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Simple Summary: MicroRNAs are short RNA molecules performing key regulatory roles in human cells and 

are an appealing target for synthetic drugs that can replace or inhibit them. However, when perturbing the 

microRNA network by enhancing or depleting one miRNA, the outcome is far from being predictable, also 

because of the lack of knowledge on the complete set of regulated genes. We have attempted to help this issue 

by proposing a criteria to retrieve from public repositories the most reliable interactions, and we have used the 

resulted network to gain more insight into general microRNA regulatory mechanisms. We show that 

microRNAs perform a massive control on key regulatory genes, with more than 20 microRNAs acting on the 

same gene and possibly coordinating different genes in the same pathway. 

Abstract: It is becoming increasingly clear that microRNAs are key players in gene regulatory networks, by 

modulating gene expression at post-transcriptional level. Their involvement in almost all cellular processes has 

anticipated their role in diseases, with several microRNA-based therapeutics currently undergoing clinical 

testing. Despite their undeniable relevance and the substantial body of literature demonstrating their role in 

cancer and other pathologies, the identification of functional interactions is still challenging. Several resources 

have been developed to address this issue, by gathering information from the literature, following different 

criteria and reliability scores. In the present study, we have built a network of verified microRNA-mRNA 

interactions by integrating strong-evidence couples from different resources. We have analysed the resulting 

network and compared cohorts of co-regulated genes. The results clearly show that hub genes are highly 

enriched of transcription factors and regulatory proteins, strongly suggesting a cross-talk and a combinatorial 

effect between transcriptional and post-transcriptional gene control. Data analysis also reveals that several 

microRNAs control multiple targets involved in the same pathway or biological process, likely contributing in 

coordinating the levels of the proteins. 
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1. Introduction 

Over the last 20 years, genome projects have shown that the complexity of the most evolved 

organisms is not explained when looking at protein-coding genes, as they are highly conserved even 

in distant species. Large genomic regions are occupied by genes for the so-called non-coding RNAs, 

which perform their function without being translated into amino acid chains, and that may 

contribute to modulate the variability among different organisms. Among them, microRNAs have 

been shown to be involved in regulatory functions since their first discovery in 1993, and to be an 

essential component of the intricate network that regulates gene expression in many cell processes 

[1,2]. Their mature form is a very short double strand RNA, composed of a passenger strand that is 

then misplaced, and a guide strand that identifies the target, commonly through base pairing between 

bases in positions 2-7 of the microRNA (the seed) and short regions in the mRNA, often located in 3’ 

UTR of the transcript [3,4]. The peculiar shape of microRNAs has promoted the development of many 

computational approaches, both to discover them in the genome, and to predict their targets. 

Currently, more than a hundred target prediction tools are available, based on sequence 

complementarity and other features, as described in several reviews [5,6]. According to these 

bioinformatic analyses, almost all mRNAs contain several sequences that are potentially recognised 

by microRNAs, however, only a small part of them have been proven to function for regulation [6]. 

The base pairing between each microRNA and the selected mRNA occurs in the miRNA-induced 

silencing complex (miRISC) and leads to decreased protein expression through translational 

repression and/or mRNA degradation. Briefly, when the microRNA is loaded onto an Argonaute 

protein, the passenger strand is released and the guide strand hybridises to the complementary 

region on the mRNA [3]. TNR6A (also known as GW182), binds to the Argonaute complex and helps 

to recruit the CCR4-NOT and PAN2-PAN3 deadenylase complexes as well as the decapping 

complexes [7,8]. Several studies report that microRNAs repress mRNA translation, however it has 

been suggested that the main mechanism of regulation is mRNA decay [8]. This is supported by the 

observation that the majority of the studies which demonstrate microRNA-mRNA interaction by 

luciferase assay [9], also observe an mRNA decreasing upon miRNA mimics transfection. Several 

RNA binding proteins also contribute to the outcome of the regulation process, by recognising 

specific sequences or secondary structures on the 3’ UTR of the mRNAs [10]. The binding may mask 

the seed sequence or may facilitate the microRNA binding. This partially explains the differences 

between the set of predicted versus real targets. 

