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Abstract: Resveratrol, a valuable compound found in grapevines, is found in significant amounts in grapes
and wine, but also in other parts of the plant (leaves, roots, shoots) and derived products (juice, raisins,
powders, grape pomace). Synthesis factors considerably influence the resveratrol content, and research aims
to optimise these factors to maximise yield, with applications in agriculture, food, cosmetics, and medicine.
This literature survey aims to review and synthesise existing knowledge on aspects of resveratrol chemical
structure and isomers, biological properties and factors influencing resveratrol synthesis and content in
grapevine, sources of resveratrol in grapevine components, products, and by-products. Current research is
focusing on methods to stabilise resveratrol to increase the functionality of food products and the
bioavailability of the compound in the colon, thereby contributing to human health, which reflects the
interdisciplinary interest in the use of resveratrol as an ingredient with nutraceutical properties.
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1. Introduction

More and more studies are focusing on biologically active compounds of plant origin. Of these,
resveratrol (3,5,4 -trihydroxystilbene), a natural polyphenol of the stilbene group, is found in various
parts of plant species (72 plants according to studies by [1] including Vitis vinifera L., Rubus fruticosus
L., Vaccinium myrtillus L., Ribes nigrum L., Fragaria L., Corylus avellana L., Raspberries L., Pistacia vera L.
etc. (Figure 1) and plant products. Resveratrol was first isolated in the roots of Veratrum grandiflorum
[2]. It was later detected in the medicinal plant Polygonum Capsidatum roots, used as an essential
traditional medicine in China [3]. Over time, resveratrol has been detected in several species, with
grapevine being the representative (Figure 1). As for grapevine among the species used for fruit
production, the most widespread worldwide is Vitis vinifera L. ssp. Sativa. Over 10,000 grape varieties
belong to this species; over 90% of the world's grapes are Vitis vinifera [4]. A different amount of
resveratrol characterises each component of the grapevine; its presence depends on several factors:
grape variety, growing environment (climate, soil type, exposure), winemaking technology, etc.
Thus, studies have been carried out evaluating the effects of some parameters (temperature,
humidity, maceration/fermentation time) during the grapevine process on the variation of resveratrol
levels in the skin and seeds of grape berries [5], whole grapes [6, 7], annual and multiannual grape
bunches [8] and wine [9, 10]. [11] mentions that stilbenes accumulate with dehydration of grapes on
the stalk or during the post-harvest period under controlled conditions (temperature, relative
humidity (RH), and airflow).

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Natural sources of resveratrol

[12] mentions that after 16 months of red wine storage, under established storage conditions, the
concentration of free trans-resveratrol in wine is expected to increase with storage due to piceid
hydrolysis (a bound form of resveratrol). The content of phenolic compounds is one of the main
factors in the quality of black grapes; their amount and structure significantly affect the oenological
potential and sensory quality of red wine, influencing the colour, astringency, stability, and ageing
ability of wines [13]. Having complex physicochemical properties, the qualitative analysis of this
compound is complex, and various analytical methods have been reported relying on the use of High-
Performance Liquid Chromatography (HPLC), capillary electrophoresis (CE), and gas
chromatography (GC) [14, 15]. Resveratrol can also be regarded as a functional, novel, essential, non-
toxic, and pharmacologically active prebiotic nutraceutical compound with effective properties for
human health [16]. Its introduction in different composites (zinc fructoborate - ZnFB, boron recently
proven to be essential for the symbiosis of the healthy microbiome) and utilisation of the nutraceutical
composite (RSV - ZnFB) as an essential prebiotic will ensure healthy nutrition of the microbiome,
thus positively influencing the immunity and health of the organism [17, 18]. In the last decade, the
technological development of analytical tools has greatly improved and expanded the knowledge
about this compound, resulting in the emergence of products in the medical, nutritional, and food
spheres that present resveratrol as a biologically active compound with a functional role that
supports nutrition leading to increased quality of life. This literature survey aims to review and
synthesise existing knowledge on aspects of resveratrol chemical structure and isomers, biological
properties and factors influencing resveratrol synthesis and content in grapevine, sources of
resveratrol in grapevine components, products, and by-products.

