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Abstract: In this paper, we examine a nonlinear partial differential equation in complex time t and complex

space z combined with so-called Mahler transforms acting on time. This equation is endowed with a

leading term represented by some infinite order formal differential operator of irregular type which enables

the construction of a formal power series solution in t obtained by means of a Borel-Laplace procedure

known as k−summability. The so-called k−sums are shown to solve some related differential functional

equations involving integral transforms which stem from the analytic deceleration operators appearing in

the multisummability theory for formal power series.

Keywords: asymptotic expansion; Borel-Laplace transform; Fourier transform; initial value problem; Mahler

transform; formal power series; nonlinear integro-differential equation; nonlinear partial differential equation;

singular perturbation

MSC: 35R10; 35C10; 35C15; 35C20

1. Introduction

This work is dedicated to the study of a nonlinear initial value problem that combines partial
derivatives and so-called Mahler transforms with a leading term expressed by means of a formal
differential operator of infinite order, with the shape

Q(∂z)u(t, z) = cosh(αD(tk+1∂t)
2)RD(∂z)u(t, z) + P(t, z, tk+1∂t, ∂z, {ml2,t}l2∈I)u(t, z)

+ Q1(∂z)u(t, z)× Q2(∂z)u(t, z) + f (t, z) (1)

for prescribed vanishing initial condition u(0, z) ≡ 0. The constituents comprising (1) are described
as follows.

• The constant αD > 0 is a positive real number and k ≥ 1 is a given natural number.
• The elements Q(X), RD(X), Q1(X) and Q2(X) stand for polynomials with complex coeffi-

cients.
• The expression P(t, z, V1, V2, {Wl2}l2∈I) represents a polynomial in t, V1, V2, a linear map in

the arguments Wl2 , for l2 ∈ I, where I denotes some finite subset of the positive natural
numbers N \ {0} and a bounded holomorphic function with respect to z on a horizontal strip
in C of the form Hβ = {z ∈ C/|Im(z)| < β}, for a given real number β > 0.

• The forcing term f (t, z) embodies a polynomial function in t with bounded holomorphic
coefficients on Hβ.

• The symbol ml2,t is tagged as the Mahler transform and acts on time t through

ml2,tu(t, z) = u(tl2 , z) (2)

for all l2 ∈ I.
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The operators (2) arise from the so-called Mahler equations which are linear functional equations
of the form

n

∑
k=0

ak(z)y(zlk
) = 0 (3)

for some given integers l ≥ 2, n ≥ 1 and rational coefficients ak(z) ∈ C(z). The study of these
equations is nowadays a very active field of research. Many authors have recently contributed
to the understanding of the structure of their solutions and have established bridges with other
branches of mathematics such as automata theory or transcendence results in number theory. For
the links with automatic sequences and the famous Cobham’s theorem, we refer to the seminal
paper [1] by B. Adamczewski and J.P. Bell. For Galoisian aspects and hypertranscendence results
related to (3), we refer to the recent work [2] by B. Adamczewski, T. Dreyfus and C. Hardouin.
The algebraic structure of the solutions involving so-called Hahn series has been investigated in
the series of papers [11,12] by J. Roques and [6] by C. Faverjon and J. Roques.

Mixed type equations comprising Mahler and differential operators have been much less
examined, however recent substantial contributions show that they represent a propitious direction
for upcoming research. Indeed, the case of coupled systems of linear differential equations and
Mahler equations of the form {

xY′(x) = A(x)Y(x)

Y(xq) = B(x)Y(x)

where A(x), B(x) are n × n matrices with rational coefficients in C(x) and integer q ≥ 2 are
considered in the work [13] by R. Schäfke and M. Singer and the general form of their meromorphic

solutions on the universal covering C̃ \ {0} are unveiled. In the paper [10], S. Ōuchi addresses
functional equations containing both difference and Mahler operators of the form

u(z) +
m

∑
j=2

aju(z + zp φj(z)) = f (z)

for some integer p ≥ 2, complex coefficients aj ∈ C∗ and given holomorphic maps φj(z) and f (z)
near the origin in C. He establishes the existence of a formal power series solution û(z) ∈ C[[z]]
that is proved to be p−summable in suitable directions (see Definition 3 of this work or the
textbooks [3] and [4] for the definition of p−summability). More recently, in a work in progress
[14], H. Yamazawa extends the above statement to more general functional equations with shape

u(z) + L(u(z + zp)) = f (z)

where L is a general linear differential operator of finite order with holomorphic coefficients on a
disc Dr, with radius r > 0 centered at 0, for which formal power series solutions û(z) are shown
to be multisummable in appropriate multidirections in the sense defined in [3], Chapter 6.

The results reached in this paper are holding the line of our previous joint study [9] with A.
Lastra where we addressed the next nonlinear problem

Q(∂z)y(t, z, ϵ) = exp(αϵqtq+1∂t)R(∂z)y(t, z, ϵ) + H(t, ϵ, {mκ,t,ϵ}κ∈J , ϵqtq+1∂t, ∂z)y(t, z, ϵ)

+ Q1(∂z)y(t, z, ϵ)× Q2(∂z)y(t, z, ϵ) + f (t, z, ϵ) (4)

for given vanishing initial data y(0, z, ϵ) ≡ 0. The constant α > 0 represents some well chosen
positive real number and q is taken in the open interval (1/2, 1). Here Q, R, H, Q1 and Q2 stand
for polynomials and the forcing term f is built up in a similar way as above. The symbol mκ,t,ϵ, for
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κ ∈ J (where J stands for a finite subset of the positive real numbers R∗
+), is labeled as the Moebius

transform operating on time t by means of

mκ,t,ϵy(t, z, ϵ) = y(
t

1 + κϵt
, z, ϵ).

An additional dependence with respect to a complex parameter ϵ ∈ C∗ is assumed compared to
(1) which gives (4) the quality of a singularly perturbed equation.

For some suitable bounded sector T edged at 0 in C∗ and a set E = {Ep}0≤p≤ς−1 of bounded
sectors edged at 0 whose union contains a full neighborhood of 0 in C∗, we construct genuine
bounded holomorphic solutions yp(t, z, ϵ) to (4) on the product T × Hβ × Ep, expressed through a
Laplace transform of order q and Fourier inverse transform

yp(t, z, ϵ) =
q

(2π)1/2

∫ +∞

−∞

∫
Ldp

ωdp(u, m, ϵ) exp
(
− (

u
ϵt
)k)e

√
−1zm du

u
dm

along well chosen halflines Ldp = [0,+∞)e
√
−1dp with dp ∈ R, where ωdp(u, m, ϵ) represents a

function called Borel-Fourier map featuring exponential growth of order q on some sector containing
Ldp with respect to u, showing exponential decay relatively to m on R and relying analytically
on ϵ near 0. Furthermore, the partial maps ϵ 7→ yp(t, z, ϵ) are shown to share on the sectors Ep a
common asymptotic expansion

ŷ(t, z, ϵ) = ∑
n≥0

yn(t, z)ϵn

which represents a formal power series in ϵ with bounded holomorphic coefficients yn, n ≥ 0, on
the product T × Hβ. This asymptotic expansion turns out to be (at most) of Gevrey order 1/q
meaning that constants C, M > 0 can be singled out with

sup
t∈T ,z∈Hβ

|yp(t, z, ϵ)−
N−1

∑
n=0

yn(t, z)ϵn| ≤ CMNΓ(1 +
N
q
)|ϵ|N

for all integers N ≥ 1, whenever ϵ ∈ Ep.
The leading term of (4) consists in a formal differential operator of infinite order with respect

to t,

exp(αϵqtq+1∂t)R(∂z) = ∑
p≥0

(αϵq)p

p!
(tq+1∂t)

(p)R(∂z) (5)

where (tq+1∂t)(p) stands for the p−th iterate of the irregular differential operator tq+1∂t. The
reason for the appearance of such a principal term with infinite order is triggered by the presence
of the Moebius transforms mκ,t,ϵ, κ ∈ J, which forbids leading finite order differential operators.

In the present contribution, our aim is to carry out a similar procedure by means of Fourier-
Laplace transforms in order to construct solutions to (1) and to related problems to (1). However,
the occurence of the Mahler transforms {ml2,t}l2∈I in the main term P of (1) modifies utterly the
whole picture in comparison with [9].

As a first major change, the choice of a principal term with shape (5) is now insufficient to
guarantee the construction of solutions to (1) in our framework. We supplant it by an exponential
formal differential operator of higher order

cosh(αD(tk+1∂t)
2)RD(∂z) =

1
2
(

exp(αD(tk+1∂t)
2) + exp(−αD(tk+1∂t)

2)
)

RD(∂z).
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The reasons for such an option will be motivated later on in the introduction.
Under fitting conditions on the shape of our main equation (1) itemized in the statement

of Theorem 1, Section 5, we can construct a formal power series û(t, z) = ∑n≥1 un(z)tn whose
coefficients un, n ≥ 0, are bounded holomorphic on Hβ, which solves (1) with vanishing initial
data û(0, z) ≡ 0. This formal series is built up through a Borel-Laplace method similar to the
classical k−summability approach discussed in [3], that we call mk−summability, whose basic
results are recalled in Subsection 3.2.1. It means that we can exhibit analytic maps ud(t, z) on
products Sd,ϑ,R × Hβ where Sd,ϑ,R stands for a bounded sector edged at 0 with some small radius
R > 0, well chosen bisecting direction d ∈ R (among a set ΘQ,RD explicitely depicted in Lemma 2)
and opening ϑ slightly larger than π/k, such that

• the map ud(t, z) is expressed as Fourier-Laplace transform

ud(t, z) =
k

(2π)1/2

∫ +∞

−∞

∫
Ld

ωd(τ, m) exp
(
− (

τ

t
)k)e

√
−1zm dτ

τ
dm

where ωd(τ, m) is called the mk−Borel transform of û(t, z) with respect to t (see Definition 3)
which

– defines an analytic map with respect to τ with (at most) exponential growth of order k
on a union Dρ ∪ Sd, where Dρ is a disc with small radius ρ > 0 and Sd is an unbounded
sector bisected by d, edged at 0 with small aperture,

– represents a continuous function relatively to m on R with exponential decay at infinity.