A growing body of evidence points to the key role of microRNAs in gene regulation, and some 

of them control multiple genes that are altered in pathological conditions, so that they are under 

investigation to develop new therapeutic strategies. Therefore, it is crucial to have the most reliable 

knowledge on the network of the targeted genes, to be able to foresee most of the effects. To this aim, 

several repositories collect microRNA interaction data, and considerable efforts have been made to 

standardise annotation vocabularies and RNA identificatives to support data integration [11–13]. 

Nonetheless there is still a significant discrepancy, among different databases, as to which 

experimental approaches demonstrate “true” interactions, especially for high-throughput assays. 

Immunoprecipitation of AGO2 in Clip-seq experiments [14] return lists of microRNAs and mRNAs 

co-immunoprecipitated, and some resources capture these results as interaction couples, while others 

recognise their value to improve the performance of prediction tools but not as proof of interaction 

[13]. An adaptation of this technique was proposed to specifically investigate microRNA targets by 

linking the ends of RNA duplexes before sequencing [15]. In the last years, hundreds of papers have 

been published, showing the physical binding of a microRNA to its partner by luciferase assay 

performed on the wild type and on the mutated mRNA. This approach is among the few that are 

generally accepted to demonstrate the binding between the two RNAs, together with the RNA-Ip 

which is more rarely utilized [13,16,17]. The UCL functional annotation group [16] and the IntAct 

database [17] have annotated a collection of such interactions, although the coverage is still limited. 

MirTarBase [18] and RNAInter [19] have a higher coverage, and it is possible to select the stronger 

evidence from the other annotations. To investigate the main features of the microRNA mediated 
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regulation, we have built a network with the most reliable interactions and analysed the main 

characteristics of the post-transcriptional regulatory circuit. 

2. Materials and Methods 

2.1. Dataset Integration  

Human microRNA-mRNA interactions were downloaded from four repositories in Jan 2024: 

miRTarBase [18] RNAinter [19]  QuickGO [16,20], IntAct [17]. Interactions from QuickGO and IntAct 

are consistent to the International Molecular Exchange consortium common standards 

(https://www.imexconsortium.org/) [21], while interactions derived from miRTarbase and RNAinter 

were filtered for low-throughput, strong evidence. More precisely, to assure the physical binding of 

the microRNA to the mRNA, we selected “luciferase assays” or RNA-IP, and disregarded “western 

blot” and “qpcr” as these can be the result of a direct or indirect effect (Figure1,[13]) To integrate the 

data, the Uniprot ID mapping tool (https://www.uniprot.org/id-mapping) [22] was used when 

necessary. Each interaction was considered once and all duplications were deleted. Cytoscape tool 

[23] was then used to visualise and analyse the network. The list of DNA-binding transcription factors 

was retrieved from [24]. To obtain an estimation of the number of genes regulated by each 

transcription factor we downloaded gene regulation data (TF-TG) from TFlink “small scale dataset” 

filtering out inferred interactions [25]. This should contain only interactions verified in low 

throughput experiments. TF regulating zero genes according to this list were deleted.  

2.2. Network Analysis  

The microRNA-mRNA network was constructed and the number of edges for each node 

(defined as node degree) was calculated [23]. Degree classes (dc) were calculated based on how many 

times a certain degree appears (abundance). As an example, if there are two nodes with 94 

interactions each one, then degree 94 belongs to the degree class 2. Three datasets were produced, 

listing the abundance of dc relative to mRNA, and miRNA and for the subclass of transcription 

factors (see below). To compare the abundance distribution of the datasets, the regression model best 

fitting each abundance distribution was computed on the basis of several models proposed in the R 

library ‘sads’ [26]. The best model was selected on AIC basis, and where the abundance distributions 

converged on the same model, then this was taken as an evidence of similarity. We compared the 

abundance distribution of transcription factors (TF) with that of all mRNAs. Transcription factors 

regulated by zero microRNAs were deleted and the others were subtracted from the mRNA dataset, 

and the two curves were compared by means of  the AIC value. 

