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Abstract: The public security patrol path planning plays an important role in public security work,
however, existing public security patrol path planning has varying degrees of shortcomings. To
address these shortcomings, this paper proposes a public security patrol path planning
recommendation method based on an improved wolf-pack optimization algorithm (S3PRM-DAF-
BRS-CWOA). Firstly, an optimization objective function regarding the public security patrol path
planning(S3P-Function) was abstracted based on the actual situation; Secondly, this paper proposed
an improved wolf-pack optimization algorithm named DAF-BRS-CWOA using Dynamic-
Adjustment-Factor(DAF) and Balanced-Raid-Strategy(BRS), and DAF devoted to adjust the overall
wolf-pack running strategy by dynamically adjusting the number of airdropped wolves during the
stage of Summon-Raid while BRS with symmetric property was to improve both the algorithm's
global exploration as well as the local development capabilities by increasing the number of
checking locations, that means not only checking the reverse position of the current wolf, but also
the positions generated according to certain rules between the reverse position of the current wolf
and the current optimal wolf during the stage of Summon-Raid; Finally, DAF-BRS-CWOA was
adopted to optimize S3P-Function, forming a public security patrol path planning recommendation
method based on DAF-BRS-CWOA (S3PRM-DAF-BRS-CWOA). Comparative and numerical
experiments with four similar swarm intelligence optimization algorithms (PSO, GA, WDX-WPOA
and DAF-BRS-CWOA) were conducted on 20 public datasets as well as the proposed S3P-Function,
and the experimental results demonstrated that S3PRM-DAF-BRS-CWOA has superior
performance as same as DAF-BRS-CWOA.

Keywords: public security patrol; path planning; swarm intelligence; wolf optimization

1. Introduction

With the rapid development of human civilization, the public safety situation is also facing new
and severe challenges. To create a good public safety environment, the public security patrol path
planning plays an important role, which considers factors such as time, road conditions and distance,
aiming to provide the shortest security patrol route for police to achieve higher duty efficiency.

Many scholars have reflected on the development of the policing model of public security patrols
and the optimization of patrol routes, such as: Wang et al. designed a solution for collaborative
execution of area coverage tasks by multiple unmanned ships for large-scale sea patrol tasks based
on the multi unmanned ship area coverage traversal algorithm 1;Xiang et al. designed an improved
Partheno-genetic Algorithm (IPGA) for quickly obtaining high-quality patrol task planning schemes
2;Li used the Rural Postman Problem (RPP) to construct a graph theory model for traffic police patrol

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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path optimization based on the CE2 heuristic algorithm, effectively shortening the path length and
saving costs 3;Both Zhang 4 and Kong et al 5 achieved path planning by improving ant colony
algorithm and using distance discriminant analysis to select multiple parameter indicators; Jie et al.
proposed a new multi-agent based reinforcement learning algorithm to plan the optimal patrol path
under arbitrary conditions of multiple defenders and attackers 6;Liang adopted a combination of ant
colony algorithm and genetic algorithm to improve the efficiency of sightseeing path planning in the
intelligent navigation system of the park 7;Shi et al combined evolutionary algorithms with
optimization experiments to establish a two-layer optimization model, and combines multi-agent
genetic algorithms to solve multi-objective optimization scheduling problems in complex
environments 8;Yan et al combined particle swarm optimization algorithm with predictive control,
overcoming the disadvantage of traditional particle swarm optimization algorithm in generating
infeasible paths during particle update process 9;Authors developed a two-layer optimization
framework to solve the patrol police force allocation problem, and then used a new iterative Bender
decomposition method to solve the potential optimization problem, thereby solving the spatial police
patrol allocation problem with expected crime response time 10. Unfortunately, various algorithms
have their own shortcomings.

Over the past few decades, wolf-pack optimization algorithm has attracted widespread interest
from researchers due to its high parallelism, good global convergence, and computational robustness,
making it particularly suitable for solving high-dimensional, multi-modal complex functions 11;For
instance, Tang et al. developed an automatic detection scheme for wolf pack hunting behavior in
videos 12, which greatly improves the accuracy of motion state recognition, reaching up to 88%;Duan
et al. proposed a target allocation method based on wolf behavior mechanism 13, which effectively
solves the problem of collaborative target allocation among drone groups; In paper 14, an entropy-
based grey wolf optimizer IEGWO) algorithm was proposed to solve global optimization problems;
Chen et al. developed a Hybrid Grey Wolf Optimizer (HGWO) that combines Halton sequences and
multiple strategies, which can be used to solve practical engineering problems 15; Authors modelled
the behavioral characteristics of wolf packs in natural environments and used it to solve the dynamic
task allocation problem of drone swarms in complex scenarios 16; She et al. improved the wolf-pack
optimization algorithm to enhance the accuracy and efficiency of solving highly nonlinear black box
function structural reliability problems 17;In paper 18, researchers proposed a submarine cable
positioning algorithm based on Improved Grey Wolf Optimization IGWO), which achieves accuracy
and effectiveness in submarine cable positioning.