• the partial map t 7→ ud(t, z) is the unique holomorphic map on Sd,ϑ,R which has the formal
series û(t, z) as asymptotic expansion of Gevrey order 1/k, meaning that one can find two
constants C, M > 0 for which

sup
z∈Hβ

|ud(t, z)−
N−1

∑
n=1

un(z)tn| ≤ CMNΓ(1 +
N
k
)|t|N

holds for all integers N ≥ 2, provided that t ∈ Sd,ϑ,R.

Another substantial contrast between the problems (1) and (4) lies in the observation that the
holomorphic maps ud(t, z) do not (in general) obey the main equation solved by û(t, z) (see the
concluding remark of the work). Instead, ud(t, z) is shown to solve two different related functional
differential equations (225) or (226) depending on the location of the unbounded sector Sd in C,
see Theorem 2 in Section 5.

In Subsection 3.2.2, we show that the action of the Mahler operator ml2,t, for l2 ≥ 2, on the
formal series û(t, z) is described by some integral operator acting on its mk−Borel transform
τ 7→ ωd(τ, m),

D̂k,k/l2(ω
d)(τl2) := − k2/l2

2
√
−1π

∫
γ̃ k

l2
,τl2

ωd(ξ, m)Dk, k
l2
(ξ, τl2)dξ (6)

along a closed Hankel path γ̃ k
l2

,τl2 confined nearby the origin in C. These operators are derived

from a version of the analytic deceleration operators introduced by J. Écalle, which turn out to be the
inverse for the composition of the so-called analytic acceleration operators which play a central role
in the theory of multisummability, see [3], Chapters 5 and 6. As shown in Proposition 7, it comes
out that the kernel τ 7→ Dk, k

l2
(ξ, τl2) appearing in (6) has (at most) an exponential growth rate of
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order kl2
l2−1 on the sector Sd, which implies that the analytic map τ 7→ D̂k,k/l2(ω

d)(τl2) itself owns
upper bounds of the form

C(m) exp(K|τ|
kl2

l2−1 ) (7)

provided that τ ∈ Sd, for some constant K > 0 and map m 7→ C(m) with exponential decay on
R, see Sublemma 1 and 2. As a result, the presence of an infinite order operator with the shape
cosh(αD(tk+1∂t)2) in the leading term of (1) seems mandatory since it acts in the Borel plane on
τ 7→ ωd(τ, m) as the multiplication by the map τ 7→ cosh(αD(kτk)2) whose exponential growth
rate on the sector Sd is of order 2k which exceeds kl2

l2−1 , for l2 ≥ 2, and compensates the bounds (7).
Furthermore, we have favored the cosh function instead of the exponential function exp since it
allows a larger choice of sectors Sd in both the left and right halfplanes C− = {z ∈ C/Re(z) < 0}
and C+ = {z ∈ C/Re(z) > 0}.

The exceeding growth rate (7) coming from the action of the Mahler operator ml2,t in the
Borel plane also compromises the mk−sum ud(t, z) of û(t, z) to become a genuine solution to
(1) since only functions with (at most) exponential growth of order k are Laplace transformable.
However, we can exhibit some modified functional equations displayed in (225) or (226) involving
the analytic transforms (6) that ud is shown to obey.

2. Layout of the Main Initial Value Problem

The main problem under study in this work is described as follows

Q(∂z)u(t, z) = cosh(αD(tk+1∂t)
2)RD(∂z)u(t, z)

+ ∑
l=(l0,l1,l2)∈A

al(z)
(
tl0(tk+1∂t)

l1 Rl(∂z)u
)
(tl2 , z)

+ cQ1Q2 Q1(∂z)u(t, z)× Q2(∂z)u(t, z) + f (t, z) (8)

for given vanishing initial data u(0, z) ≡ 0. Below, we display a list of conditions we set on the
building blocks of (8). Namely,

– The constant k ≥ 1 is a natural number. We set αD as a positive real number and cQ1Q2 ∈ C∗

stands for a non vanishing complex number. Constraints will be set on these constants that
will be disclosed later on in the work, see Proposition 9, Section 4.

– The set A represents a finite subset of N3 which is asked to fulfill the next record of restrictions.

1. For all l = (l0, l1, l2) ∈ A, the next inequality

l2 ≤ k (9)

holds.
2. Provided that l = (l0, l1, l2) ∈ A, the next constraint

l0 + kl1 ≥ k
l2

(10)

is required.

– The maps Q(X), RD(X), Rl(X) for l ∈ A along with Q1(X) and Q2(X) are polynomials with
complex coefficients. Their degrees are required to obey the next inequalities

deg(Q) = deg(RD) ≥ deg(Rl) (11)
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for all l ∈ A. In addition, we impose that

deg(RD) ≥ max
(
deg(Q1), deg(Q2)

)
. (12)

Besides, the next technical assumption of geometric nature is set on the polynomials Q(X)

and RD(X). We ask for the existence of a bounded sectorial annulus

SQ,RD = {z ∈ C∗/rQ,RD ,1 ≤ |z| ≤ rQ,RD ,2 , |arg(z)− dQ,RD | ≤ ηQ,RD} (13)

with bisecting direction dQ,RD ∈ R, aperture ηQ,RD > 0 and with inner and outer radii
0 < rQ,RD ,1 < rQ,RD ,2 fulfilling the inclusion

{ Q(
√
−1m)

RD(
√
−1m)

/m ∈ R} ⊂ SQ,RD . (14)

Precise requirements on the shape of the sectorial annulus SQ,RD will be exposed later on in
Section 4, see Lemma 2.

– The differential operator of infinite order cosh(αD(tk+1∂t)2) is defined as the sum

cosh(αD(tk+1∂t)
2) =

1
2
(

exp(αD(tk+1∂t)
2) + exp(−αD(tk+1∂t)

2)
)
, (15)

where each term is defined as a formal expansion

exp(±αD(tk+1∂t)
2) = ∑

p≥0

(±αD)
p

p!
(tk+1∂t)

(2p)

where (tk+1∂t)(2p) stands for the 2p-th iterate of the differential operator tk+1∂t.

In order to describe the properties of the coefficients al(z) for l ∈ A and forcing term f (t, z), we
need to recall the definition of some Banach space of continous functions introduced in the work
[5] and the action of the Fourier inverse transform on these spaces. The next two definitions
already appear in the work [7].

Definition 1. Let β, µ be positive real numbers. We set E(β,µ) as the vector space of continuous functions
h : R → C such that the norm

||h(m)||(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)|

is finite. We observe that the space E(β,µ) equipped with the norm ||.||(β,µ) represents a Banach space.
Furthermore, for given elements f , g of E(β,µ), let us denote

( f ∗ g)(m) =
1

(2π)1/2

∫ +∞

−∞
f (m − m1)g(m1)dm1 (16)

the convolution product of f , g. Assume that µ > 1. Then, f ∗ g belongs to E(β,µ) and the next inequality

|| f ∗ g||(β,µ) ≤ Cµ|| f ||(β,µ)||g||(β,µ)

holds for some constant Cµ > 0 relying on µ. In particular, the Banach space (E(β,µ), ||.||(β,µ)) equipped
with the product ∗ turns out to become a Banach algebra.
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Definition 2. Let f ∈ E(β,µ) with β > 0, µ > 1. The inverse Fourier transform of f is given by the next
integral transform

F−1( f )(x) =
1

(2π)1/2

∫ +∞

−∞
f (m) exp(

√
−1xm)dm (17)

for all x ∈ R. We observe that the function F−1( f ) extends to an analytic bounded function on all strips

Hβ′ = {z ∈ C/|Im(z)| < β′}, (18)

for given 0 < β′ < β.
a) We set the function m 7→ ϕ(m) =

√
−1m f (m) which belongs to the space E(β,µ−1). Then, the next

differential identity
∂zF−1( f )(z) = F−1(ϕ)(z) (19)

occurs for all z ∈ Hβ′ with 0 < β′ < β.
b) Let g be an element of E(β,µ) and set ψ as the convolution product of f and g given by the expression
(16). Then, the next product formula

F−1( f )(z)F−1(g)(z) = F−1(ψ)(z) (20)

holds for all z ∈ Hβ′ provided that 0 < β′ < β.

– The coefficients al(z) are crafted as follows. For all l ∈ A, we consider maps m 7→ Al(m) that
belong to the space E(β,µ), for given β > 0 and where µ > 0 is subjected to the conditions

µ > deg(Rl) + 1 , µ > max(deg(Q1) + 1, deg(Q2) + 1) (21)

for all l ∈ A. For later use, we denote

Al = ||Al ||(β,µ). (22)

The upper size of Al will be fixed later in due course of the paper, see Proposition 9, Section
4. We set

al(z) =
1

(2π)1/2

∫ +∞

−∞
Al(m)e

√
−1zmdm (23)

as the inverse Fourier transform of m 7→ Al(m). From Definition 2, it defines a bounded
holomorphic function on all the strips Hβ′ for any prescribed 0 < β′ < β.

