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Abstract: In this paper, we examine a nonlinear partial differential equation in complex time t and complex
space z combined with so-called Mahler transforms acting on time. This equation is endowed with a
leading term represented by some infinite order formal differential operator of irregular type which enables
the construction of a formal power series solution in ¢ obtained by means of a Borel-Laplace procedure
known as k—summability. The so-called k—sums are shown to solve some related differential functional
equations involving integral transforms which stem from the analytic deceleration operators appearing in

the multisummability theory for formal power series.
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1. Introduction

This work is dedicated to the study of a nonlinear initial value problem that combines partial
derivatives and so-called Mahler transforms with a leading term expressed by means of a formal
differential operator of infinite order, with the shape

Q(d2)u(t,z) = cosh(ap (t19;)?)Rp (3:)u(t,z) + P(t,z,t*7104, 8., {my, 1} e )ult, z)
+ Q1(92)u(t,z) x Q2(9z)u(t, z) + f(t,z) (1)

for prescribed vanishing initial condition #(0,z) = 0. The constituents comprising (1) are described
as follows.

. The constant ap > 0 is a positive real number and k > 1 is a given natural number.

e The elements Q(X), Rp(X), Q1(X) and Q»(X) stand for polynomials with complex coeffi-
cients.

o The expression P(t,z, V1, Vs, {W,2 } Le 1) represents a polynomial in t, V3, V3, a linear map in
the arguments W),, for I € I, where I denotes some finite subset of the positive natural
numbers N \ {0} and a bounded holomorphic function with respect to z on a horizontal strip
in C of the form Hg = {z € C/[Im(z)| < B}, for a given real number > 0.

e The forcing term f(t,z) embodies a polynomial function in t with bounded holomorphic
coefficients on Hpg.

*  Thesymbolm;, , is tagged as the Mahler transform and acts on time ¢ through

my, u(t,z) = u(t’z,z) (2)

foralll, € I.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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The operators (2) arise from the so-called Mahler equations which are linear functional equations

of the form
L k

L a(z)y(z") =0 ©

k=0
for some given integers | > 2, n > 1 and rational coefficients a;(z) € C(z). The study of these
equations is nowadays a very active field of research. Many authors have recently contributed
to the understanding of the structure of their solutions and have established bridges with other
branches of mathematics such as automata theory or transcendence results in number theory. For
the links with automatic sequences and the famous Cobham’s theorem, we refer to the seminal
paper [1] by B. Adamczewski and J.P. Bell. For Galoisian aspects and hypertranscendence results
related to (3), we refer to the recent work [2] by B. Adamczewski, T. Dreyfus and C. Hardouin.
The algebraic structure of the solutions involving so-called Hahn series has been investigated in
the series of papers [11,12] by J. Roques and [6] by C. Faverjon and ]. Roques.

Mixed type equations comprising Mahler and differential operators have been much less
examined, however recent substantial contributions show that they represent a propitious direction
for upcoming research. Indeed, the case of coupled systems of linear differential equations and
Mabhler equations of the form

xY'(x) = A(x)Y(x)
Y (x7) = B(x)Y(x)

where A(x), B(x) are n X n matrices with rational coefficients in C(x) and integer 4 > 2 are
considered in the work [13] by R. Schifke and M. Singer and the general form of their meromorphic

solutions on the universal covering C \ {0} are unveiled. In the paper [10], S. Ouchi addresses
functional equations containing both difference and Mahler operators of the form

m

u(z) + ) aju(z+ 2 9i(z)) = f(2)

=

for some integer p > 2, complex coefficients a; € C* and given holomorphic maps ¢;(z) and f(z)
near the origin in C. He establishes the existence of a formal power series solution i1(z) € C[[z]]
that is proved to be p—summable in suitable directions (see Definition 3 of this work or the
textbooks [3] and [4] for the definition of p—summability). More recently, in a work in progress
[14], H. Yamazawa extends the above statement to more general functional equations with shape

u(z) + L(u(z+2")) = f(2)

where L is a general linear differential operator of finite order with holomorphic coefficients on a
disc D,, with radius r > 0 centered at 0, for which formal power series solutions #(z) are shown
to be multisummable in appropriate multidirections in the sense defined in [3], Chapter 6.

The results reached in this paper are holding the line of our previous joint study [9] with A.
Lastra where we addressed the next nonlinear problem

Q(3:2)y(t,z,€) = exp(aetT™3)R(32)y(t,z,€) + H(t, €, {mire e, €17701,02)y(t, 2, €)
+ Qi(0:2)y(t, z,€) x Q2(9:)y(t,z,€) + f(t,z,€) (4)
for given vanishing initial data y(0,z,€) = 0. The constant « > 0 represents some well chosen

positive real number and g is taken in the open interval (1/2,1). Here Q, R, H, Q; and Q, stand
for polynomials and the forcing term f is built up in a similar way as above. The symbol 1y ; ¢, for

d0i:10.20944/preprints202412.0591.v1
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k € ] (where | stands for a finite subset of the positive real numbers R* ), is labeled as the Moebius
transform operating on time ¢ by means of

t

14 xet’ z,€).

My ey(t,z,€) = y(——

An additional dependence with respect to a complex parameter € € C* is assumed compared to
(1) which gives (4) the quality of a singularly perturbed equation.

For some suitable bounded sector 7 edged at 0 in C* and a set £ = {&p }o<p<. 1 of bounded
sectors edged at 0 whose union contains a full neighborhood of 0 in C*, we construct genuine
bounded holomorphic solutions y,(t,z, €) to (4) on the product 7 x Hg x &y, expressed through a
Laplace transform of order g and Fourier inverse transform

Foo U\ /=T du
yp(tz,€) = 1/2/ /La P(u,m,e)exp (— (et))g ijdm

along well chosen halflines Ly, = [0, +00)eV ~1% with d, € R, where w®" (1, m, €) represents a
function called Borel-Fourier map featuring exponential growth of order g on some sector containing
Ly, with respect to u, showing exponential decay relatively to m on R and relying analytically
on € near 0. Furthermore, the partial maps € — y;(t, z, €) are shown to share on the sectors £, a
common asymptotic expansion

7(t,z€) Zyntz

n>0

which represents a formal power series in € with bounded holomorphic coefficients y,, n > 0, on
the product 7 x Hg. This asymptotic expansion turns out to be (at most) of Gevrey order 1/4
meaning that constants C, M > 0 can be singled out with

N-1
N
sup |yp(tz,€) = Y yu(tz)e"| < CMNT(14 =) eV
tET,zeH5 n=0 q

for all integers N > 1, whenever € € &,,.
The leading term of (4) consists in a formal differential operator of infinite order with respect

tot,
UAYS
exp(aett1™1)R(3,) = ¥ @(tﬁlat)(mlz(az) 5)
p=0 :

where (£1119;)(P) stands for the p—th iterate of the irregular differential operator t7+19;. The
reason for the appearance of such a principal term with infinite order is triggered by the presence
of the Moebius transforms 1t ¢, x € |, which forbids leading finite order differential operators.

In the present contribution, our aim is to carry out a similar procedure by means of Fourier-
Laplace transforms in order to construct solutions to (1) and to related problems to (1). However,
the occurence of the Mahler transforms {my, ; };,c in the main term P of (1) modifies utterly the
whole picture in comparison with [9].

As a first major change, the choice of a principal term with shape (5) is now insufficient to
guarantee the construction of solutions to (1) in our framework. We supplant it by an exponential
formal differential operator of higher order

cosh(ap (#719:)*)Rp (32) = = (exp(ap(t19;)%) + exp(—ap (£718;)?))Rp (3z).

N —
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The reasons for such an option will be motivated later on in the introduction.

Under fitting conditions on the shape of our main equation (1) itemized in the statement
of Theorem 1, Section 5, we can construct a formal power series #(t,z) = }_,>1 ux(z)t" whose
coefficients u,, n > 0, are bounded holomorphic on H B which solves (1) with vanishing initial
data 71(0,z) = 0. This formal series is built up through a Borel-Laplace method similar to the
classical k—summability approach discussed in [3], that we call m—summability, whose basic
results are recalled in Subsection 3.2.1. It means that we can exhibit analytic maps u%(t,z) on
products S; 9 r X Hpg where S; 4 r stands for a bounded sector edged at 0 with some small radius
R > 0, well chosen bisecting direction d € R (among a set ©¢ g, explicitely depicted in Lemma 2)
and opening ¢ slightly larger than 71/k, such that

e the map u“(t,z) is expressed as Fourier-Laplace transform
k oo T /am AT
d _ d k -1
! <t,Z) B (27-()1/2 /;oo /de <T,m> exp(_ (?) )e - T dm

where w?(t,m) is called the mj—Borel transform of #(t,z) with respect to t (see Definition 3)
which

—  defines an analytic map with respect to T with (at most) exponential growth of order k
on a union Dy US4, where D, is a disc with small radius p > 0 and S; is an unbounded
sector bisected by d, edged at 0 with small aperture,

- represents a continuous function relatively to m on R with exponential decay at infinity.

*  the partial map t — u?(t,z) is the unique holomorphic map on S; 4 g which has the formal
series 7(t,z) as asymptotic expansion of Gevrey order 1/k, meaning that one can find two
constants C, M > 0 for which

N-1
sup [u9(,2) — Y un(2)t"| < CMNT(1 4+ )N
zeH =1 k
ﬁ n

holds for all integers N > 2, provided thatt € S; 4 r.

Another substantial contrast between the problems (1) and (4) lies in the observation that the
holomorphic maps u%(t,z) do not (in general) obey the main equation solved by #(t,z) (see the
concluding remark of the work). Instead, u4(t, z) is shown to solve two different related functional
differential equations (225) or (226) depending on the location of the unbounded sector S; in C,
see Theorem 2 in Section 5.

In Subsection 3.2.2, we show that the action of the Mahler operator my, ;, for I > 2, on the
formal series 7i(t,z) is described by some integral operator acting on its m—Borel transform
T wd(T, m),

. o
By (@) () i= — L2 /

d I
2\/?7'[ /7£ 0 w (gl m)]D)k,% (CI T )dé (6)
Iy’

along a closed Hankel path 4 & o confined nearby the origin in C. These operators are derived
5

from a version of the analytic deceleration operators introduced by J. Ecalle, which turn out to be the
inverse for the composition of the so-called analytic acceleration operators which play a central role
in the theory of multisummability, see [3], Chapters 5 and 6. As shown in Proposition 7, it comes
out that the kernel 7 — I £ (& 1'2) appearing in (6) has (at most) an exponential growth rate of
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5
order lzk%l on the sector S, which implies that the analytic map T — Dy, Iy (wh)(72) itself owns
upper bounds of the form

iy
C(m) exp(K|z|27") )

provided that T € S, for some constant K > 0 and map m — C(m) with exponential decay on
R, see Sublemma 1 and 2. As a result, the presence of an infinite order operator with the shape
cosh(ap (£19;)?) in the leading term of (1) seems mandatory since it acts in the Borel plane on
T+ w?(t,m) as the multiplication by the map 7 + cosh(ap (k7¥)?) whose exponential growth
rate on the sector S, is of order 2k which exceeds lzk%, for I > 2, and compensates the bounds (7).
Furthermore, we have favored the cosh function instead of the exponential function exp since it
allows a larger choice of sectors S; in both the left and right halfplanes C_ = {z € C/Re(z) < 0}
and C; = {z € C/Re(z) > 0}.

The exceeding growth rate (7) coming from the action of the Mahler operator m;, ; in the
Borel plane also compromises the m;—sum u?(t,z) of #(t,z) to become a genuine solution to
(1) since only functions with (at most) exponential growth of order k are Laplace transformable.
However, we can exhibit some modified functional equations displayed in (225) or (226) involving
the analytic transforms (6) that u“ is shown to obey.

2. Layout of the Main Initial Value Problem

The main problem under study in this work is described as follows

Q(d,)u(t,z) = cosh(ap (£+19:)?)Rp (3. )u(t, z)
+ Y a@) (P ()R (9:)u) (7, 2)
l:(lo,ll,lz)E.A
+00,0,Q1(9:)u(t, 2) x Qa(d:)u(t,z) + f(t,z) (8)

for given vanishing initial data #(0,z) = 0. Below, we display a list of conditions we set on the
building blocks of (8). Namely,

—  The constant k > 1 is a natural number. We set ap as a positive real number and cg, o, € Cc*
stands for a non vanishing complex number. Constraints will be set on these constants that
will be disclosed later on in the work, see Proposition 9, Section 4.

—  Theset A represents a finite subset of N> which is asked to fulfill the next record of restrictions.