2. Resveratrol: Structure, Biological Properties, and Synthetic Factors

2.1. Chemical Structure and Isomers

Structurally, resveratrol is a lipophilic polyphenol stilbene synthesised from tyrosine following
the action of tyrosine ammonia lyase (deamination), stilbene synthase (condensation with three
malonyl-CoA molecules) and 4 - hydroxycycinnamoyl-CoA ligase [19]. The structure of stilbene
consists of a 14-carbon backbone and two benzene rings joined by an ethylene segment [20], being a
simple structure with a molecular weight of 228.247 g/mol [21]. There are two isomeric forms of 1,2-
diphenylethylene: (E)-stilbene (trans-stilbene), which is stable, and (Z)-stilbene (cis-stilbene), which
is less stable due to steric interactions between the aromatic rings [22]. Stilbenes are represented in
grapes by cis- and trans-resveratrol (3,5,4"-trihydroxystilbene) and their glucosides (cis- and trans-
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piceides) - Figure 2, piceatanol (3,4,3,5-tetrahydroxy-trans-stilbene) and resveratrol dimers
(viniferins) [23]. The trans isomer form of resveratrol is synthesised in grapes (Vitis vinifera) in the
immunological response to injury, infection or abiotic stress [24, 25].
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trans-resveratrol
(3,5,4"trihydroxy-trans-stilbene)

Irans-resveratrol-3-0-p-glucoside
(trans-piceid)

cis-resveratrol-3-0-f-glucoside
(cis-piceid)

Figure 2. Main grape stilbene and its glucosides

The resveratrol derivatives are of additional interest for their biological properties, especially
the trans isomers, which exhibit more potent bioactivity than cis-isomers [26]. The two isomer forms
act differently to environmental factors: cis-resveratrol accumulates under UV light and high pH, and
trans-resveratrol is synthesised at high temperature, visible light and low pH [27]. The cis and trans
configurations can be converted to each other under specific conditions due to the presence of a C-C
double bond [3] (Figure 3).

Trans-Resveratrol | Cis-Resveratrol ‘

HO

UV Induced isomerization Q ~
OH O

OH

Figure 3 Influence of light on resveratrol isomers

Stilbene derivatives, including monomers, glucoside derivatives, dimers (viniferins), trimers
and tetramers, were qualitatively and quantitatively identified in grapes by MS [28]. A scheme of
resveratrol oligomer formation in grapes is shown in Figure 4 [29].
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Figure 4. Scheme of the formation of viniferins and resveratrol oligomers in grapes: (1) trans-
resveratrol; (2) (E and Z) e-viniferol/w-viniferol; (3) pallidol; (4) caraphenol B; (5) 5-viniferol (E and
Z); (6) a-viniferol; (7) a-viniferol; (7) isohopeaphenol; (8) E-myyabenol C; (9) Z-myabenol C; (10)
isomer C vaticanol; and (11) ampelopsin H [29]

Due to oligomerisation, monomeric and polymeric stilbene are present. Over 300 resveratrol
oligomers have been characterised in grapes by oligomerising resveratrol monomers [30]. Resveratrol
dimers and oligomers are synthesised in grapes as an active defence against exogenous attack or are
produced by extracellular enzymes released by pathogens to remove unwanted toxic compounds
[31].

2.2 Factors Influencing Resveratrol Synthesis and Content in Grapevine

Factors influencing the synthesis and content of resveratrol in grapevine include genetic
elements, environmental conditions, and processing techniques. Resveratrol synthesis factors have
been divided into biotic and abiotic factors. Biotic factors lead to resveratrol synthesis in response to
pathogens (Botrytis cinerea, Plasmopara viticola, Trichoderma viride, Erysiphe necator, Rhizopus stolonifer,
Bacillus spp., Aspergillus carbonarius, Aspergillus japonicus) [32]. Abiotic factors, such as ultrasound (US)
treatment, LED illumination, UV irradiation, macronutrient and fungicide application, variety,
climatic conditions in the growing areas, vineyard health, vineyard practices, compound-protective
winemaking techniques (such as UV-C irradiation), wine ageing method, terroir effect and harvest
time, cause significant variations in resveratrol content in grapevine components, products and by-
products worldwide. These factors contribute to synthesising, stimulating, and accumulating
resveratrol in grapevine tissues (Table 1).