– The forcing term f (t, z) is built up in the next way. Let J ∈ N∗ be a subset of the positive
natural numbers. For j ∈ J, we mind a map m 7→ Fj(m) which belongs to the space E(β,µ) for
the real numbers β > 0 and µ > 1 satisfying (21) given in the previous item. We introduce
the notation

Fj = ||Fj||(β,µ) (24)

for j ∈ J. The forcing term f (t, z) is defined as the next polynomial in t

f (t, z) = ∑
j∈J

Fj(z)Γ(j/k)tj (25)

where

– The symbol Γ(x) stands for the classical Gamma function Γ(x) =
∫ +∞

0 tx−1e−tdt, for
any x > 0.
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– The coefficients Fj(z), j ∈ J, are the inverse Fourier transforms

Fj(z) =
1

(2π)1/2

∫ +∞

−∞
Fj(m)e

√
−1zmdm (26)

of Fj. From Definition 2, z 7→ Fj(z) defines a bounded holomorphic map on any strip
Hβ′ with 0 < β′ < β.

We introduce the next polynomial in the variable τ with coefficients in E(β,µ),

F (τ, m) = ∑
j∈J

Fj(m)τ j. (27)

According to the definition of the Gamma function, we observe that the forcing term f (t, z)
has an integral representation as a Laplace transform of order k and inverse Fourier integral

f (t, z) =
k

(2π)1/2

∫
Ld1

∫ +∞

−∞
F (τ, m) exp

(
− (

τ

t
)k)e

√
−1zm dτ

τ
dm (28)

where Ld1 = [0,+∞)e
√
−1d1 stands for any halfline in direction d1 ∈ R that depends on the

variable t through the restriction cos(k(d1 − arg(t))) > 0. Such a representative will be useful
in the next section 3.

3. Reduction of the Main Problem to an Integral Equation

In this section, we perform two important reductions of our initial value problem. In the first
subsection, we reduce our problem to the study of a differential/convolution equation involving
Mahler transforms by means of a Fourier transform. In the second subsection, we further reduce
the problem to an integral equation through the application of formal Borel/Laplace transforms
of order k. This second reduction is essential in the achievement of our first main result, Theorem
1 in Section 5.

3.1. First Reduction to a Differential/Convolution Equation with Mahler Transforms

We search for solutions to (8) in the form of an inverse Fourier transform

u(t, z) =
1

(2π)1/2

∫ +∞

−∞
U(t, m)e

√
−1zmdm (29)

for some expression U(t, m) such that the partial maps m 7→ U(t, m) belong to the space E(β,µ)
for β, µ > 0 prescribed in Section 2. The precise shape of U(t, m) will be unveiled in the next
subsection. With the help of Definition 2, we reach the next
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Proposition 1. The integral expression u(t, z) given by (29) formally solves (8) if the map U(t, m) obeys
the next differential/convolution equation comprising Mahler transforms

Q(
√
−1m)U(t, m) = cosh(αD(tk+1∂t)

2)RD(
√
−1m)U(t, m)

+ ∑
l=(l0,l1,l2)∈A

1
(2π)1/2

∫ +∞

−∞
Al(m − m1)

(
tl0(tk+1∂t)

l1U
)
(tl2 , m1)Rl(

√
−1m1)dm1

+ cQ1Q2

1
(2π)1/2

∫ +∞

−∞
U(t, m − m1)Q1(

√
−1(m − m1))U(t, m1)Q2(

√
−1m1)dm1

+ ∑
j∈J

Fj(m)Γ(j/k)tj (30)

for given initial data U(0, m) ≡ 0.

3.2. Reduction to an Integral Equation

We seek for a solution to the reduced equation (30) expressed as a formal power series

Û(t, m) = ∑
n≥1

Un(m)tn (31)

in the time variable t with coefficients m 7→ Un(m) that belong to E(β,µ) for β, µ > 0 assigned in
Section 2. In the next two subsections, we provide the required prefatory material for our second
step of reduction.

3.2.1. Essentials on Banach Valued mk−Summable Formal Power Series

The objective of this subsection is to remind the reader the notion of mk−summability and its
basic properties as decribed in our previous work [7] which is a slight adjustment of the concept
of k−summability discussed in the textbook [4].

Definition 3. Let (E, ||.||E) be a complex Banach space. We select an integer k ≥ 1 and define the sequence
mk(n) = Γ(n/k), for all n ≥ 1. A formal power series

Û(t) = ∑
n≥1

antn ∈ tE[[t]]

is called mk−summable with respect to t in the direction d ∈ R if

• The so-called formal mk−Borel transform of Û(t) defined by the power series

Bmk (Û)(τ) = ∑
n≥1

an

Γ(n/k)
τn ∈ τE[[τ]] (32)

is convergent on a disc Dρ for some ρ > 0.
• The convergent series Bmk (Û)(τ) can be analytically continued with respect to τ (as a function still

denoted Bmk (Û)(τ)) on some unbounded sector

Sd,δ = {τ ∈ C∗/|d − arg(τ)| < δ}

with aperture 2δ and bisecting direction d ∈ R. Moreover, two constants C > 0 and K > 0 can be
found such that

||Bmk (Û)(τ)||E ≤ CeK|τ|k (33)
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for all τ ∈ Sd,δ.

Let Û(t) be a mk−summable formal power series with respect to t in a direction d. We define the Laplace
transform of order k in direction d of the mk−Borel transform Bmk (Û)(τ) by the integral transform

Ld
mk
(Bmk (Û))(t) = k

∫
Lγ

Bmk (Û)(τ) exp
(
− (

τ

t
)k)dτ

τ
(34)

along a halfline Lγ = [0,+∞)e
√
−1γ ⊂ Sd,δ ∪ {0}, where γ relies on t and matches the inequality

cos(k(γ − arg(t))) > ∆1 for some constant ∆1 > 0.
The function t 7→ Ld

mk
(Bmk (Û))(t) is bounded holomorphic on any bounded sector

Sd,θ,R1/k = {t ∈ C∗/|t| < R1/k , |d − arg(t)| < θ/2} (35)

where π
k < θ < π

k + 2δ and 0 < R < ∆1
K , for K appearing in (33). This function is called the mk−sum of

Û(t) in the direction d.

The above definition of mk−sum of a formal power series is justified by the next proposition
(see also Proposition 11 p. 75 from [4] known as Watson’s Lemma)

Proposition 2. Let Û(t) be a mk−summable formal power series with respect to t in some direction d.
Then, the Laplace transform t 7→ Ld

mk
(Bmk (Û))(t) is the unique holomorphic map on Sd,θ,R1/k which has

the formal power series Û(t) as asymptotic expansion of Gevrey order 1/k with respect to t on Sd,θ,R1/k

for any given opening θ under the condition π
k < θ < π

k + 2δ. It means that one can find two constants
C, M > 0 for which the next inequality

||Ld
mk
(Bmk (Û))(t)−

N−1

∑
p=1

aptp||E ≤ CMNΓ(1 +
N
k
)|t|N (36)

holds for all integers N ≥ 2, all t ∈ Sd,θ,R1/k .

In the next proposition, we recall some crucial identities for the formal mk−Borel transform
under the action of differential operators of irregular type, multiplication by a monomial and
products (see Proposition 6 from [7]).

Proposition 3. Let (E, ||.||E) be a complex Banach algebra whose product is denoted ∗. Let k, l ≥ 1 be
natural numbers. Let Ûj(t), j = 1, 2, be elements of tE[[t]]. The next formal identities hold

Bmk (t
k+1∂tÛ1(t))(τ) = kτkBmk (Û1)(τ),

Bmk (t
lÛ1(t))(τ) =

τk

Γ(l/k)

∫ τk

0
(τk − s)

l
k −1Bmk (Û1)(s1/k)

ds
s

,

Bmk (Û1(t)Û2(t))(τ) = τk
∫ τk

0
Bmk (Û1)((τ

k − s)1/k)Bmk (Û2)(s1/k)
1

(τk − s)s
ds (37)

where in the last formula, the product of formal power series is built up by means of the product ∗ in the
Banach algebra E.
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In the next proposition, we provide the counterpart of the above proposition for the action of
differential operators of irregular type, multiplication by a monomial and products for mk−sums
of formal power series. Its proof is similar to the one given for Lemma 2 of [9].

Proposition 4. Let (E, ||.||E, ∗) be a complex Banach algebra. Let k, l ≥ 1 be natural numbers. We
consider Ûj(t), j = 1, 2, two elements of tE[[t]] that are assumed to be mk−summable in some direction
d ∈ R. For j = 1, 2, we set

Ud
j (t) = k

∫
Ld

ωj(τ) exp
(
− (

τ

t
)k)dτ

τ

the mk−sum of Ûj(t) in direction d, where ωj(τ) denotes the mk−Borel transform of Ûj(t). The next
identities hold whenever t ∈ Sd,θ,R1/k provided that θ > π/k and is taken close enough to π/k and the
radius R > 0 is chosen in the vicinity of the origin,

tk+1∂tUd
j (t) = k

∫
Ld

{kτkωj(τ)} exp
(
− (

τ

t
)k)dτ

τ
,

tlUd
j (t) = k

∫
Ld

{ τk

Γ(l/k)

∫ τk

0
(τk − s)

l
k −1ωj(s1/k)

ds
s

}
exp

(
− (

τ

t
)k)dτ

τ
,

Ud
1 (t)U

d
2 (t) = k

∫
Ld

{
τk

∫ τk

0
ω1((τ

k − s)1/k)ω2(s1/k)
1

(τk − s)s
ds
}

exp
(
− (

τ

t
)k)dτ

τ
, (38)

where in the closing formula, the product of E−valued functions is built up by means of the product ∗ of
the algebra E.

3.2.2. Action of the Mahler operators on formal mk−Borel transforms

The aim of this subsection is twofold. We first derive a formula describing the action of the
Mahler operators on formal mk−Borel transforms for formal power series through so-called formal
deceleration operators. Then, for later use in Section 3.2.3, under some additional assumptions, we
provide an integral representation of these deceleration operators constructed with the help with
some kernel function. At last, we provide some important analytic features of this kernel function.

The next definition is a slightly modified version of the deceleration operators defined in the
textbook [3], p. 46.

