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Abstract: The public security patrol path planning plays an important role in public security work, 
however, existing public security patrol path planning has varying degrees of shortcomings. To 
address these shortcomings, this paper proposes a public security patrol path planning 
recommendation method based on an improved wolf-pack optimization algorithm (S3PRM-DAF-
BRS-CWOA). Firstly, an optimization objective function regarding the public security patrol path 
planning(S3P-Function) was abstracted based on the actual situation; Secondly, this paper proposed 
an improved wolf-pack optimization algorithm named DAF-BRS-CWOA using Dynamic-
Adjustment-Factor(DAF) and Balanced-Raid-Strategy(BRS), and DAF devoted to adjust the overall 
wolf-pack running strategy by dynamically adjusting the number of airdropped wolves during the 
stage of Summon-Raid while BRS with symmetric property was to improve both the algorithm's 
global exploration as well as the local development capabilities by increasing the number of 
checking locations, that means not only checking the reverse position of the current wolf, but also 
the positions generated according to certain rules between the reverse position of the current wolf 
and the current optimal wolf during the stage of Summon-Raid; Finally, DAF-BRS-CWOA was 
adopted to optimize S3P-Function, forming a public security patrol path planning recommendation 
method based on DAF-BRS-CWOA (S3PRM-DAF-BRS-CWOA). Comparative and numerical 
experiments with four similar swarm intelligence optimization algorithms (PSO, GA, WDX-WPOA 
and DAF-BRS-CWOA) were conducted on 20 public datasets as well as the proposed S3P-Function, 
and the experimental results demonstrated that S3PRM-DAF-BRS-CWOA has superior 
performance as same as DAF-BRS-CWOA. 

Keywords: public security patrol; path planning; swarm intelligence; wolf optimization 
 

1. Introduction 

With the rapid development of human civilization, the public safety situation is also facing new 
and severe challenges. To create a good public safety environment, the public security patrol path 
planning plays an important role, which considers factors such as time, road conditions and distance, 
aiming to provide the shortest security patrol route for police to achieve higher duty efficiency. 

Many scholars have reflected on the development of the policing model of public security patrols 
and the optimization of patrol routes, such as: Wang et al. designed a solution for collaborative 
execution of area coverage tasks by multiple unmanned ships for large-scale sea patrol tasks based 
on the multi unmanned ship area coverage traversal algorithm 1;Xiang et al. designed an improved 
Partheno-genetic Algorithm (IPGA) for quickly obtaining high-quality patrol task planning schemes 
2;Li used the Rural Postman Problem (RPP) to construct a graph theory model for traffic police patrol 
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path optimization based on the CE2 heuristic algorithm, effectively shortening the path length and 
saving costs 3;Both Zhang 4 and Kong et al 5 achieved path planning by improving ant colony 
algorithm and using distance discriminant analysis to select multiple parameter indicators; Jie et al. 
proposed a new multi-agent based reinforcement learning algorithm to plan the optimal patrol path 
under arbitrary conditions of multiple defenders and attackers 6;Liang adopted a combination of ant 
colony algorithm and genetic algorithm to improve the efficiency of sightseeing path planning in the 
intelligent navigation system of the park 7;Shi et al combined evolutionary algorithms with 
optimization experiments to establish a two-layer optimization model, and combines multi-agent 
genetic algorithms to solve multi-objective optimization scheduling problems in complex 
environments 8;Yan et al combined particle swarm optimization algorithm with predictive control, 
overcoming the disadvantage of traditional particle swarm optimization algorithm in generating 
infeasible paths during particle update process 9;Authors developed a two-layer optimization 
framework to solve the patrol police force allocation problem, and then used a new iterative Bender 
decomposition method to solve the potential optimization problem, thereby solving the spatial police 
patrol allocation problem with expected crime response time 10. Unfortunately, various algorithms 
have their own shortcomings. 

Over the past few decades, wolf-pack optimization algorithm has attracted widespread interest 
from researchers due to its high parallelism, good global convergence, and computational robustness, 
making it particularly suitable for solving high-dimensional, multi-modal complex functions 11;For 
instance, Tang et al. developed an automatic detection scheme for wolf pack hunting behavior in 
videos 12, which greatly improves the accuracy of motion state recognition, reaching up to 88%;Duan 
et al. proposed a target allocation method based on wolf behavior mechanism 13, which effectively 
solves the problem of collaborative target allocation among drone groups; In paper 14, an entropy-
based grey wolf optimizer (IEGWO) algorithm was proposed to solve global optimization problems; 
Chen et al. developed a Hybrid Grey Wolf Optimizer (HGWO) that combines Halton sequences and 
multiple strategies, which can be used to solve practical engineering problems 15; Authors modelled 
the behavioral characteristics of wolf packs in natural environments and used it to solve the dynamic 
task allocation problem of drone swarms in complex scenarios 16; She et al. improved the wolf-pack 
optimization algorithm to enhance the accuracy and efficiency of solving highly nonlinear black box 
function structural reliability problems 17;In paper 18, researchers proposed a submarine cable 
positioning algorithm based on Improved Grey Wolf Optimization (IGWO), which achieves accuracy 
and effectiveness in submarine cable positioning. 

Therefore, the effective utilization of the wolf-pack optimization algorithm mentioned above 
inspires us to intend to adopt an improved wolf-pack optimization algorithm to solve the 
optimization problem of public security patrol path planning, then this paper proposes a public 
security patrol path planning recommendation method based on an improved wolf-pack 
optimization algorithm (S3PRM-DAF-BRS-CWOA). Section 2 provides the related existing works 
about this new proposed method. Section 3 elaborates on the improvement and design of the new 
proposed method. Section 4 shows performance verification experiment and analysis of experimental 
results. Section 5 gives the conclusion of this article, summarizing its contributions, existing 
limitations, and future directions for improvement. 