Therefore, the effective utilization of the wolf-pack optimization algorithm mentioned above
inspires us to intend to adopt an improved wolf-pack optimization algorithm to solve the
optimization problem of public security patrol path planning, then this paper proposes a public
security patrol path planning recommendation method based on an improved wolf-pack
optimization algorithm (S3PRM-DAF-BRS-CWQA). Section 2 provides the related existing works
about this new proposed method. Section 3 elaborates on the improvement and design of the new
proposed method. Section 4 shows performance verification experiment and analysis of experimental
results. Section 5 gives the conclusion of this article, summarizing its contributions, existing
limitations, and future directions for improvement.

2. Related Works

2.1. Swarm Intelligence Optimization

In nature, a variety of creatures with limited individual ability show amazing abilities through
constitutions and inter -individual information exchange, such as: ant colony, bee colony, wolves,
and so on. The swarm intelligent optimization algorithm is designed by simulating the characteristics
of biological group behaviors in nature. It uses simple rules and interactions between many bodies
to optimize the optimization problem of complex functions. The origin of the swarm intelligent
optimization algorithm dates back to the 1980s. At that time, some scholars began to study the
calculation model of simulating the behavior of natural biological groups. In 1986, Garnier and others
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proposed an Ant Random Walking Model 19, which can be regarded as an early form of the swarm
intelligent optimization algorithm. The swarm intelligent optimization algorithm provides new ways
and shows excellent performance when solving many practical problems.

In recent years, in order to solve the limitations of traditional swarm intelligent algorithms on
certain problems, scholars have proposed many new types of swarm intelligent optimization
algorithms. These new algorithms have shown stronger applicability and experimental effects in
solving complex practical problems, such as: Battle algorithm proposed by British scholar yang 20.
Essence These new algorithms can more effectively search for optimal solutions, strong adaptability,
and can adapt to various types of optimization problems. However, there are still many
shortcomings. For example, the adjustment of bat algorithm in certain parameters may affect the
performance of the algorithm. There are few cases in practical applications, and more empirical
research is required to verify its effects.

2.2. Wolf-Pack Optimization Algorithm

Among the new algorithms that have emerged in recent years, the wolf-pack optimization
algorithm is a typical representative. Wolf-Pack Optimizaton Algorithm (WPOA) was first proposed
by YANG et al. 21 by imitating the habit of imitating the group of raw animals, the intelligence shown
in the simulation of the wolf-pack foraging and hunting in nature, mainly The three intelligent lines
of the wolf hunting behavior, calling-galloping behavior and siege are abstracted to find the optimal
solution to the problem. The algorithm process mainly includes parameter initialization, migration
mechanism, summon-raid mechanism, siege mechanism, and regeneration mechanism.

Initialization: The algorithm first needs to set a series of parameters such as the size of the
wolves, the location of each wolf, the step length, and the number of iterations. It is an important
basis for the algorithm. Appropriate parameter settings can help algorithms to converge to optimal
solutions faster, while maintaining sufficient search diversity to avoid local optimal. In the process,
the wolf in the wolf-pack is assigned to the function of the function. Assuming that the number of
wolves is n, and the dimension of the interpretation of the space is D, then the position of each wolf
is as required as a formula (1).

Xig = rangmin + rand (N’ 1) * (rangmax - rangmin) (1)

Migration-Mechanism: The process of searching the prey during the hunting of the wolf-pack
in the natural environment, and searching the target separately in a certain field of a certain field of
the wolf-pack members. In this process, each wolf searches the target in its nearby space according
to the rules. The best Q -Po Wolf except the wolf in the solution space is regarded as the exploring
wolf. The exploring wolf is centered on its own position, and the long -term searches are used as a
search step to explore the prey around them. Degree value. If the adaptation value of the current wolf
is greater than the point of adaptation of the position of the wolf, it indicates that the prey is relatively
close to the wolf I and may capture the prey. The hunting process, that is, the current exploring wolf
moves in the direction of H hunting and calculates the new location and the new adaptation value.
For example, the formula (2) indicates that after moving the direction of P (P =1,2, ..., H, H <D), the
current wolf i is currently a new position in the D -dimensional space.

, )
xP = x4 + sin (21‘[ * Z) * stepd )

Summon-Raid-Mechanism: After discovering the prey, the simulation wolf-pack will summon
other wolves to quickly stride and participate in hunting by calling them by calling or other ways to
increase the power of hunting. According to the formula (3), it is updated on the road of raid. If the
new position obtained, the adaptation value is better than the current position, the wolf will move to
the new position, otherwise it will stay in the current position. Among them, Zia represented the
position of the No. D-dimensional renewal of the No. i wolf in the wolf-pack; Xi is the current
position of the D-dimension of the I wolf; RAND is a random number evenly distributed in the
interval [-1,1]; Stepb is the step-size in the process of Summon-Raid; X is the position of the leader
wolf in d-th dimension.
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Zig = Xig + Rand X stepb X (x;4 — xigq) 3)

Siege-mechanism: During the capture process, the wolf-pack appeared around the leader wolf
to adopt a small step to siege prey. That is, first generate a random number of RM in [0,1]. If RM is
smaller than O (O is a pre -set threshold), then the I wolf does not move. The wolf surrounded the
prey with the leader wolf. The updated wolf position xit*!is shown in the formula (4), Stepc means the
siege length; Xiis the position of the head wolf.

xt+ — { X T <6 @)
. X, + Rand X stepc 1, >0

Regeneration-Mechanism: Simulation of the natural evolution of wolves is a key link in the
iteration of the algorithm. Reserve strong performance in the wolves, eliminate wolves with poor
performance, and then randomly supplement a certain number of artificial wolves. Update the
population of the wolf by evaluating the adaptation value in the population, and the suspension
conditions during iteration can be set. It ensures that the wolf clusters can adapt to evolution and
eventually converge to the optimal solution, which improves the efficiency and effect of algorithms
when solving complex optimization problems.