Definition 4. Let (E, ||.||E) be a complex Banach space. Let 1 ≤ k < k′ be two rational numbers. We
define the (k′, k)−deceleration operator D̂k′ ,k from τE[[τ]] into hE[[h]] by the formula

D̂k′ ,k( f̂ )(h) := ∑
n≥1

fn
Γ(n/k′)
Γ(n/k)

hn (39)

for all elements f̂ (τ) = ∑n≥1 fnτn of τE[[τ]].

Remark: This formal deceleration operator D̂k′ ,k turns out to be the inverse for the composi-
tion of the so-called acceleration operator Âk′ ,k acting on formal series f̂ (τ) = ∑n≥1 fnτn through

Âk′ ,k( f̂ )(h) := ∑
n≥1

fn
Γ(n/k)
Γ(n/k′)

hn

introduced in the paper [8], Section 4.3, by A. Lastra and the author and which stands for an
adjusted version of the classical acceleration operators as defined in [3], Chapter 5.
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The next proposition discloses a formula for the formal mk−Borel transform under the action
of a Mahler operator.

Proposition 5. Let (E, ||.||E) be a complex Banach space. Let p ≥ 2 and k ≥ 1 be natural numbers with
k ≥ p. Let Û(t) be an element of tE[[t]]. We set V̂(t) = Û(tp) the element of tE[[t]] obtained by applying
the Mahler operator t 7→ tp to Û(t). The next identity holds

Bmk (V̂)(τ) = D̂k,k/p(Bmk (Û))(τp) (40)

Proof. Let us expand Û as Û(t) = ∑n≥1 untn. Hence, V̂(t) = Û(tp) = ∑n≥1 untpn. According to
the first item of Definition 3, we observe that

Bmk (V̂)(τ) = ∑
n≥1

un
τpn

Γ( pn
k )

. (41)

On the other hand, the mk−Borel transform of Û writes Bmk (Û)(τ) = ∑n≥1 unτn/Γ(n/k) and by
Definition 4, we deduce that

D̂k,k/p(Bmk (Û))(h) = ∑
n≥1

un

Γ(n/k)
Γ(n/k)
Γ( n

k/p )
hn = ∑

n≥1

un

Γ( pn
k )

hn (42)

At last, the combination of (41) and (42) yields (40).

In the next proposition, we display an integral representation for the (k′, k)−deceleration
operator D̂k′ ,k under further assumptions on its source space.

Proposition 6. Let (E, ||.||E) be a complex Banach space. Let 1 ≤ k < k′ be two rational numbers. We
consider an element f̂ (τ) of τE[[τ]] which is assumed to be convergent on some disc Dρ with ρ > 0. For a
given h ∈ C∗, we attach the next two items.

• We choose a direction γh ∈ R and a positive real number ∆1 > 0 such that

cos(k′(γh − arg(h))) > ∆1. (43)

• We consider the so-called closed Hankel path denoted γ̃k,h depicted as the union of

– the oriented segment γ̃k,h,1 = [0, (ρ/2)e
√
−1(γh+

π
2k +

δ′
2 )]

– the oriented arc of circle

γ̃k,h,3 = {(ρ/2)e
√
−1θ/θ ∈ [γh +

π

2k
+

δ′

2
, γh −

π

2k
− δ′

2
]}

– the oriented segment γ̃k,h,2 = [(ρ/2)e
√
−1(γh− π

2k −
δ′
2 ), 0]

where δ′ > 0 is a positive real number taken close to 0.

Then, the (k′, k)−deceleration operator D̂k′ ,k has the following integral representation

D̂k′ ,k( f̂ )(h) = − k′k
2
√
−1π

∫
γ̃k,h

f̂ (ξ)Dk′ ,k(ξ, h)dξ (44)
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for all h ∈ C∗, where the kernel Dk′ ,k(ξ, h) is expressed by means of the integral

Dk′ ,k(ξ, h) =
1

ξk+1

∫
Lγh

uk−1 exp
(
(

u
ξ
)k − (

u
h
)k′)du (45)

along a the halfline Lγh = [0,+∞)e
√
−1γh .

Proof. Let h ∈ C∗. At first, from the very definition of the Gamma function, we observe that for
all natural numbers n ≥ 1, we have the next integral form for the monomial

Γ(n/k′)hn = k′
∫

Lγh

un exp
(
− (

u
h
)k′)du

u
(46)

along the halfline Lγh given in the statement of the proposition 6.
Owing to Proposition 12 from [8] and based on the so-called Hankel formula (see [4], Ap-

pendix B.3), we can rewrite the next monomial in an integral form

un

Γ(n/k)
= − k

2
√
−1π

∫
γ̃k,h

ξn exp
(
(

u
ξ
)k) uk

ξk+1 dξ (47)

along the Hankel path γ̃k,h detailed in the second item of Proposition 6, for all u ∈ Lγh .
As a result of (46) together with (47), an application of the Fubini theorem yields

Γ(n/k′)
Γ(n/k)

hn = k′
∫

Lγh

un

Γ(n/k)
exp

(
− (

u
h
)k′)du

u

= k′
∫

Lγh

(
− k

2
√
−1π

∫
γ̃k,h

ξn exp
(
(

u
ξ
)k) uk

ξk+1 dξ
)

exp
(
− (

u
h
)k′)du

u

= − k′k
2
√
−1π

∫
γ̃k,h

ξn 1
ξk+1

( ∫
Lγh

uk exp
(
(

u
ξ
)k − (

u
h
)k′)du

u

)
dξ. (48)

At last, the definition of D̂k′ ,k( f̂ )(h) given in (39) combined with the integral representation (48)
and the uniform convergence of f̂ (τ) on the disc Dρ/2 gives rise to the formula (44) and (45).

In the forthcoming proposition, we provide crucial technical upper bounds for the kernel
Dk′ ,k that will be used in the next Section 4, Proposition 9, Lemma 5 and Lemma 6.

Proposition 7. 1) There exists a constant Mk′ ,k > 0 (depending on k, k′) such that the next upper bounds

|Dk′ ,k(ξ, h)| ≤
Mk′ ,k

k|ξ|k+1 |h|
k
∣∣∣h
ξ

∣∣∣ k2
k′−k exp

(
|h
ξ
|κ
)

(49)

hold for all h ∈ C∗, all ξ ∈ γ̃k,h provided that |ξ| ≤ |h|, where

κ =
kk′

k′ − k
. (50)
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Observe that κ > k since k′ > k.
2) There exists a constant Mk′ ,k,1,2 > 0 (depending on k, k′) such that the upper estimates

|Dk′ ,k(ξ, h)| ≤ Mk′ ,k,1,2
|h|k

k|ξ|k+1 (51)

hold for all h ∈ C∗, all ξ ∈ γ̃k,h,1 or ξ ∈ γ̃k,h,2.

Proof. We first express Dk′ ,k as a Laplace transform in the combined variable (h/ξ)k. Indeed,
we make the change of variable u = ht1/k in the integral (45) for the variable t belonging to the
halfline Lγ′

h
= [0,+∞)e

√
−1γ′

h with

γ′
h = k(γh − arg(h)) (52)

which yields

Dk′ ,k(ξ, h) =
1

ξk+1

( ∫
Lγ′h

hk−1t
k−1

k exp
(
(

h
ξ
)kt − tk′/k)h

k
t

1
k −1dt =

1
kξk+1 hkDk′/k((

h
ξ
)k) (53)

where
Dk′/k(z) =

∫
Lγ′h

exp(−tk′/k) exp(zt)dt. (54)

In the next lemma, we derive some analytic features and bounds estimates for the Laplace integral
Dk′/k.

Lemma 1. a) The map z 7→ Dk′/k(z) is an entire function in C. Moreover, one can single out some
constant Mk′ ,k > 0 such that

|Dk′/k(z)| ≤ Mk′ ,k|z|
k

k′−k exp
(
|z|

k′
k′−k

)
(55)

for all |z| ≥ 1.
b) For some fixed constant ∆2 > 0 and the direction γ′

h given in (52), we consider the sector

Sγ′
h ,∆2

= {z ∈ C∗/ cos(arg(z) + γ′
h) < −∆2}. (56)

Then, there exists a constant Mk′ ,k,1,2 > 0 (relying on k, k′, ∆1, ∆2, where ∆1 stems from (43)) such that

|Dk′/k(z)| ≤ Mk′ ,k,1,2 (57)

for all z ∈ Sγ′
h ,∆2

.

Proof. We discuss the first point a). From the Taylor expansion ezt = ∑n≥0(zt)n/n! which
converges uniformly on any compact subset of C, we deduce that

Dk′/k(z) = ∑
n≥0

an

n!
zn (58)

for any z ∈ C, with

an =
∫

Lγ′h

tn exp(−tk′/k)dt , n ≥ 0.
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We make the change of variable s = tk′/k in the above integrals defining an and get by definition
of the Gamma function that

an =
k
k′

∫
Lγ′′h

s
k
k′ (n+1)−1e−sds =

k
k′

Γ
( k

k′
(n + 1)

)
(59)

for all n ≥ 0, where γ′′
h = k′(γh − arg(h)). Combining (58) with (59) yields the expansion

Dk′/k(z) = ∑
n≥0

k
k′

Γ
( k

k′ (n + 1)
)

Γ(n + 1)
zn (60)

for all z ∈ C. On the other hand, from the Beta integral formula (see [4], Appendix B.3), we remind
that

Γ(α)Γ(β)

Γ(α + β)
=

∫ 1

0
(1 − t)α−1tβ−1dt ≤ 1 (61)

for all real numbers α, β ≥ 1. From (61) we deduce that

Γ
( k

k′ (n + 1)
)

Γ(n + 1)
≤ 1

Γ
(
(1 − k

k′ )n + (1 − k
k′ )

) (62)

for all n ≥ nk′ ,k, for some integer nk′ ,k ≥ 1 depending on k, k′. As a result of (60) and (62), we
obtain a constant Ck′ ,k > 0 such that

|Dk′/k(z)| ≤ Ck′ ,k ∑
n≥0

1
Γ
(
(1 − k

k′ )n + (1 − k
k′ )

) |z|n (63)

for all z ∈ C. Now, we call to mind some upper bounds for the so-called Wiman function

Eα,β(x) = ∑
n≥0

xn

Γ(αn + β)

for prescribed α ∈ (0, 2) and β > 0 mentioned in our previous work [8], Proposition 1. Namely,
some constant Kα,β > 0 can be found such that

Eα,β(x) ≤ Cα,βx
1−β

α ex1/α
(64)

for all x ≥ 1. At last, from (63) and (64), we deduce that awaited bounds (55).
We focus on the second point b). According to the lower bounds (43) and the definition (56)

of the sector Sγ′
h ,∆2

, we reach a constant Mk′ ,k,1,2 (depending on k′, k, ∆1 and ∆2) with

|Dk′/k(z)| ≤
∫ +∞

0
exp

(
− rk′/k cos(k′(γh − arg(h)))

)
× exp

(
|z|r cos(arg(z) + γ′

h)
)
dr

≤
∫ +∞

0
exp(−r

k′
k ∆1) exp(−|z|r∆2)dr ≤ Mk′ ,k,1,2 (65)

for all z ∈ Sγ′
h ,∆2

.