2. Related Works  

2.1. Swarm Intelligence Optimization 

In nature, a variety of creatures with limited individual ability show amazing abilities through 
constitutions and inter -individual information exchange, such as: ant colony, bee colony, wolves, 
and so on. The swarm intelligent optimization algorithm is designed by simulating the characteristics 
of biological group behaviors in nature. It uses simple rules and interactions between many bodies 
to optimize the optimization problem of complex functions. The origin of the swarm intelligent 
optimization algorithm dates back to the 1980s. At that time, some scholars began to study the 
calculation model of simulating the behavior of natural biological groups. In 1986, Garnier and others 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2024 doi:10.20944/preprints202412.0594.v1

https://doi.org/10.20944/preprints202412.0594.v1


 3 

 

proposed an Ant Random Walking Model 19, which can be regarded as an early form of the swarm 
intelligent optimization algorithm. The swarm intelligent optimization algorithm provides new ways 
and shows excellent performance when solving many practical problems.  

In recent years, in order to solve the limitations of traditional swarm intelligent algorithms on 
certain problems, scholars have proposed many new types of swarm intelligent optimization 
algorithms. These new algorithms have shown stronger applicability and experimental effects in 
solving complex practical problems, such as: Battle algorithm proposed by British scholar yang 20. 
Essence These new algorithms can more effectively search for optimal solutions, strong adaptability, 
and can adapt to various types of optimization problems. However, there are still many 
shortcomings. For example, the adjustment of bat algorithm in certain parameters may affect the 
performance of the algorithm. There are few cases in practical applications, and more empirical 
research is required to verify its effects.  

2.2. Wolf-Pack Optimization Algorithm 

Among the new algorithms that have emerged in recent years, the wolf-pack optimization 
algorithm is a typical representative. Wolf-Pack Optimizaton Algorithm (WPOA) was first proposed 
by YANG et al. 21 by imitating the habit of imitating the group of raw animals, the intelligence shown 
in the simulation of the wolf-pack foraging and hunting in nature, mainly The three intelligent lines 
of the wolf hunting behavior, calling-galloping behavior and siege are abstracted to find the optimal 
solution to the problem. The algorithm process mainly includes parameter initialization, migration 
mechanism, summon-raid mechanism, siege mechanism, and regeneration mechanism. 

Initialization: The algorithm first needs to set a series of parameters such as the size of the 
wolves, the location of each wolf, the step length, and the number of iterations. It is an important 
basis for the algorithm. Appropriate parameter settings can help algorithms to converge to optimal 
solutions faster, while maintaining sufficient search diversity to avoid local optimal. In the process, 
the wolf in the wolf-pack is assigned to the function of the function. Assuming that the number of 
wolves is n, and the dimension of the interpretation of the space is D, then the position of each wolf 
is as required as a formula (1). 𝑥௜ௗ = 𝑟𝑎𝑛𝑔௠௜௡ + 𝑟𝑎𝑛𝑑(𝑁, 1) ∗ (𝑟𝑎𝑛𝑔௠௔௫ − 𝑟𝑎𝑛𝑔௠௜௡) (1)

Migration-Mechanism: The process of searching the prey during the hunting of the wolf-pack 
in the natural environment, and searching the target separately in a certain field of a certain field of 
the wolf-pack members. In this process, each wolf searches the target in its nearby space according 
to the rules. The best Q -Po Wolf except the wolf in the solution space is regarded as the exploring 
wolf. The exploring wolf is centered on its own position, and the long -term searches are used as a 
search step to explore the prey around them. Degree value. If the adaptation value of the current wolf 
is greater than the point of adaptation of the position of the wolf, it indicates that the prey is relatively 
close to the wolf I and may capture the prey. The hunting process, that is, the current exploring wolf 
moves in the direction of H hunting and calculates the new location and the new adaptation value. 
For example, the formula (2) indicates that after moving the direction of P (P = 1,2, ..., H, H ≤D), the 
current wolf i is currently a new position in the D -dimensional space. 𝑥௜ௗ௣ = 𝑥௜ௗ + 𝑠𝑖𝑛 ቀ2𝜋 ∗ ௣௛ቁ ∗ 𝑠𝑡𝑒𝑝௔ௗ  (2)

Summon-Raid-Mechanism: After discovering the prey, the simulation wolf-pack will summon 
other wolves to quickly stride and participate in hunting by calling them by calling or other ways to 
increase the power of hunting. According to the formula (3), it is updated on the road of raid. If the 
new position obtained, the adaptation value is better than the current position, the wolf will move to 
the new position, otherwise it will stay in the current position. Among them, Zid represented the 
position of the No. D-dimensional renewal of the No. i wolf in the wolf-pack; Xid is the current 
position of the D-dimension of the I wolf; RAND is a random number evenly distributed in the 
interval [-1,1]; Stepb is the step-size in the process of Summon-Raid; Xld is the position of the leader 
wolf in d-th dimension.  
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𝑧௜ௗ  =  𝑥௜ௗ  +  𝑅𝑎𝑛𝑑 ×  𝑠𝑡𝑒𝑝𝑏 × (𝑥௟ௗ  − 𝑥௜ௗ) (3)

Siege-mechanism: During the capture process, the wolf-pack appeared around the leader wolf 
to adopt a small step to siege prey. That is, first generate a random number of RM in [0,1]. If RM is 
smaller than θ (θ is a pre -set threshold), then the I wolf does not move. The wolf surrounded the 
prey with the leader wolf. The updated wolf position xit+1 is shown in the formula (4), Stepc means the 
siege length; Xl is the position of the head wolf. 𝑋௜௧ାଵ =  ൜ 𝑋௜௧                          𝑟௠ < θ𝑋௟ + 𝑅𝑎𝑛𝑑 × 𝑠𝑡𝑒𝑝𝑐      𝑟௠ > θ      (4)

Regeneration-Mechanism: Simulation of the natural evolution of wolves is a key link in the 
iteration of the algorithm. Reserve strong performance in the wolves, eliminate wolves with poor 
performance, and then randomly supplement a certain number of artificial wolves. Update the 
population of the wolf by evaluating the adaptation value in the population, and the suspension 
conditions during iteration can be set. It ensures that the wolf clusters can adapt to evolution and 
eventually converge to the optimal solution, which improves the efficiency and effect of algorithms 
when solving complex optimization problems. 