Mutual Information (MI) analysis was applied for the effective estimation of the possible 

relationship between the number of microRNAs regulating each TF and the number of genes 

regulated by the same TF, by means of the R library “entropy”[27]. MI can be applied to assess the 

presence of an unspecified relationship among data sets, when a linear model is not applicable. It 

measures the amount of information obtained about one variable, when measuring the other [28,29]. 

MI returns an absolute value, which can be more easily interpreted if expressed as relative MI (rMI), 

i.e. the ratio between MI and the maximum MI that can be extracted for the dataset [30]. To evaluate 

confidence intervals (CI) and significance (p), MI and rMI were bootstrapped by means of the R 

libraries 'simpleboot', 'boot' and 'boot.pval'.  

2.3. Gene Ontology and Pathway Enrichment Analysis 

Genes interacting with more than 20 microRNAs were analysed for Gene Ontology terms 

enrichment against the whole genome. To this aim, Gprofiler [31], VLAD [32] (moved to 

https://www.informatics.jax.org/vlad/) and BinGO [33] were utilised, giving very similar results. The 

data presented in Figure 3 show the enrichment for molecular function and are obtained with BinGO, 

the significance was imposed below 0,0005 and the whole genome was considered as benchmarking. 

Supplementary figure 1 was drawn with VLAD. Pathway enrichment analyses were conducted with 

Reactome analysis tool [34]. 
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2.4. Other Statistical Analysis 

Intersections of common target genes (Figure 5) were calculated with 

https://bioinformatics.psb.ugent.be/webtools/Venn/. 

To correlate 3’ UTR lengths with predicted and verified interactions, data tables were generated 

as follows: transcript lengths and 3’ UTR lengths were extracted from ensembl 

(https://www.ensembl.org/index.html) database and refers to the “main” transcript as defined by 

GIFT tool (https://www.ebi.ac.uk/gifts/). The number of interactions was extracted from the 

integrated dataset described above. Predictions were calculated with miRDB [35] and miRWalk [36]. 

miRwalk prediction was calculated on the same Refseq as for the UTR and length measures and 

filtered at 0.95. Pearson correlation coefficient was calculated using the ggpairs functions from GGally 

package [37] in R [38]. 

 

Figure 1. Quality control pipeline for microRNA-mRNA interaction network. Data were downloaded 

from IntAct, miRTarBase, QuickGO and RNAinter and filtered for low-throughput experiments 

which demonstrate the direct binding. 

3. Results 

3.1. General Characteristics of the microRNA-mRNA S 

Although any gene is a potential target for microRNAs, as suggested from the numerous target 

prediction methods, low throughput experiments seem to reveal a significant discrepancy among 

transcripts. In a recent paper, the collection from the literature of microRNAs which regulate genes 

involved in rare diseases has shown that for the majority of mRNAs no microRNA binding has been 

demonstrated, while a small number of mRNAs is heavily regulated [13]. In order to gain more 

insights into the distribution of microRNA targets, we have integrated 4 manually curated datasets 

[13,16,18,19] and filtered them to only provide strong-evidence, low-throughput results, as described 

in detail in Figure 1. We used the resulting list of “gold standard” interactions to investigate into post-

transcriptional regulatory mechanisms. 