1. Foralll = (Ip,l1,12) € A, the next inequality

L <k 9
holds.
2. Provided thatl = (I, I1,1) € A, the next constraint
k
2

is required.

- The maps Q(X), Rp(X), R;(X) forl € A along with Q;(X) and Q>(X) are polynomials with
complex coefficients. Their degrees are required to obey the next inequalities

deg(Q) = deg(Rp) > deg(R)) (11)

d0i:10.20944/preprints202412.0591.v1
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for all [ € A. In addition, we impose that

deg(Rp) > max (deg(Q1), deg(Q2))- (12

Besides, the next technical assumption of geometric nature is set on the polynomials Q(X)
and Rp(X). We ask for the existence of a bounded sectorial annulus

Sorp ={z € C"/rorp1 < |zl < rQrp2 , larg(z) —dorp| < Morpyt (13)

with bisecting direction dgr,, € R, aperture 17, > 0 and with inner and outer radii
0 <rQRrp1 < TQRp,2 fulfilling the inclusion

Qv —1m)
Rp(v—1m)
Precise requirements on the shape of the sectorial annulus Sg r,, will be exposed later on in

Section 4, see Lemma 2.
- The differential operator of infinite order cosh(ap (t*+19;)?) is defined as the sum

{ /meR} CSor,- (14)

cosh(ap (£719;)?) = (exp(sz(tkHat)z) +exp(—¢xp(tk+1at)2)), (15)

N —

where each term is defined as a formal expansion

p
exp(:l:tXD(tk+1at)2) _ Z @(tk+1at)(2p)

p=>0

where (#119;)(2P) stands for the 2p-th iterate of the differential operator t*+1;.

In order to describe the properties of the coefficients a;(z) for I € A and forcing term f(t,z), we
need to recall the definition of some Banach space of continous functions introduced in the work
[5] and the action of the Fourier inverse transform on these spaces. The next two definitions
already appear in the work [7].

Definition 1. Let B, j be positive real numbers. We set Eg ) as the vector space of continuous functions
h : R — C such that the norm

[1h(m) ] g0y = 512;(1 + |m[)! exp(Blm|)[h(m)]

is finite. We observe that the space E g, equipped with the norm ||.|| (g, represents a Banach space.
Furthermore, for given elements f, g of Eg ), let us denote

(F8)(m) = Tz [ Flm = m)g(m )iy 16

the convolution product of f,g. Assume that y > 1. Then, f * g belongs to E g ) and the next inequality

f*8llgu) < Cull g8l B

holds for some constant Cy, > 0 relying on . In particular, the Banach space (Eg ), ||-||(p ) equipped
with the product * turns out to become a Banach algebra.
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Definition 2. Let f € E(g ) with p > 0, p > 1. The inverse Fourier transform of f is given by the next

integral transform
1 +

FYUHx) = @i |- oof(m)exp(\/—ilxm)dm (17)

[e9)

for all x € R. We observe that the function F~1(f) extends to an analytic bounded function on all strips
Hy = {z € C/[Im(z)| < B}, (18)

for given 0 < B/ < B.
a) We set the function m — ¢(m) = /—1mf(m) which belongs to the space E(g,_1). Then, the next
differential identity

RF 1 (f)z)=F 1¢)(z) (19)

occurs for all z € Hg with 0 < B/ < B.
b) Let g be an element of Eg ) and set § as the convolution product of f and g given by the expression
(16). Then, the next product formula

FUH@DF )@ =F 1)) (20)
holds for all z € Hg provided that 0 < ' < B.

—  The coefficients a;(z) are crafted as follows. For all ] € A, we consider maps m — A;(m) that
belong to the space E 4 ), for given > 0 and where y > 0 is subjected to the conditions

p>deg(R)+1, p>max(deg(Qi)+1,deg(Qz)+1) (21)

for all I € A. For later use, we denote

A= [[Adl g (22)
The upper size of A; will be fixed later in due course of the paper, see Proposition 9, Section
4. We set , N
_ * VI

as the inverse Fourier transform of m +— A;(m). From Definition 2, it defines a bounded
holomorphic function on all the strips Hg for any prescribed 0 < g’ < .

—  The forcing term f(t,z) is built up in the next way. Let ] € N* be a subset of the positive
natural numbers. For j € ], we mind a map m — F;(m) which belongs to the space E(g ) for
the real numbers > 0 and y > 1 satisfying (21) given in the previous item. We introduce
the notation

Fi = | Fillg ) (24)
for j € J. The forcing term f(t,z) is defined as the next polynomial in ¢
ft2) = L EETG/0Y (25)
j€l
where
+o0

—  The symbol I'(x) stands for the classical Gamma function I'(x) = [;" t*~le~!dt, for
any x > 0.
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8
—  The coefficients Fj(z), j € ], are the inverse Fourier transforms
1 T =

of ;. From Definition 2, z + F;(z) defines a bounded holomorphic map on any strip
Hﬁ’ with 0 < ﬁ/ < B.

We introduce the next polynomial in the variable T with coefficients in Eg ),

F(t,m) = Z}"j(m)rj. (27)
IS

According to the definition of the Gamma function, we observe that the forcing term f(t,z)
has an integral representation as a Laplace transform of order k and inverse Fourier integral

k oo e
f(t,z) = (27I)1/2/Ld1 /_oo F(t,m)exp (— (%)k)eﬁ %dm (28)

where Ly, = [0, —|—oo)eﬁd1 stands for any halfline in direction d; € R that depends on the
variable f through the restriction cos(k(d; — arg(t))) > 0. Such a representative will be useful
in the next section 3.

3. Reduction of the Main Problem to an Integral Equation

In this section, we perform two important reductions of our initial value problem. In the first
subsection, we reduce our problem to the study of a differential /convolution equation involving
Mahler transforms by means of a Fourier transform. In the second subsection, we further reduce
the problem to an integral equation through the application of formal Borel/Laplace transforms
of order k. This second reduction is essential in the achievement of our first main result, Theorem
1 in Section 5.

3.1. First Reduction to a Differential/Convolution Equation with Mahler Transforms
We search for solutions to (8) in the form of an inverse Fourier transform

—+0c0
u(t,z) = (2771)1/2/00 U(t,m)eﬁzmdm (29)

for some expression U(t, m) such that the partial maps m — U(t,m) belong to the space E g
for B, 4 > 0 prescribed in Section 2. The precise shape of U(t, m) will be unveiled in the next
subsection. With the help of Definition 2, we reach the next
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Proposition 1. The integral expression u(t,z) given by (29) formally solves (8) if the map U (t, m) obeys
the next differential/convolution equation comprising Mahler transforms

Q(\/jlm)U(t, m) = COSh(aD(thrlaf)Z)RD(\/jlm)U(t, m)
+l:(10%2)6/1 (27:)1/2 /_t:o Ay(m = my) (£ (519U (¢2, my )Ry (V/—Tmy )dimy

+ CQle(an)l/z /_J:O U(t,m — m)Qq (v —=1(m — my))U(t, m1) Qo (V—Tmy )dmy

+ Y Fi(m)T(j/k)¥  (30)
jer

for given initial data U(0,m) = 0.
3.2. Reduction to an Integral Equation
We seek for a solution to the reduced equation (30) expressed as a formal power series

m) = Y Uy(m)t" (31)

n>1

in the time variable t with coefficients m +— Uy, (m) that belong to E(g ) for B, > 0 assigned in
Section 2. In the next two subsections, we provide the required prefatory material for our second
step of reduction.

3.2.1. Essentials on Banach Valued m;—Summable Formal Power Series

The objective of this subsection is to remind the reader the notion of 7 —summability and its
basic properties as decribed in our previous work [7] which is a slight adjustment of the concept
of k—summability discussed in the textbook [4].

Definition 3. Let (E, ||.||g) be a complex Banach space. We select an integer k > 1 and define the sequence
my(n) =T(n/k), forall n > 1. A formal power series

U(t) =) ant" € tE[[t]]

n>1
is called my—summable with respect to t in the direction d € R if

*  The so-called formal my—Borel transform of U(t) defined by the power series

By () (7) = ) WT € tE[[7]] (32)

n>1

is convergent on a disc D, for some p > 0.
o The convergent series By, (U)(T) can be analytically continued with respect to T (as a function still
denoted By, (U) (7)) on some unbounded sector

Sis ={te€C"/|d—arg(1)| <4}

with aperture 26 and bisecting direction d € R. Moreover, two constants C > 0 and K > 0 can be
found such that

1By () ()| |2 < CeXIT (33)
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forall T € Sy5.

Let U(t) be a my—summable formal power series with respect to t in a direction d. We define the Laplace
transform of order k in direction d of the my—Borel transform By, (U) () by the integral transform

T

L5, (B (I)) (1) = k | B (U)(7) exp (= (;)")

dt

po (34)

along a halfline L, = [0,400)eY =17 C S;5U {0}, where -y relies on t and matches the inequality

cos(k(y —arg(t))) > Ay for some constant Ay > 0.
The function t — E%k (B, (U))(t) is bounded holomorphic on any bounded sector

Saorik = {t€C*/|t] <RVK | |d—arg(t)| < 6/2} (35)

zghere F<0<F+20and0 <R < %, for K appearing in (33). This function is called the my—sum of
U(t) in the direction d.

The above definition of m;—sum of a formal power series is justified by the next proposition
(see also Proposition 11 p. 75 from [4] known as Watson’s Lemma)

Proposition 2. Let U(t) be a my—summable formal power series with respect to t in some direction d.
Then, the Laplace tmnsform t— Lfnk (B, (U))(t) is the unique holomorphic map on S, g r1/k Which has
the formal power series U(t) as asymptotic expansion of Gevrey order 1/k with respect to t on S, g pi/x
for any given opening 6 under the condition 5 < 0 < T +20. It means that one can find two constants
C, M > 0 for which the next inequality

N-1
122, (B (C)(5) = Y apt?|[x < CMNT(1+ 2y N (36)

p=1 k
holds for all integers N > 2, all t € S g p1/k-

In the next proposition, we recall some crucial identities for the formal m—Borel transform
under the action of differential operators of irregular type, multiplication by a monomial and
products (see Proposition 6 from [7]).

Proposition 3. Let (E, ||.||g) be a complex Banach algebra whose product is denoted *. Let k,1 > 1 be
natural numbers. Let Hj(t), j =1,2, be elements of tE[[t]]. The next formal identities hold

B (10,001 (1)) (1) = ke B (01 (1),

k T ] N S
B (M (1)(7) = 7 | (7 =9 B ()6,
B ((h (a0 (7) = [ B (00) (7 = )1/4) B (0) /%) s (37

where in the last formula, the product of formal power series is built up by means of the product * in the
Banach algebra E.
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In the next proposition, we provide the counterpart of the above proposition for the action of
differential operators of irregular type, multiplication by a monomial and products for mj—sums
of formal power series. Its proof is similar to the one given for Lemma 2 of [9].

Proposition 4. Let (E,||.||g, *) be a complex Banach algebra. Let k,1 > 1 be natural numbers. We
consider U](t), j = 1,2, two elements of tE|[t]] that are assumed to be my—summable in some direction

d € R. Forj=1,2, we set
dt

T

—k/w] Jexp (— ())

the my—sum of I:Ij(t) in direction d, where w;(T) denotes the my—Borel transform of l:lj(t). The next
identities hold whenever t € S g p1/x provided that 6 > 7/k and is taken close enough to 7t/k and the
radius R > 0 is chosen in the vicinity of the origin,

#HaUL ) = k [ (ko) exp (- (),
koot I E
0= (g - w31

dt

() =k [ {2 [* (et = (s dspexp (— (1)), (9)

o
(tk —s)s
where in the closing formula, the product of E—valued functions is built up by means of the product * of
the algebra IE.

3.2.2. Action of the Mahler operators on formal ;. —Borel transforms

The aim of this subsection is twofold. We first derive a formula describing the action of the
Mahler operators on formal 11, —Borel transforms for formal power series through so-called formal
deceleration operators. Then, for later use in Section 3.2.3, under some additional assumptions, we
provide an integral representation of these deceleration operators constructed with the help with
some kernel function. At last, we provide some important analytic features of this kernel function.

The next definition is a slightly modified version of the deceleration operators defined in the
textbook [3], p. 46.

Definition 4. Let (E, ||.||g) be a complex Banach space. Let 1 < k < k' be two rational numbers. We
define the (K, k) —deceleration operator Dy i from TE[[7]] into hE[[h]] by the formula

k/
Dy i =¥ fT ("// : (39)

n>1

for all elements f(T) = Y51 faT" of TE[[7]].