2.3. Data-Sets 

In order to test the optimization ability of the DAF-BRS-CWOA proposed in this article, test 
comparison experiments with other optimization algorithms, and select some common functions and 
data sets of the test optimization algorithm as shown in Table 1 for testing. Select a variety of types 
of public test functions such as public test functions. Some test functions have the characteristics of 
multi -peak value, strong interference, high complexity, etc., and can fully test the global nature of 
the model. Some test functions are smooth, continuous, convex, and convex the characteristics such 
as the Single Peak are like a bowl shape; some test functions are very smooth and the change is 
relatively smooth, and test function formulas are shown in Table 1. 
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Table 1. Datasets for performance validation. 

Order Function Expression Dimension Range Optimum 

1 Ackley F1=-20 𝑒𝑥𝑝 ⎝⎛−0.2ඩ12 ෍ 𝑥௜ଶଶ
௜ୀଵ ⎠⎞ − −exp (1𝑑 ෍  ௗ௜ୀଵ cos (2𝜋𝑥௜)) + 20 + exp (1) 2 [-32.768,32.768] Min f=0 

2 Bukin6 F2=100ට|𝑥ଶ − 0.01𝑥ଵଶ| + 0.01|𝑥ଵ + 10| 2 [-15,3] Min f=0 

3 Drop-Wave 𝐹3 = − 1 + cos ቀ12ඥ𝑥ଵଶ + 𝑥ଶଶቁ0.5(𝑥ଵଶ + 𝑥ଶଶ) + 2  2 [-5.12,5.12] Min f=-1 

4 Eggholder F5=-(𝑥ଶ + 47) 𝑠𝑖𝑛 ቆටቚ𝑥ଶ + 𝑥ଵ2 + 47ቚቇ − 𝑥ଵ 𝑠𝑖𝑛 ቀඥ|𝑥ଵ − (𝑥ଶ + 47)|ቁ 2 [-512,512] Min f=-959.6407 

5 Griewank F7= ෍ 𝑥௜ଶ4000ଶ
௜ୀଵ − ෑ 𝑐𝑜𝑠ଶ

௜ୀଵ ൬𝑥௜√𝑖൰ + 1 2 [-600,600] Min f=0 

6 Levy 
𝐹6 == sinଶ (𝜋𝑤ଵ) + ෍  ଶିଵ

௜ୀଵ (𝑤௜ − 1)ଶ[1 + 10 sinଶ(𝜋𝑤௜ + 1)] + (𝑤ଶ− 1)ଶ[1 + sinଶ(2𝜋𝑤ଶ)], where 𝑤௜ = 1 + 𝑥௜ − 14 , for all 𝑖 = 1,2 

2 [-10,10] Min f=0 

7 Levy13 𝐹11 = sinଶ (3𝜋𝑥ଵ) + (𝑥ଵ − 1)ଶ[1 + sinଶ (3𝜋𝑥ଶ)] + (𝑥ଶ − 1)ଶ[1 + sinଶ (2𝜋𝑥ଶ)] 2 [-10,10] Min f=0 

8 Rastrigin F12=10𝑑 + ෍[𝑥௜ଶ − 10 𝑐𝑜𝑠(2𝜋𝑥௜)]ଶ
௜ୀଵ  2 [-5.12,5.12] Min f=0 

9 Schaffer2 𝐹9 = 0.5 + sinଶ (𝑥ଵଶ − 𝑥ଶଶ) − 0.5[1 + 0.001(𝑥ଵଶ + 𝑥ଶଶ)]ଶ 2 [-100,100] Min f=0 

10 Bohachevsky1 F10=𝐱ଵଶ + 2𝐱ଶଶ − 0. 3∗cos(3𝜋𝐱ଵ) − 0. 4∗cos(4𝜋𝐱ଶ) + 0.7 2 [-100,100] Min f=0 

11 Perm0-d-β F11= ෍ ൮෍(𝑗 + 𝛽)ଶ
௝ୀଵ ൬𝑥௝௜ − 1𝑗௜൰൲ଶଶ

௜ୀଵ  2 [-2,2] Min f=0 

12 Rotated Hyper-
Ellipsoid 

F12= ෍ ෍ 𝑥௝ଶ௜
௝ୀଵ

ଶ
௜ୀଵ  2 [-65.536,65.536] Min f=0 
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13 Sum Squares F13= ෍ 𝑖ଶ
௜ୀଵ 𝑥௜ଶ 2 [-10,10] Min f=0 

14 Trid F14= ෍(𝑥௜ − 1)ଶଶ
௜ୀଵ − ෍ 𝑥௜ଶ

௜ୀଶ 𝑥௜ିଵ 2 [-4,4] Min f=2 

15 Booth F15=(𝑥ଵ + 2𝑥ଶ − 7)ଶ + (2𝑥ଵ + 𝑥ଶ − 5)ଶ 2 [-10,10] Min f=0 
16 Matyas F16=0.26(𝑥ଵଶ + 𝑥ଶଶ) − 0.48𝑥ଵ𝑥ଶ 2 [-10,10] Min f=0 