The study by [40] demonstrates that water stress regulates resveratrol synthesis through the
enzyme activities and gene expression of PAL (phenylalanine ammonia-lyase-lyase) and STS
(stilbene synthase) [60] shows that genotype could have a profound impact on the antioxidant
properties of wine and phenolic composition. The study by [61] examined the influence of abiotic
factors on resveratrol accumulation. It indicated that the levels of this compound may vary
depending on the growing season, variety, and growing region.
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Abiotic factors References
Variety [33, 34, 35]
Climatic conditions in the growing areas [25, 36, 37, 38, 39,40]
Grapevine health [41]
Vineyard management [42, 43]
Winemaking techniques [37, 44, 45, 46]
Wine ageing method [12, 45, 47, 48]
Terroir effect [49, 50, 51, 52, 53]
Harvest time [11, 54]
Treatment with ultrasound (US), light emitting diode (LED), [55, 56, 57, 58]
ultraviolet (UV) irradiation or macronutrients and fungicides
Storage conditions [8, 59]

The terroir effect is stronger than the variety of resveratrol-inducing capacity after ultraviolet-
C (UV-C) treatment [49]. Studies show that V. vinifera varieties contain higher amounts of trans-
resveratrol than V. labrusca hybrids, and wine grapes have higher concentrations than table grapes
[6]. Winemaking technologies in the pre-fermentation, fermentation, and post-fermentation stages
may influence the concentration of resveratrol [45]. However, the analysis of [47] revealed that the
type and size of oak barrels, including barrels, did not significantly affect the trans-resveratrol content
in wine. Concerning the grapevine ropes, it has been observed that during long-term storage, the
ropes accumulate bioactive compounds under the influence of temperature [8] or UV-B and UV-C
radiation [52]. Thus, the cords resulting from viticultural activities can be a valuable source of
phenolic compounds (especially trans-resveratrol), minerals, carbohydrates, and proteins. [6]
developed a molecular network for post-harvest UV-C treated grapes showing accumulation of
resveratrol, with applicability for fruit storage. [62] reported an increase in trans-resveratrol in UV-
exposed grapes ranging from 1.5 to 200 compared to untreated samples. Grapevine strings may thus
be an accessible source of antioxidants and dietary supplements [63, 59]. Detail the effects of
environmental and storage conditions (temperature, light) on polyphenolic compounds in strings,
showing that at 40 °C in the dark, 70% of these compounds are degraded, with trans-resveratrol
decreasing by 23% after three months. Resveratrol is also found in various grapevine products and
by-products, such as wine, grape juice, and lees resulting from the winemaking process. Different
processing and storage conditions significantly influence the concentration of resveratrol and other
bioactive compounds. In this context, innovative methods, such as the ozonisation of grapes, have
increased endogenous resveratrol content in wine products and grape juice [64]. Wine lees, a
microbial biomass, contains ethanol, organic acids (such as tartaric acid), phenolic compounds (29.8
mg/g dry weight), and anthocyanins (6-11.7 mg/g), along with inorganic materials [65]. It plays an
essential role in interacting with polyphenols in wine and influencing its sensory characteristics.
Grapevine components, products, and by-products vary in resveratrol content depending on various
factors, with essential applications in industry and therapy recognised for its cardioprotective,
anticarcinogenic, and antioxidant effects [40].