Remark: This formal deceleration operator Dy, turns out to be the inverse for the composi-
tion of the so-called acceleration operator Ay  acting on formal series f(7) = ¥,~1 fu7" through

‘A Zf” n/k’

n>1

introduced in the paper [8], Section 4.3, by A. Lastra and the author and which stands for an
adjusted version of the classical acceleration operators as defined in [3], Chapter 5.
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The next proposition discloses a formula for the formal m —Borel transform under the action
of a Mahler operator.

Proposition 5. Let (E, ||.||g) be a complex Banach space. Let p > 2 and k > 1 be natural numbers with
k > p. Let U(t) be an element of tE[[t]]. We set V(t) = U(t) the element of tE[[t]] obtained by applying
the Mahler operator t +— tP to U (t). The next identity holds

By (V)(7) = Digyp (B (1)) (") (40)
Proof. Let us expand U as U(t) = ¥,,>1 unt". Hence, V(t) = U(tP) = L,>1 unt?". According to
the first item of Definition 3, we observe that
TP
(%)

On the other hand, the m;—Borel transform of U writes By, (U)(T) = ¥,1 unT" /T (n/k) and by
Definition 4, we deduce that

By (V)(1) = }_ un

n>1

(41)

—

Diksp(Bu (U))(h) = Y (42)

=
=
~
=
—
”T
\\/M

L
k

At last, the combination of (41) and (42) yields (40). O

In the next proposition, we display an integral representation for the (k’, k) —deceleration
operator Dy under further assumptions on its source space.

Proposition 6. Let (E, ||.||g) be a complex Banach space. Let 1 < k < k" be two rational numbers. We
consider an element f () of TE[[t]] which is assumed to be convergent on some disc Dy with p > 0. For a
given h € C*, we attach the next two items.

*  We choose a direction 7y;, € R and a positive real number Ay > 0 such that
cos(K (7 — arg(h))) > Ar. (43)

*  We consider the so-called closed Hankel path denoted ¥y j, depicted as the union of

- the oriented segment Y1 = [0, (0/2)e VIt f+y )]

—  the oriented arc of circle’
Yins = V6 & T 7
Tions = (p/2)eY " 0/0 € [+ o+ 5o — 5 — 51}

—  the oriented segment Yy ;> = [(p/2)em(7h—z%—§7), 0]
where ' > 0 is a positive real number taken close to 0.

Then, the (k', k) —deceleration operator @k’,k has the following integral representation

K'k

Dy i(f) () = 2v/=1n Jy,

F@)Dy k(& h)dg (44)
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forall h € C*, where the kernel Dy (¢, h) is expressed by means of the integral
1 u u.
Dy ,h:—/ k- 2= () 45
&) = oop [, e ()" () )

along a the halfline L, = [0, +m)em7h,

Proof. Let h € C*. At first, from the very definition of the Gamma function, we observe that for
all natural numbers n > 1, we have the next integral form for the monomial

T /KW =K [ wexp (= (1))

Ly, h

du

” (46)

along the halfline L, given in the statement of the proposition 6.
Owing to Proposition 12 from [8] and based on the so-called Hankel formula (see [4], Ap-
pendix B.3), we can rewrite the next monomial in an integral form
u" k k

_ n gy U
TR~ ay=in I, & P ()

(47)

along the Hankel path %y detailed in the second item of Proposition 6, for all u € L, .
As a result of (46) together with (47), an application of the Fubini theorem yields

F(Tl/k,)hn 1/ un E

/ du
T(n/k) T(n/k) <P (@)%

u

L"Vh

' k , u Uk Y

=k /Lw, (_ 2/ —1n '7k,h§ exp ((E)k)@dé‘) exp (— (ﬁ>k)7
Kk L1 4

— _2\/j1ﬂ Ak,h(: F(/LW ukexp((%yf_(%)k)?u)dg (48)

h

At last, the definition of ﬁk/,k( £ (h) given in (39) combined with the integral representation (48)
and the uniform convergence of f (7) on the disc D,,/, gives rise to the formula (44) and (45). O

In the forthcoming proposition, we provide crucial technical upper bounds for the kernel
Dy i that will be used in the next Section 4, Proposition 9, Lemma 5 and Lemma 6.

Proposition 7. 1) There exists a constant My y > 0 (depending on k, k') such that the next upper bounds

K2
-

My = ho
s exp (| I") (49)

Dy h| < ——

h

k1 Z
|
hold for all h € C*, all { € %y, provided that || < |h|, where

kk'

K:k/_k.

(50)
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Observe that k > k since k' > k.
2) There exists a constant My i1 » > 0 (depending on k, k') such that the upper estimates
Dy s(E ] < Mol &)
k,k 4 — k,k,1,2k|€|k+1

hold for all h € C*, all & € g p1 01 & € Fpo-

Proof. We first express Dy, as a Laplace transform in the combined variable (/1/¢). Indeed,
we make the change of variable u = ht'/¥ in the integral (45) for the variable t belonging to the
halfline L,/ = [0, +00)e¥ 17 with

¥y = k(v —arg(h)) (52)
which yields
_ 1 k-1, k1 Bk, iyt 1 h ok
Dy (8 1) = C"“</L7;1h tx eXP((E) t—t )%t" dt = Wk Dk//k((g) ) (53)
where
Dy /i (2) :/L exp(—t*/%) exp (zt)dt. (54)
”

In the next lemma, we derive some analytic features and bounds estimates for the Laplace integral
Dk//k.

Lemma 1. a) The map z — Dy /i(z) is an entire function in C. Moreover, one can single out some
constant My . > 0 such that

_k_ K
Dy /i (2)| < My je|z| % exp (|z|¥F) (55)

forall |z| > 1.
b) For some fixed constant Ay > 0 and the direction vy, given in (52), we consider the sector

Sy, = {z € C*/ cos(arg(z) + v, < =02} (56)
Then, there exists a constant My .1, > 0 (relying on k, k', A1, Ay, where Ay stems from (43)) such that
D /k(2)| < My 12 (57)

forallz € S'ri,,Az'

Proof. We discuss the first point a). From the Taylor expansion e* = Y, -,(zt)"/n! which
converges uniformly on any compact subset of C, we deduce that

Dp/i(z) =) O g (58)

!
o

for any z € C, with
ap :/ " exp(—tk//k)dt , n>0.
L.,
"h
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We make the change of variable s = t¥/¥ in the above integrals defining a, and get by definition
of the Gamma function that

k k(n41)-1 - ko k
a, = PA . Sk (n+1) e °ds = PF(E(H‘F 1)) (59)

for all n > 0, where vy} = k'(7;, — arg(h)). Combining (58) with (59) yields the expansion

k
o7 (n+ 1))
Dk’ k k Zn (60)
/ EO k’ T(n+1)
for all z € C. On the other hand, from the Beta integral formula (see [4], Appendix B.3), we remind
that r@re) _ [
x
B -l < 61
Faxg = b0 < (61)

for all real numbers «, 8 > 1. From (61) we deduce that

I(&F(n+1)) - 1
Fn+1) “T(A-gFn+0-5))

(62)

for all n > nysy, for some integer ny , > 1 depending on k,k’. As a result of (60) and (62), we
obtain a constant Cy , > 0 such that

D /k(2)] < G |z|" (63)

o (1= g)n+ (1))
for all z € C. Now, we call to mind some upper bounds for the so-called Wiman function

n

Enp(x) =) T(an+ p)

n>0

for prescribed « € (0,2) and B > 0 mentioned in our previous work [8], Proposition 1. Namely,
some constant K, g > 0 can be found such that

Eup(x) < Copr = e (64)

for all x > 1. At last, from (63) and (64), we deduce that awaited bounds (55).
We focus on the second point b). According to the lower bounds (43) and the definition (56)

of the sector 57;1, a,» We reach a constant My x 1 » (depending on K',k, A1 and A;) with

+o0 ,
Dy /i (2)] < /0 exp (— K7k cos (k' (77, — arg(h)))) x exp (|z|rcos(arg(z) + 7;,))dr
—+o0 ’
S/ exp(—rk?Al)exp(—|z|rA2)dr < Mk (65)
0

forall z € S’ri,Az' O

We turn to the first point 1) of Proposition 7. We observe that the inequality (49) is a straight
consequence of the factorization (53) and the upper bounds (55).
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We address the second point 2) of Proposition 7. We first observe by construction of ¥y j, 1
and 9y j, » in the second item of Proposition 6, one can find a constant A > 0 such that

cos(k(yy —arg(¢))) = cos(arg((1/€)")) < —4, (66)

for allu € L,,, provided that € ;1 or { € i 2. Besides, for Ay > 0 chosen as in (66), we
remark that
(h/E)F €Sy a, (67)

forall ¢ € 4y 1 U Frpo- Indeed, (67) is equivalent to
cos(arg((1/&)*) + k(v —arg(h))) < =4

which can be rewritten as (66).
At last, we conclude that the bounds (51) can be derived from the factorization (53) and the
upper bounds (57) taking for granted the inclusion (67). O

3.2.3. Statement of the Integral Equation

In this subsection, we denote
W(t,m) = By, (t — U(t,m))(7) (68)

the formal my—Borel transform of the formal power series expansion (31). The object of this

subsection is the derivation of some integral equation fulfilled by the formal power series (68) seen

as a series with coefficients in the Banach space E = E(g ,,y endowed with the norm ||.||[g = [|.|[ (4 ,,)-
In this subsection, we make the assumption that

W e Eg, (T} (69)

meaning that T — W(t, m) is convergent on some disc D, withp > 0asa E(g ) —valued series.
We will see in Section 4, where a solution of the integral equation (72) will be constructed in some
function space, that this assumption will be satisfied.

In order to improve the legibility of the equation that W(t,m) is asked to solve

. We introduce the notation

A Tk ™ I A ds
Crio, (W) (T, m) := W/O (Tk — 5)19 1(ks)hW(sl/k,m)? (70)
for all integers Ip > 1,11 > 0.
o We define the map
Pu(t) = Q(v/—1m) — cosh(ap (kt)*)Rp (v —1m) (71)

forallT € C,allm € R.

Based upon the transformations formula (37) harked back in Proposition 3 and the formal
identity for the Mahler transforms reached in (40) of Proposition 5 together with the integral
formula (44) derived in Proposition 6 under our assumption (69), we arrive at the next proposition.
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Proposition 8. The formal power series U (t, m) given by (31) solves the equation (30) for vanishing initial
data U(0,m) = 0 if the convergent formal series W (T, m) given by (68) obeys the next integral equation

N 1 +oo ~
Pu(0)W(t,m) = Y Eiﬁﬁf/n Ag(m — ) (RTYYW (7, my )Ry (v/— Ty )iy
I1=(Ip,l1.,lp) €A —®
lo=0,l,=1

1 +o0 A
ok (2m)1/2 / Ay(m —my)Cy o, (W) (T, m1) Ry (v =1y )dmy
1=(Ipl1.1p)€A ( 7-[) —00
lp>1,l,=1

sy B (27r1)1/2 /::0 Ayl =) (- zf/zﬁlzn /

I=(lp/1.12) ,77’&,112
lp=0,>1 2

(k) W (& m)D . (6, 7)d¢

X RL<\/ —17111)[1”11
1

+oo k2/12 R l
+ 7/ Ay(m —mq)( — / Crro, (W) (&, m)D, & (&, T2)dE
z:ao,zlz,w @m)1/2 Jeo - ( 2V —1n Thar ki )

1021,12>1

X Ry(v —1my)dmy

k

+CQ1Q2(27T1)1/2/+00 (Tk/OT W((Tk—S)l/k,m—ml)Ql(\/jl(m—ml))

—00

X W(sl/k,ml)Qz(ﬁml)Mds)dm1 +Y Fi(m)v (72)
j€]

4. Solving the Integral Equation in a Banach Space of Functions with Exponential Growth on
Sectors and Decay on the Real Line

In this section, we investigate the existence and unicity of a genuine solution to the above
integral equation (72) in the Banach space of functions described in the next definition

Definition 5. Let S; be an unbounded sector edged at 0 with bisecting direction d € R. Let v,p > 0 be
positive real numbers. We consider the natural number k > 1 and B, u > 0 the real numbers prescribed in
Section 2. We denote Fg// B1kp) the vector space of continuous functions (T, m) — h(t,m) on the product
(54U Dp) x R, which are holomorphic with respect to T on the union Sy U Dy, for which the norm

ol LTI K
(T m) | p,0k0) = ,Sup R(1+|m|) e ] exp(—v|t[")[h(T,m)| (73)
TE dU p,?ﬂE

is finite. The space F?