17 Zakharov F17= ෍ 𝑥௜ଶଶ
௜ୀଵ + ൭෍ 0ଶ

௜ୀଵ . 5𝑖𝑥௜൱ଶ + ൭෍ 0ଶ
௜ୀଵ . 5𝑖𝑥௜൱ସ

 2 [-5,10] Min f=0 

18 Easom F18= − cos(x1)∗cos(x2)∗exp[−(x1 − π)ଶ − (x2 − π)ଶ] 2 [-4,4] Min f=-1 
19 Eggcrate F19= 𝐱ଵଶ + 𝐱ଶଶ + 25∗(sinଶ 𝐱ଵ + sinଶ 𝐱ଶ) 2 [-π, π] Min f=0 
20 Bohachevsky3 F20=𝑥ଵଶ + 2𝑥ଶଶ − 0.3cos(3𝜋𝑥ଵ + 4𝜋𝑥ଶ) + 0.3 2 [-100,100] Min f=0 
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2.4. S3P-Function 

In the real social life, the task of public security patrols requires that the patrol paths of police 
officers must cover important nodes, and the number of important nodes is often large, so this results 
in multiple actual patrol paths with varying distances and disorganization, as shown in Figure 1(a). 
Fortunately, police officers often have rich patrol experience and have their own "optimal patrol path" 
based on this kind of experience, as shown in Figure 1(b). However, the "optimal patrol path" based 
on police officers' experience shown in Figure 1(b) is not truly optimal, especially in the case of a large 
number of important patrol nodes resulting to huge number of patrol path options, it is unlikely to 
find the globally optimal one due to limitations in human mental arithmetic ability, and Figure 1(c) 
gives the true global optimal patrol path compared to Figure 1(b). 

  
(a) (b) 

 
(c) 

Figure 1. (a) Randomly Arranged Public Security Patrol Path Planning; (b) Preliminary Sorting of 
Public Security Patrol Path Planning; (c) Global Optimal Public Security Patrol Path Planning. 

It is based on the above problem that this article abstracts a problem model serving the planning 
of public security patrol paths. Without loss of generality, assuming that the security patrol task is 
carried out in a plain area and ignoring the influence of altitude, that is, the Euclidean distance is 
used to calculate the distance between all key points; thereby, this paper constructs an objective 
function of public security patrol path planning (S3P-Function), the calculation formula is as 
Equation5.(This paper takes a 2000 km by 2000 km area and 30 security patrol locations generated 
randomly). 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒௧௢௧௔௟ = ට൫𝑥௣೙ − 𝑥௣భ൯ଶ + ൫𝑦௣೙ − 𝑦௣భ൯ଶ + ∑ ට൫𝑥௣೙ − 𝑥௣೙షభ൯ଶ + ൫𝑦௣೙ − 𝑦௣೙షభ൯ଶே௡ୀଶ   (5)
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Where, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒௧௢௧௔௟ means the whole distance of some a public security patrol path; pn means 
the n-th patrol point along some a security patrol path while p1 means the first one; xpn and ypn present 
the horizontal and vertical coordinates respectively; N means the total number of patrol points along 
some a security patrol path. 

Obviously, it is completely that different from classical test functions in 2.3 that the above 
description is a discrete problem. To solve this problem, this paper made a discrete algorithm based 
on the idea of WPOA to solve the discrete problem. 

3. Improvement and Design of the New Proposed Method 

Compared with the comparative algorithm in 22, the article titled " an adaptive distribution size 
(ADS) wolf-pack optimization algorithm using the strategy of jumping for raid (for short, WDX-
WPOA)" demonstrates significant advantages in optimization capabilities, including higher global 
search accuracy, stronger robustness, and faster convergence speed. However, WDX-WPOA also has 
certain shortcomings, such as significantly longer iteration times in some test function applications 
shown in 23; so this paper designed two following strategies to improve the optimization 
performance in response to this issue, and then the new proposed algorithm will be utilized to 
achieve a more efficient solution for the security patrol path planning problem. 

3.1. Dynamic-Adjustment-Factor 

During the raid process, in order to find the global optimal solution around the leader wolf, 
wolf-pack will be hoped to approach the leader wolf as soon as possible. However, the distance 
between wolves except the leader wolf should be precisely adjusted, that is, the distance should not 
be too small to avoid the wolf pack falling into local optimum, nor too large to prevent slow 
convergence. By setting reasonable distances, the efficiency of the optimization process can be 
improved while ensuring global search capability.  

According to existing methods, the number of airdropped wolves in the ASGS-CWOA and 
WDX_WPOA does not change during the process of Summon-Raid. Obviously, this approach is 
insufficient to accurately reflect the dynamic changes during the raid process and may lead to a 
decrease in optimization performance, and to overcome this deficiency, Dynamic-Adjustment-Factor 
(DAF) was proposed to dynamically adjust the number of airdropped wolves based on real-time 
changes during the process of Summon-Raid, thereby improving the overall performance of the 
algorithm. The specific dynamic adjustment mechanism is shown in Equation (6) following. 

⎩⎨
⎧ 𝑓𝑎𝑐𝑡𝑜𝑟 =  (𝑡/𝑇)/2 +  1/2𝑛𝑢𝑚௥௔௜ௗ  =  𝑓𝑙𝑜𝑜𝑟(𝑛𝑢𝑚𝑊 ∗ 𝑓𝑎𝑐𝑡𝑜𝑟)𝑛𝑒𝑤௥௔௜ௗି௪௢௟௙ି௜௡ௗ௘௫ =  𝑖𝑛𝑑𝑒𝑥௧௘௠(ଵ:௡௨௠ೝೌ೔೏)𝑜𝑙𝑑௥௔௜ௗି௪௢௟௙ି௜௡ௗ௘௫ =  𝑖𝑛𝑑𝑒𝑥_𝑡𝑒𝑚((𝑛𝑢𝑚௥௔௜ௗ + 1): 𝑛𝑢𝑚𝑊) (6)

Where, factor depends the number of wolves following the old strategy of Summon-Raid as in 
ASGS-CWOA and the number of other wolves following the new proposed strategy of Summon-
Raid ; t means the number of current iteration; T means the number of the maximum iteration; numraid 
means the number of wolves to be replaced with new wolves; floor means a function that returns the 
calculated result rounded down to ensure that numraid is an integer; numW means the number of wolf-
pack that is 50 in this paper; newraid_wolf_index means an index array that means the position of the wolf 
to be replaced with the new wolf while oldraid_wolf_index is the one in its original state; index_tem is an 
index array obtained by sorting the current fitness, from the worst fitness to the best fitness. 