2.3 Biological Properties

With technological advances, there is interest in replacing non-steroidal anti-inflammatory
drugs and corticosteroids with natural, less toxic alternatives with high therapeutic potential; one
product with potential in this regard is resveratrol. Numerous clinical studies (in vitro, in vivo) suggest
that resveratrol may induce anti-ageing health benefits, including anticarcinogenic, antidiabetic, anti-
inflammatory, antioxidant, phytoestrogen, and cardioprotective, antiviral, and neuroprotective
properties [66]. For example, administration of resveratrol appears to improve the metabolic profile
in obese and insulin-resistant patients [67]. A study conducted by [68] on 25 obese patients (BMI > 30
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kg/m2, age range 30-60 years) divided into a placebo group and a resveratrol-treated group (250
mg/day) showed that after 3 months, both groups showed a decrease in BMI and waist circumference.
However, only the resveratrol group showed increased HDL, reduced total cholesterol, urea,
creatinine, albumin, and low-density lipoprotein (VLDL). Also, [69] demonstrated the protective
effect of low-dose trans-resveratrol on retinal ganglion cell degeneration in diabetic mice, reducing
retinal damage and inhibiting cell apoptosis. [70] explains the positive effects of resveratrol in type 2
diabetes and on long bone strength in Wistar rats. [71] shows that a resveratrol-enriched bread diet
reduced polydipsia and weight loss in rats with type II diabetes. In humans, resveratrol is promising
as a prophylactic and therapeutic supplement to inhibit tumorigenesis and treatment resistance in
breast cancer. It also has a role in bone tissue regeneration [72]. Studies conducted by [73, 74] also
suggest the potential of resveratrol as a phytoestrogen and its beneficial impact on reproductive
health and pregnancy complications, paving the way for future research. Resveratrol intervenes in
key inflammatory pathways, such as nuclear factor-kappa B (NF-kB) and mitogen-activated protein
kinase kinases (MAPK), inhibiting the production of inflammatory cytokines and chemokines. In
addition, it has been found to influence some cellular processes (cell cycle progression and
immunological responses) [75]. Resveratrol is a strong candidate for developing functional products
and pharmaceuticals to prevent and treat certain chronic diseases [76]. Clinical trials are currently
focused on increasing resveratrol's bioavailability and maintaining resveratrol for a more extended
period in the metabolic system.

3. Sources of Resveratrol from the Grapevine

Grapevine is among the most essential sources of polyphenolic compounds. More than 60
stilbenoids can be found in this species as monomers, such as trans-resveratrol or piceatannol, and
oligomers, usually in their trans configuration [77]. Resveratrol, a phytoalexin with a significant
active character [78], is present in smaller or larger amounts in all constituent parts of the grapevine:
grapes (skin, pulp, seeds, stem), shoots, leaves, roots, products obtained from the valorisation of
grapes (wine, raisins, powders, juice) as well as in by-products (grape pomace, wine lees, ropes),
hence the importance of the numerous types of research that have appeared (Figure 5).

whole grape

grapevine roots

leaves grapevine shoots

Figure 5 Grapevine components, products, and by-products

3.1. Sources of Resveratrol in Grapes and other Grapevine Components

The grape is one of the most researched grapevine constituents regarding resveratrol content.
Research has investigated the presence of resveratrol both in the whole grape and in its components
(skin, seeds, pulp, and raisins) (Table 2).
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Table 2. Sources of resveratrol in grapes and other grapevine components

Fractions Content in resveratrol Method of References
analysis
whole 3.2 ppm HPLC-MS [55]
grape 3.06a+0.51 mg/kg HPLC-ESI- (78]
MS/MS
4.86 ppm-resveratrol hexoxide; 3.66 ppm-RSV; 4.96- UHPLC-LTQ- [79]
ppm RSV tetramer; 4.57-resveratrol dimer; 4.77-ppm MS
RSV trimer
0.2-9.1 mg/L (PDA) UPLC -PDA-FL [80]
0.04-9.1 mg/L (FL)
111.0 mg/kg DM UHPLC- [81]
MS/MS
119 ug g-1 FW HPLC [7]
de la 11.86 mg/100 g up to 101.89 mg/100 g depending HPLC-UV [82]
on varieties
skin 50-100 ug/g HPLC [83]
49.1 mgRSV/gDS HPLC [84]
48.99 + 2.69 mg/kg HPLC-DAD- [85]
ESI-MS#
0.967 pug mL! (t-RSV) by QuEChERS [86]
0.183 pg mL1 (t-RSV) method
coupled with
an HPLC-PDA-
MS
57.7 mg/kg DM UHPLC/ MS [81]
9,152 mg/L to 11,083 mg/L (trans-resveratrol HPLC [25]
depending on variety and period); from 7,119 mg/L to
8,071 mg/L (cis-resveratrol depending on variety and
period)
21.7 pg/mL HPLC [87]
1.17 to 12.96ug g-1 HPLC [88]
0.75-8.25mg/kg HPLC [89]
11.02 pg/mL HPLC-MS [90]
seed 8.3 mgRSV/gDS HPLC [84]
3.75 £ 0.08a mg/100 g dw (Isabel Variety) HPLC [91]
1.11 £ 0.02c mg/100 g dw (Sangiovese Variety)
1.42 + 0.07b mg/100 g dw (Negro Amaro Variety)
2.8 mg/kg DM UHPLC- [81]
orbitrap MS*
0.31-5.7mg/kg HPLC [89]
from 3.60 mg/100 g to 37.50 mg/100 g, depending on HPLC-UV [82]
the variety
92,312.43 + 2404.19 (Con3) HPLC [30]
4.97 mg Kg' FW HPLC [92]
pulp 4,50 mg/100 g HPLC-UV [82]
stem 0.9 mgRSV/ gDS HPLC [84]
5-0.078 mg/L HPLC/LC-MS- [93]
MS
122 +16 ug/g DM HPLC-DAD [94]
3700 mg/kg of dry weight HPLC [95]