2.3. Data-Sets

In order to test the optimization ability of the DAF-BRS-CWOA proposed in this article, test
comparison experiments with other optimization algorithms, and select some common functions and
data sets of the test optimization algorithm as shown in Table 1 for testing. Select a variety of types
of public test functions such as public test functions. Some test functions have the characteristics of
multi -peak value, strong interference, high complexity, etc., and can fully test the global nature of
the model. Some test functions are smooth, continuous, convex, and convex the characteristics such
as the Single Peak are like a bowl shape; some test functions are very smooth and the change is
relatively smooth, and test function formulas are shown in Table 1.
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Table 1. Datasets for performance validation.

Order Function Expression Dimension Range Optimum
1 Ackley F1=-20exp cos (2mx;)) + 20 + exp (1) 2 [-32.768,32.768] Min £=0
2 Bukin6 F2=100_||x, — 0.01x?| + 0.01]x, + 10] 2 [-15,3] Min £=0

1 124/x? 2
3 Drop-Wave Py oo (1244 +23) 2 [-5.12,5.12] Min f=-1
0.5(x% +x2)+2
X
4 Eggholder F%{h+4ﬂﬂn(Lq+5444)—%sm(lﬁ—(h+4ﬂ0 2 [-512,512] Min £=-959.6407
2 xz 2 X
5 Griewank F7=Z = 1:[ cos (\/—‘;) +1 2 [-600,600] Min £=0
2.1 =
F6 == sin? (nw,) + Z (w; — D?[1 + 10 sin?(zw; + 1] + (w,
6 Levy & 2 [-10,10] Min =0
. x;—1 .
— 1?[1 + sin?(2nw,)], wherew; = 1 + Jforalli =1,2
7 Levy13 F11 = sin? (3mx;) + (x; — 1)?[1 + sin? (3mx,)] + (x, — 1)?[1 + sin? (2mx,)] 2 [-10,10] Min =0
2
8 Rastrigin F12=10d + Z[xiz — 10 cos(2mx;)] 2 [-5.12,5.12] Min £=0
i=1
sin? (x? —x2) — 0.5 .
9 Schaffer2 F9 = 0.5 2 -100,100 Min =0
chatter T+ 00012 + O [ ] m
10 Bohachevsky1l F10=x? + 2x% — 0.3*cos(3mx;) — 0.4*cos(4mx,) + 0.7 2 [-100,100] Min =0
2 [ 2 L ?
11 Perm0-d-p P> | G+ (xf —j—i) 2 [-2,2] Min £=0
i=1 \ j=1
Rotated H ShN
1p  |otated Hyper- F12=Z Z x? 2 [-65.536,65.536] Min £=0
Ellipsoid

i=1j=1

9
@
E
=
=
@
g
Q
s
=
2
E
@
©
-
9
g
=
Z
o
_'
U
m
m
o
2y
m
<
=
m
O
je)
o
@
)
=
o
O
®
o
@
3
o
@
N
o
N}
I

TA'Y6S0°CTi¢c0csiulidal



https://doi.org/10.20944/preprints202412.0594.v1

2

13 Sum Squares F13=Z i x? 2 [-10,10] Min £=0
2 =y,
14 Trid F14=Z(xi 12— Z X %y 2 [-4,4] Min =2
i=1 i=2

15 Booth F15=(x; + 2x, — 7)? + (2x; + x, — 5)? 2 [-10,10] Min =0

16 Matyas F16=0.26(x? + x2) — 0.48x,x, 2 [-10,10] Min £=0
2 2 2 2 4

17 Zakharov F17=Z x?+ ( 0. 5ixi> + (Z 0. 5ixi> 2 [-5,10] Min =0
i=1 i=1 i=1

18 Easom F18=— cos(x1)*cos(x2)*exp[—(x1 — m)? — (x2 — m)?] 2 [-4,4] Min f=-1

19 Eggcrate F19=x? + x2 + 25*(sin? x; + sin? x,) 2 [-7, 7] Min =0

20 Bohachevsky3 F20=x? + 2x2 — 0.3cos(3mx; + 4mx,) + 0.3 2 [-100,100] Min =0
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2.4. S3P-Function

In the real social life, the task of public security patrols requires that the patrol paths of police
officers must cover important nodes, and the number of important nodes is often large, so this results
in multiple actual patrol paths with varying distances and disorganization, as shown in Figure 1(a).
Fortunately, police officers often have rich patrol experience and have their own "optimal patrol path"
based on this kind of experience, as shown in Figure 1(b). However, the "optimal patrol path" based
on police officers' experience shown in Figure 1(b) is not truly optimal, especially in the case of a large
number of important patrol nodes resulting to huge number of patrol path options, it is unlikely to
find the globally optimal one due to limitations in human mental arithmetic ability, and Figure 1(c)
gives the true global optimal patrol path compared to Figure 1(b).
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Figure 1. (a) Randomly Arranged Public Security Patrol Path Planning; (b) Preliminary Sorting of
Public Security Patrol Path Planning; (c) Global Optimal Public Security Patrol Path Planning.
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It is based on the above problem that this article abstracts a problem model serving the planning
of public security patrol paths. Without loss of generality, assuming that the security patrol task is
carried out in a plain area and ignoring the influence of altitude, that is, the Euclidean distance is
used to calculate the distance between all key points; thereby, this paper constructs an objective
function of public security patrol path planning (S3P-Function), the calculation formula is as
Equation5.(This paper takes a 2000 km by 2000 km area and 30 security patrol locations generated
randomly).