(v,B.0)0) equipped with the norm ||.|

(v,B k) turns out to be a complex Banach space.

These Banach spaces appear for the first time in the previous paper [7] by A. Lastra and the
author.

Our strategy consists in rewriting our main integral equation (72) as a fixed point equation
(see (195) below) for which a solution can be constructed in the above Banach space given in
Definition 5 for well adjusted parameters v and p. In order to recast (72) into (195), we need to
divide both sides of (72) by the map P, (7) given in (71) provided that the Borel variable 7 is taken
in the vicinity of the origin and along a well chosen unbounded sector, given that the fourier mode
m is ranged over R.

In the next lemma, we provide some crucial lower bounds for Py, (7) on fitting unbounded
domains.


https://doi.org/10.20944/preprints202412.0591.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2024 d0i:10.20944/preprints202412.0591.v1

18

Lemma 2. Provided that the aperture ng r,, > 0 of the sector Sg g, diplayed in (13) and that the difference
1"Q,Rp1 — TQ,Rp,2| Of the inner and outer radius of Sq r,, are taken small enough, there exists a non empty
subset @q g, of [—71, ) and a small radius p > 0 with the next features:

* Foralld € Og,, one can select an unbounded sector Sy edged at 0 with bisecting direction d.
*  To the above chosen sector Sy, one can attach two constants &g, o, > 0 (relying on Sy, k and ap),
As, k> 0 (depending on S; and k) with the following lower bounds

|Pu(T)| = [Rp(V/=1m) 05, kap, exp(apk?As, k| T|*) (74)
forall T € S4UD,, allm € R.

Proof. Forall m € R, we set H(m) = Q(v/—1m)/Rp(+/—1m). In a first step, we need to find the
complex solutions of the equation

cosh(X) := ————— = H(m). (75)
We notice that this equation (75) is equivalent to
(eX)2 —2¢XH(m) +1=0. (76)

If one sets the quantity

§(m) = |H?(m) — 1|2 exp (ﬁw) 77)

for all m € R, then (76) has two infinite sets of solutions {a;(m)},cz and {b;(m)};cz given by
explicit expressions

a)(m) = log | H(m) + 8(m)| + v/~ (arg(F () + 6(m)) +21n) 79)
foralll € Z and m € R with
by(m) = log |H(m) — 8(m)| + v/~ L(arg(H (m) — 6(m)) + 21n) 79)
foralll € Z and m € R. Namely, owing to the relation
(H(m) — (m))(H(m) + 6(m)) = 1

for all m € R, we observe that both expressions (78) and (79) are well defined since H(m) — &(m)
and H(m) + 6(m) are not vanishing quantities and furthermore that the next symmetry occurs

b_i(m) = —a;(m) (80)

for all integers I € Z and m € R.
At the next stage, we describe the complex solutions of the equation

cosh(apk*t?) = H(m). (81)
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From the above discussion, we deduce that the complex zeros of (81) are given by the union of the
roots of the next algebraic equations

apk?t? = a;(m) (82)

with
apk®t?* = b;(m) (83)

for alll € Z. For each I € Z, the 2k distinct roots of (82) are given by

1a0m) = |40 | xp (=B 1 7 en

and the 2k distinct roots of (83) are expressed through

1
ongom) = |2 exp (L) 2 85)
forall0 < h < 2k —1, all m € R. Furthermore, we notice the symmetry relations —1,;(m) =
Ttk (m) with —vy, ;(m) = vy (m) provided that 0 < h < k, for any given ! € Z and m € R.
Bearing in mind from (14), that H(m) belongs to the sector S g/, for all m € R, provided that
the aperture 7o g, > 0 of Sg r,, and the difference |rgr, 1 — 7o rp2| are chosen small enough,
there exist directions d € R for which an unbounded sector S; edged at 0 with bisecting direction
d can be singled out in a way that

SaN ({m(m)/0<h<2k—1,1€ZmeR}U{v,(m)/0<h<2k—1,1€ZmecR})=0Q.
(86)
For later use, we choose the sector S; with the further assumption that for all § € R such that
eV 10 ¢ S,4, the next condition
cos(2k0) # 0 (87)

holds. We denote O g/, the set of all directions d in (—7t, 7r) for which sectors S; can be selected
fulfilling the above two features (86) and (87).

Now, we explain which constraints are set on the radius p > 0. Provided that p > 0 is chosen
close enough to 0, one can choose a small radius 77; > 0 such that

cosh(apk*t%) € D(1,11) (88)

for all T € D,, where D(1,1;) stands for the disc centered at 1 with radius 77;. Then, we select the
sector Sg g, in a way that
SQ,RD ND(1, 171) = Q. (89)

For the rest of the proof, we choose a sector S; for d € Og g,, and a disc D, as above.

We first come up with lower bounds for the map Py, (1) on the domains (S; U D) N Dg, for
any prescribed large radius R > 0. Namely, we factorize Py, (7) in the form

Pu(T) = Rp(vV/—1m) x [H(m) — cosh(apk>7?)] (90)
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forall T € S;U Dy, all m € R. Owing to the constraints (86), (88) along with (89) and according to
(14), for each given radius R > 0 (as large as we want), we can find a constant §; > 0 such that

|H(m) — cosh(apk®t?)| > & 91)
for all S; U D, with |T| < R. Combining (90) and (91) yields lower bounds of the form
|Pu(T)| = [Rp(V/=1m)]éy 92)

forallt € (S4UD,) N Dg and m € R.

In the last part of the proof, lower bounds for large values of || on S; are exhibited. We write
T € S;in the form T = reﬁe, for radius r > 0 and angle 6 € R. Then,

Re(apk?t?) = apk?r* cos(2k0) (93)

According to our choice of S; subjected to (87), two cases arise.

Case 1. There exists a constant Ag, ;1 > 0 (depending on S; and k) such that
cos(2k0) > Ag, k1 (94)
forall 6 € R witheV=1¢ € 5. We perform the next factorization
cosh(apk?1%¥) = exp(apk?t%) x [% + %exp(—thDkZTZk)] (95)
which allows us to rephrase the next difference as a product
cosh(apk?t®) — H(m) = exp(apk*t%) A(t, m) (96)

where

1 1
A(t,m) = [E +5 exp(—2apk*t™)]
x [1— H(m) exp(~apk™) x [% + %exp(—ZaDkZTZk)]_l] ©97)

forall T € S;, m € R. According to (94), we note that
|exp(¢ka2T2k)| = exp (szk2r2k cos(2k8)) > exp (DchzAsd,k,1|T|2k) (98)

whenever T = reV 1 € S;. Besides, observing that limy 7, oo | exp(—apk?t?*)| = 0 and keeping
in mind that rg g, 1 < |[H(m)| < rgrp2, forallm € R, we get some constant Ag, i ,,, > 0and a
radius Ry > 0 (large enough) for which

|A(T/m)| Z Asd,k,DLD (99)

forall T € S; with |t| > Ry and all m € R.
Eventually, in gathering the factorizations (90) and (96) together with the lower bounds (98)
and (99), we arrive at the lower bounds

|Pu(T)| > |Rp(V—=1m)|Ag, kap, €XP ("‘DszSd,k,l|T|2k) (100)
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provided that T € S; with || > Ry and m € R. At last, combining these last bounds (100) and (92)
for R = Ry, we arrive at the awaited lower bounds (74) for some small constant s, x ,, > 0 and

ASd,k = ASd,k,l *

Case 2. A constant Ag, x> > 0 (depending on S; and k) can be singled out for which
cos(2kf) < —Ag, k2 (101)
holds for all § € R with eV~ 1 € S4. In that case, we do factorize
2ok 2 2ky L1 2ok
cosh(apk”t**) = exp(—apk ™) x [5 + Eexp(Zach )] (102)
and recast the next difference at a product in the form
cosh(apk?t?*) — H(m) = exp(—apk®t®)B(t,m) (103)

where

1 1
B(t,m) = [E +5 exp(2apk*t)]

x [1— H(m) exp(apk®e) x [3 + 5 exp(2apke)] 1] (108
forall T € S;, m € R. Based on our hypothesis (101), we remark that

7| (105)

|exp(—apk®t®)| = exp ( — apk?r* cos(2k0)) > exp (apk*Ag, jo

aslongas 7 = reV=10 ¢ S, On the other hand, since limy ¢ 4 oo | exp(apk?72F)| = 0 and granting
that |H(m)| € [rqQRrp,1,7QRp2l, for all m € R, some constant Bg, x4, > 0 and a radius R, > 0
(large enough) can be deduced for which

|B(t,m)| > Bs, (106)

forall T € S; with |t| > Ry and all m € R.
In conclusion, the factorizations (90) and (103) combined with the lower bounds (105) and
(106) yield the next lower bounds

|Pu(T)| > [Rp(V—=1m)|Bs, kap, €XP (“DkZASd,k,2|T|2k) (107)

whenever T € S; with || > Ry and m € R. Finally, these latter bounds (107) gathered with (92)
for R = R; give rise to the expected lower bounds (74) for some small constant s, i o, > 0 and
Asy k= Bsy k2. U
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We now introduce the map H acting on the Banach spaces of Definition 5 for which the fixed
point theorem will be applied, namely

Hlwtmm) L w& eA(27'[)1/12P() /:” Ap(m —my) (kt) 1w (T, my) Ry (V=T )dmy
lo=0,,=1
1 too
+ ) W/w Ay(m —mq)Cy o 1, (@) (T, m1) Ry (V=1my)dmy
i
1 Foeo K2/1y -~ I
+l (log, W/m AL(m—m1)<— N /ﬂ#z (k") w(C,m1)Dk%(€,T )dé‘)
Ip= 012>1 Iy’
X Rl(ﬁml)dml
+o00 k2 1
c ¥ G | Al (=52 [ G (@)@ mB, €7 ae)
' 10( g illlzzflA e
X RL(\/?1m1)dm1
1 +oc0 Tk
+CQ1Q2W/700 (Tk/o w((TF = s)V5, m — my) Q1 (V=1(m — my))
w(s"k, m1>Q2(Fm1>( A ds)dm1+2 By (T irf. (108)

j€]

In the next proposition, we show that H acts on the Banach space F( k) for well chosen

VB,
parameters and directions d as a shrinking map. This result is central in our work.

Proposition 9. Let v > 0 be a fixed real number and let B, u, k be prescribed as in Section 2. Let us assume
that the sector Sq g, introduced in (13) is selected as in Lemma 2. We choose an unbounded sector S; for
some direction d € Oq g, and a disc D, for a suitably small p > 0 fixed as in Lemma 2. We make the
following additional restriction on the constant xp which is asked to obey the next inequality

apk*Ag, ;> (2/p)* (109)

where Ag, ;. > 0 is the constant appearing in (74) from Lemma 2.
Under the assumption that the constants A; > 0 for | € A set up in (22) and the quantity |cg, o, |
are taken adequately small, one can sort a constant @ > 0 such that the map H enjoys the next properties

1. The next inclusion
H(Bwo) C Bo (110)

holds where By stands for the closed ball of radius @ > 0 centered at 0 in the space F(

2. The shrinking condition vbke)

[[H(wr) = H(wn)

(v.B.uk, p) | |wl w2| |(1/,,B,y,k,p) (111)

occurs whenever w1, w, € Bg.
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Proof. We focus on the first item 1. Let w be an element of F4 ) By definition, the next

. . (v.Bukp
inequality
- T
e, )] < [0l (1 ) e P expiofel (112)

holds for all T € S;U Dy, allm € R.
In the next six lemma, we provide upper norm bounds for each piece composing the map H.
The elements of the first sum of operators is minded in the next

Lemma 3. Let I = (lo,11,12) € Awithly = 0and I = 1. We can find some constant Cy (relying on
;’l/ RD/ Rl/ Sd/ k/ xXp, ll) w1th

1 +oo
||m /_m Ay(m —my) ™ w(t,my) Ry (V—=Tmy )dma || 4,5 1 p) < CLAL @],k (113)

d
forall w € F(v,ﬁ,y,k,p)'
Proof. We remind from Section 2 that R;(X) is a polynomial of degree deg(R;) and Rp(X) is a
polynomial of degree deg(Rp) not vanishing on X = /—1m, for all m € R. As a result, two
constants R, \Rp > 0 can be found with

IRi(V=Tm)| < 9Ry(1+ [m]) 48R, [Rp(v/=Tm)| > Rp (1 + [m|)de8R0) (114)
forall m € R.
Letw € Fflv B1ukp)" Based on the definition of A; given in (22), the lower bounds (74) reached

in Lemma 2 together with the upper bounds (112) and the above inequalities (114), we obtain
Lo ki
Acm = ’ / Aj(m —myp) T w (T, my) R (V —1m1)dm1‘
Pm (T) —00

|T|kl1 | |w| |(1/,/S,y,k,p) % |T|
~ Rp(1+ [m|)de8R0IGg 1, exp(apk?Ag, k| T|?) 1+ |7

exp(v|7[")