We turn to the first point 1) of Proposition 7. We observe that the inequality (49) is a straight
consequence of the factorization (53) and the upper bounds (55).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2024 doi:10.20944/preprints202412.0591.v1

https://doi.org/10.20944/preprints202412.0591.v1


16

We address the second point 2) of Proposition 7. We first observe by construction of γ̃k,h,1
and γ̃k,h,2 in the second item of Proposition 6, one can find a constant ∆2 > 0 such that

cos(k(γh − arg(ξ))) = cos(arg((u/ξ)k)) < −∆2 (66)

for all u ∈ Lγh , provided that ξ ∈ γ̃k,h,1 or ξ ∈ γ̃k,h,2. Besides, for ∆2 > 0 chosen as in (66), we
remark that

(h/ξ)k ∈ Sγ′
h ,∆2

(67)

for all ξ ∈ γ̃k,h,1 ∪ γ̃k,h,2. Indeed, (67) is equivalent to

cos(arg((h/ξ)k) + k(γh − arg(h))) < −∆2

which can be rewritten as (66).
At last, we conclude that the bounds (51) can be derived from the factorization (53) and the

upper bounds (57) taking for granted the inclusion (67).

3.2.3. Statement of the Integral Equation

In this subsection, we denote

Ŵ(τ, m) = Bmk (t 7→ Û(t, m))(τ) (68)

the formal mk−Borel transform of the formal power series expansion (31). The object of this
subsection is the derivation of some integral equation fulfilled by the formal power series (68) seen
as a series with coefficients in the Banach space E = E(β,µ) endowed with the norm ||.||E = ||.||(β,µ).

In this subsection, we make the assumption that

Ŵ ∈ E(β,µ){τ} (69)

meaning that τ 7→ Ŵ(τ, m) is convergent on some disc Dρ with ρ > 0 as a E(β,µ)−valued series.
We will see in Section 4, where a solution of the integral equation (72) will be constructed in some
function space, that this assumption will be satisfied.

In order to improve the legibility of the equation that Ŵ(τ, m) is asked to solve

• We introduce the notation

Ck,l0,l1(Ŵ)(τ, m) :=
τk

Γ(l0/k)

∫ τk

0
(τk − s)

l0
k −1(ks)l1Ŵ(s1/k, m)

ds
s

(70)

for all integers l0 ≥ 1, l1 ≥ 0.
• We define the map

Pm(τ) = Q(
√
−1m)− cosh(αD(kτk)2)RD(

√
−1m) (71)

for all τ ∈ C, all m ∈ R.

Based upon the transformations formula (37) harked back in Proposition 3 and the formal
identity for the Mahler transforms reached in (40) of Proposition 5 together with the integral
formula (44) derived in Proposition 6 under our assumption (69), we arrive at the next proposition.
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Proposition 8. The formal power series Û(t, m) given by (31) solves the equation (30) for vanishing initial
data Û(0, m) ≡ 0 if the convergent formal series Ŵ(τ, m) given by (68) obeys the next integral equation

Pm(τ)Ŵ(τ, m) = ∑
l=(l0,l1,l2)∈A
l0=0,l2=1

1
(2π)1/2

∫ +∞

−∞
Al(m − m1)(kτk)l1Ŵ(τ, m1)Rl(

√
−1m1)dm1

+ ∑
l=(l0,l1,l2)∈A
l0≥1,l2=1

1
(2π)1/2

∫ +∞

−∞
Al(m − m1)Ck,l0,l1(Ŵ)(τ, m1)Rl(

√
−1m1)dm1

+ ∑
l=(l0,l1,l2)∈A
l0=0,l2>1

1
(2π)1/2

∫ +∞

−∞
Al(m − m1)

(
− k2/l2

2
√
−1π

∫
γ̃ k

l2
,τl2

(kξk)l1Ŵ(ξ, m1)Dk, k
l2
(ξ, τl2)dξ

)

× Rl(
√
−1m1)dm1

+ ∑
l=(l0,l1,l2)∈A
l0≥1,l2>1

1
(2π)1/2

∫ +∞

−∞
Al(m − m1)

(
− k2/l2

2
√
−1π

∫
γ̃ k

l2
,τl2

Ck,l0,l1(Ŵ)(ξ, m1)Dk, k
l2
(ξ, τl2)dξ

)

× Rl(
√
−1m1)dm1

+ cQ1Q2

1
(2π)1/2

∫ +∞

−∞

(
τk

∫ τk

0
Ŵ((τk − s)1/k, m − m1)Q1(

√
−1(m − m1))

× Ŵ(s1/k, m1)Q2(
√
−1m1)

1
(τk − s)s

ds
)

dm1 + ∑
j∈J

Fj(m)τ j (72)

4. Solving the Integral Equation in a Banach Space of Functions with Exponential Growth on
Sectors and Decay on the Real Line

In this section, we investigate the existence and unicity of a genuine solution to the above
integral equation (72) in the Banach space of functions described in the next definition

Definition 5. Let Sd be an unbounded sector edged at 0 with bisecting direction d ∈ R. Let ν, ρ > 0 be
positive real numbers. We consider the natural number k ≥ 1 and β, µ > 0 the real numbers prescribed in
Section 2. We denote Fd

(ν,β,µ,k,ρ) the vector space of continuous functions (τ, m) 7→ h(τ, m) on the product
(Sd ∪ Dρ)×R, which are holomorphic with respect to τ on the union Sd ∪ Dρ for which the norm

||h(τ, m)||(ν,β,µ,k,ρ) = sup
τ∈Sd∪Dρ ,m∈R

(1 + |m|)µeβ|m| 1 + |τ|2k

|τ| exp(−ν|τ|k)|h(τ, m)| (73)

is finite. The space Fd
(ν,β,µ,k,ρ) equipped with the norm ||.||(ν,β,µ,k,ρ) turns out to be a complex Banach space.

These Banach spaces appear for the first time in the previous paper [7] by A. Lastra and the
author.

Our strategy consists in rewriting our main integral equation (72) as a fixed point equation
(see (195) below) for which a solution can be constructed in the above Banach space given in
Definition 5 for well adjusted parameters ν and ρ. In order to recast (72) into (195), we need to
divide both sides of (72) by the map Pm(τ) given in (71) provided that the Borel variable τ is taken
in the vicinity of the origin and along a well chosen unbounded sector, given that the fourier mode
m is ranged over R.

In the next lemma, we provide some crucial lower bounds for Pm(τ) on fitting unbounded
domains.
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Lemma 2. Provided that the aperture ηQ,RD > 0 of the sector SQ,RD diplayed in (13) and that the difference
|rQ,RD ,1 − rQ,RD ,2| of the inner and outer radius of SQ,RD are taken small enough, there exists a non empty
subset ΘQ,RD of [−π, π) and a small radius ρ > 0 with the next features:

• For all d ∈ ΘQ,RD , one can select an unbounded sector Sd edged at 0 with bisecting direction d.
• To the above chosen sector Sd, one can attach two constants δSd ,k,αD > 0 (relying on Sd, k and αD),

∆Sd ,k > 0 (depending on Sd and k) with the following lower bounds

|Pm(τ)| ≥ |RD(
√
−1m)|δSd ,k,αD exp(αDk2∆Sd ,k|τ|2k) (74)

for all τ ∈ Sd ∪ Dρ, all m ∈ R.