Distanceorqr = J(xpn - xp1)2 + (ypn - ym)z + -2 J(xpn - xpn—1)2 + (ypn - ypn—l)z ®)
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Where, Distance;,;, means the whole distance of some a public security patrol path; p» means
the n-th patrol point along some a security patrol path while p: means the first one; xy» and yp present
the horizontal and vertical coordinates respectively; N means the total number of patrol points along
some a security patrol path.

Obviously, it is completely that different from classical test functions in 2.3 that the above
description is a discrete problem. To solve this problem, this paper made a discrete algorithm based
on the idea of WPOA to solve the discrete problem.

3. Improvement and Design of the New Proposed Method

Compared with the comparative algorithm in 22, the article titled " an adaptive distribution size
(ADS) wolf-pack optimization algorithm using the strategy of jumping for raid (for short, WDX-
WPOA)" demonstrates significant advantages in optimization capabilities, including higher global
search accuracy, stronger robustness, and faster convergence speed. However, WDX-WPOA also has
certain shortcomings, such as significantly longer iteration times in some test function applications
shown in 23; so this paper designed two following strategies to improve the optimization
performance in response to this issue, and then the new proposed algorithm will be utilized to
achieve a more efficient solution for the security patrol path planning problem.

3.1. Dynamic-Adjustment-Factor

During the raid process, in order to find the global optimal solution around the leader wolf,
wolf-pack will be hoped to approach the leader wolf as soon as possible. However, the distance
between wolves except the leader wolf should be precisely adjusted, that is, the distance should not
be too small to avoid the wolf pack falling into local optimum, nor too large to prevent slow
convergence. By setting reasonable distances, the efficiency of the optimization process can be
improved while ensuring global search capability.

According to existing methods, the number of airdropped wolves in the ASGS-CWOA and
WDX_WPOA does not change during the process of Summon-Raid. Obviously, this approach is
insufficient to accurately reflect the dynamic changes during the raid process and may lead to a
decrease in optimization performance, and to overcome this deficiency, Dynamic-Adjustment-Factor
(DAF) was proposed to dynamically adjust the number of airdropped wolves based on real-time
changes during the process of Summon-Raid, thereby improving the overall performance of the
algorithm. The specific dynamic adjustment mechanism is shown in Equation (6) following.

factor = (t/T)/2 + 1/2
{ NUM,qiq = floor(numW = factor)
NeWraid-wolf-index = indextem(l:nummm) ©)
kOIdraid—wolf—index = index_tem((num,qq + 1): numW)

Where, factor depends the number of wolves following the old strategy of Summon-Raid as in
ASGS-CWOA and the number of other wolves following the new proposed strategy of Summon-
Raid ; t means the number of current iteration; T means the number of the maximum iteration; numiria
means the number of wolves to be replaced with new wolves; floor means a function that returns the
calculated result rounded down to ensure that numvis is an integer; numW means the number of wolf-
pack that is 50 in this paper; newrmid_woif intex means an index array that means the position of the wolf
to be replaced with the new wolf while oldrid_wolf index is the one in its original state; index_tem is an
index array obtained by sorting the current fitness, from the worst fitness to the best fitness.

From the Equation (5), it's observed that the factor will vary between 0.5 and 1, and it will
increase the number of newrid_wof index as the number of iterations increases, thereby allowing more
wolves to participate in the raid process. This mechanism allows the algorithm to introduce fewer
new wolves in the early stages to reduce computational complexity; In the later stage, the proportion
of new wolves gradually increases to better explore the search space.

From Figure 2, it was seen that the convergence of the wolf-pack during the siege phase as the
number of iterations increases. Obviously, the curve in the Figure 2(c) is smoother than the others,
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and the convergence speed of the wolf-pack is also faster. This indicates that introducing the DAF to
dynamically adjust the number of airdropped wolves and wolves running according to the original
strategy can not only improve the convergence speed of the wolf-pack and shorten the overall
running time of the algorithm, but also not affect the algorithm's ability to globally find the optimal

solution. In other words, as the number of iterations increases, the wolf-pack will get closer to the
optimal solution..
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Figure 2. (a) the original raiding strategy in ASGS;(b) the old raiding strategy in WDX-WPOA;(c) the
new adaptive raiding strategy in DAF-BRS-CWOA.