—+00
X [ AL ) e (1 oy ) e IR (1 )y (115)

forallt € S;U Dp, m € R. Besides, the triangular inequality
[m| < |m —myq |+ [m] (116)
holds for all m,m; € R and we can choose a constant Mg, 1, «;, > 0 such that

sup |Z‘kll = Mg, k1 ap (117)
res,uD, eXP(apk*Ag, k[ T|*)

Gathering (115), (116) and (117), we come up with

Ms, 1, R |
Ay < —242217D g, A= x —1

Sd' XD

exp(v|T[) (1 + [m|)Fe P Ay (m)  (118)

where

+oo
Ax(m) = (1+|m]y—estFo) [ -

dm 119
o (U = (1 g e )
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provided that T € S; U Dy, m € R. Owing to Lemma 2.2 of [5], under the assumptions made in
(11) and (21), a constant C11 > 0 can be deduced with

Aq(m) < Ciq (120)

for all m € R. At last, joining (118) and (120) yields a constant C; > 0 for which

T+ % exp(v|T[) (1 + [m]) e Pl (121)

7|
A < CleH(v,ﬁ,y,k,p)AL |
aslongas T € S;U Dy, m € R, which is tantamount to (113). O

The elements of the second sum of operators are considered in the next

Lemma 4. Weset | = (lp,11,1n) € Awithly > 1and I, = 1. Then, a constant C, > 0 (depending upon
#,Rp, Ry, Sq4,k, ap, lo, 1) can be picked out such that

1 tee e [Tk g gk o ds
||Pm(T) /700 AL(m—ml)[T /0 (T° —8)x sw(s ,ml)?]
X Ry (v —=Tmy)dm|[(y,p k0 < CoALl|wl] (v, pkp) (122)

d
forallw € F(v,ﬁ,y,k,p)'

Proof. Take w an element of ng, Biikp) On the ground of the definition A; displayed in (22), the

lower bounds (74) stated in Lemma 2 together with the upper bounds (112) and the polynomial
inequalities (114), we reach

R T f Tk gk, o ds
Bem = ‘m/—w Al(m—ml){r /0 (T —8)* 'stw(s ,mﬂ:]
X RL(\/—lml)dmll
7|k fITIk(|T|k _ h)l%—lhlﬁ%evhdhj
0 ||w| (v,B.1kp)

= Rp(1+ |m|)98(Ro)ss . exp (apk?Ag, k| T|%)
—+o0
X/_oo Ay(1+ [m—my|)"F exp(—Blm —my|) (1 + |mq ) exp(—Blmy )9 (1 + |mq]) 28R dmy
(123)

forall T € S;U D,, m € R. By applying the change of variable h = \T|ku, for0 < u < 1, a constant
Ms, kjo  ap > 01s deduced with

|T|kfolrlk(|~(|kfh)l%_lhlﬁ_%% 1+|T|2k
exp (apk?Ag, k| T|?) 7|

|T|lo+kll<1+ |T|2k)

exp (apk?Ag | T|?

1 b_q 4 1du
7 ([ a-w b < Mg e, 029

forall T € S; U D,.
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Collecting (123), (116) and (124) we land up at

R |1

Msd,k,lo,ll,IXD L
B < —= ||w| (v,ﬁ,y,k,p)AL%1 T |T|2k

1T+ [m|) e BIM A () (125)
5Sd,k,aD

where A; (m) is given by (119), as long as T € S; U Dy, m € R. Eventually, gathering (125) and
(120) gives rise to a constant C, > 0 (hinging on y, Rp, R;, S4,k, ap, lo, [1) with

T oy -
Bon < Callol 1 At 7o ge xpLoll) 1+ ) e P (126)

forall T € S; U Dy, m € R, which is equivalent to (122). O

The components of the third sum of operators are upper bounded in the following

Lemma 5. Let | = (ly,11,1) € Awithly = 0and I > 1. There exists a constant C3 > 0 (relying on
#,Rp, Ry, Sq,k,ap, 1, o, p) such that

||Pml(T) /::o Ay(m — ml)(/7 gkllw(é,ml)Dk%(5,712)d§>

k 1
L2

X Ry (V' =Tmy)dm||(,p k0 < C3ALl|w(T,m)|[ (5 k0) (127)

d
forall w € F(V,ﬁ,%k,p).

Proof. In the first part of the proof, we provide upper bounds for the integral map

K(t,my) ::/~

Tk b
I’

¢Maw (g, m)Dy i (§,72)dg (128)

for T € S3UD, and m; € R. Indeed, the next auxiliary result holds.

Sublemma 1. 1) For any p > p, there exists a constant K}?,k,ll,lz > 0 with

jwl

IK(t,m1)| < Khgp o 10l ,,k,0 1 TIF(1+ |ma|) e Flm (129)

forallt € Dg, all m; € R.
2) One can pinpoint a constant K;Z),k,ll,lz > 0 such that

kly
ket ko 7|2 T -
K(t,m)| <Ky llollwpuepl Tl 2T exp ((||)Zk)(1 + [my|)HePlml (130)
p/2)=7

forall T € Sy with |t| > (0/2)2, all my € R.

Proof. Let us consider w € F{lv Biukp)" We observe that the bounds (112) hold. Owing to our

assumption (9) and according to the construction of the integral operator Dy, 1, discussed in
Proposition 6, for any fixed T € S; U Dg, one chooses a direction Y € R and a positive real
number A; > 0 such that

cos(k(y 1, — arg(72))) > A;. (131)
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From the definition of the Hankel path ¢ ey for any m; € R, one can split the integral K(t, m1)
o

as a sum of three pieces

K(t,m) =K + (tm) =K -+ (t,m) =K - (t,m) (132)
Ty TVl 2
where
K, (m) = | & (&, m)Dy, 1 (&, 7)dE (133)
Tz 0p/2 i, 2

= [0,p/2)e" TR +E)

whose integration path is the segment L[ , for some small

6 > 0and

,p/Z} 'Y o

Ky (m) = [ (&, my)D), , (&, 72)de (134)
Ve Vol + - T
o/ 2;7112 Nl
along the arc of circle

L ¢ L ¢
— {8V s €y - T2 - + 22+ 20

CP/ 2;7:12 1, th T o T T T T

along with
K, (tm)= [ EHw(E m)D, (& T2)dg (135)
TZZ Iy
00/2): 2
VI, - 32— %)
where L[O,p/z];%;v’, [0,0/2]e T T2,

In the next siep of the proof, we display bounds for each piece of the splitting (132).
We first provide bounds for K 7 (t,mp) and K, - (T, mq).
2

According to Proposition 7 2), we can find a constant My k/1,1,2 > 0 such that

lz T k
D, & (&,72)] < Mk,k/lz,l,zg# (136)
ik
provided that ¢ € L[o, o/t " org € L[o, 012k W . Then, under the assumption (10) and bearing

in mind the bounds (112) together with (136), we are given a constant K, 1, ;, > 0 such that

2 J7ff

p/2
K , < / 1 Ho—Blmil v pp 2 10 g
| ﬁlz(T my)| < 0 (L+[mq])"Fe re kk/lzlzk Ea r
< Kp,k,11,12||w| (v,ﬁ,y,k,p)lrl (1 + |m1|)7;¢€7ﬁ\m1|‘ (137)
together with
k —y -
Ky, @mOl < Kokl 19ll,p i [TI (1 [ma]) e Plml, (138)
At a second stage, we discuss bounds for Kﬂ 7 (t,my). Two cases arise.

T2 12
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Case a. We assume that 7 € Dj. We need upper bounds for the kernel D, £ (& 72) provided

that¢ € C 01255 . According to the decomposition (53), we observe the next factorization
2
12 1 le
D by =2 "Dy, ()" 139
kli(C/T ) k(:%'i‘lT lz((g) ) ( )

where Dy, (z) is an entire function on C (as shown in Lemma 1). In particular, the function D, (z)
is bounded by some constant M, ; > O onthediscD . Asaresult,

w2
Tl K/l

Dy, ((?) )| < My, (140)
provided that{ € C, e and T € Dy, since in particular || = p/2 and |t| < §, which yields

the bounds |

2
D £ (6 7T2) < = 7M.z (141)

? “(or2)n
forall¢ € C 0/2 7 ~ and T € Dp. These latter bounds (141) together with (112) allow us to find
g 2

some constant K skng, >0 such that
0,41,k

8
'YTIZ +7+ kll " |m1‘
Ky, e, ()] < g (/20| |y, k) (1 + 1 ]) e
T T ) 1)
klp 1
x (0/2)e"/2) 2 £+1|T|lezrﬁ(p/2)d9
(p/2)"
< Kg;r,lcjll,lz k1 + |m1|)*ﬂg*ﬁ\m1|' (142)

for all my € R.
At last, from the decomposition (132) and the three estimates (137), (138) and (142), we deduce
the awaited bounds (129) from the first point 1).

Case b. We assume that T € S; with || > (0/2)'/%2. According to Proposition 7 1), we come
up with a constant My x/;, > 0 such that

(k/1)* k2/12

M koo oh _k
Dy 5 (& 72)] < ——fﬁl@f|lsz(\75+) i oxep (5 2)ih)
2

k+1

I k+ % 1
= % Mik/p 7] 21

&) R i
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forall¢ € C 0/2, 7 . These last bounds (143) combined with (112) beget a constant K+k 12 L > 0
such that
mily
,y'rlzjL 2k + _y —
|K’Y+12/Y_12 (T,I’I’Il)l < ; g (p/2 v,B ,;u,k,p)(l + |7’I’l1|) He Blim|
e T o T2k T 2
kly
I k 1 -1
% (p/z)eV(P/Z)k?ZMk,k/lz|T|k+]2 X exp (L)(p/Z)
jo/2) Vet lp/2/2
Ky
. ] |12’1
< Kokint k)| T 2T exp (=) (1 [y ) e Pl (144)

for all m; € R.
In conclusion, the decomposition (132) together with the three bounds (137), (138) and (144)
trigger the expected bounds (130) in the second point 2). O

We set
—+00

m = ‘m Ay(m —mq)K(z, ml)RL(ﬁm1)dml‘ (145)
m -0
for T € S3UD,, m € R. Taking heed of the definition A; displayed in (22), the lower bounds (74)

stated in Lemma 2 together with the upper bounds (129) for § = max(p, (0/2)/2) along with
(130) and the polynomial inequalities (114), we arrive at

1
Rp(1 + [m])des(Ro)

Cr,m <

Kl
k—1+ K- L1
Sl R e (L))
(0/2)2 2k ,—v| [k
X x (1+|7[T)e
05 up €XP (“Dszsd,klf %)

[Tl e e ~tg—Blm—m| —pigplmi|
x [1+|T|2k [lewl] Vﬁ,u,k,p)} X/_oo Aj(1+|m—m[)""e (1+ [ma])"Fe

rnax(]K}ik’ll,l2 |T|k’

x Ry (1 + |my])9e8Rdm;  (146)

provided that T € S; U Dy, m € R.