From the Equation (5), it’s observed that the factor will vary between 0.5 and 1, and it will 
increase the number of newraid_wolf_index as the number of iterations increases, thereby allowing more 
wolves to participate in the raid process. This mechanism allows the algorithm to introduce fewer 
new wolves in the early stages to reduce computational complexity; In the later stage, the proportion 
of new wolves gradually increases to better explore the search space. 

From Figure 2, it was seen that the convergence of the wolf-pack during the siege phase as the 
number of iterations increases. Obviously, the curve in the Figure 2(c) is smoother than the others, 
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and the convergence speed of the wolf-pack is also faster. This indicates that introducing the DAF to 
dynamically adjust the number of airdropped wolves and wolves running according to the original 
strategy can not only improve the convergence speed of the wolf-pack and shorten the overall 
running time of the algorithm, but also not affect the algorithm's ability to globally find the optimal 
solution. In other words, as the number of iterations increases, the wolf-pack will get closer to the 
optimal solution.. 

  
(a) (b) 

 
(c) 

Figure 2. (a) the original raiding strategy in ASGS;(b) the old raiding strategy in WDX-WPOA;(c) the 
new adaptive raiding strategy in DAF-BRS-CWOA. 

3.2. Balanced-Raid-Strategy 

During the process of Summon-Raid, for every wolf, 2D locations generated by the coordinate 
arrangement combination of current location and the middle one between the current wolf and the 
best wolf are checked up as well as the reverse location of the current wolf regarding the best wolf, 
shown in Figure 3(a) about ASGS-CWOA. Accordingly, in WDX-WPOA, half of the wolf-pack 
follows the Summon-Raid strategy in ASGS-CWOA, while the other half is directly airdropped to the 
surrounding of current optimal wolf, which means that only 2(D-1) + 1 locations will be checked up per 
wolf on average and accelerates the gathering and siege rhythm of the wolf-pack, and accelerates the 
convergence speed of the algorithm in another word, shown in Figure 3(b).  
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(a) (b) 

 

(c) 

Figure 3. (a) about ASGS-CWOA; (b) WDX-WPOA; (c) New Proposed Algorithm. 

Furthermore, Balanced-Raid-Strategy (BRS) was proposed in the new proposed algorithm to 
improve the existing original strategy of Summon-Raid by not only examining the reverse location 
of the current wolf, but also the ones generated according to certain rules between the reverse position 
of the current wolf regarding the current optimal wolf for half of wolf-pack, and in this way the search 
volume are increased during each iteration, which increases the possibility of finding the global 
optimal solution while increases the computational complexity and time consumption of the 
algorithm, shown in Figure 3(c). 

⎩⎪⎨
⎪⎧ 𝑤𝑜𝑙𝑓௜ି௢௣௣௢௦௜௧௘ = 2 ∗ 𝑏𝑒𝑠𝑡𝑤𝑜𝑙𝑓 − 𝑝𝑜𝑝(𝑖, : )𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠௢௣௣௢௦௜௧௘  =  𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑆𝑢𝑚𝑚𝑜𝑛_𝑅𝑎𝑖𝑑_𝑀𝑒𝑠ℎ_𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑤𝑜𝑙𝑓௜ି௢௣௣௢௦௜௧௘, 𝑏𝑒𝑠𝑡𝑤𝑜𝑙𝑓)𝑓𝑡௢௣௣௢௦௜௧௘ି௟௢௖௔௧௜௢௡௦ = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛൫𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠௢௣௣௢௦௜௧௘൯[𝑓𝑡௢௣௣௢௦௜௧௘ି௟௢௖௔௧௜௢௡௦ି௕௘௦௧, 𝑁𝑂௢௣௣௢௦௜௧௘ି௟௢௖௔௧௜௢௡௦ି௕௘௦௧] = 𝑚𝑖𝑛(𝑓𝑡௢௣௣௢௦௜௧௘ି௟௢௖௔௧௜௢௡௦)𝑤𝑜𝑙𝑓௢௣௣௦௜௧௘ି௟௢௖௔௧௜௢௡௦ି௕௘௦௧ = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠௢௣௣௢௦௜௧௘(𝑁𝑂௢௣௣௢௦௜௧௘ି௟௢௖௔௧௜௢௡௦ି௕௘௦௧, : )  (7)

Where, wolfi-opposite means the opposite location of the current wolf while bestwolf means the 
current best wolf and pop(i,:) means the current wolf-ith; locationsopposite represents the locations 
between wolfi-opposite and bestwolf according to the Summon-Raid rules in WDX-WPOA; 
original_Summon_Raid_Mesh_Process is a function that returns some related locations determined by 
Summon-Raid rules in WDX-WPOA while FitnessFunction is another one that returns the fitness of 
the given wolves or locations; ftopposite-locations means the fitness regarding locationsopposite; ftopposite-locations-best 
means the best one of ftopposite-locations while NOopposite-locations-best is the serial number of ftopposite-locations-best in 
ftopposite-locations, and wolfopposite-locations-best is the best one of locationsopposite around wolfi-opposite. 

The Equation (7) gives the key rules regarding BRS during Summon-Raid process.  
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3.3. Steps Of DAF-BRS-CWOA 

On the basis of the strategy of dynamically increasing the number of airdrop wolves and 
increasing the number of examined locations, WCOA was improved and DAF-BRS-CWOA was 
proposed. Here are the steps on how to implement the new improved algorithm, as shown in Figure 
4(a). 

  
(a) (b) 

Figure 4. Flowchart about DAF-BRS-CWOA. 