3.2. Balanced-Raid-Strategy

During the process of Summon-Raid, for every wolf, 2P locations generated by the coordinate
arrangement combination of current location and the middle one between the current wolf and the
best wolf are checked up as well as the reverse location of the current wolf regarding the best wolf,
shown in Figure 3(a) about ASGS-CWOA. Accordingly, in WDX-WPOA, half of the wolf-pack
follows the Summon-Raid strategy in ASGS-CWOA, while the other half is directly airdropped to the
surrounding of current optimal wolf, which means that only 2°-) + 1 locations will be checked up per
wolf on average and accelerates the gathering and siege rhythm of the wolf-pack, and accelerates the
convergence speed of the algorithm in another word, shown in Figure 3(b).
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Figure 3. (a) about ASGS-CWOA; (b) WDX-WPOA; (c) New Proposed Algorithm.

Furthermore, Balanced-Raid-Strategy (BRS) was proposed in the new proposed algorithm to
improve the existing original strategy of Summon-Raid by not only examining the reverse location
of the current wolf, but also the ones generated according to certain rules between the reverse position
of the current wolf regarding the current optimal wolf for half of wolf-pack, and in this way the search
volume are increased during each iteration, which increases the possibility of finding the global
optimal solution while increases the computational complexity and time consumption of the
algorithm, shown in Figure 3(c).

Wolf;_opposite = 2 * bestwolf — pop(i,:)
locations,ppesite = original_Summon_Raid_Mesh_Process(wWolfi_,pposite, bestwolf)

ftopposite—tocations = FitnessF unction(locationsopposite) (7)

[ftopposite—locations—bestt Noopposite—locations—best] = mln(ftopposite—locations)
WOlfoppsite—locations—best = locatlonsopposite (NOOpposite—locations—best' : )

Where, wolfiopposie means the opposite location of the current wolf while bestwolf means the
current best wolf and pop(i,:) means the current wolf-ith; locationsepposite Tepresents the locations
between wolfiopposite and bestwolf according to the Summon-Raid rules in WDX-WPOA;
original_Summon_Raid_Mesh_Process is a function that returns some related locations determined by
Summon-Raid rules in WDX-WPOA while FitnessFunction is another one that returns the fitness of
the given wolves or locations; ftopposite-locations means the fitness regarding locationSopposite; ftopposite-locations-best
means the best one of ftoposite-tocations While NQopposite-locations-best is the serial number of ftopposite-locations-best in
ftopposite-tocations, and w0l fopposite-locations-test 15 the best one of locationsepposite around wolfi-opposite.

The Equation (7) gives the key rules regarding BRS during Summon-Raid process.
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3.3. Steps Of DAF-BRS-CWOA

On the basis of the strategy of dynamically increasing the number of airdrop wolves and
increasing the number of examined locations, WCOA was improved and DAF-BRS-CWOA was
proposed. Here are the steps on how to implement the new improved algorithm, as shown in Figure
4(a).

‘ Process of Initialization ‘ ‘ Randomly arrange patrol points ‘

—b{ Process of Migration h

’ Process of Siege Process of Summon-Raid
l Dynamic Adjusement

]
|

|

|

|

|

|

|

|

i

| .
' Population-
|

|

|

|

|

|

|

|

|

|

|

—b{ "Step_a" points are randomly selected for mutual exchange ‘

\—+

"Step_c" points are Select “step_b” points in bestwol's

formutual exchange arrangement(Summon-Raid )

randomly selected arrangement to replace the current
Factor(DAF) Dynamically adjust the number of
Process of — s
Balanced Raid operations required for the Summon-
Raid (DFA)
Updating Strategy(BRS) Reserve better sort aid (BFA)
order and randomly Summon-Raid after swapping the
arrange patrol points points in the first half of the sequence
to update with the second half(BRS
Meet the - (BRY)

Yes

Iteration Criteria? Main Iteration Steps !

- to solve S3P-Function |
Meet the Iteration? |

No

No Main Iteration Steps

’ Record the Optimal Solution ‘ ‘ Record the Optimal Solution ‘
(a) (b)
Figure 4. Flowchart about DAF-BRS-CWOA.

All steps are consistent with WDX-WPOA except DAF and BRS are used in the Summon-Raid
process, detailed in 3.1 and 3.2 respectively. At the same time, we made it as a discrete -type algorithm
according to the idea of DAF-BRS-CWOA to solve the S3P-Function. The general process is as shown
in Figure 4 (b).

4. Performance Verification Experiment

4.1. Experimental Designment

In order to test the optimization capabilities of DAF-BRS-CWOA, the classic genetic algorithm
(GA), particle swarm algorithm (PSO) and WDX-WPOA three optimization algorithms shown in
Table 2 are used to perform experiments. And 20 test functions such as 6 multi -model methods and
the distance test function of the patrol path, the theoretical optimal of order, function, expression,
dimension, characteristics, scope, and each test function is given. The numerical experiment results
on the 21st test function for the next test can be analyzed and studied for the next step. Details are
shown in tables following.

Table 2. Configuration of algorithms.