Proof. For all m ∈ R, we set H(m) = Q(
√
−1m)/RD(

√
−1m). In a first step, we need to find the

complex solutions of the equation

cosh(X) :=
eX + e−X

2
= H(m). (75)

We notice that this equation (75) is equivalent to

(eX)2 − 2eX H(m) + 1 = 0. (76)

If one sets the quantity

δ(m) = |H2(m)− 1|1/2 exp
(√

−1
arg(H2(m)− 1)

2
)

(77)

for all m ∈ R, then (76) has two infinite sets of solutions {al(m)}l∈Z and {bl(m)}l∈Z given by
explicit expressions

al(m) = log |H(m) + δ(m)|+
√
−1(arg(H(m) + δ(m)) + 2lπ) (78)

for all l ∈ Z and m ∈ R with

bl(m) = log |H(m)− δ(m)|+
√
−1(arg(H(m)− δ(m)) + 2lπ) (79)

for all l ∈ Z and m ∈ R. Namely, owing to the relation

(H(m)− δ(m))(H(m) + δ(m)) = 1

for all m ∈ R, we observe that both expressions (78) and (79) are well defined since H(m)− δ(m)

and H(m) + δ(m) are not vanishing quantities and furthermore that the next symmetry occurs

b−l(m) = −al(m) (80)

for all integers l ∈ Z and m ∈ R.
At the next stage, we describe the complex solutions of the equation

cosh(αDk2τ2k) = H(m). (81)
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From the above discussion, we deduce that the complex zeros of (81) are given by the union of the
roots of the next algebraic equations

αDk2τ2k = al(m) (82)

with
αDk2τ2k = bl(m) (83)

for all l ∈ Z. For each l ∈ Z, the 2k distinct roots of (82) are given by

τh,l(m) =
∣∣ al(m)

αDk2

∣∣ 1
2k exp

(√
−1(

arg(al(m))

2k
+

πh
k
)
)

(84)

and the 2k distinct roots of (83) are expressed through

υh,l(m) =
∣∣ bl(m)

αDk2

∣∣ 1
2k exp

(√
−1(

arg(bl(m))

2k
+

πh
k
)
)

(85)

for all 0 ≤ h ≤ 2k − 1, all m ∈ R. Furthermore, we notice the symmetry relations −τh,l(m) =

τh+k,l(m) with −υh,l(m) = υh+k,l(m) provided that 0 ≤ h ≤ k, for any given l ∈ Z and m ∈ R.
Bearing in mind from (14), that H(m) belongs to the sector SQ,RD for all m ∈ R, provided that

the aperture ηQ,RD > 0 of SQ,RD and the difference |rQ,RD ,1 − rQ,RD ,2| are chosen small enough,
there exist directions d ∈ R for which an unbounded sector Sd edged at 0 with bisecting direction
d can be singled out in a way that

Sd ∩
(
{τh,l(m)/0 ≤ h ≤ 2k − 1, l ∈ Z, m ∈ R} ∪ {υh,l(m)/0 ≤ h ≤ 2k − 1, l ∈ Z, m ∈ R}

)
= ∅.

(86)
For later use, we choose the sector Sd with the further assumption that for all θ ∈ R such that
e
√
−1θ ∈ Sd, the next condition

cos(2kθ) ̸= 0 (87)

holds. We denote ΘQ,RD the set of all directions d in (−π, π) for which sectors Sd can be selected
fulfilling the above two features (86) and (87).

Now, we explain which constraints are set on the radius ρ > 0. Provided that ρ > 0 is chosen
close enough to 0, one can choose a small radius η1 > 0 such that

cosh(αDk2τ2k) ∈ D(1, η1) (88)

for all τ ∈ Dρ, where D(1, η1) stands for the disc centered at 1 with radius η1. Then, we select the
sector SQ,RD in a way that

SQ,RD ∩ D(1, η1) = ∅. (89)

For the rest of the proof, we choose a sector Sd for d ∈ ΘQ,RD and a disc Dρ as above.

We first come up with lower bounds for the map Pm(τ) on the domains (Sd ∪ Dρ) ∩ DR, for
any prescribed large radius R > 0. Namely, we factorize Pm(τ) in the form

Pm(τ) = RD(
√
−1m)× [H(m)− cosh(αDk2τ2k)] (90)
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for all τ ∈ Sd ∪ Dρ, all m ∈ R. Owing to the constraints (86), (88) along with (89) and according to
(14), for each given radius R > 0 (as large as we want), we can find a constant δ1 > 0 such that

|H(m)− cosh(αDk2τ2k)| ≥ δ1 (91)

for all Sd ∪ Dρ with |τ| ≤ R. Combining (90) and (91) yields lower bounds of the form

|Pm(τ)| ≥ |RD(
√
−1m)|δ1 (92)

for all τ ∈ (Sd ∪ Dρ) ∩ DR and m ∈ R.

In the last part of the proof, lower bounds for large values of |τ| on Sd are exhibited. We write
τ ∈ Sd in the form τ = re

√
−1θ , for radius r ≥ 0 and angle θ ∈ R. Then,

Re(αDk2τ2k) = αDk2r2k cos(2kθ) (93)

According to our choice of Sd subjected to (87), two cases arise.

Case 1. There exists a constant ∆Sd ,k,1 > 0 (depending on Sd and k) such that

cos(2kθ) > ∆Sd ,k,1 (94)

for all θ ∈ R with e
√
−1θ ∈ Sd. We perform the next factorization

cosh(αDk2τ2k) = exp(αDk2τ2k)×
[1

2
+

1
2

exp(−2αDk2τ2k)
]

(95)

which allows us to rephrase the next difference as a product

cosh(αDk2τ2k)− H(m) = exp(αDk2τ2k)A(τ, m) (96)

where

A(τ, m) =
[1

2
+

1
2

exp(−2αDk2τ2k)
]

×
[
1 − H(m) exp(−αDk2τ2k)× [

1
2
+

1
2

exp(−2αDk2τ2k)]−1
]

(97)

for all τ ∈ Sd, m ∈ R. According to (94), we note that

| exp(αDk2τ2k)| = exp
(
αDk2r2k cos(2kθ)

)
≥ exp

(
αDk2∆Sd ,k,1|τ|2k) (98)

whenever τ = re
√
−1θ ∈ Sd. Besides, observing that lim|τ|→+∞ | exp(−αDk2τ2k)| = 0 and keeping

in mind that rQ,RD ,1 ≤ |H(m)| ≤ rQ,RD ,2, for all m ∈ R, we get some constant ASd ,k,αD > 0 and a
radius R1 > 0 (large enough) for which

|A(τ, m)| ≥ ASd ,k,αD (99)

for all τ ∈ Sd with |τ| ≥ R1 and all m ∈ R.
Eventually, in gathering the factorizations (90) and (96) together with the lower bounds (98)

and (99), we arrive at the lower bounds

|Pm(τ)| ≥ |RD(
√
−1m)|ASd ,k,αD exp

(
αDk2∆Sd ,k,1|τ|2k) (100)
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provided that τ ∈ Sd with |τ| ≥ R1 and m ∈ R. At last, combining these last bounds (100) and (92)
for R = R1, we arrive at the awaited lower bounds (74) for some small constant δSd ,k,αD > 0 and
∆Sd ,k := ∆Sd ,k,1.

Case 2. A constant ∆Sd ,k,2 > 0 (depending on Sd and k) can be singled out for which

cos(2kθ) < −∆Sd ,k,2 (101)

holds for all θ ∈ R with e
√
−1θ ∈ Sd. In that case, we do factorize

cosh(αDk2τ2k) = exp(−αDk2τ2k)×
[1

2
+

1
2

exp(2αDk2τ2k)
]

(102)

and recast the next difference at a product in the form

cosh(αDk2τ2k)− H(m) = exp(−αDk2τ2k)B(τ, m) (103)

where

B(τ, m) =
[1

2
+

1
2

exp(2αDk2τ2k)
]

×
[
1 − H(m) exp(αDk2τ2k)× [

1
2
+

1
2

exp(2αDk2τ2k)]−1
]

(104)

for all τ ∈ Sd, m ∈ R. Based on our hypothesis (101), we remark that

| exp(−αDk2τ2k)| = exp
(
− αDk2r2k cos(2kθ)

)
≥ exp

(
αDk2∆Sd ,k,2|τ|2k) (105)

as long as τ = re
√
−1θ ∈ Sd. On the other hand, since lim|τ|→+∞ | exp(αDk2τ2k)| = 0 and granting

that |H(m)| ∈ [rQ,RD ,1, rQ,RD ,2], for all m ∈ R, some constant BSd ,k,αD > 0 and a radius R2 > 0
(large enough) can be deduced for which

|B(τ, m)| ≥ BSd ,k,αD (106)

for all τ ∈ Sd with |τ| ≥ R2 and all m ∈ R.
In conclusion, the factorizations (90) and (103) combined with the lower bounds (105) and

(106) yield the next lower bounds

|Pm(τ)| ≥ |RD(
√
−1m)|BSd ,k,αD exp

(
αDk2∆Sd ,k,2|τ|2k) (107)

whenever τ ∈ Sd with |τ| ≥ R2 and m ∈ R. Finally, these latter bounds (107) gathered with (92)
for R = R2 give rise to the expected lower bounds (74) for some small constant δSd ,k,αD > 0 and
∆Sd ,k := ∆Sd ,k,2.
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We now introduce the map H acting on the Banach spaces of Definition 5 for which the fixed
point theorem will be applied, namely

H(ω(τ, m)) := ∑
l=(l0,l1,l2)∈A
l0=0,l2=1

1
(2π)1/2Pm(τ)

∫ +∞

−∞
Al(m − m1)(kτk)l1 ω(τ, m1)Rl(

√
−1m1)dm1

+ ∑
l=(l0,l1,l2)∈A
l0≥1,l2=1

1
(2π)1/2Pm(τ)

∫ +∞

−∞
Al(m − m1)Ck,l0,l1(ω)(τ, m1)Rl(

√
−1m1)dm1

+ ∑
l=(l0,l1,l2)∈A
l0=0,l2>1

1
(2π)1/2Pm(τ)

∫ +∞

−∞
Al(m − m1)

(
− k2/l2

2
√
−1π

∫
γ̃ k

l2
,τl2

(kξk)l1 ω(ξ, m1)Dk, k
l2
(ξ, τl2)dξ

)

× Rl(
√
−1m1)dm1

+ ∑
l=(l0,l1,l2)∈A
l0≥1,l2>1

1
(2π)1/2Pm(τ)

∫ +∞

−∞
Al(m − m1)

(
− k2/l2

2
√
−1π

∫
γ̃ k

l2
,τl2

Ck,l0,l1(ω)(ξ, m1)Dk, k
l2
(ξ, τl2)dξ

)

× Rl(
√
−1m1)dm1

+ cQ1Q2

1
(2π)1/2Pm(τ)

∫ +∞

−∞

(
τk

∫ τk

0
ω((τk − s)1/k, m − m1)Q1(

√
−1(m − m1))

× ω(s1/k, m1)Q2(
√
−1m1)

1
(τk − s)s

ds
)

dm1 + ∑
j∈J

Fj(m)

Pm(τ)
τ j. (108)

In the next proposition, we show that H acts on the Banach space Fd
(ν,β,µ,k,ρ) for well chosen

parameters and directions d as a shrinking map. This result is central in our work.