According to this dataset, 3842 human genes are regulated by at least one microRNA, which 

corresponds to 20% of the estimated 19400 human coding genes (www.genenames.org). We 

calculated the number of edges for each node (defined as node degree, dc). Concerning the mRNA 

nodes, the smallest class, with dc=1, contains 1964 presences, i.e. more than 1900 mRNAs interact 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 December 2024 doi:10.20944/preprints202412.0845.v1

https://doi.org/10.20944/preprints202412.0845.v1


 5 

 

with one microRNA; while the largest class with dc=108 is present once (and corresponds to PTEN 

phosphatase). The abundance decreases quickly between 5 to 10 degrees, so that a minority of nodes 

have more than 10 interactors (Figure 2A, Supplementary Table 1). This scenario is consistent with 

the abundance distribution best fitting a power law, where large values are exponentially less likely, 

and a large proportion of occurrences is held by a small number of entities (Pareto distribution). Only 

2% of the 3842 mRNAs regulated by microRNAs are controlled by more than 20 microRNAs, and we 

defined them as network hubs for the following analyses. 

The miRNA dataset lists 962 microRNA nodes, which have an average higher degree in 

comparison to mRNAs. The smallest class with dc=1 shows 239 presences and 14% of interacting 

microRNAs regulate more than 20 genes. Notably, thirteen microRNAs target more than 100 genes 

each (Figure 2B, Supplementary Table 1), and this number is destined to increase as new data will be 

published. 

 

Figure 2. Properties of the human mRNA-microRNA network. A) mRNA degree distribution fitting 

a power-law. Degree were divided in classes corresponding to interactor numbers and the rank of 

each class was plotted against its abundance B) Pie-charts of the mRNA network, showing the 

frequencies of degree classes in different colours. For convenience classes were grouped as indicated 

C) microRNA degree distribution, as in A. D) Pie-chart of the microRNA network, as in B. 
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3.2. mRNA Highly Regulated Are Regulators 

To gain more insights into microRNA-mediated post-transcriptional regulation, we investigated 

the molecular functions of the highly regulated genes, to estimate if specific typologies of genes have 

a higher propensity to be controlled by multiple miRNAs. The Gene Ontology is the most used 

bioinformatic resource to unify and interpret  gene functions and attributes for biomedical purposes 

[39]. We calculated the enrichment in genes performing specific functions among those regulated by 

more than 20 microRNAs, in respect to the whole set of human genes, using three different tools: 

Gprofiler [31] VLAD [32] and BinGO [33]. These three methods gave similar results, showing a very 

high enrichment for genes related to transcription regulatory activity. Figure 3 shows Ontology 

Terms related to the transcription and transcription regulation, highly enriched among “hub” genes 

in respect to the others. In Supplementary table 2 all the enriched terms retrieved with BinGO are 

listed with their frequency in hub genes and in the whole genome. Reactome analysis tool [34] also 

returns among the top-ranking pathways “Generic Transcription Pathway” and “RNA Polymerase II 

Transcription” and “Gene Expression”, all with FDR 1,05E-14. 

A similar result had been obtained in [40] from the analysis of hub genes predicted with 

Targetscan [41]. 

 

Figure 3. Transcription regulation function in genes controlled by more than 20 microRNAs. 

A) The histogram presents the molecular-function GO terms statistically overrepresented 

(significance level 0,0005) in the hub genes compared to the whole genome, clearly showing an 

enrichment for genes related to transcription regulation and signal transduction. The complete list of 
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molecular functions enriched in hub genes and their frequencies are listed in Supplementary Table 2. 

B) Ontology graph drawn with BinGO in Cytoscape [33], showing the GO hierarchy of enriched child 

terms related to transcription. The area of a node is proportional to the number of genes annotated 

to the corresponding GO category among the “hubs” and the colours indicate the statistical 

significance, higher in dark orange nodes. 