All steps are consistent with WDX-WPOA except DAF and BRS are used in the Summon-Raid 
process, detailed in 3.1 and 3.2 respectively. At the same time, we made it as a discrete -type algorithm 
according to the idea of DAF-BRS-CWOA to solve the S3P-Function. The general process is as shown 
in Figure 4 (b). 

4. Performance Verification Experiment  

4.1. Experimental Designment 

In order to test the optimization capabilities of DAF-BRS-CWOA, the classic genetic algorithm 
(GA), particle swarm algorithm (PSO) and WDX-WPOA three optimization algorithms shown in 
Table 2 are used to perform experiments. And 20 test functions such as 6 multi -model methods and 
the distance test function of the patrol path, the theoretical optimal of order, function, expression, 
dimension, characteristics, scope, and each test function is given. The numerical experiment results 
on the 21st test function for the next test can be analyzed and studied for the next step. Details are 
shown in tables following. 

Table 2. Configuration of algorithms. 

Order Algorithm 
Name 

Configuration 

1 GA Crossover probability is 0.8, the mutation probability is 0.01, the max iteration
T=600. 

2 PSO Inertia weight is 0.5, the Cognitive coefficient is 1.5, the social coefficient is 1.5,
the max iteration T=600. 

3 WDX-
WPOA 

Initial value of search step size step_a0 =1.5; the initial max value of siege step
size step_cmax= 1e6 and the minimum value of siege step size step_cmin = 1e-40; 
the max iteration T=600; the amount of the wolf population N=50. 

4 
DAF-BRS-

CWOA 

Initial value of search step size step_a0 =1.5; the initial max value of siege step
size step_cmax= 1e6 and the minimum value of siege step size step_cmin = 1e-40; 
the max iteration T=600; the amount of the wolf population N=50. 
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All numerical experiments are implemented on a computer equipped with Windows 11 Home 
22H2 operating system, Intel(R) Core (TM) i7-12700H processor and 16G memory while the 
integrated development environment is MATLAB-2024a. For genetic algorithm, toolbox in Matlab 
2017a is utilized for GA experiments; the PSO experiments were implemented by a “PSOt” toolbox 
for Matlab; Experiments on WDX-WPOA are done according to the steps from reference 23; and the 
new algorithm DAF-BRS-CWOA is implemented by utilizing MATLAB-2024a with M programming 
language. The specific configuration of the above algorithms is shown in Table 2. In order to verify 
the excellent performance of the new algorithm, like the other three algorithms, it runs 30 
optimization calculations on each test function. Then, all algorithms are evaluated from the aspects 
of the best value, worst value, average, standard deviation, the number of average iterations, and the 
average time of the global optimal. 

4.2. Experimental Results and Analysis 

Firstly, as shown in Table 3, seen from the optimal value, the DAF-BRS-CWOA can find the 
theoretical optimal values of all the test functions as well as WDX-WPOA, but no one else can do it; 
furthermore, seen from the worst value and average value, DAF-BRS-CWOA has the best 
performance in all 4 algorithms(PSO, GA, WDX-WPOA and DAF-BRS-CWOA) that its worst and 
average values both reach the theoretical optimal values while the other algorithms have no such 
ability. Therefore, DAF-BRS-CWOA has better optimization accuracy. 

In addition, in 30 tests, the new algorithm had zero standard deviation on almost all test 
functions except function 2"Bukin6", function 4"Eggholder", function 6"Levy" and function 21" 3P-
Function". Even so, in function 2 "Bukin6" and function 4 "Eggholder", the standard deviation of DAF-
BRS-CWOA is better than the standard deviation of other algorithms. Although the standard 
deviation of DAF-BRS-CWOA in function 6 is larger than that of GA and PSO, GA and PSO cannot 
find the optimal value in 30 tests, while DAF-BRS-CWOA can, as show the standard deviation in 
Table 3. Therefore, DAF-BRS-CWOA has good stability in general. 

Moreover, in term of average number of iterations, DAF-BRS-CWOA has smallest iterations on 
all test functions except function 2 "Bukin6", function 4 "Eggholder", function 21" S3P-Function", and 
on function 2, 4 and 21 the number of iterations is 600 which is same to the values on other algorithms, 
shown in Table 3 Average iteration. Hence, in general, DAF-BRS-CWOA has better advantage in 
terms of iteration. 

Finally, as shown in Table 3 Average Time, the average time spent on Functions 14, 15, 18, and 
19 is minimal for DAF-BRS-CWOA. Moreover, the four algorithms spend about the same amount of 
time on test functions 1, 9, and 20, and DAF-BRS-CWOA runs longer than PSO or GA on the rest of 
the test functions, but the performance of finding the optimal value is better than that of other 
algorithms (PSO and GA). Nonetheless, it is a consolation that the proposed algorithm outperforms 
WDX-WPOA in terms of running time without losing optimization accuracy. As shown in Table 4 
and Figure 5, In all test functions, the DAF-BRS-CWOA is improved compared to WDX-WPOA. 
Therefore, the DAF-BRS-CWOA has a good convergence speed. 
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Table 3. Raw Data of Experiments. 