Proposition 9. Let ν > 0 be a fixed real number and let β, µ, k be prescribed as in Section 2. Let us assume
that the sector SQ,RD introduced in (13) is selected as in Lemma 2. We choose an unbounded sector Sd for
some direction d ∈ ΘQ,RD and a disc Dρ for a suitably small ρ > 0 fixed as in Lemma 2. We make the
following additional restriction on the constant αD which is asked to obey the next inequality

αDk2∆Sd ,k ≥ (2/ρ)k (109)

where ∆Sd ,k > 0 is the constant appearing in (74) from Lemma 2.
Under the assumption that the constants Al > 0 for l ∈ A set up in (22) and the quantity |cQ1Q2 |

are taken adequately small, one can sort a constant ϖ > 0 such that the map H enjoys the next properties

1. The next inclusion
H(Bϖ) ⊂ Bϖ (110)

holds where Bϖ stands for the closed ball of radius ϖ > 0 centered at 0 in the space Fd
(ν,β,µ,k,ρ).

2. The shrinking condition

||H(ω1)−H(ω2)||(ν,β,µ,k,ρ) ≤
1
2
||ω1 − ω2||(ν,β,µ,k,ρ) (111)

occurs whenever ω1, ω2 ∈ Bϖ.
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Proof. We focus on the first item 1. Let ω be an element of Fd
(ν,β,µ,k,ρ). By definition, the next

inequality

|ω(τ, m)| ≤ ||ω||(ν,β,µ,k,ρ)(1 + |m|)−µe−β|m| |τ|
1 + |τ|2k exp(ν|τ|k) (112)

holds for all τ ∈ Sd ∪ Dρ, all m ∈ R.
In the next six lemma, we provide upper norm bounds for each piece composing the map H.

The elements of the first sum of operators is minded in the next

Lemma 3. Let l = (l0, l1, l2) ∈ A with l0 = 0 and l2 = 1. We can find some constant C1 (relying on
µ, RD, Rl , Sd, k, αD, l1) with

|| 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)τ

kl1 ω(τ, m1)Rl(
√
−1m1)dm1||(ν,β,µ,k,ρ) ≤ C1Al ||ω||(ν,β,µ,k,ρ) (113)

for all ω ∈ Fd
(ν,β,µ,k,ρ).

Proof. We remind from Section 2 that Rl(X) is a polynomial of degree deg(Rl) and RD(X) is a
polynomial of degree deg(RD) not vanishing on X =

√
−1m, for all m ∈ R. As a result, two

constants Rl ,RD > 0 can be found with

|Rl(
√
−1m)| ≤ Rl(1 + |m|)deg(Rl), |RD(

√
−1m)| ≥ RD(1 + |m|)deg(RD) (114)

for all m ∈ R.
Let ω ∈ Fd

(ν,β,µ,k,ρ). Based on the definition of Al given in (22), the lower bounds (74) reached
in Lemma 2 together with the upper bounds (112) and the above inequalities (114), we obtain

Aτ,m =
∣∣∣ 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)τ

kl1 ω(τ, m1)Rl(
√
−1m1)dm1

∣∣∣
≤

|τ|kl1 ||ω||(ν,β,µ,k,ρ)

RD(1 + |m|)deg(RD)δSd ,k,αD exp(αDk2∆Sd ,k|τ|2k)
× |τ|

1 + |τ|2k exp(ν|τ|k)

×
∫ +∞

−∞
Al(1 + |m − m1|)−µe−β|m−m1|(1 + |m1|)−µe−β|m1|Rl(1 + |m1|)deg(Rl)dm1 (115)

for all τ ∈ Sd ∪ Dρ, m ∈ R. Besides, the triangular inequality

|m| ≤ |m − m1|+ |m1| (116)

holds for all m, m1 ∈ R and we can choose a constant MSd ,k,l1,αD > 0 such that

sup
τ∈Sd∪Dρ

|τ|kl1

exp(αDk2∆Sd ,k|τ|2k)
= MSd ,k,l1,αD . (117)

Gathering (115), (116) and (117), we come up with

Aτ,m ≤
MSd ,k,l1,αD

δSd ,k,αD

||ω||(ν,β,µ,k,ρ)Al
Rl

RD
× |τ|

1 + |τ|2k exp(ν|τ|k)(1 + |m|)−µe−β|m|A1(m) (118)

where

A1(m) = (1 + |m|)µ−deg(RD)
∫ +∞

−∞

1

(1 + |m − m1|)µ(1 + |m1|)µ−deg(Rl)
dm1 (119)
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provided that τ ∈ Sd ∪ Dρ, m ∈ R. Owing to Lemma 2.2 of [5], under the assumptions made in
(11) and (21), a constant C1.1 > 0 can be deduced with

A1(m) ≤ C1.1 (120)

for all m ∈ R. At last, joining (118) and (120) yields a constant C1 > 0 for which

Aτ,m ≤ C1||ω||(ν,β,µ,k,ρ)Al
|τ|

1 + |τ|2k exp(ν|τ|k)(1 + |m|)−µe−β|m| (121)

as long as τ ∈ Sd ∪ Dρ, m ∈ R, which is tantamount to (113).

The elements of the second sum of operators are considered in the next

Lemma 4. We set l = (l0, l1, l2) ∈ A with l0 ≥ 1 and l2 = 1. Then, a constant C2 > 0 (depending upon
µ, RD, Rl , Sd, k, αD, l0, l1) can be picked out such that

|| 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)

[
τk

∫ τk

0
(τk − s)

l0
k −1sl1 ω(s1/k, m1)

ds
s

]
× Rl(

√
−1m1)dm1||(ν,β,µ,k,ρ) ≤ C2Al ||ω||(ν,β,µ,k,ρ) (122)

for all ω ∈ Fd
(ν,β,µ,k,ρ).

Proof. Take ω an element of Fd
(ν,β,µ,k,ρ). On the ground of the definition Al displayed in (22), the

lower bounds (74) stated in Lemma 2 together with the upper bounds (112) and the polynomial
inequalities (114), we reach

Bτ,m =
∣∣∣ 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)

[
τk

∫ τk

0
(τk − s)

l0
k −1sl1 ω(s1/k, m1)

ds
s

]
× Rl(

√
−1m1)dm1

∣∣∣
≤

|τ|k
∫ |τ|k

0 (|τ|k − h)
l0
k −1hl1+ 1

k eνh dh
h

RD(1 + |m|)deg(RD)δSd ,k,αD exp
(
αDk2∆Sd ,k|τ|2k

) ||ω||(ν,β,µ,k,ρ)

×
∫ +∞

−∞
Al(1+ |m−m1|)−µ exp(−β|m−m1|)(1+ |m1|)−µ exp(−β|m1|)Rl(1+ |m1|)deg(Rl)dm1

(123)

for all τ ∈ Sd ∪ Dρ, m ∈ R. By applying the change of variable h = |τ|ku, for 0 ≤ u ≤ 1, a constant
MSd ,k,l0,l1,αD > 0 is deduced with

|τ|k
∫ |τ|k

0 (|τ|k − h)
l0
k −1hl1+ 1

k dh
h

exp
(
αDk2∆Sd ,k|τ|2k

) × 1 + |τ|2k

|τ|

=
|τ|l0+kl1(1 + |τ|2k)

exp
(
αDk2∆Sd ,k|τ|2k

) ×
( ∫ 1

0
(1 − u)

l0
k −1ul1+ 1

k
du
u

)
≤ MSd ,k,l0,l1,αD (124)

for all τ ∈ Sd ∪ Dρ.
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Collecting (123), (116) and (124) we land up at

Bτ,m ≤
MSd ,k,l0,l1,αD

δSd ,k,αD

||ω||(ν,β,µ,k,ρ)Al
Rl

RD

|τ|
1 + |τ|2k eν|τ|k (1 + |m|)−µe−β|m|A1(m) (125)

where A1(m) is given by (119), as long as τ ∈ Sd ∪ Dρ, m ∈ R. Eventually, gathering (125) and
(120) gives rise to a constant C2 > 0 (hinging on µ, RD, Rl , Sd, k, αD, l0, l1) with

Bτ,m ≤ C2||ω||(ν,β,µ,k,ρ)Al
|τ|

1 + |τ|2k exp(ν|τ|k)(1 + |m|)−µe−β|m| (126)

for all τ ∈ Sd ∪ Dρ, m ∈ R, which is equivalent to (122).

The components of the third sum of operators are upper bounded in the following

Lemma 5. Let l = (l0, l1, l2) ∈ A with l0 = 0 and l2 > 1. There exists a constant C3 > 0 (relying on
µ, RD, Rl , Sd, k, αD, l1, l2, ρ) such that

|| 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)

( ∫
γ̃ k

l2
,τl2

ξkl1 ω(ξ, m1)Dk, k
l2
(ξ, τl2)dξ

)
× Rl(

√
−1m1)dm1||(ν,β,µ,k,ρ) ≤ C3Al ||ω(τ, m)||(ν,β,µ,k,ρ) (127)

for all ω ∈ Fd
(ν,β,µ,k,ρ).

Proof. In the first part of the proof, we provide upper bounds for the integral map

K(τ, m1) :=
∫

γ̃ k
l2

,τl2

ξkl1 ω(ξ, m1)Dk, k
l2
(ξ, τl2)dξ (128)

for τ ∈ Sd ∪ Dρ and m1 ∈ R. Indeed, the next auxiliary result holds.