reprints202412.0646.v1
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leaf 180 pg/ul HPLC-MS [96]
0.306 + 0.009 ug/mg HPLC [97]
0.01- 0.25mg/kg HPLC [89]
grapevine 27.4 £ 0.3 mg/g HPLC- [98]
shoots quadrupole
time-of-flight
(QTOF)—mass
spectrometry
(MS)
90,74 ug g-1DW TLC and HPLC [99]

DS- dry sample; DM- dry matter; DW- dry weight; PDA- Photodiode array detector; FL- Fluorescence; FW- fresh
weight; RSV-resveratrol; HPLC-High-Performance Liquid Chromatography; HPLC-DAD- High-Performance
Liquid Chromatography-diode array detection; HPLC-MS- HPLC-mass spectrometry; HPLC-ESI-MS/MS-High-
Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry/Mass Spectrometry;
HPLC/LC-MS-MS- High-Performance Liquid Chromatography/ Liquid Chromatography - Mass Spectrometry-
Mass Spectrometry; HPLC-UV- High-Performance Liquid Chromatography-Ultraviolet; UPLC-Ultra-
Performance Liquid Chromatography; UHPLC-orbitrap MS*-  Ultra-Hight-Performance  Liquid
Chromatography-orbitrap-Mass Spectrometry*; UPLC-PDA-FL-Ultra-Performance Liquid Chromatography-
Photodiode array detector-Fluorescence; UHPLC-LTQ-MS-ultra-high performance liquid chromatography-
Orbitrap XL-mass spectrometry; TLC- thin-layer chromatography.

Large-scale targeted metabolomic analysis showed that 82 phenolic compounds, including
resveratrol, were differentially accumulated in grape seeds from melatonin-treated berries [30]. The
concentration of resveratrol in grapes can occur by using purification procedures that lead to an
increase in (E)-resveratrol purity from 29% to 78% (34% recovery shown [95]. Ten main compounds
were identified in grape skin extracts, which contained many polyphenols, including trans-
resveratrol [87]. Resveratrol was detected in both pulp and seeds, with seeds being richer in phenolic
substances than pulp [82]; [100]. The highest amount of resveratrol is located in the skin of grapes,
where the compound acts as a natural defence mechanism against stress factors such as UV radiation
or fungal infections. In addition to skins, seeds, and raisins, although essential sources of other
polyphenols contain lower amounts of resveratrol. However, they play a vital role in research on the
full utilisation of grapes and by-products of winemaking (Table 2). Wines, especially red wines, also
contain varying amounts of stilbenes, which are influenced by multiple factors: grape type, climatic
conditions, and winemaking technology [14]. It has recently been shown that the applicability of
resveratrol from plant extracts (such as those from grapevine leaves) in nutraceuticals can be
increased by converting it into nanofibers. Furthermore, the use of resveratrol lacks in vivo efficacy
due to its low solubility and stability, which limits its bioavailability. [101] investigates this issue and
shows that improved bioaccessibility was achieved using nanofibers with resveratrol in encapsulated
form; the controlled release profile of resveratrol under simulated in vitro gastrointestinal conditions
increased up to 67.6% whereas native resveratrol was only about 48.1%. Recent studies also attest to
the presence of resveratrol in grapevine roots (Table 2).

Each grapevine component contributes differently to the total content of resveratrol and other
bioactive compounds, but with different concentrations depending on the variety, cultivation
methods, and environmental conditions.