Function Algorithm Optimal Value Worst Value Average Value Standard Deviation Average Iteration Average Time 

1 Ackley min f=0 

GA 7.92E-06 0.00012803 0.000051735 6.95E-10 176.7 0.23365 
PSO 1.71E-05 0.00057189 0.00011362 6.89E-09 600 0.046053 

WDX-WPOA 0 0 0 0 37.6333 0.053561 
DAF-BRS-CWOA 0 0 0 0 22.2667 0.033704 

2 Bukin6 min f=0 

GA 0.6912 11.2453 3.7961 2.6443 600 0.013 
PSO 0.0012517 0.13 0.058051 0.041452 600 0.013559 

WDX-WPOA 0.0023801 0.082569 0.029872 0.022073 600 0.80598 
DAF-BRS-CWOA 0.075576 0.50493 0.28726 0.12965 600 0.64729 

3 Drop-Wave min f=-1 

GA -0.99992 -0.78573 -0.93986 0.04808 600 0.012028 
PSO -1 -0.93625 -0.98512 0.026965 218.6333 0.004777 

WDX-WPOA -1 -1 -1 0 14.4333 0.018366 
DAF-BRS-CWOA -1 -1 -1 0 12.1333 0.016619 

4 Eggholder min f=-959.6407 

GA -959.6387 -629.6112 -876.5954 78.8508 600 0.012111 
PSO -959.6407 -718.1675 -926.7076 53.5701 600 0.012546 

WDX-WPOA -959.6407 -935.338 -947.2171 11.904 600 1.0656 
DAF-BRS-CWOA -959.6404 -935.3379 -948.744 11.7553 600 0.72768 

5 Griewank min f=0 

GA 0.004788 0.31789 0.075813 0.063402 600 0.013661 
PSO 0 0.019719 0.0026303 0.0045421 339.3 0.0085504 

WDX-WPOA 0 0 0 0 17.5667 0.025562 
DAF-BRS-CWOA 0 0 0 0 13.5 0.020979 

6 Levy min f=0 

GA 0.00024335 1.1263 0.12324 0.21281 600 0.038618 
PSO 1.50E-32 1.50E-32 1.50E-32 1.09E-47 600 0.039204 

WDX-WPOA 0 5.98E-01 0.019935 0.10735 549.9 0.84128 
DAF-BRS-CWOA 0 0.39478 0.013159 0.070865 479.1333 0.7371 

7 Levy13 min f=0 

GA 0.011247 2.2797 0.22303 0.76184 600 0.01238 
PSO 0.00010961 -0.97283 -0.97283 3.33E-16 600 0.012789 

WDX-WPOA 0 0 0 0 25.1333 0.038007 
DAF-BRS-CWOA 0 0 0 0 21.7 0.03573 

8 Rastrigin min f=0 
GA 0.013678 6.3489 2.2711 1.7587 600 0.0119 
PSO 0 0.99496 0.066331 0.24819 110.4333 0.0023772 

WDX-WPOA 0 0 0 0 12.3 0.018345 
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DAF-BRS-CWOA 0 0 0 0 10.9 0.016472 

9 Schaffer2 min f=0 

GA 1.03E-06 0.042464 0.010477 0.0093243 600 0.01321 
PSO 0 0 0 0 66.9667 0.0019346 

WDX-WPOA 0 0 0 0 11.7333 0.016255 
DAF-BRS-CWOA 0 0 0 0 9.7 0.01489 

10 Bohachevsky1 min f=0 

GA 0.011268 0.91934 0.48134 0.25563 600 0.011984 
PSO 0 0 0 0 78.1667 0.0017231 

WDX-WPOA 0 0 0 0 14.5 0.020572 
DAF-BRS-CWOA 0 0 0 0 12.3 0.018081 

11 Perm0-d-β min f=0 

GA 0.011057 388.7314 26.2837 71.8592 600 0.01213 
PSO 0 0 0 0 175.3667 0.0052171 

WDX-WPOA 0 0 0 0 25.8 0.030897 
DAF-BRS-CWOA 0 0 0 0 21.7667 0.026103 

12 Rotated Hyper-Ellipsoi min 
f=0 

GA 0.00039244 0.12985 0.034819 0.03493 600 0.012687 
PSO 1.96E-134 1.02E-129 8.56E-131 2.28E-130 600 0.013828 

WDX-WPOA 0 0 0 0 25.9667 0.029679 
DAF-BRS-CWOA 0 0 0 0 22.7 0.027767 

13 Sum Squares min f=0 

GA 2.42E-06 0.0025094 0.00051005 0.00048937 600 0.012084 
PSO 5.91E-137 2.18E-132 3.76E-133 5.82E-133 600 0.013233 

WDX-WPOA 0 0 0 0 24.3667 0.029123 
DAF-BRS-CWOA 0 0 0 0 21.1667 0.027215 

14 Trid min f=-2 

GA -0.037736 -1.9991 -1.8925 0.11219 600 0.01241 
PSO -2 -2 -2 0 600 0.014356 

WDX-WPOA -2 -2 -2 0 10.6667 0.013702 
DAF-BRS-CWOA -2 -2 -2 0 9.1667 0.011635 

15 Booth min f=0 

GA 4.93E-12 4.92E-09 8.73E-10 1.11E-18 74.79 0.088336 
PSO 5.62E-23 8.78E-17 5.13E-18 2.36E-34 600 0.02997 

WDX-WPOA 0 0 0 0 24.0667 0.027151 
DAF-BRS-CWOA 0 0 0 0 20.4 0.025748 

16 Matyas min f=0 

GA 9.11E-06 0.042161 0.010059 0.010711 600 0.01241 
PSO 1.76E-120 2.71E-116 2.87E-117 5.48E-117 600 0.013081 

WDX-WPOA 0 0 0 0 24.5 0.030189 
DAF-BRS-CWOA 0 0 0 0 20.3333 0.025239 

17 Zakharov min f=0 GA 2.32E-06 0.0016735 0.00069625 0.00057972 600 0.015955 
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PSO 3.10E-137 7.27E-131 3.57E-132 1.30E-131 600 0.016975 
WDX-WPOA 0 0 0 0 24.8 0.053188 