Two situations ensue. In the case [, = 2, we observe that 2k = klz and in the situation

I, > 2, we notice that 2k > klz

Msd,k,ll/lzfﬂD,P > 0 with

. In both cases, under the assumption (109) we deduce a constant

- 1+ -1
max(K%,k,ll,lzmk l/Kg,k,ll 12‘T| h- 1exp( I7| . )>

05, kap €Xp (apk?Ag, k| T|?F)
_ k
< (14 |71%)e ™1™ < Mg, oy ap,p  (147)

forall T € S; U D,.
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The collection of (146), (116) and (147) spawns

R [ d

Com <M A= T T
T,m (v,Buk,p) lmD l—|—|T|2k

= YASk1,l,ap,0

||

1T ) He M| Ay ) (148)

where A;(m) is stated in (119), whenever T € S; U D,, m € R. Finally, the last bounds (148) and
(120) foster a constant C3 > 0 (depending on u, Rp, R, S4, k, ap, 11, 5, p) with

T oy —
Com < Callol k1M xp01 ) (1 ) e 119)

forall T € S; U Dy, m € R, which can be recast as (127). [

The constituents of the fourth sum involved in (108) are evaluated in the next

Lemma 6. We select | = (lp,11,1p) € Awithly > 1and Il > 1. Then a constant C4 > 0 (relying on
#,Rp, Ry, S, k,ap,lo, 11, 1>, p) can be found such that

||Pm1(T) /::o Aj(m —my) (/~ Ch o, (W)(E, ml)]D)k% (& le)dg)

Tk b
Iy’

X RL(V —1m1)dm1|

whukp) < Carllw(Tm)llw,p ke (150)

i d
provided that w € F(v,ﬁ,y,k,p)'

Proof. The proof follows closely the one displayed for Lemma 5. The first part of the discussion is
devoted to upper bounds for the integral map

R(rm)i= [ Cppiy(@)(@mD, ¢ (2, 72)de (151)
'Y%/le H
where by definition
k gk ! ds
Chyy () (8 m1) = r(,i/k) | @ =R ko) haos %, m) S (152)

forall T € S; U D, and m; € R. Namely, the following statement holds.
Sublemma 2. 1) For any prescribed p > p, there exists a constant Kplik,lo,ll,lz > 0 with
IR (T, my)| < K,ls,k,lo,zl,lz ol | (v,8,1k,0) |T[¥(1 + [myq])~HePlml (153)

provided that T € Dg and my € R.
2) A constant K2 1, > 0 can be singled out such that

p’krlOrllz
.
" ket b 7|21 -
IR(,m1)| <K b0l g pkp|T] 2 1exp((/)lkl)<1+rml|> peBlml (154)
p/2)a"

as long as T € Sy with |t| > (0/2)V2 and my € R.
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d
Proof. Wesetup w € F (v,B,1,k,p

notations as in Lemma 5, we can break up the integral K(t,m;) in three parts

) and we take T € S; U D for some given g > p. Keeping the same

K(t,mp) = K% (t,mp) — K”Qz'ﬁz (t,my) — Kﬁlz (t,mq) (155)
where
K, (rm) = [ Chip () (& m1)D, (2, 72)dE (156)
2 [041/2]%;7:,2 2
and
% _ I
K/lez ,'y;lz (T’ ml) - ~/C . B Ck,lo,l1 (C(J) (g’ m1 )Dk,% (C’ T 2 )dg (157)
p/2;7T,2 '7T72
together with
R, (tm)=[ Cutopy (@) (& m1)Dy ¢ (8,7T2)dE (158)
T 2

0,0/2]; 757
[0p ][2 'YTIZ

where the paths of integration are the same as in the integrals (133), (134) and (135).

In the ongoing part of the proof, we disclose bounds for each piece of the decomposition
(155). As a preliminary, we rearrange the map (152) by means of the parametrization s = &s;
where 0 <s; <1,

glg +kll

1 o
Chio 1y (@)(§,m) = W/o (1 s1) P s o (@5 my)

dSl

o (159)

and from the bounds (112), we observe that

1/k
|C|51

1/k
w(gs;"",m)| < ||w EENNLCA L S
w(es},m) < [[w] ENTAT

J(1+ [my|)~HePlml exp(v|&]¥sy) (160)

(v,B.u.kp

forall ¢ € 7%#2,0 <sy <landm; € R.
2 ’ ~ ~
Bounds for the integrals Kﬁ (t,mq) and Kﬂ (t,mq) along segments are first achieved.
2 2

On the ground of the bounds (136), the factorization (159) and the upper estimates (160),
under the assumption (10), a constant K, i ;, 1, 1, > 0 can be reached with

3 p/2 ylotkh ! o1 b 1/kd51
|K”7T+12 (T,mq)] S/o — X </o (1—s1)% klsllsl/ —)

T'(ly/k) S1
o 1l gy (1 >-ﬂe—ﬂmlrewkMk,k/lz,l,Z’,jr';_kldr
< Koty o 101 0, k) [T (L4 [ma]) 7FePiml 161)
together with
|K“YT_12 (T, m1)| < Koot iy io 101 0,k 0) [T/ (1 + [ma]) e Plml, (162)
In the next phase, bounds for the integral K7+ v (t,my) along the arc of circle are devised. Two

. . . le ’ T 2
cases are distinguished.
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Case a. The variable T belongs to Dj. Based on the bounds (141), the factorization (159) and

the upper estimates (160), we are given a constant K kol > 0 such that

N Y+ B +z ok, 1 ! oy g 1 1/k981
_ < otk = _ 16h161/
|K7:lz'7rlz (t,m)| < /77 ay, g (072) ROYDS (/ (1—s1)% 'ksyls) )

51
k lz 1

(p/2) ot
(g T+ [my|)~He Fml - (163)

(L [y |)HePIml s (p/2)et (072 [T Miy 5 (0/2)d6

|l

+7
- Kﬁ,k,lofllflz

for all my € R.

Eventually, departing from the splitting (155) and taking heed of the three upper bounds
(161), (162) and (163), the due bounds (153) from the first point 1) are established.

Case b. The variable T is assumed to belong to S; under the constraint |t| > (p/2)'/%.
Acquired from the bounds (143), the factorization (159) and the upper estimates (160), a constant
K+k 1, > 0 exists such that

my o
Tt tz

- 1 1 lo ! ds
g ) < [T )+l / 1 — o) E-1phghg1/k951
| ,lez"yrlz (T’m1)| = /Y_( nly o (p/ ) F(lo/k)< 0 ( Sl) sl Sl S )

X || v, k) (1 + [ma]) e Plml

| | lklz1

X exp (7
/2|27

1
+1 +12 12 1)

I ket
x (p/2)e 02" Mgy, |7 B ) (p/2)d6

|p/2|l2
Ky
7|21

|wl

-2 k+% _
< Ky ohn |90l w g ure Tl 27T exp ( ) (14 |mq|)“Fe Fiml - (164)

|P/2|’2

for all m; € R.
In conclusion, from the splitting (155) together with the three upper bounds (161), (162) and
(164), the forecast bounds (154) from the second point 2) hold. O

The remaining part of the proof is similar to the one of Lemma 5. Namely, we define

m = ‘pm(T)/joo Ay(m —m)K(, ml)Rl(rml)dml (165)
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provided that T € S; U Dy, m € R. The definition A; displayed in (22), the lower bounds (74)
established in Lemma 2, the upper bounds (153) for § = max(p, (0/2)'/2) along with (154) and
the polynomial inequalities (114), beget the next inequality

~ 1
Com <
"7 Rp (14 |ml)des(Ro)

. kly

_ -1

o R T exp (7“' 21 e ))

(p/2)%2 « (1 + |T|2k>efv\'r\k

k-1 2
|T| i’ Kp'k/l()rllrIZ

max(KﬁklO Il

X
b5, kap €Xp (apk?Ag, i |T|?)

o [ e ol ] X [ AL+ bt )Pl (1 gy )t
1+ || (VBopiksp et
x Ry (14 [my])4e8Rdm;  (166)

aslongast € S;UDy, meR.

Two alternative arise. In the case I, = 2, we observe that 2k =
klz

klzl and in the situation I, > 2,

we notice that 2k >
constant Mg, x 1 1,

. Under the assumption (109), needed only in the case I = 2, we deduce a
o > 0 with

IZZI“D/

kly

2 k=145 |1
P,k,lo,ll,lz|T| -1 exp Hj )
(p/2)27"

max(K! |T|F-1, K

0.4k1o11,1

05, kap €Xp (apk?Ag, k| T|?)
_ k
X (1 + |T|2k)e V|T| S Msd,k,l(],ll,lz,ﬂé[),p (167)

forall T € S; U Dp.
The gathering of (166), (116) and (167) yields

5 Ry 1
Cr,m < Msd,k,lo,ll,lz,ucp,p||w||(v,ﬁ,y,k,p)A Rp [1 +| |2k

(14 [m|) e | Ay m) - (168)
where Ay (m) is defined in (119), whenever T € S; U D,, m € R. Finally, the last bounds (168) and
(120) trigger a constant C4 > 0 (depending on u, Rp, R;, S4,k, «p, lo, I1, 12, p) with

T exp(ufeff) (1 + ) He B (169)

Crm < Cy ko)Al T+ ™

provided that T € S; U Dy, m € R, which can be rewritten using norms as (150). [

An integral expression related to the fifth building block of (108) is assessed in the next

Lemma 7. One can single out a constant Cs > 0 (relying on u, Rp, Q1, Q2, Sg, k, ap) with

III%l(T)/;oo (Tk/OT wr (T = )%, m — my)Qu (V=T (m — my))
x wy (s m1)Q2(Fm1)( 1 5 ds)

) < Csl|aw|

ko) (170)

(vB,

forall wy,wy € F(Vﬁykp)
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Proof. Let us take wy, wy € F( ) Owing to the bounds (112), we deduce the next upper

v,B k.0
estimates
|(U1((Tk — s)l/k,m — m1)| < ||w1H(V,ﬁ,]4,k,P)(1 + ‘m - m1|)*ﬂe*ﬁ|m7m1‘
(78 —s)/K] K
mexp(ﬂr —s|) (171)
and
an (64, m) < el e 1+ ) ~He P ] e a72)

forallT € S;UD,, alls € [0, TF], with m, m; € R. Besides, since Q1 (X) and Q> (X) are polynomials,
two constants 1, , > 0 can be exhibited such that

Q1 (V=1(m —my))| < Q1 (1+ [m—my])98Q) | |Qy(v/=Tmy)| < Qp(1 + |my])48(%) (173)

for all m, m; € R. From these latter bounds and bearing in mind the lower estimates (74), we come
up to

O e

Py (T)
1
X wy(sF, my) Qo (v —1m1)mds)dm1‘
1
= Rp(1 4 |m|)des8Ro)sg ko exp(apk?Ag, k| T|?*)
+oo |7t (||k — h)1/k
k —u ,—Blm—m k
1 — po—Blm—my| AL T ) —h
<[ ik f (Lt = g ) e e (e SRl =)
x Q11+ [m — my])48Q0) x [|w [y k) (1 + [y ]) HePlmil
HYE de 1
g(Q)__ -
X Tt Qo(1+ |myq)) (T _h)hdhdml (174)

forall T € S;UD,, m € R. Moreover, by using the change of variable 1 = |T\ku, for0<u<1,
one can select a constant Mg kap > 0such that

2ky | 1k—1 el (el =m)/knt/ 1 1
sup L+ |7[F)l7] f (Itfe—hm)h  14(|t]k—h)2 1+h2dh
1€5,UD, exp(apk?As, | T|*)

171 l,l
1 1—u)k
A+ TPl fo Tty e
= sup

€5,UD, exp(apk?Ag, | T|?F)

< M, (175)

Combining (174) and (175) prompts

Msd,k ap Q120

D
Tmf 5dk,,XD m

(v.B.pk,p)

L expiel) 1+t P L) 176)
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provided that T € S; U Dy, m € R, where
Az (m) = (14 |m|)#—des(Rp) /+oo ! 1 dmy.  (177)
2 n — o (1 + ‘m — m1|)y—deg(Q1) (1 + |m1|)ﬂ—deg(Qz) 1

According to Lemma 2.2 of [5] and under the assumptions (12) and (21), a constant C5; > 0 is
obtained with
Az(m) < Csyq (178)

for all m € R. Finally, from (176) and (178) we deduce a constant Cs > 0 (depending on
1, Rp, Q1,Q2, S4, k, ap) with

Dem < C5||w1’

T _y —
wparollzlliopnn * { o id exp(ule) (1 + m]) e B} (a79)

forall T € §; U Dy, m € R which precisely means that (170) holds true. [
In the next lemma, the tail piece of (108) is investigated.
Lemma 8. A constant Fj > 0 (depending on Fj, j € |, Rp, Sy, k, ap,v) can be singled for which

Fi(m)

j(m)
] ;] Po(e) " Nwppuke) < FJ- (180)
]

Proof. By definition of (24), we notice that
|[Fj(m)| < Fj(1+ [m])~He P! (181)

for all m € R. Besides, according to the geometric assumption (14) and the lower bounds (74)
reached in Lemma 2, we see that

[Pn(T)] 2 min |Rp (v/=1m) |85, ju, exp(apk* s, k| T[) (182)

forall T € S; U Dp, all m € R. As aresult, we get

Fi(m) 1
Eom =Y T < Y Fj(1 4 m])~re Fiml —
o ‘ ]62} Pm(T) ‘ ]EZ] : mlanR |RD( _1m)|55d,k,IXD
7|

< ol exp(—nk A el t) (1 + ) exp(—vlel) [

exp(v|7l)| (183)

provided that T € S;UD,, m € R. Since ] C N* does not contain the origin, a constant
Mj,S kvap > 0 can be pinpointed such that

sup |t/ (14 [t*) exp(—apk®As, k) exp(—v[T]) = Mjs, k- (184)
TESdUDP

Lastly, adding up (183) and (184), we arrive at

~

M‘S kv,a |T|
.. < F; Ir2d5V/AD 14+ |m|) He Plml 121 axn(v|7|k 185
o S B e om0 T et 089
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aslongas v € S;U Dy, m € R. Lemma 8 follows. []

Now, we choose the constants A; for [ € A and cg,g, € C* close enough to 0 in a manner
that one can find some radius @ > 0 fulfilling the next constraint

1 1 kll
Z ——_kh CilA@0 + Z — e CA|@
I=(lp1ylp)eA (27-[)1/2 - 1=(lp,11,lp)eA (271—)1/2 r(lo /k) B
1020,12:1 1021112:1
1 K/ 1 K/hL
I=(lpl1 lp) €A (ml/2" 2n T (oni)eA (2m)1/2 21 L
1020,12>1 1021,12>1

1
+ |CQ1Q2|7(27T)1/2 C5(502 + .7:] <@ (186)
for the constants C; > 0,1 < j < 5and Fj > 0 appearing in the above lemmas. Eventually, the
appliance of the bounds recorded in the lemmas 3, 4, 5, 6, 7 and 8 under the condition (186) yields
the expected inclusion (110).