On the other hand, not all the transcription factors are regulated by microRNAs. In a recent 

paper, members of the GO Consortium have produced a curated catalogue of  1456 human DNA 

binding transcription factors [24]. We compared the distribution of the interacting microRNAs of 

these 1456 genes with the whole set of human mRNAs, and we found a very similar distribution 

(Figure 4). For 72% of the DNA-binding TF listed in [24] no interacting microRNA has been reported, 

while 28% have at least one. Only 25 transcription factors are regulated by more than 20 microRNA, 

corresponding to 1.7%. The rank abundance distribution of microRNAs binding to transcription 

factors fits a Pareto distribution as for the other mRNAs, with a minimum value of AIC = 174 as 

compared to AIC= 401 for the other genes, indicating that they are represented by a power law 

distribution. 

To better estimate if there is any relationship between the microRNA regulation and the 

transcriptional regulation we performed a Mutual Information analysis, considering, for each 

transcription factor, two variables:  the number of interacting microRNAs and the number of genes 

regulated by. To estimate the number of genes regulated by each transcription factor we referred to 

TFlink [25]. The MI value (MI=0.1161408) and the rMI value (rMI=0.02567784), both fall in a range 

within the CIs with a highly significant p-value, indicating  a non-random co-occurrence. However, 

the low rMI value indicates that other variables influence the numbers. From these observations we 

suggest that, although genes controlled by multiple microRNAs are highly enriched for transcription 

regulation functions, not all the transcription factors are regulated by microRNAs. As shown in 

Supplementary Table 3 however, the most interconnected factors are highly controlled by 

microRNAs. 

Genes involved in receptor signalling and kinase binding are also enriched among microRNA 

regulated genes (Figure 3A), and the proteins they code for are highly interconnected in PPI networks. 

For example, considering the term “protein kinase activity”, the genes annotated for this term code 

for the proteins gsk3b cdkn1a cdk6 ccnd1 erbb2 akt1 met tgfbr1 egfr igf1r tgfbr2, all interacting with 

hundreds of proteins, according to IntAct database [17]. Interestingly, the mRNA which interacts 

with the highest number of microRNAs, more than one hundred, encodes for the Phosphatase and 

Tensin Homolog PTEN , a well-known tumour suppressor gene, which inhibits the PI3K/AKT growth 

signalling. PTEN is downregulated by several “oncogenic” microRNAs (see figure 5) which exert 

their tumorigenic function through this key phosphatase [42]. 

Supplementary Figure 1 shows the enrichment diagram obtained by VLAD [32], where p values 

for enriched terms are reported. 
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Figure 4. Number of microRNAs interacting with transcription factors versus all other genes. The 

degree distribution of the mRNA dataset (except transcription factors) (blue line) is compared with 

transcription factors dataset (red line). The two dataset are represented by the same model, and the 

TF dataset has an AIC value of 174 indicating that it is even  better represented by the power law 

curve in respect to the mRNA dataset with AIC = 401. 

3.3. microRNAs Regulate Multiple Targets 

It has been proposed that one of the main functions of microRNAs is to modulate gene 

expression to finely coordinate the level of proteins involved in the same biological process or 

pathway. According to the dataset presented in this work, 590 microRNAs control more than 2 targets 

and 13, listed in Table 1, regulate more than 100 transcripts each (Supplementary Table 1). Many 

microRNAs are associated with cancer or other pathologies and their expression is deregulated in the 

affected cells [43]. Table 1 shows that miRNA controlling one hundred or more of genes are  

“oncomiR” or “tumour suppressor”, which means that they promote or repress cancer phenotype 

respectively.  Despite their opposite effects, these microRNAs have some common targets: the Venn 

diagram in Figure 5 shows that 23 targets are in common between miR-155 and miR-21 (both 

described as oncomiR) and  12 genes are regulated by miR-155 (oncomiR) and miR-34a (tumour 

suppressor).  