DAF-BRS-CWOA 0 0 0 0 21.1 0.045726 

18 Easom min f=-1 

GA -1 0 -0.75001 0.18749 72.91 0.084762 
PSO -1 -6.30E-61 -0.90001 0.089988 593.02 0.033852 

WDX-WPOA -1 -1 -1 0 13.6667 0.018649 
DAF-BRS-CWOA -1 -1 -1 0 11.7333 0.016503 

19 Eggcrate min f=0 

GA 2.01E-02 6.72E-01 2.91E-01 1.61E-01 600 0.024449 
PSO 6.23E-24 1.42E-08 1.42E-10 1.99E-18 597.56 0.030566 

WDX-WPOA 0 0 0 0 14.9667 0.020518 
DAF-BRS-CWOA 0 0 0 0 12.9 0.018693 

20 Bohachevsky3 min f=0 

GA 0.032611 0.7588 0.26482 0.18579 600 0.024356 
PSO 0 0 0 0 87.4667 0.016874 

WDX-WPOA 0 0 0 0 14.2333 0.023575 
DAF-BRS-CWOA 0 0 0 0 11.9 0.017347 

21 3P-Function 

GA 15442.6497 24126.8603 19416.3543 1816.0666 600 0.79052 
PSO 9629.7786 13812.6688 11390.4309 844.0894 600 5.0392 

WDX-WPOA 8586.7186 11586.8103 10318.2428 762.6918 600 79.7046 
DAF-BRS-CWOA 8586.7186 11387.3388 9997.6471 710.5523 600 73.1483 
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Table 4. Time-Spent Comparison by DAF-BRS-CWOA and WDX-WPOA. 

        Algorithm 
Function WDX-WPOA DAF-BRS-CWOA Improvement-Rate 

F1 0.053561 0.033704 37.07% 
F2 0.80598 0.64729 19.69% 
F3 0.018366 0.016619 9.51% 
F4 1.0656 0.72768 31.71% 
F5 0.025562 0.020979 17.93% 
F6 0.84128 0.7371 12.38% 
F7 0.038007 0.03573 5.99% 
F8 0.018345 0.016472 10.21% 
F9 0.016255 0.01489 8.40% 

F10 0.020572 0.018081 12.11% 
F11 0.030897 0.026103 15.52% 
F12 0.029679 0.027767 6.44% 
F13 0.029123 0.027215 6.55% 
F14 0.013702 0.011635 15.09% 
F15 0.027151 0.025748 5.17% 
F16 0.030189 0.025239 16.40% 
F17 0.053188 0.045726 14.03% 
F18 0.018649 0.016503 11.51% 
F19 0.032477 0.028214 13.13% 
F20 0.023575 0.017347 26.42% 
F21 79.7046 73.1483 8.23% 

 
Figure 5. Histograms of improvement rate about time-spent by comparing DAF-BRS-CWOA and 
WDX-WPOA on all 21 algorithms in this paper. (F1:Ackley F2:Bukin6 F3:Drop-Wave F4:Eggholder 
F5:Griewank F6:Levy F7:Levy13 F8:Rastrigin F9:Schaffer2 F10:Bohachevsky1 F11:Perm0-d-β 
F12:Rotated Hyper-Ellipsoid F13:Sum Squares F14:Trid F15:Booth F16:Matyas F17:Zakharov 
F18:Easom F19:Bohachevsky2 F20:Bohachevsky3 F21:S3P-Function). 

In fact, on the premise of guaranteeing the absolute global optimization ability, the conclusion 
shows that DAF-BRS-CWOA spent less time seen from Table 4 and Figure 3, it is seen that all the 
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improvement rates are positive and that means DAF-BRS-CWOA spent less time than WDX-WPOA 
on all the 21 algorithms involved in this paper. Especially, it is worth mentioning that the 
improvement rates on function “Ackley’’ and “Eggholder” are both more than 30% and the value on 
function ‘‘Bohachevsky3’’ is more than 20% as well as most of the functions are both more than 10%. 
On the other functions, all the improvement rate are more than 5% and the worst improvement rate 
reaches about 5.17%. 

Moreover, in the optimization of the function 21 patrol path, DAF-BRS-CWOA is the algorithm 
with the smallest path length, shortest time-spent, and smallest the length of the path among all 
algorithms (PSO, GA, WDX-WPOA and DAF-BRS-CWOA) during 30 independent experiments. 
DAF-BRS-CWOA has an absolutely small path length compared to GA and PSO. Compared to WDX-
WPOA, the DAF-BRS-CWOA has a certain improvement in time-spent, as shown in Table 3. 
Therefore, DAF-BRS-CWOA has excellent performance in public security patrol path planning. 

In a word, DAF-BRS-CWOA possesses excellent optimization accuracy, good stability, less time-
spent and quick peed of convergence. 

5. Conclusions 

The public security patrol path planning is very important in public security work, however, the 
existing public security patrol path planning has some shortcomings to varying degrees. To address 
these shortcomings, this paper proposes a public security patrol path planning recommendation 
method based on an improved wolf-pack optimization algorithm, which mainly focuses on three 
aspects. Firstly, Dynamic-Adjustment-Factor was introduced in WDX-WPOA to dynamically adjust 
the number of airdropped wolves; Moreover, Balanced-Raid-Strategy with symmetric property was 
proposed to improve the existing original strategy of Summon-Raid by not only examining the 
reverse position of the current wolf, but also the ones generated according to certain rules between 
the reverse position of the current wolf and the current optimal wolf; Finally, an optimization 
objective function regarding the public security patrol path planning was abstracted and counted to 
obtain the optimal recommendation for the public security patrol path planning. Comparative and 
numerical experiments with four similar swarm intelligence optimization algorithms (PSO, GA, 
WDX-WPOA and DAF-BRS-CWOA) on 20 public datasets and the proposed objective function RPB 
Function were conducted and the results demonstrated that the DAF-BRS-CWOA has superior 
performance. 

Although the algorithm proposed in this paper is superior, there are still some shortcomings. 
Such as shown in Table 3, DAF-BRS-CWOA spent more time than GA and PSO in 14 test functions. 
And it is in function-21 that DAF-BRS-CWOA spent a considerable amount of time as well as the 
results of each operation are not so stable due to the higher complexity, which confirms a principle: 
no perfect standard that applies universally. The authors will continuously improve this algorithm 
and make it play an increasingly important role in various different fields in the future work. 
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