We turn to the second item 2. Let us fix the radius @ > 0 as above and select wy,wy €
Bo C FE’IV Bukp)" In the next list of lemmas, we discuss bounds for each piece of the difference
H(wr) — H(wa).

A direct issue of Lemma 3 gives rise to

Lemma9. Tukel = (lp,11,1n) € Awithly = 0andl, = 1. Then,

1 +oo
||7Pm(T) /700 AL(TH — Tl’ll)‘[kll [(/Jl (T, ml) — w2(T, ml)] RL(\/ —1m1)dml I |(1/,,5,]4,k,p)

< CA(||wy — wo

(v.B.pkp) (187)

holds for the constant C; > 0 disclosed in Lemma 3.
As a consequence of Lemma 4, we obtain

Lemma 10. Let I = (lp, 11, 1p) € Awithly > 1and I, = 1. Then,

k

||Pm1(T) /::J Ay(m —my) [Tk /OT (e = 5) sl [eon (5%, mur) — (57, )] §}

X Ry(V—=Tmy)dm || (y,pukp) < C2A1l|lw1 — woll(,ppukp) (188)
holds for the constant C, > 0 croping up in Lemma 4.
An application of Lemma 5 yields

Lemma 11. Let I = (ly,11,1p) € A withly = 0 and I, > 1. The next inequality

Iy [ A=) ([, #fon(em) = wn(em]Dy @, o)

X Ry(V—=Tmy)dm|[(y,p 4 kp) < CaApl|lwr(T,m) — wo(T,m)||(,pkp) (189)


https://doi.org/10.20944/preprints202412.0591.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2024 d0i:10.20944/preprints202412.0591.v1

36

holds for the constant C3 > 0 appearing in Lemma 5.
Lemma 6 enables to set up the next

Lemma 12. We choose I = (lg,11,1n) € Awithly > 1andl, > 1. Then,

—+o0
||Pm1(T) /—oo Aulm = m) ( /~7k b Choly 1y (w1 — w2)(E, ml)Dk% (¢, le)dff)

X Ry(V—=Tmy)dm||(y,pukp) < Calpllwr — woll (g pupp)  (190)
holds true for the constant C4 > 0 showing up in Lemma 6.

In order to control the norm of the nonlinear terms of the difference H(w;) — H(wy), we
rewrite the next difference as a sum

wr (T = )%, m —my)Qu(V=1(m — my))ews (s"%, m1) Qo (V= Tm1)
—wa((7* = )%, m = my) Q1 (V=1(m — m1))wa (s"%, m1) Qo (V=Tmy)
= [wl((rk — V& m —my) — wo (75 — )%, m — my)] Q1 (V=1(m —my)) x w1 (s%, my) Qo (V/—1my)
+wr ((T5 = $)V*,m — m) Q1 (V—=1(m — my)) x [wl(sl/k,ml) — wz(sl/k,ml)]Qz(\/jlml). (191)

As aresult of Lemma 7 and the above reordering (191), we come up with the next

Lemma 13. The following inequality

||Pml(T) l;w (rk /OT w1 (" = $)VE m —my) Qi (V=1(m — my))
x an(s'%, ml)QZ(\/?lml)(Tkl_s)st)dml
_ Pml() /71)00 (Tk /OT wz((Tk — s)l/krm — ml)Ql(\/jl(m —my))

< wr(s ) Qa(V =T )ds)dm1||<c5||w1 Wll v kp)

x|

(v.B.pk,p) (v,ﬁ,u,k,p)] (192)

holds where Cs > 0 is the constant arising in Lemma 7.

We adjust the constants A;, [ € A and cg, g, € C* nearby the origin in a way that the next

restriction
Y o kca+ ¥ Lk o
18] = LAY
I=(lplylp)eA ( 7-[)1/2 I=(lp/ly.lp)eA (27-[)1/2 r(lo/k) -
ly=0,l=1 lo>1,1,=1
1 k? /lz 1 K2/l
+ L =2CA + ) A

[=(lpl1.12)€A (27-[)1/2 I=(lp/ly lp)eA 2m)t/2 21

lo=0,I,>1 lo>1,1,>1

1
+ |CQ1Q2| (2 )1/2C5Z(D <1/2 (193)
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holds. The collection of lemmas 9,10,11,12 and 13, accounting of the above condition (193) yields
the contraction property (111).

At the end, we choose the constants A, for [ € A and cg, g, € C* appropriately close to 0,
along with a radius @ > 0 in a manner that both conditions (186) and (193) hold at once. It follows
that the map H obeys both features (110) and (111). Proposition 9 follows. O

The next proposition provides sufficient conditions for which the auxiliary equation (72) is
endowed with a solution in the Banach space described in Definition 5.

Proposition 10. Under the assumptions made in the statement of Proposition 9, we can find a constant
@ > 0 for which the auxiliary equation (72) hosts a unique solution w® which belongs to the space Féiv Biukp)
and is subjected to the bounds

[ew?] ¢ <o (194)

v.Bukp) =%
Proof. For @ > 0 suitably chosen as in Proposition 9, we observe that the map H induces a
contractive application from the metric space (Bw, d) into itself, where B, stands for the closed ball

. . d . PR
of radius @ > 0 centered at 0 in F(V, B1ukp) and the distance d is induced from the norm ||.| (v.Bkp)

by the expression d(x,y) = [|x — yl|(,8 k) Since (Fg/,ﬁ,y,k,p)’ |[-1l(v,8,,k,0)) is @ Banach space, the

metric space (Bw, d) is complete. Then, according to the classical contractive mapping theorem,
the map # has a fixed point we denote w? in By, meaning that

H(w') = o, (195)

which implies in particular that the analytic map w? solves the equation (72). Proposition 10
ensues. [J

5. Statement of the Main Results

We are in position to state the first prominent result of our work.

Theorem 1. Let us take for granted that the assumptions (9), (10), (11), (12), (14), (21), (23), (25), (26)
hold for the shape of the main problem (8) with vanishing initial condition 1(0,z) = 0.

We assume furthermore that the sector Sq g, defined in (13) obeys the requirements asked in Lemma
2. We select

—  an unbounded sector S; edged at 0, with bisecting direction d belonging to the set @q g, (introduced
in Lemma 2) fulfilling the two conditions (86), (87),
—  adisc Dp whose radius p > 0 fits the restrictions (88), (89).

Then, provided that

—  the constant ap appearing in the leading operator (15) of infinite order in (8) is chosen in agreement
with (109),

—  the constants Ay, for I € A, set up in (22) and the coefficient cq, g, of the nonlinear term of (8) are
taken close enough to 0

there exist a formal power series 1i(t,z) = Y ,>1 un(2)t" solution to (8) with #1(0,z) = 0,

*  whose coefficients uy, belong to the Banach space Oy (Hg ) of bounded holomorphic functions on the
strip Hy (given in (18)) for any prescribed 0 < p' < B endowed with the sup norm ||.||co,

*  which is my—summable in any direction d chosen as above in the set ©q g, as a series with coefficients
in (Op(Hg), ||-||s) (see Definition 3).
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Proof. Under the assumptions made in Theorem 1, we observe that Proposition 10 holds. For the
given sector S; with d € @g r,, and disc D, as constructed in Lemma 2, for any given real number
v > 0 and for the constants f, 1, k > 0 prescribed in Section 2, we depart from the solution w? of
the auxiliary equation (72) that belongs to the Banach space F(dv, B11k0) under the condition

[l

WBukp) < @ (196)

for some well chosen constant @ > 0. By construction, since the partial map T + w?(t,m) is
holomorphic on the disc D, it has a convergent power series expansion

w(t,m)=a(t,m) =Y w,(m)t" (197)

n>1

on the disc D, />, where the coefficients w; (m) can be expressed in integral form

_ 1 wi(g,m)
2my/—1Jc,,, &t

along the positively oriented circle C,/, centered at 0 with radius p/2. According to (196), a
constant Ce k1,0 > 0 (relying on @, k, v, p) can be deduced with

wn (m) dg (198)

|n(m)| < Cajup(2/p)" (14 [m])HePIm (199)

for all m € R. In particular, each coefficient m +— wy(m) belongs to the Banach space
(g I1-11¢p)) and

@(t,m) € Eg it} (200)
Furthermore, owing to (196), we notice that the partial map 7 +— @(7, m), seen as a holomorphic
map on D, /; in the Banach space E(g ) can be extended to a holomorphic map denoted 7
w*(t,m) on the sector S; with bounds

d

d k
e (T, m)||(p ) < (DW exp(v[t[") (201)
forallT € S,.
Let us define the formal power series
Ut,m) =Y U(m)t" (202)
n>1
where the coefficients Uy, (1) are defined by
U, (m) = w,(m)I'(n/k) (203)

for all n > 1. By construction, the series @(t, m) given by (197) represents the n;—Borel transform
of the formal power series (202). From (200) and (201), we deduce that the formal series U(t,m)is
mi—summable in direction d, viewed as series with coefficients in (E(g ), ||| () ), see Definition
3.
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According to Proposition 10, the convergent series @ (7, m) matches the auxiliary equation
(72). Taking heed of Proposition 8, we deduce that the formal series (202) solves the differen-
tial /convolution equation (30). Let us introduce the formal power series

a(t,z) = Y un(2)t" (204)

n>1

where the coefficients u, (z) are defined as the inverse Fourier transform

1 Foo -
un(z) = 201 /_00 u, (m)eﬁzmdm (205)
for all integers n > 1, z € Hg, for any given 0 < g’ < B. As claimed by Proposition 1, it follows
that #1(t, z) formally solves the main equation (8).

Bearing in mind (199) and (203), the next upper bounds

+c0 ,
n(2)] < wl)mcw,k,v,prm/k)(w [l e gy (206)

hold provided thatn > 1 and z € Hp, with prescribed 0 < B’ < B. In particular, we observe that
each coefficient u, belongs to (Oy(Hg'), ||.||s), for n > 1. It ensues that the series

sup.epy,, [un(2)|
TR (p")

)

n>0

is convergent for any 0 < p’ < p/2. As a result, the m—Borel transform of # given by

Bu (1)(1) = 1 F”E’;(/Z,Z) " (207)

is convergent on D, as a series in coefficients in the Banach space (O (Hy'), ||.||), meaning that

By, (1) € TOy(Hg ){T}. (208)

Besides, the expansion (197) allows the m;—Borel transform By, (i) to be expressed in integral
form . oo

By (8)(7) = 17z /_ Wz m)e (209)

for all z € Dy with 0 < p’ < p/2. Based on the bounds (201), it follows that the map T +
By, (i1)(7) viewed as a function from D, into (Oy(Hg),||-||«) can be analytically continued
along the unbounded sector S; and is subjected to the bounds

sup By, (0)(0)] < 2T expuirt) ([ ) e P @10)

z€Hy (2m)1/2 1 + [T

aslong as T € S;. Finally, bearing in mind Definition 3, on the ground of the two above features
(208) and (210), we deduce that the formal solution 7(t, z) to (8) with (0, z) = 0 given by (204) is
mg—summable in directiond. [

In the second foremost outcome of the paper (Theorem 2), we disclose some functional
equations satisfied by the n—sum of the formal solution (t,z) to (8) built up in Theorem 1.
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Before stating the main result, we need to introduce some integral operators acting on Fourier-
Laplace transforms that are described in the next

Proposition 11. We consider an unbounded sector Sy edged at 0 with bisecting direction d € Og r,, and a
small disc D, centered at 0 with radius p > 0 chosen as in Lemma 2. We take for granted that the constant
«p > 0 appearing in (15) fulfills the condition (109). We fix some real number v > 0 and prescribe the
constants B, u, k > 0 as in Section 2.

