dx
a

We shall now Evaluate the Crack Opening Displacement d(x). The crack opening displacement for a two-dimensional crack
under uniform tension is:
ga(1—v)

H

d(x) =2 a? — x2

For small 4, d(x) near x = a can be approximated as:

Using the above approximation in the expression for dH:

a+oa —
0H = 2/ UAW\/ZMMM
a

Simplifying the integral and keeping only terms linear in da:

402 (1 — ra+éa
SH = M(gu/ S
a x2 —a?

The integral can be evaluated, and in the limit da < a:

403(1—v) méa(2a+da) _ moz(1l-v)
iz 4 iz

Let’s Derive the Crack Extension Force. The crack extension force is defined as:

f:,@:M
oa u

0H = oa
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This result matches the crack extension force obtained by previous methods, confirming the correctness of this alternative
derivation. Thus, the very rigorous derivation leads to the final expression for the crack extension force:

(1-v)oima

f=

This matches the previously derived expressions, demonstrating consistency across different approaches.

17.9. J-integral as Driving Force

The J-integral, denoted as J;, in a three-dimensional elastic medium represents the force on an elastic singularity in the i-th
direction:

]i = /S(wnz- — Tjuj,,v)dS

where w is the strain energy density, n; is the unit normal vector to the surface S, T; is the traction vector, and u;,; is the
displacement gradient. In two dimensions, for a crack along the x-axis, the J-integral simplifies to:

ou
]:/r<wdy—T£>ds

where I' is a contour encircling the crack tip. The strain energy density w is:

ejj ,
w = /0 ojjdes;

The total enthalpy H of the system is:

H=E- [ TPuds
St

where E is the total strain energy:

E= / wdV
v
The driving force f; on the singularity at ¢; is:
oo
B

To compute f;, we determine the variation of total enthalpy éH as the crack tip moves by ¢;:

oH = [ bwdv— [ Tu;ds
v Sr

Consider a sub-volume V| with surface Sy, and Vg =V — V;:

/ (Sde:/ oijéeijdV
143 143

/VE owdV = /VE (7,‘]'514]',,‘ dv = /VE (0'1']'514]‘),1‘ av

Using Gauss’s Theorem:

[ dwdv = [ Ttouas— [ Touds
Ve St So

Substituting into dH:
Gl

6¢;dS
Vo 98 6i

a .
JH:/ devf/ Ty dS = 5§idv+/ 7,2
14 St So

Therefore, the driving force f; is:

0H
fi= s T /So (wn; — Tju;;)dS = J;

17.10. Invariance of |-Integral

The J-integral is a fundamental quantity in fracture mechanics, representing the driving force on a crack. The invariance
of the J-integral with respect to the surface or contour on which it is evaluated is a critical property that makes it a powerful tool
in the analysis of crack problems. The J-integral in its general three-dimensional form is defined as:

ow ou;
= —dv— | T,Lds
Ik % axk So ’axk

where:

* w is the strain energy density,
¢ T is the traction vector,
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® 1; is the displacement field,
® ¥ is the spatial coordinate, and
® Sy is a surface surrounding the crack tip.

To prove the invariance of the J-integral, we start by considering the derivative of the strain energy density with respect to the
spatial coordinate xj:

ow _ dw J¢; de;j

=" _J —g. L
axk E)eij axk g axk

Using the relationship between strain and displacement gradients:

Y
1]72 axj ax,'

we can express the derivative of the strain with respect to x; as:

dej _1( Fu Py
Bxk B 2 ijaxk Bxiaxk

Substituting this into the expression for %, we obtain:
Jw azuj d auj
9 = 9 (g,
axk Y axkax,- axi gl axk
The equilibrium condition 0;;; = 0 has been used in the last step. We now consider the J-integral over a closed surface So

containing no defects. Using the expression for gka, the J-integral becomes:

2 (02 gy .2 45
5= f e (e )V = [ T

Applying the divergence theorem to the volume integral:

_ au] T Bu] dS
= |, (T - T)

where 7; is the outward normal to the surface Sy. To prove that the J-integral is invariant with respect to the contour or surface
used in its evaluation, consider two contour lines I'; and I'; around the crack tip in a 2-dimensional problem. If we take a
complete contour I' = Ty + B —T', + B~ that encloses no singularities, the J-integral over this contour must be zero:

J(T) = J(T1) = J(T2) + J(B*) + J(B™)

Since J(B*) = J(B™) (because dy = 0 and T = 0 on the crack faces), we conclude that:

J(T1) = J(T2)

This demonstrates the invariance of the J-integral.

17.11. Applications of |-Integral

Consider a very long solid slab with a crack in the middle. The top and bottom surfaces are subjected to constant
displacement boundary conditions, and the left and right ends are subjected to zero surface traction boundary conditions. The

i ou
J= /F<wdyf Tg)ds

where I' is the contour surrounding the crack tip, w is the strain energy density, and T is the traction vector.

J-integral in two dimensions is expressed as:

1. On S; and S4, dy = 0 and ag—” = 0, hence the contributions to | are zero.
2. On S7and S5, w = Oémd 0, leading to zero contributions as well.
3. On S3, w = we and % =

Therefore, the total J-integral becomes:
J = weoh

where } is the height of the slab.
Consider a two-dimensional crack with a blunt tip. The J-integral for this configuration simplifies to:

I:Aw@

This integral represents the average strain energy density around the crack tip.
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Consider a mode-I crack with stress intensity factor K;. The J-integral is evaluated over a circular contour I' with radius
7 in the limit » — 0. The stress fields around the crack are given by the leading singular terms in polar coordinates (7, 0):

T = K gcosgflcosﬁ +

Opyg = KI §COSQ-Q—ECOS%-F
0= 157271

Trp = sin + sin +
0 \/27Tr 4 2 4 o
The strain energy density w is:

1
w = 5(099699 + ey + 209€19)

Substituting the stress fields into the expression for w, the J-integral can be evaluated as:

~tim [ wd
J 1mrwy

r—0

The final result is:

2
,KI

=%

where E' is the effective modulus.

18. Dislocations

18.1. Introduction to Dislocations

The concept of dislocations was introduced by Volterra in 1907 as a mathematical construct to model discontinuities in a
solid material. Dislocations are line defects within a crystal structure, where atoms are misaligned. These defects are crucial for
understanding the mechanical behavior of materials, particularly their plasticity.

Dislocations remained a purely theoretical construct until the 1930s, when Taylor, Orowan, and Polanyi independently proposed
that dislocations are responsible for crystal plasticity. They suggested that the motion of dislocations under stress could explain
the actual yield stress observed in metals, which was much lower than previous theoretical predictions.

The theoretical strength of a perfect crystal, Ty, is the stress required to cause plastic shear deformation across an entire
slip plane. This theoretical stress is much higher than the experimentally observed yield stress, which is due to the presence of
dislocations.

Let’s explore a Mathematical Representation of Dislocations. Consider a perfect crystal subject to shear stress T along a

plane A, as illustrated in Figure 7.1. The shear stress 7(x) required to displace the upper half of the crystal by a distance x
relative to the lower half is a periodic function due to the crystal’s atomic structure:

M (P
1’(3{)727m sm< b )

where:

. g is the shear modulus,
* bis the magnitude of the Burgers vector (which represents the magnitude of lattice distortion),
* ais a constant related to the atomic spacing.

The maximum shear stress, known as the theoretical critical shear stress ty,, occurs when x = b/2:

b

This theoretical critical shear stress Ty, is significantly higher than the experimentally observed yield stress in metals. The
discrepancy arises because real crystals contain dislocations, which lower the stress required to move atomic planes relative to
each other. The experimentally measured yield stress is much lower than the theoretical prediction because dislocations provide
a mechanism for plastic deformation at much lower stress levels. The movement of dislocations through the crystal lattice under
applied stress enables plastic deformation to occur more easily, thus reducing the yield stress.