Algorith
Order gorithm Configuration
Name
Crossover probability is 0.8, the mutation probability is 0.01, the max iteration
1 GA
T=600.
Inertia weight is 0.5, the Cognitive coefficient is 1.5, the social coefficient is 1.5,
2 PSO . .
the max iteration T=600.
WDX Initial value of search step size step_ao=1.5; the initial max value of siege step
3 WPOA size step_cmax=1e6 and the minimum value of siege step size step_cmin = 1e-40;
the max iteration T=600; the amount of the wolf population N=50.
DAF-BRS- Initial value of search step size step_a0 =1.5; the initial max value of siege step
CWOA size step_cmax=1e6 and the minimum value of siege step size step_cmin = 1e-40;

the max iteration T=600; the amount of the wolf population N=50.
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All numerical experiments are implemented on a computer equipped with Windows 11 Home
22H2 operating system, Intel(R) Core (TM) i7-12700H processor and 16G memory while the
integrated development environment is MATLAB-2024a. For genetic algorithm, toolbox in Matlab
2017a is utilized for GA experiments; the PSO experiments were implemented by a “PSOt” toolbox
for Matlab; Experiments on WDX-WPOA are done according to the steps from reference 23; and the
new algorithm DAF-BRS-CWOA is implemented by utilizing MATLAB-2024a with M programming
language. The specific configuration of the above algorithms is shown in Table 2. In order to verify
the excellent performance of the new algorithm, like the other three algorithms, it runs 30
optimization calculations on each test function. Then, all algorithms are evaluated from the aspects
of the best value, worst value, average, standard deviation, the number of average iterations, and the
average time of the global optimal.

4.2. Experimental Results and Analysis

Firstly, as shown in Table 3, seen from the optimal value, the DAF-BRS-CWOA can find the
theoretical optimal values of all the test functions as well as WDX-WPOA, but no one else can do it;
furthermore, seen from the worst value and average value, DAF-BRS-CWOA has the best
performance in all 4 algorithms(PSO, GA, WDX-WPOA and DAF-BRS-CWOA) that its worst and
average values both reach the theoretical optimal values while the other algorithms have no such
ability. Therefore, DAF-BRS-CWOA has better optimization accuracy.

In addition, in 30 tests, the new algorithm had zero standard deviation on almost all test
functions except function 2"Bukiné", function 4"Eggholder", function 6"Levy" and function 21" 3P-
Function". Even so, in function 2 "Bukin6" and function 4 "Eggholder", the standard deviation of DAF-
BRS-CWOA is better than the standard deviation of other algorithms. Although the standard
deviation of DAF-BRS-CWOA in function 6 is larger than that of GA and PSO, GA and PSO cannot
find the optimal value in 30 tests, while DAF-BRS-CWOA can, as show the standard deviation in
Table 3. Therefore, DAF-BRS-CWOA has good stability in general.

Moreover, in term of average number of iterations, DAF-BRS-CWOA has smallest iterations on
all test functions except function 2 "Bukiné", function 4 "Eggholder”, function 21" S3P-Function", and
on function 2, 4 and 21 the number of iterations is 600 which is same to the values on other algorithms,
shown in Table 3 Average iteration. Hence, in general, DAF-BRS-CWOA has better advantage in
terms of iteration.

Finally, as shown in Table 3 Average Time, the average time spent on Functions 14, 15, 18, and
19 is minimal for DAF-BRS-CWOA. Moreover, the four algorithms spend about the same amount of
time on test functions 1, 9, and 20, and DAF-BRS-CWOA runs longer than PSO or GA on the rest of
the test functions, but the performance of finding the optimal value is better than that of other
algorithms (PSO and GA). Nonetheless, it is a consolation that the proposed algorithm outperforms
WDX-WPOA in terms of running time without losing optimization accuracy. As shown in Table 4
and Figure 5, In all test functions, the DAF-BRS-CWOA is improved compared to WDX-WPOA.
Therefore, the DAF-BRS-CWOA has a good convergence speed.
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Table 3. Raw Data of Experiments.