3.2 Sources of Resveratrol in Products and By-Products

Resveratrol accumulation in grape skins, juice, and wine is induced by external stimuli:
microbial infection, ultrasound (US) treatment, light-emitting diode (LED), ultraviolet (UV)
irradiation, elicitors or signalling compounds, macronutrients and fungicides [55]. Research on grape
products has focused mainly on wine, one of the most essential and studied products in the wine
industry. Wine, especially red wine, is recognised not only for its cultural and economic value but
also for its impact on health due to its content of bioactive compounds, including resveratrol.
Although the concentration of resveratrol in wine is much lower than that of other polyphenols, it
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has received much attention for its biological properties and potential therapeutic effects [102],
followed by grape skin powder (Table 3). Grape skin powder is rich in phytochemicals, including
anthocyanins, flavonols, and hydroxycinnamic acids. The phytochemical analysis of grape skinskin
powder suggests that it contains several catechins, anthocyanins, polyphenols, and flavonols and
may, therefore, represent a natural combination of resveratrol with other valuable phytonutrients.
Drinks derived from grapes, such as red grape juice, have a complex array of phenolic compounds,
including resveratrol and quercetin, anthocyanins, known for their antioxidant effect, prevention of
oxidative reactions, and free radical formation, anti-inflammatory and antiproliferative effects [103].
Studies on raisins conducted by [104] show the presence of polyphenols, phenolic acids (caftaric
acid and coumaric acid), and tannins (flavonols, quercetin, and kaempferol) with implications for
consumer health (may reduce postprandial insulin response, reduce sugar absorption (glycemic
index), affect specific oxidative biomarkers and promote satiety via leptin and ghrelin. Raisins
introduced into the regular diet may improve heart disease. In this regard, a study undertaken by
[105] shows their protective role (biochemical and histopathologic) on cardiac muscle in rats fed a
high-cholesterol diet (HCD). Administration of raisins and CDH significantly reduced cholesterol,
triglycerides, low-density lipoprotein, blood glucose, and insulin while increasing high-density
lipoprotein levels compared to rats fed CDH alone. Results on glycemia and cardiovascular risk
factors by adding raisin snacks to the diet compared to conventional snacks are also found in the
study conducted by [106] on human subjects (females and males) over 12 weeks, resulting in a
significant decrease in glycated haemoglobin levels as well as a reduction in systolic blood pressure
(SBP). By-products of the wine industry serve as a potential economic interest, as they are sources of
significant natural bioactive compounds that may exhibit biological properties related to health
improvement and maintenance [41]. Thus, scientific interest is shown in the presence of resveratrol
in grape pomace, annual and multiannual cords, and wine lees (Table 3). The total amount of grape
pomace from winemaking generated worldwide is millions of tons per year, which may make it
difficult to manage the waste from an environmental and economic point of view [107]. However,
grape pomace, which is made up of seeds and skin and stalk residues left after pressing, representing
20-25% of the weight of the grapes [108], has a high polyphenol content, increasing the interest in
research on these by-products for the food or pharmaceutical industry.

Table 3. Sources of resveratrol from grapevine products and by-products.

Fractions Content in resveratrol Method of References
identification/
determination
wine 6,9 to 12,6 mg/dm? HPLC [5]
64 pg/mL HPLC [109]
juice Dela 4,41a 7,0 mg in grape juice / HPLC [5]

dm?; from 12,4 1a 21,3 mg / dm? in
concentrated juice

0,091a 0,23 mg/100 g HPLC [110]
grape skin 17.87 pg/mL HPLC-MS [90]
powder 0.25 and 0.05 mg/g on a wet basis HPLC [111]
which
0.0313 wt% (Stir) [87]
0.0044 wt% (Sox) LC-MS/MS
0.0178 wt% (LC-MS/MS)

raisins 0.40c +0.04 mg/kg HPLC-ESI-MS/MS [78]
Grapes UPLC-VION-IMS- [112]