This understanding revolutionized the field of materials science, providing insights into why materials deform plastically under
much lower stresses than would be expected from a perfect crystal model.
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18.2. Dislocation’s Effects on Mechanical Properties

Dislocations play a critical role in the mechanical behavior of materials, especially in plastic deformation. When a material
is subjected to stress, dislocations move, enabling the material to deform plastically. This section rigorously examines how
dislocations affect the mechanical properties of crystals, particularly metals and semiconductors.

The stress-strain curve of a crystal is linear up to the yield stress, beyond which dislocations begin to move, and plastic
deformation occurs. As plastic deformation progresses, the length of dislocations within the crystal increases, necessitating
higher stresses for continued deformation. This phenomenon is known as work hardening.

18.2.1. Orowan’s Law
One of the key relationships describing the plastic deformation due to dislocations is Orowan'’s law, which relates the
plastic strain rate € to the dislocation density p, the Burgers vector b, and the average dislocation velocity v:

€p1 = pbo

where:

. 5 is the mobile dislocation density (in units of m~2),
® b is the Burgers vector,
¢ v is the average dislocation velocity.

Derivation of Orowan’s Law:

Orowan’s law can be derived using Betti’s theorem. The plastic strain rate ¢, is proportional to the rate at which dislo-
cations traverse a given area. Consider a volume element of area A through which dislocations move. If n dislocations pass
through A per unit time, the plastic strain rate is given by:

_bxn

Epl = A

Since n = pvA, where p is the dislocation density and v is the velocity, we have:

This is Orowan’s law. Let’s analyze the Stress-Strain Curve Behavior in BCC Metals. For body-centered cubic (BCC) metals
such as molybdenum, the stress-strain curve under uniaxial tension at a constant strain rate typically shows three stages of
deformation:

1. Stage I: Inmediately after yielding, plastic deformation occurs with little increase in applied stress. Dislocations primarily

glide on parallel planes with minimal interaction.
2. Stage II: At higher deformation, the slope of the stress-strain curve increases, indicating work hardening. Dislocations

on several non-parallel slip planes interact, blocking each other’s motion and forming dense, entangled structures. The

dislocation density increases significantly.
3. Stage III: The hardening rate decreases as recovery mechanisms begin to annihilate dislocations, leading to a saturation

in dislocation density.

Dislocations also influence fracture behavior. In ductile materials, a crack tip can nucleate many dislocations, which shield and
blunt the crack tip, leading to a higher critical strain energy release rate ], for crack propagation and higher fracture toughness.
Additionally, dislocations can initiate fracture, particularly during fatigue processes. Under cyclic loading, dislocations multiply
and can form pile-ups with high local stresses, leading to crack nucleation even in ductile materials.

18.3. Elastic Fields of a Dislocation Loop

A dislocation loop is a closed dislocation line in a crystal lattice that generates elastic fields within the material. The elastic
fields associated with the dislocation loop include stress, strain, and displacement fields. These fields can be derived using
continuum mechanics and elasticity theory.

Consider a dislocation loop L in an elastic medium, characterized by a Burgers vector b. The displacement field u(x) at
a point x due to the dislocation loop can be derived using the Green’s function approach:

ui(x) = }é biGij(x — x') dL(x)

where G;j(x — ') is the Green’s function, representing the displacement at point x due to a unit force applied at point x'. The
Green’s function for an infinite isotropic medium is expressed as:

1 (- xly—x)
A

1

Gif(x =x') = 8n(1—v)u
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where r = |x — x| is the distance between the points x and x'. The strain field ¢;;(x) associated with the dislocation loop is
obtained by differentiating the displacement field:

(x dui(x
eij(x) = ;(algij) + 3]951 )>

Substituting the displacement field expression, the strain field becomes:

1 Gy (x —x)  9Gj(x—x) ,
€ij (x) = 2 fﬁ%( ax]- + ax; dL(x")

Let’s analyze the Stress Field Due to a Dislocation Loop. The stress field j;(x) is related to the strain field through Hooke’s law:
0;i(x) = Cijrer (x)
where Cijkl is the fourth-order elasticity tensor for an isotropic material:
Cijr = Adij0 + 1(8ixdjt + Sidjx)

Substituting the expression for the strain field into Hooke’s law, we get:

1 G (x—x')  9Gj(x—x)
0ij(x) = Z%LCijklbk< ul ) + dL(x")

axl Bxk

Due to the symmetry of the problem and the properties of the Green'’s function, the expressions for the strain and stress fields
can be further simplified.

For complex dislocation loop geometries, the integrals in the expressions for the displacement, strain, and stress fields are often
evaluated numerically. The loop is discretized into segments, and the fields are computed as the sum of contributions from each
segment:

aisjeg(xf X'n)

M=

(%) ~

n=1

18.4. Self Energy of a Dislocation Loop

The self-energy of a dislocation loop refers to the energy stored in the elastic fields due to the dislocation itself. It is an
important quantity as it influences the mechanical behavior and stability of dislocations within the material. This derivation
rigorously follows the principles of elasticity theory to compute the self-energy of a dislocation loop.

The self-energy of a dislocation loop E can be evaluated by integrating the strain energy density w over the volume V' of

the material:
E= / wdV
Jv

For a linear elastic material, the strain energy density is given by:

w = Eaije,vj

where 0;; and ¢;; are the stress and strain tensors, respectively.

An alternative and more elegant method to calculate the self-energy is by considering the reversible work done to create
the dislocation loop. Imagine creating the dislocation loop by applying traction forces F;' and F;” on the surfaces S™ and S~ of
the loop, respectively. These surfaces are displaced by b, the Burgers vector, relative to each other. The work done W to create
the dislocation loop is given by:

_1 +ot 1 -
W= [ Frupds+y [ Furas

Using the relation u;r —u; = bj, the above expression simplifies to:

1
W= E/SG'k]n;rb/dS

The energy of a dislocation loop obtained from linear elasticity theory is actually singular (infinite) without a proper truncation
scheme. This is because, at the core of the dislocation, the strain fields become very large, leading to a divergent integral for the
self-energy. To address this, a core cutoff radius is introduced, truncating the fields at a small distance from the dislocation line
to avoid the singularity.
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For practical computations, especially in numerical simulations, dislocation loops are often represented by a set of con-
nected straight dislocation segments. The stress field from each segment only has physical meaning when summed over the
entire loop. The total stress field of the dislocation loop is obtained by summing over the stress fields of individual segments:

Loop ): 03B (x(1) 3 (1+1) )

The stress and displacement fields of a dislocation loop in isotropic elasticity can be reduced to line integrals over the dislocation
line. For example, the displacement gradients can be expressed as:

u?b'asm(x) = j{LGjnthZmnbmvaik,z(x —x")dS(x")

This approach, known as Mura’s formula, is valid for evaluating fields around a complete loop and represents the continuous
distribution of the dislocation’s influence.

18.5. Force on a Dislocation

The force acting on a dislocation line is a fundamental concept in dislocation theory, as it determines how dislocations
move within a crystal lattice under applied stresses. This section rigorously derives the force on a dislocation using the principles
of energy variation and the Peach-Koehler force formulation.

Let’s now analyze the Energy Variation and Virtual Displacement. Consider a dislocation loop L with line direction ¢. Let the
loop undergo a small virtual displacement ér(x), where dr(x) - £(x) = 0 because a line moving along itself has no physical
consequence. The energy change 6E due to this displacement can be expressed as:

OF = — ﬁ £(x) - 61(x) dL(x)

where f(x) is the line force (per unit length) on the dislocation loop L. The force f(x) can be found by differentiating the total
energy E of the system with respect to the virtual displacement ér(x).