For any given w® in F¢

(v,B k)" WE define the Fourier-Laplace transform

k Foo d
ul(tz) = )i Lw /Ld w?(t,m)exp (— (;)k)eﬁzm%dm (211)

along the halfline Ly = [0, —|—oo)eﬁd. According to Definitions 2 and 3, we know that the function u®

represents a bounded holomorphic map on the product Sy 9 g % Hg, where Sy 4 g is a bounded sector of the

form (35) for an angle ¢ satisfying ¥ < & < 7 4 Op(Sy), with Op(Sy) standing for the opening of Sy

and for a small enough radius R > 0, where Hg is the strip displayed in (18) for any given 0 < p' < B.
We distinguish two different situations.

*  Weassume that the constant Ag, i > 0 appearing in the lower bounds (74) satisfies the requirement
cos(2k8) > Ag, k (212)

forall 8 € R with eV 18 € S;. We introduce the next integral operator defined by its action on u® as
follows

exp (— DCD(tk+1at)2)ud(t,Z) = (275)1/2 /:: /Ld exp (— ocD(ka)Z)wd(r,m)

x exp (— (;)k)emmd%dm. (213)

Let I = (lp,11,12) € A, where A is depicted in Section 2. According to the notation (70), we set

Tk ™ Iy ds
Copgn (@) (w,m) = £ s | =9 ket (s m) (214)

for all integers Iy > 1,11 > 0. Besides, when ly = 0, we denote
Cro,, (wd)(T,m) = (krk)llwd(T,m). (215)
We define the next integral operator through its action on u? by

- d _ kK oo Py
Glo,llrlz,kﬂo(u )(t’z) T (2n)1/2 /_Oo /Ld exp(_’xD( T ) )

" (_ K2 /1,
2v/=1m

d
é Chlos (wd)(é,m)]]])k%(é’, le)dé) x exp (— (%)k)e‘/jlzm%dm. (216)

Then, both functions (213) and (216) are well defined and bounded holomorphic on the product
Sd,&,R X Hﬁ/'
*  The constant Ag, i > O that arises in the lower bounds (74) is assumed to obey the condition

cos(2kf) < —Ag, x (217)
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forall § € R with eV10 € 5. We set up the following two integral operators acting on u? by means

of
exp (ap (£119:)?)u’(t,z) := (znk)l/z /_J:O /Ld exp (ap (k7)) w? (T, m)
x exp (— (%)k)eﬁzmd%dm (218)
and forany I = (lp,11,1) € A,

koot
d — k2
Gtz (W) (2) = (2m)172 /_oo /Ld exp (ap (k7))

y (7 K2/l
2/ —1m

d
L Conn (@ @mD s (€ T)dg) xexp (— (1))eY T Cdm, - 219

keeping the notations (214) and (215). As a result, the two expressions (218) and (219) represent
bounded holomorphic maps on the product Sz ¢ r X Hg.

Proof. We focus on the first item. Under the restriction (212), we remind from (98) that the
inequality
|exp(—apk®t?)| < exp (- IXDkZASd,k|T|2k) (220)

holds provided that T € S;. It follows that the expression (213) is well defined and bounded
holomorphic on S; 4 r x Hg. For L = (lo,11,12) € A, one sets

K(t,m) = /_

: Crtos (@) (@ m)Dy ¢ (8, 72)dE. (221)

According to Sublemma 1 and 2, we get that

1. Forany given g > p, there exists a constant Kflik,lo,ll,lz > 0 with

d k -
K(t,m)| < Ko 00,8, |71 (1 + [m]) e Pl (222)
provided that T € Dy and m € R.
2. A constant Kz Kol > 0 can be reached such that
Ky
d k+ s 7|2 o
K (T, m) | < K2 i 10 g 171 2T exp () (1 ) e P (223
(p/2)27"

aslongas T € S; with |t| > (0/2)"/2 and m € R.

Since 2k = lzk%l when I, = 2 and 2k > lzk%l for I, > 2, from the bounds (220), (222), (223), under
the constraint (109), we deduce that the integral (216) is well defined and represents a bounded
holomorphic function on 549 g X Hgr.

In the second part of the proof, the second item is discussed. It follows from the condition
(217) and the lower bounds (105) showing that

| exp(apk®t)| < exp (— apk?As, i |T|*) (224)
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for all T € S;. Hence, the expression (218) turns out to be well defined and bounded holomorphic
on Sd’g,R X ng/.

At last, taking heed of the above upper bounds (222), (223), (224) and the restriction (109), we
observe that the integral (219) represents a bounded holomorphic function on 549 g X Hg. [

The second principal result of this paper is disclosed in the next

Theorem 2. Let us assume that the hypotheses formulated in Theorem 1 hold. Let d € R be a direction
chosen in the set @q r,, (discussed in Lemma 2). We consider the formal power series 1i(t, z) solution of
our main equation (8) with initial vanishing data 11(0,z) = 0. From Theorem 1, we know that 1i(t,z) is
my—summable in the given direction d. We denote u (t, z) its my—sum in the direction d. The map u®(t,z)
defines a bounded holomorphic function on the product Sy g r X Hg, where Sy 9  denotes a bounded sector
shaped as (35) for an angle O satisfying 7 < & < T + Op(Sy), with Op(Sy) representing the opening of
Sq and for a small enough radius R > 0, where Hg is the strip given in (18) for any given 0 < g’ < B.
Two alternatives arise.

*  Assume that the unbounded sector S; (displayed in the first item of Theorem 1) and the constant
As, x> 0 stemming from the lower bounds (74) conform the condition (212). Then, the my—sum
u‘ (t, z) solves the next functional equation involving the integral operators (213) and (216) given by

exp(~ap (141212 Q@)1 (1,2) = [5 + 5 exp(~2ap(F+13,))] Rp (@) (1 2)
+ Y ay(z)R;(92) exp(—ap (£19;)%) [0 (10, (1, )]

1=(lp,l1,lp) e Al =1
+ ) al(z)RL@Z)Gl;,ll,lz,k,aD(”d)(tfz)

I=(lp 1) EA;L>1
+¢0,0, exp(—an (719¢)?)[Q1(3:)u” (¢, 2) Qa (9z)u (£, 2)]
+exp(—ap (FH19:)2) f(t,z) (225)
on the domain Sg.9r X Hp provided that the radius R > 0 is taken small enough.
»  Take for granted that the sector Sy and the constant Ag,; > 0 obey the condition (217). Then,

the my-sum u®(t,z) is a solution of the following functional equation which comprises the integral
operators (218) and (219) displayed as

exp(ap (K192 Q(@.)ul (1, 2) = [% + %exp(ZaD(tkHat)z)]RD(az)ud(t,z)

+ )3 a(2)Ry(9:) exp(ap (#419:)) [0 (#F19y) 1 (1, 2)]
l:(lo,ll,lz)EA 12:1
+ Y w@REIC], e 1))

I=(lpl1,b) AL >1
+C00, exp("‘D(tk+1at)2) Q1 (az)ud(trz)QZ (8Z)ud(t,z)]
+exp(ap(#10:)%)f(t,2) (226

on the product S 9 r X Hg as long as the radius R > 0 is chosen nearby the origin.

Proof. The assumptions made in Theorem 1 enable Proposition 10 to be applied. For some
prescribed sector S; with d € Og r,, and disc D, as put forward in Lemma 2, for any given real
number v > 0 and for the constants §, 4,k > 0 chosen in Section 2, we depart from the solution
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w* of the auxiliary equation (72) that belongs to the Banach space F(V B1uk0) under the condition
(196) for some well chosen constant @ > 0. Owing to the integral representation (209), we know
from Definition 3 and the expression (34) of the Laplace transform of order k, that the m;—sum
u‘(t,z) of the formal solution 7(t, z) of (8) given by (204) is expressed as the next Fourier-Laplace

transform

0,2 = o [ @ mmep (= (5 L @)

which defines a bounded holomorphic map on the product S; 9 r x Hg, where S4 5 g stands for a
bounded sector shaped as (35) with an angle ¢ subjected to F < @ < ¥ 4 Op(S;), where Op(S,)
represents the opening of S; and for a small enough radius R > 0, where Hg represents the strip
given in (18) for any given 0 < g/ < B.

We first assume the condition (212) imposed in the first item of Theorem 2. We multiply the
auxiliary equation (72) fulfilled by w?(t,m) by the function exp(—ap (kt¥)?) which yields the
next equality

Q(vV=1m) exp(—ap (k7)) w? (T, m) = [1 + %exp(—ZaD(ka)z)]RD(lem)wd(T,m)

2
1 e
+ Y W/ Ay(m —my) exp(—ap (kt*)?) Cpy 1, (w0?) (T, m1) Ry (V=Tmy )dmy
1=(lo,l1,h) € A;l=1 ( 7'[) o
1 Foo
+ 3 27 /2/ Ay(m —my) exp(—ap (kt")?)
1= (10 I, lz)EA Ir>1 ( )
x (_ L / Chtoy (@) (§, 1) D (C'le)dc) % Ri(V—Tmm )
2V Sy, i )
L’

i CQlQZW /j: exp(—ap (kt*)?) (Tk /OT W ((TF = )V5,m —my) Qu (V=1(m — my))

W (Y%, m1) Qo (V/—1my) - ! ds) dmy + exp(—ap (kt¥)?) x Y~ Fi(m)T/  (228)
(TF —s)s it

forall T € S;UD, and all m € R. We apply the Laplace transform Ly, of order k in direction d
displayed by the formula (34) and the inverse Fourier transform (17) to the left and right handside
of the above equality (228). From the first item of Proposition 11, together with the identities (19),
(20) in Definition 2 and the formula (38) disclosed in Proposition 4, we deduce that the m;—sum
ud( t,z) given by (227) solves the functional equation (225) on the domain S; 5 g X H g, provided
that the radius R > 0 is chosen small enough.
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Assume the condition (217) holds as asked in the second item of Theorem 2. Each side of
the equation (72) satisfied by w* (T, m) is then multiplied by the function exp(ap (kT¥)?) which is
recast in the form

Q(vV=1m) exp(ap (kt°)2)w (T, m) = [1 + %exp(21xD(ka)2)]RD(J?lm)wd(T,m)

2
1 +oo
* Z W/foo Al(m_ml)eXp(“D(ka)z)Ck,lo,ll(wd)(’[‘,ml)RL(\/_lml)dml
1=(Ip,l1,l)eA;b=1
1 e k\2
+ Y o Alm—m)explant?)
I=(loh e A>1 (2701
%< (_ k2/12 / Ckl I (wd)(grml)Dk k (C,le)dc) X Rl( _1m1)dml
2v/—1m '?IL,T’Z ol £ 1(V
h

+CQlQZ(znlW - explan ke (2 [7 @ (5= 9)VE,m )@ (VTG — )

x w (5%, m1) Qo (v flml)%s)ds)dml +exp(ap( (kT6)?) x Zf ) (229)

(t* j€l

whenever T € S; U Dy and m € R. The Laplace transform L, of order k in direction d given by
the formula (34) and the inverse Fourier transform (17) are applied to the left and right handside
of the above equality (229). According to the second item of Proposition 11 and the identities
discussed in Definition 2 and Proposition 4, we deduce that the m;—sum u%(t,z) expressed as
a double integral (227) obeys the functional equation (226) on the product S;r x Hg, on the
condition that the radius R > 0 is chosen small enough. [

At last, we justify the statement of Theorem 2 with the next

Remark Observe that the m;—sum u(t, z) of the formal solution of (8) given by the expression
(227) does not (in general) fulfill the same equation (8). There are two reasons for that.

—  The action of the infinite order differential operator
1 1
cosh(ap (£+19;)%) = 5 exp(ap (£19;)2) + 5 exp(—ap (£19)?)

given in (15) is not well defined on u“(t,z) since the map T ~ exp(ap(kt¥)?) or T
exp(—ap (kt¥)?) has an exponential growth of order 2k where a growth rate of at most order

k is required on the sector S;.
—  The action of the Mahler operator t + t is not properly settled on t'o (t+19;)1u4(t,z) for

any given ! = (lp,l1,1) € A since the analytic map

T [ G (@)@ m)Dy g (8, 72)dE

Tk o
I

endows (at most) an exponential growth of order ,klz

on the sector S.

I which exceeds the admissible order k
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