product 8993 + 391° QTOF-the physical

pretreatment using a
16,544 + 4402 motorised rotating

drum (PT)
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8798 + 137 -the drying agent
treatment group
(DT)
-In the control group
(CK), the grape
samples received no
pretreatment
grape 16.1 mgRSV/ gDS HPLC [84]
pomace 0.042-0.653 mg/L HPLC-DAD/MS [113]
0.09 + 0.04 = mg/g DW HPLC/MS [114]
0.7-21.7 mg/kg DM UHPLC- MS/MS [81]
26.3+0.5 pug/g DW HPLC [115]
2.38£0.2 mg/L HPLC [116]
0.80 mg/kg DM UPLC [117]
grape 470 MV (resveratrol dimer) LC-MS [118]
canes 3450 mg.kg-1 dw (Pinot Noir) HPLC-UV [119]
5361 mg.kg-1 dw (Gewurztraminer)
5298.1 mg kg DW HPLC [52]
By- 419.01-425.60 a ug/g d.w. (Pinot HPLC [63]
products Gris)
282.19 +4.14 b pg/g d.w.
(Sauvignon Blanc)
425.60 + 5.98 a (Cabernet Sauvignon)
0.55-3.96 mg/g DW UPLC (HPLC-ESI- [120]
MS)
69.1 to 436.5 ug g DW- HPLC-DAD [121]
3.7+ 0.2 g/100g HPLC-DAD [122]
9.50 mg-L1 HPLC [123]
wine lees 104 ppm (Red wine lees) HPLC-DAD [124]
30 ppm (White wine lees)
0.04 £ 0.00 mg/g d.m. (Merlot) HPLC-MS/MS [125]
0.11 + 0.01 mg/g d.m. (Vranac)

2.95+0.01 pg/g (RSV) UHPLC [126]

4.60 = 0.02 (t-RSV)
DS-dry sample; DM-dry matter; DW- dry weight; PDA-Photodiode array detector; FL-Fluorescence; RSV-
resveratrol; t-RSV-trans-resveratrol; HPLC-High Performance Liquid Chromatography; HPLC-DAD- High-
Performance Liquid Chromatography -diode array detection; HPLC-MS- High-Performance Liquid

Chromatography-mass spectrometry; HPLC-ESI-MS/MS- High-Performance Liquid Chromatography -
Electrospray Ionization Mass Spectrometry/Mass Spectrometry; HPLC-UV- High-Performance Liquid
Chromatography -Ultraviolet; LC-DAD-FLD - Liquid Chromatography- diode array- forming limit diagram;
UPLC-Ultra-Performance Liquid Chromatography; UPLC-VION-IMS-QTOF-ultra-performance liquid
chromatography—quadrupole-time of flight-mass spectrometry; TLC- thin-layer chromatography.

In addition to polyphenols, grape pomace has other essential substances such as simple sugars,
alcohols, tannins, pigments, high levels of alcohol and tartaric acid, and other economically
significant compounds. Grape pomace is among the industrial by-products with potential bioactive
and antibacterial properties [127] that are being investigated to identify simple and affordable
solutions/alternatives that can be used in the food industry. It has been found that the annual and
multiannual grapevine prunings obtained from the yearly and multiannual grapevine prunings
contain appreciable quantities of several substances such as phenolic compounds, carbohydrates,
minerals, pigments (chlorophyll and carotenoids), etc. Studies have been carried out in this respect
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with the aim of sustainable utilisation of vineyard waste by applying various extraction, purification,
and determination methods (Table 3). Another by-product of compositional importance for the wine
industry is the wine lees obtained as a by-product of the vinification process. The wine lees obtained
after primary fermentation contain proteins, lipids, anthocyanins, and beta-glucans and can be used
in the food industry due to the presence of wine lees of the genus Saccharomyces cerevisiae [128]. In the
food industry context, polyphenolic compounds in wine by-products can achieve lipid oxidative
protection or act as antimicrobial agents against spoilage bacteria [81].

4. Conclusions

Resveratrol is found in all grapevine parts, products, and by-products in different concentrations
depending on biotic and abiotic factors, increasing the importance of cultivating certain varieties of
Vitis vinifera L.

The current climate change is impacting the wine-growing sector; further research into the
identification and synthesis of resveratrol remains topical, relying on innovative, quality-oriented
research techniques that can allow better selection of grapes with superior phenolic characteristics
necessary to determine the direction of use.

Resveratrol in some grapevine components, products, and by-products is successfully used in
various industrial applications (pharmaceuticals or cosmetics). In the future, it could be part of
elements used to increase the functionality of some food products, such as nutraceuticals in medicine,
soil, and plant bio-fertilizers, animal feed, bio-energy or biofuel. So, some of the ideas and practices
developed and implemented in current research can contribute to industrial development and, at the
same time, to quality of life.
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