Function Algorithm Optimal Value Worst Value Average Value Standard Deviation = Average Iteration = Average Time
GA 7.92E-06 0.00012803 0.000051735 6.95E-10 176.7 0.23365
1 Ackley min -0 PSO 1.71E-05 0.00057189 0.00011362 6.89E-09 600 0.046053
WDX-WPOA 0 0 0 0 37.6333 0.053561
DAF-BRS-CWOA 0 0 0 0 22.2667 0.033704
GA 0.6912 11.2453 3.7961 2.6443 600 0.013
> Bukin min £0 PSO 0.0012517 0.13 0.058051 0.041452 600 0.013559
WDX-WPOA 0.0023801 0.082569 0.029872 0.022073 600 0.80598
DAF-BRS-CWOA 0.075576 0.50493 0.28726 0.12965 600 0.64729
GA -0.99992 -0.78573 -0.93986 0.04808 600 0.012028
3 Drop-Wave min f=1 PSO 1 -0.93625 -0.98512 0.026965 218.6333 0.004777
WDX-WPOA 1 1 1 0 14.4333 0.018366
DAF-BRS-CWOA 1 1 1 0 12.1333 0.016619
GA -959.6387 -629.6112 -876.5954 78.8508 600 0.012111
. PSO -959.6407 718.1675 -926.7076 53.5701 600 0.012546
4 Eggholder min £=-959.6407 WDX-WPOA -959.6407 -935.338 9472171 11.904 600 1.0656
DAF-BRS-CWOA -959.6404 -935.3379 -948.744 11.7553 600 0.72768
GA 0.004788 0.31789 0.075813 0.063402 600 0.013661
5 Criewank min f0 PSO 0 0.019719 0.0026303 0.0045421 339.3 0.0085504
WDX-WPOA 0 0 0 0 17.5667 0.025562
DAF-BRS-CWOA 0 0 0 0 13.5 0.020979
GA 0.00024335 1.1263 0.12324 0.21281 600 0.038618
- PSO 1.50E-32 1.50E-32 1.50E-32 1.09E-47 600 0.039204
6 Levy min £=0 WDX-WPOA 0 5.98E-01 0.019935 0.10735 549.9 0.84128
DAF-BRS-CWOA 0 0.39478 0.013159 0.070865 479.1333 0.7371
GA 0.011247 2.2797 0.22303 0.76184 600 0.01238
7 Levy13 min 0 PSO 0.00010961 -0.97283 -0.97283 3.33E-16 600 0.012789
WDX-WPOA 0 0 0 0 25.1333 0.038007
DAF-BRS-CWOA 0 0 0 0 21.7 0.03573
GA 0.013678 6.3489 22711 1.7587 600 0.0119
8 Rastrigin min f=0 PSO 0 0.99496 0.066331 0.24819 110.4333 0.0023772
WDX-WPOA 0 0 0 0 12.3 0.018345
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E
3
,'_S".
2
11 [
s
DAF-BRS-CWOA 0 0 0 0 10.9 0.016472 :
GA 1.03E-06 0.042464 0.010477 0.0093243 600 0.01321 E
. PSO 0 0 0 0 66.9667 0.0019346 3
9 Schaffer2 min £=0 WDX-WPOA 0 0 0 0 11.7333 0.016255 >
DAF-BRS-CWOA 0 0 0 0 9.7 0.01489 5
GA 0.011268 0.91934 0.48134 0.25563 600 0.011984 =
. PSO 0 0 0 0 78.1667 0.0017231
10 Bohachevsky1 min £=0 WDX-WPOA 0 0 0 0 145 0.020572 5
DAF-BRS-CWOA 0 0 0 0 12.3 0.018081 g
GA 0.011057 388.7314 26.2837 71.8592 600 0.01213 m
. PSO 0 0 0 0 175.3667 0.0052171 T
11 Perm0-d-f min £=0 WDX-WPOA 0 0 0 0 25.8 0.030897 %
DAF-BRS-CWOA 0 0 0 0 21.7667 0.026103 2
GA 0.00039244 0.12985 0.034819 0.03493 600 0.012687 o
12 Rotated Hyper-Ellipsoi min PSO 1.96E-134 1.02E-129 8.56E-131 2.28E-130 600 0.013828 -
£=0 WDX-WPOA 0 0 0 0 25.9667 0.029679 S
DAF-BRS-CWOA 0 0 0 0 27 0.027767 o}
GA 2.42E-06 0.0025094 0.00051005 0.00048937 600 0.012084 >
13 Sum Squuares mir £0 PSO 5.91E-137 2.18E-132 3.76E-133 5.82E-133 600 0.013233 g
WDX-WPOA 0 0 0 0 24.3667 0.029123 2
DAF-BRS-CWOA 0 0 0 0 21.1667 0.027215 =
GA -0.037736 -1.9991 -1.8925 0.11219 600 0.01241 X
o PSO 2 2 2 0 600 0.014356 ¥
14 Trid min f=-2 WDX-WPOA 2 2 2 0 10.6667 0.013702
DAF-BRS-CWOA 2 2 2 0 9.1667 0.011635
GA 4.93E-12 4.92E-09 8.73E-10 1.11E-18 74.79 0.088336
15 Booth min 0 PSO 5.62E-23 8.78E-17 5.13E-18 2.36E-34 600 0.02997
WDX-WPOA 0 0 0 0 24.0667 0.027151
DAF-BRS-CWOA 0 0 0 0 20.4 0.025748
GA 9.11E-06 0.042161 0.010059 0.010711 600 0.01241
16 Matyas min -0 PSO 1.76E-120 2.71E-116 2.87E-117 5.48E-117 600 0.013081
WDX-WPOA 0 0 0 0 245 0.030189
DAF-BRS-CWOA 0 0 0 0 20.3333 0.025239
17 Zakharov min £=0 GA 2.32E-06 0.0016735 0.00069625 0.00057972 600 0.015955
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DAF-BRS-CWOA 0 0 0 0 211 0.045726 3

GA -1 0 -0.75001 0.18749 7291 0.084762 g.

K . PSO 1 -6.30E-61 -0.90001 0.089988 593.02 0.033852 5
asom min == WDX-WPOA 1 1 -1 0 13.6667 0.018649 <
DAF-BRS-CWOA -1 -1 1 0 11.7333 0.016503 -

GA 2.01E-02 6.72E-01 2.91E-01 1.61E-01 600 0.024449 S

19 Exoerate min 0 PSO 6.23E-24 1.42E-08 1.42E-10 1.99E-18 597.56 0.030566 ge
ggcrate min = WDX-WPOA 0 0 0 0 14.9667 0.020518 m
DAF-BRS-CWOA 0 0 0 0 12.9 0.018693 2

GA 0.032611 0.7588 0.26482 0.18579 600 0.024356 =

e PSO 0 0 0 0 87.4667 0.016874 2

20 Bohachevsky3 min £=0 WDX-WPOA 0 0 0 0 142333 0.023575 -
DAF-BRS-CWOA 0 0 0 0 11.9 0.017347 -

GA 15442.6497 24126.8603 19416.3543 1816.0666 600 0.79052 o

>1 3P-Functi PSO 9629.7786 13812.6688 11390.4309 844.0894 600 5.0392 2
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Table 4. Time-Spent Comparison by DAF-BRS-CWOA and WDX-WPOA.