Table 1. Function of the most interconnected microRNAs in cancer. 

microRNA name Number of 

Interactors 

Oncogene Tumour Suppressor Reference 

hsa-miR-155-5p 262 YES   43 

hsa-miR-21-5p 182 YES   43, 44 

hsa-miR-145-5p 171   YES 45 

hsa-miR-34a-5p 156   YES 43 

hsa-miR-125b-5p 141   YES 47 

hsa-miR-124-3p 138   YES 47 
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hsa-miR-29b-3p 135   YES 47 

hsa-miR-200c-3p 134   YES 45 

hsa-miR-17-5p 131 YES   46 

hsa-miR-29a-3p 127   YES 47 

hsa-miR-1-3p 110   YES 47 

hsa-miR-20a-5p 107  YES  43, 46 

hsa-miR-9-5p 103    YES  38 
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Figure 5. OncomiR and suppressor microRNAs share common targets. A) Venn diagram showing the 

overlapping genes regulated by two oncomiR: miR-155 and miR-21. The 23 common targets are: 

dock1 pten myd88 nef pik3r1 apaf1 egfr msh6 socs6 smarca4 bcl2 bcl6 thrb cebpb bcl10 icam1 jun 

foxo1 socs1 vhl msh2 casp3 sox6. B) Venn diagram showing the overlapping genes regulated by the 

tumour suppressor miR-34a  and the oncomiR miR-155. The 12 common targets are: xiap, nfe2l2, 

myb, spi1, rad51, csf1r, bcl2, agtr1, cebpb, bcl6, myc, ccnd1. 

Interestingly, miR-155-5p is the most connected microRNA in the network, and it regulates 

approximately 260 genes. It is considered an oncomiR as it was found overexpressed in lymphoma, 

leukaemia and several solid tumours. In normal tissues, it is expressed at a very low level with the 

exception of hematopoietic cells, lymph nodes and spleen, which suggest its implication in 

inflammatory response. Indeed, pathway analysis tool on its targets shows that the list of regulated 

genes is enriched in proteins involved in: Interleukin-4 and Interleukin-13 signalling (15 genes), 

signalling by Interleukins (33 proteins), Cytokine Signalling in Immune system (39 proteins) and 
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Immune System (68 proteins) (FDR 1.54E-11 , 3.51E-10, 1.66E-7 and 5,5 x E-4 respectively). It is also 

significantly enriched in both TLR3 and TLR4 cascade with 11 and 13 proteins respectively. 

It has been suggested that genes regulated by the same microRNA may be involved in the same 

pathway to orchestrate the coregulation [48,49]. Consistently, we observed that several microRNAs 

controlling multiple genes, target more entities of a specific pathway. For example, miR206 regulates 

6 genes (out of 15) involved in the Reactome “NFE2L2 regulates pentose phosphate pathway “ (R-

HSA-9818028, FDR 6.18E-8), or miR 33a regulates 7 genes involved in Regulation of lipid metabolism 

by PPARalpha (R-HSA-400206, FDR 5.3E-9) as shown in Figure 6A. Interestingly, miR-105-5p 

downregulates 3 genes involved in the pathway “Regulation of lipid metabolism by PPARalpha”, 

while miR-105-3p, transcribed from the complementary strand, downregulates the hub PTEN, 

involved in the same pathway (Figure 6B). 

 

Figure 6. microRNAs regulate pathways by targeting multiple  genes. A) miR-33a regulate seven 

genes involved in the “NFE2L2 regulates pentose phosphate” pathway R-HSA-9818028 B) miR105 

targets four genes in “Regulation of lipid metabolism by PPARalpha”R-HSA-40020. 

3.4. The Length of the Untranslated Regions Do Not Correlate with the Abundance of  Interactors 

Most human protein-coding genes contain regions complementary to seed sequences of the 

microRNAs, that potentially mediate their binding. The seeds are short nucleotide sequences 

(approximately 6-7 nucleotides), so the complementary stretches may occur by chance in the 

transcripts without mirroring any regulative function. For example, 6 nucleotides may occur 

accidentally every 4096 nucleotides, and the longer is the transcript sequence, the more likely it will 
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contain potential microRNA binders. The number of potential binding sites is even larger due to the 

fact that the base pairing rarely needs a perfect match in animals but few mismatching are also 

allowed [6,7]. Interestingly, the average length of UTR has been correlated with species complexity, 

even within vertebrates [50,51]. Moreover, it has been demonstrated that different transcript isoforms, 

bearing longer/shorter UTRs, may be differentially regulated by microRNAs  [52,53].  