The total energy E of a system of N dislocation loops can be written as the sum of the loop self-energies E; and the interaction
energies W;; between the loops:

To calculate the force on a particular loop L, we need to compute the variation of the total energy with respect to the virtual
displacement dr; (x) of loop Ly:

__E K ¥
h=- = e &)

Wy
The first term Jf(’x) corresponds to the self-force, while the second term Z]-I\Lz b (1;) corresponds to the interaction force.

Let’s analyze the Interaction Energy and Peach-Koehler Force. For simplicity, consider a system with only two dislocations, so
that we only have one interaction term Wij:

Wi, = /5 o2 (x)n VoV s (x)
1

2y ™ 4g

where Ui(/-2> (x) is the stress field due to the second dislocation loop, 1;
the Burgers vector of the first loop.

is the normal to the surface of the first loop, and b

The variation of Wy, due to the virtual displacement dr(x) of the first loop is given by:

Wyp = /5S qg»z)(x)ngl)bfl) ds(x)
b 1

Using the relation n6S = dr x vdL, we can express the variation as:

oWiz = § off ()b eimbrn(x)0i!) (x) dL(x)

This leads to the expression for the force per unit length on the dislocation loop:

fu(x) = emmag)(x)b;l)vﬁl)(x)
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In vector notation, this is written as:
f=(c-b)x¢

This expression is known as the Peach-Koehler force. It describes the force on a dislocation due to an applied stress field,
which can originate from other dislocations, external stresses, or any other source. The self-force contribution &L&) is generally
divergent because the self-energy E; of the dislocation loop is singular. This divergence is typically handled by introducing a

truncation scheme or a non-singular dislocation model, which is discussed in the subsequent sections of the document.

18.6. Non-Singular Dislocation Model

In classical dislocation theory, the stress field and self-energy associated with a dislocation are singular at the dislocation
core. This presents difficulties in calculating the self-force on a dislocation. The non-singular dislocation model aims to remove
these singularities while maintaining the analytical structure of the original theory. This derivation will rigorously follow the
non-singular dislocation model’s development, which involves distributing the dislocation core over a finite region.

The stress field for a dislocation loop in the non-singular model is obtained by convolving the classical (singular) stress
field with a spreading function w(x). Consider the classical stress field given by Mura’s formula:

Uaﬁ(x) = 7{Crxﬁklelnhcpqmnbmvn(X/)ka,q(x - x/)dL(X/)

In the non-singular theory, the stress field is obtained by convolving this expression with a spreading function w(x), which
spreads the dislocation core over a finite region:

ucg(x) = Uaﬁ(x) * w(x)

A commonly used spreading function is:

w(x) = 15a*
©87(|x|2 +a2)7/2

where 4 is a small parameter characterizing the spread of the dislocation core. The convolution of Gy, 4 (x — x') with w(x)

modifies the singularity at the core:
Gipglx —o') = /ka,q(x —xNw(x" — x")dx"

This convolution results in a non-singular Green’s function:
g

Rxw(x) =R, = VR? + a2

Thus, the non-singular stress field becomes:

o1 (x) = % ffi 3:9p3pRa [Buinad + binpedy | + ﬁ fL bun€imk (310005 Ra — 05909 Ra )l

The self-energy of the dislocation loop in the non-singular model is derived similarly to the classical model but using the
non-singular Green'’s function R,:

M [
E = f; ]{ ﬁbibjRa,ppdxidx; + meik,ejmnbkbmRu,ijdx,dx;,

The interaction energy between two dislocations in the non-singular model is given by:

Wiy = 7£]{ f (b1 x bs) - (dLy x dLy) V2R, + i]{ ]{ (b1 -dLy) (bz - dL2) VPR, + i]f }[ (b1 x dL1) - VVR, - (b x dLy)
4 Jiy Ji, 8 Jiy Ji, 4 Juy Ji,

With the non-singular stress field, the Peach-Koehler force can now be safely applied without ambiguity:

f= (0" -b)x¢
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