Igorithm
Function WDX-WPOA DAF-BRS-CWOA Improvement-Rate
F1 0.053561 0.033704 37.07%
F2 0.80598 0.64729 19.69%
F3 0.018366 0.016619 9.51%
F4 1.0656 0.72768 31.71%
F5 0.025562 0.020979 17.93%
F6 0.84128 0.7371 12.38%
F7 0.038007 0.03573 5.99%
F8 0.018345 0.016472 10.21%
F9 0.016255 0.01489 8.40%
F10 0.020572 0.018081 12.11%
F11 0.030897 0.026103 15.52%
F12 0.029679 0.027767 6.44%
F13 0.029123 0.027215 6.55%
F14 0.013702 0.011635 15.09%
F15 0.027151 0.025748 5.17%
F16 0.030189 0.025239 16.40%
F17 0.053188 0.045726 14.03%
F18 0.018649 0.016503 11.51%
F19 0.032477 0.028214 13.13%
F20 0.023575 0.017347 26.42%
F21 79.7046 73.1483 8.23%

Improvement Rate about Time-Spent

40.00%
35.00%
30.00%
25.00%

20.00%

15.00%

10.00%
i
0.00% I

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

Improvement Rate

Test Function

Figure 5. Histograms of improvement rate about time-spent by comparing DAF-BRS-CWOA and
WDX-WPOA on all 21 algorithms in this paper. (F1:Ackley F2:Bukin6é F3:Drop-Wave F4:Eggholder
F5:Griewank F6:Levy F7:Levyl3 F8:Rastrigin F9:Schaffer2 F10:Bohachevskyl F11:Perm0-d-3
F12:Rotated Hyper-Ellipsoid F13:Sum Squares F14:Trid F15:Booth F16:Matyas F17:Zakharov
F18:Easom F19:Bohachevsky2 F20:Bohachevsky3 F21:53P-Function).

In fact, on the premise of guaranteeing the absolute global optimization ability, the conclusion
shows that DAF-BRS-CWOA spent less time seen from Table 4 and Figure 3, it is seen that all the
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improvement rates are positive and that means DAF-BRS-CWOA spent less time than WDX-WPOA
on all the 21 algorithms involved in this paper. Especially, it is worth mentioning that the
improvement rates on function “Ackley”” and “Eggholder” are both more than 30% and the value on
function “Bohachevsky3” is more than 20% as well as most of the functions are both more than 10%.
On the other functions, all the improvement rate are more than 5% and the worst improvement rate
reaches about 5.17%.

Moreover, in the optimization of the function 21 patrol path, DAF-BRS-CWOA is the algorithm
with the smallest path length, shortest time-spent, and smallest the length of the path among all
algorithms (PSO, GA, WDX-WPOA and DAF-BRS-CWOA) during 30 independent experiments.
DAE-BRS-CWOA has an absolutely small path length compared to GA and PSO. Compared to WDX-
WPOA, the DAF-BRS-CWOA has a certain improvement in time-spent, as shown in Table 3.
Therefore, DAF-BRS-CWOA has excellent performance in public security patrol path planning.

In a word, DAF-BRS-CWOA possesses excellent optimization accuracy, good stability, less time-
spent and quick peed of convergence.

5. Conclusions

The public security patrol path planning is very important in public security work, however, the
existing public security patrol path planning has some shortcomings to varying degrees. To address
these shortcomings, this paper proposes a public security patrol path planning recommendation
method based on an improved wolf-pack optimization algorithm, which mainly focuses on three
aspects. Firstly, Dynamic-Adjustment-Factor was introduced in WDX-WPOA to dynamically adjust
the number of airdropped wolves; Moreover, Balanced-Raid-Strategy with symmetric property was
proposed to improve the existing original strategy of Summon-Raid by not only examining the
reverse position of the current wolf, but also the ones generated according to certain rules between
the reverse position of the current wolf and the current optimal wolf; Finally, an optimization
objective function regarding the public security patrol path planning was abstracted and counted to
obtain the optimal recommendation for the public security patrol path planning. Comparative and
numerical experiments with four similar swarm intelligence optimization algorithms (PSO, GA,
WDX-WPOA and DAF-BRS-CWOA) on 20 public datasets and the proposed objective function RPB
Function were conducted and the results demonstrated that the DAF-BRS-CWOA has superior
performance.

Although the algorithm proposed in this paper is superior, there are still some shortcomings.
Such as shown in Table 3, DAF-BRS-CWOA spent more time than GA and PSO in 14 test functions.
And it is in function-21 that DAF-BRS-CWOA spent a considerable amount of time as well as the
results of each operation are not so stable due to the higher complexity, which confirms a principle:
no perfect standard that applies universally. The authors will continuously improve this algorithm
and make it play an increasingly important role in various different fields in the future work.
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