We performed a simple test, comparing the 3’ UTR length of a sample of transcripts with the 

number of interactors experimentally verified and the number of predicted binding sites, to verify if 

more regulated mRNAs bear longer untranslated regions. The sample included highly connected 

mRNAs as well as transcripts with no verified interactors (Supplementary Table 4). To estimate the 

predicted binding sites, we selected two high-performance prediction tools: MiRDB [54] and MirWalk 

[55], both using additional criteria besides the matching sequence, spanning from deep learning from 

high-throughput data, or expression profiling data, to energetic considerations.  

As expected, the two predictors returned some common as well as some different microRNAs 

and in both cases we found a significant positive correlation between the UTR lengths and the binding 

sites predicted (r=0.654 for miRDB and 0.737 for MirWalk). On the contrary, when comparing the 

length of the UTR regions with the number of microRNAs that were demonstrated to bind them, we 

found very low correlation (r=0.312) suggesting that the true binding sites are selected and 

maintained and do not depend on the length of the sequence. Surprisingly, several of the sequences 

predicted to have hundreds of potential interactors, have not been demonstrated for any of them, 

generating an unexpected discrepancy between the number of predicted versus verified binders 

(Supplementary Table 4). 

 

Figure 7. Correlation analysis showing the relationship between the UTR length and the number of 

interacting microRNAs. The number indicated in the square is the value of the coefficient of 

correlation r, which ranges from -1 to +1. Two asterisks indicate p value<0.01, three asterisks p value 

< 0.001. Red circles highlight the relationship between UTR length and the number of verified 

interacting miRNAs (0.312), the number of miRNAs predicted with miRDB (0.654) or miRWalk 

(0.737). 

4. Discussion 

Since the relevance of the microRNA-mediated, post-transcriptional regulation is supported by 

evidence from thousands of studies, in normal cells and pathologies, a paradox must be fixed, as the 
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amount of protein or mRNA that decreases in response to the expression of a microRNA is quite 

limited, and the rate of repression is usually in the range of 2-3 folds, making it difficult to explain 

the phenotypes observed in microRNA knockdowns [10,56]. This points to the possibility that 

microRNAs exert their most evident functions regulating key genes such as master transcription 

factors, and that they may act on more genes involved in the same process or pathway, thus 

potentiating the final effect. This is consistent with previous observations, obtained on a predicted 

microRNA-mRNA network, where extensive interactions between microRNAs and transcription 

factors were highlighted [40]. Notably, feed-forward loops were also shown, with transcription 

factors regulating microRNAs which downregulate them, or both co-regulating a third protein [57]. 

For example, Myc activates the expression of the the transcription factor E2F1 and of the miR-17 

cluster, composed of six miRNAs, comprising miR-17, miR18a, miR19a, miR20, miR19b, and miR92 

[58], which, in turn, control E2F1 level [59]. Genome-wide profiling of the transcriptome will help in 

elucidating which regulative proteins control microRNA expression, better clarifying the extension 

of the cross-talk [60] 

In this study, the analysis of a collection of trustworthy targets have confirmed that microRNAs 

finely control driver transcription factors and other key regulatory proteins. In fact, we show a 

remarkable enrichment of transcription factors among highly regulated mRNAs, yet limited to a 

defined subgroup of genes, possibly those determining the cell fate. For example, Zeb, Twist1 and 

Snai1 have been recognised as EMT drivers [61], and all of them are controlled by more than 20 

miRNAs (Supplementary Table 3). 

Regulatory circuitries are commonly tampered in cancer cells and in other diseases, so they are 

likely to represent optimal therapeutic targets. Indeed, many cancer associated genetic mutations 

bear down on genes and DNA regions involved in the transcriptional and post-transcriptional 

control, as transcription factors, signalling proteins, chromatin modifying enzymes or ncRNAs. 

Inhibitors of oncogenic transcription factors and oncomiRs have recently entered in clinical trials [45], 

so that elucidating the interplay between different levels of regulation is crucial to predict the effect 

of interfering drugs and molecules. The presence of multiple overlapping targets for microRNAs 

candidated for therapies (Figure 5, Table 2), suggests the urgency of an in-depth understanding of 

the full picture of relationships. 

The purpose to complete a trustworthy microRNA-mRNA interaction network is still far to be 

achieved: the intersection between low scale luciferase assay network (this study) and the network 

obtained with a high throughput CLASH approach [16], corresponds to less than 1% of the 

interactions (data not shown), pointing to incompleteness on both sides, similarly to the first attempts 

to deciphering PPI networks [62] 

On the other hand, information coming from high-throughput experiments and predictions 

weaken the reliability of the result interpretation [63]. A similar problem, concerning the reliability 

of protein-protein interactions (PPI), was handled in the last 20 years by the IMEx consortium [21], 

by defining guidelines as what to consider experimental proof of binding and by adding a score of 

reliability to each interaction [64], which consider, among the others, how many times it has been 

described in the literature. In the IntAct database, the same score was applied to evaluate microRNA 

interactions, but the amount of data concerning microRNAs is still too limited to allow for filtering 

[13]. Several PPI databases follow common principles in order to offer highly reliable data to the user 

[21]. On the contrary, ncRNAs are mainly collected in independent resources, following different 

criteria not always clear to the user [65]. Moreover, the integration of gene regulatory networks (GRN) 

with post-transcriptional regulation is still at its infancy [66]. As the relevance of this intricate and 

dynamic interplay which determines the cell fate is clearly emerging, an in-depth understanding of 

the global and local architecture of the regulatory system is certainly needed. 

5. Conclusions 

Countless studies have contributed to the elucidation of the effects of microRNAs on specific 

genes, but very little is still certain about the extent of regulation mediated by microRNAs and how 

they cooperate with the other layers of regulation. Transcriptional and post-transcriptional effects 
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certainly contribute to the final expression level, but the knowledge in the two fields is still modestly 

interconnected. Moreover, the excess of potential binding sites, largely exceeding the microRNA 

abundance, imply that the regulation may be sensitive to microRNA levels [7], which also should be 

taken into account when drawing models.  

Despite the lacking knowledge on the biology of ncRNAs, from the regulation of their expression 

to their function, and even on their coherent classification, there is no doubt as to these molecules 

have made a revolution in our understanding of the cell behaviour and must, from now on, be taken 

in consideration on any perturbation prediction. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Supplementary Figure 1 Diagram showing the relationships among GO terms enriched 

in genes regulated by more than 25 microRNAs. The diagram was drawn with VLAD tool [32]. Supplementary 

Table 1 Complete list of nodes of the microRNA-mRNA network with the number of edges (degree value). The 

degree number was calculated by Cytoscape App [23]. Supplementary Table 2 GO Molecular Function 

enrichment in hub genes in respect to the whole genome, according to BinGO, (p < 0,0005) [33] . Most significant 

terms, selected as representative for Figure 3 were highlighted in pale green or yellow. The two sheets contain 

the results for genes with 25 microRNAs (used in Figure 3) and with 20 microRNAs respectively. The enrichment 

for the selected classes is confirmed in both. Supplementary Table 3 Comparison between the number of 

microRNAs regulating each transcription factor and the number of genes regulated by the transcription factor 

(retrieved from TFlink, “small scale dataset”). The master transcription factors are regulated by multiple 

microRNAs, while most of the others are not. Supplementary Table 4 3’ UTR lengths of a sample of transcripts, 

compared with the number of predicted and verified interactors. 
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