Sublemma 1. 1) For any ρ̃ ≥ ρ, there exists a constant K1
ρ̃,k,l1,l2

> 0 with

|K(τ, m1)| ≤ K1
ρ̃,k,l1,l2 ||ω||(ν,β,µ,k,ρ)|τ|k(1 + |m1|)−µe−β|m1| (129)

for all τ ∈ Dρ̃, all m1 ∈ R.
2) One can pinpoint a constant K2

ρ,k,l1,l2
> 0 such that

|K(τ, m1)| ≤ K2
ρ,k,l1,l2 ||ω||(ν,β,µ,k,ρ)|τ|

k+ k
l2−1 exp

( |τ|
kl2

l2−1

(ρ/2)
k

l2−1

)
(1 + |m1|)−µe−β|m1| (130)

for all τ ∈ Sd with |τ| ≥ (ρ/2)1/l2 , all m1 ∈ R.

Proof. Let us consider ω ∈ Fd
(ν,β,µ,k,ρ). We observe that the bounds (112) hold. Owing to our

assumption (9) and according to the construction of the integral operator D̂k,k/l2 discussed in
Proposition 6, for any fixed τ ∈ Sd ∪ Dρ̃, one chooses a direction γτl2 ∈ R and a positive real
number ∆1 > 0 such that

cos(k(γτl2 − arg(τl2))) > ∆1. (131)
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From the definition of the Hankel path γ̃ k
l2

,τl2 , for any m1 ∈ R, one can split the integral K(τ, m1)

as a sum of three pieces

K(τ, m1) = Kγ+

τl2
(τ, m1)−Kγ−

τl2
,γ+

τl2
(τ, m1)−Kγ−

τl2
(τ, m1) (132)

where
Kγ+

τl2
(τ, m1) =

∫
L
[0,ρ/2]; k

l2
;γ+

τl2

ξkl1 ω(ξ, m1)Dk, k
l2
(ξ, τl2)dξ (133)

whose integration path is the segment L[0,ρ/2]; k
l2

;γ+

τl2
= [0, ρ/2]e

√
−1(γ

τl2
+

πl2
2k + δ′

2 ), for some small

δ′ > 0 and
Kγ+

τl2
,γ−

τl2
(τ, m1) =

∫
C

ρ/2;γ+
τl2

,γ−
τl2

ξkl1 ω(ξ, m1)Dk, k
l2
(ξ, τl2)dξ (134)

along the arc of circle

Cρ/2;γ+

τl2
,γ−

τl2
= {ρ

2
e
√
−1θ/θ ∈ [γτl2 −

πl2
2k

− δ′

2
, γτl2 +

πl2
2k

+
δ′

2
]},

along with

Kγ−
τl2
(τ, m1) =

∫
L
[0,ρ/2]; k

l2
;γ−

τl2

ξkl1 ω(ξ, m1)Dk, k
l2
(ξ, τl2)dξ (135)

where L[0,ρ/2]; k
l2

;γ−
τl2

= [0, ρ/2]e
√
−1(γ

τl2
− πl2

2k − δ′
2 ).

In the next step of the proof, we display bounds for each piece of the splitting (132).
We first provide bounds for Kγ+

τl2
(τ, m1) and Kγ−

τl2
(τ, m1).

According to Proposition 7 2), we can find a constant Mk,k/l2,1,2 > 0 such that

|Dk, k
l2
(ξ, τl2)| ≤ Mk,k/l2,1,2

l2
k

|τ|k

|ξ|
k
l2
+1

(136)

provided that ξ ∈ L[0,ρ/2]; k
l2

;γ+

τl2
or ξ ∈ L[0,ρ/2]; k

l2
;γ−

τl2
. Then, under the assumption (10) and bearing

in mind the bounds (112) together with (136), we are given a constant Kρ,k,l1,l2 > 0 such that

|Kγ+

τl2
(τ, m1)| ≤

∫ ρ/2

0
rkl1 ||ω||(ν,β,µ,k,ρ)(1 + |m1|)−µe−β|m1|reνrk

Mk,k/l2,1,2
l2
k

|τ|k

r
k
l2
+1

dr

≤ Kρ,k,l1,l2 ||ω||(ν,β,µ,k,ρ)|τ|k(1 + |m1|)−µe−β|m1|. (137)

together with

|Kγ−
τl2
(τ, m1)| ≤ Kρ,k,l1,l2 ||ω||(ν,β,µ,k,ρ)|τ|k(1 + |m1|)−µe−β|m1|. (138)

At a second stage, we discuss bounds for Kγ+

τl2
,γ−

τl2
(τ, m1). Two cases arise.
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Case a. We assume that τ ∈ Dρ̃. We need upper bounds for the kernel Dk, k
l2
(ξ, τl2) provided

that ξ ∈ Cρ/2,γ+

τl2
,γ−

τl2
. According to the decomposition (53), we observe the next factorization

Dk, k
l2
(ξ, τl2) =

l2
k

1

ξ
k
l2
+1

τkDl2
(
(

τl2

ξ
)k/l2

)
(139)

where Dl2(z) is an entire function on C (as shown in Lemma 1). In particular, the function Dl2(z)
is bounded by some constant Ml2,ρ̃ > 0 on the disc D ρ̃k

(ρ/2)k/l2

. As a result,

|Dl2
(
(

τl2

ξ
)k/l2

)
| ≤ Ml2,ρ̃ (140)

provided that ξ ∈ Cρ/2,γ+

τl2
,γ−

τl2
and τ ∈ Dρ̃, since in particular |ξ| = ρ/2 and |τ| ≤ ρ̃, which yields

the bounds
|Dk, k

l2
(ξ, τl2)| ≤ l2

k
1

(ρ/2)
k
l2
+1

|τ|k Ml2,ρ̃ (141)

for all ξ ∈ Cρ/2,γ+

τl2
,γ−

τl2
and τ ∈ Dρ̃. These latter bounds (141) together with (112) allow us to find

some constant K+−
ρ̃,k,l1,l2

> 0 such that

|Kγ+

τl2
,γ−

τl2
(τ, m1)| ≤

∫ γ
τl2

+
πl2
2k + δ′

2

γ
τl2

− πl2
2k − δ′

2

(ρ/2)kl1 ||ω||(ν,β,µ,k,ρ)(1 + |m1|)−µe−β|m1|

× (ρ/2)eν(ρ/2)k l2
k

1

(ρ/2)
k
l2
+1

|τ|k Ml2,ρ̃(ρ/2)dθ

≤ K+−
ρ̃,k,l1,l2

||ω||(ν,β,µ,k,ρ)|τ|k(1 + |m1|)−µe−β|m1|. (142)

for all m1 ∈ R.
At last, from the decomposition (132) and the three estimates (137), (138) and (142), we deduce

the awaited bounds (129) from the first point 1).

Case b. We assume that τ ∈ Sd with |τ| ≥ (ρ/2)1/l2 . According to Proposition 7 1), we come
up with a constant Mk,k/l2 > 0 such that

|Dk, k
l2
(ξ, τl2)| ≤

Mk,k/l2

k
l2
|ξ|

k
l2
+1

|τl2 |
k
l2

(∣∣τl2

ξ

∣∣) (k/l2)
2

k− k
l2 × exp

(
(|τ

l2

ξ
|)

k2/l2
k− k

l2
)

=
l2
k

Mk,k/l2 |τ|
k+ k

l2−1 1

|ξ|
k
l2
+1+ k

l2(l2−1)

× exp
( |τ| kl2

l2−1

|ξ|
k

l2−1

)
(143)
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for all ξ ∈ Cρ/2,γ+

τl2
,γ−

τl2
. These last bounds (143) combined with (112) beget a constant K+−;2

ρ,k,l1,l2
> 0

such that

|Kγ+

τl2
,γ−

τl2
(τ, m1)| ≤

∫ γ
τl2

+
πl2
2k + δ′

2

γ
τl2

− πl2
2k − δ′

2

(ρ/2)kl1 ||ω||(ν,β,µ,k,ρ)(1 + |m1|)−µe−β|m1|

× (ρ/2)eν(ρ/2)k l2
k

Mk,k/l2 |τ|
k+ k

l2−1 1

|ρ/2|
k
l2
+1+ k

l2(l2−1)

× exp
( |τ|

kl2
l2−1

|ρ/2|
k

l2−1

)
(ρ/2)dθ

≤ K+−;2
ρ,k,l1,l2

||ω||(ν,β,µ,k,ρ)|τ|
k+ k

l2−1 exp
( |τ|

kl2
l2−1

|ρ/2|
k

l2−1

)
(1 + |m1|)−µe−β|m1| (144)

for all m1 ∈ R.
In conclusion, the decomposition (132) together with the three bounds (137), (138) and (144)

trigger the expected bounds (130) in the second point 2).

We set

Cτ,m =
∣∣∣ 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)K(τ, m1)Rl(

√
−1m1)dm1

∣∣∣ (145)

for τ ∈ Sd ∪ Dρ, m ∈ R. Taking heed of the definition Al displayed in (22), the lower bounds (74)
stated in Lemma 2 together with the upper bounds (129) for ρ̃ = max(ρ, (ρ/2)1/l2) along with
(130) and the polynomial inequalities (114), we arrive at

Cτ,m ≤ 1
RD(1 + |m|)deg(RD)

×
max(K1

ρ̃,k,l1,l2
|τ|k−1,K2

ρ,k,l1,l2
|τ|k−1+ k

l2−1 exp
(

|τ|
kl2

l2−1

(ρ/2)
k

l2−1

)
)

δSd ,k,αD exp
(
αDk2∆Sd ,k|τ|2k

) × (1 + |τ|2k)e−ν|τ|k

×
[ |τ|

1 + |τ|2k eν|τ|k ||ω||(ν,β,µ,k,ρ)

]
×

∫ +∞

−∞
Al(1 + |m − m1|)−µe−β|m−m1|(1 + |m1|)−µe−β|m1|

×Rl(1 + |m1|)deg(Rl)dm1 (146)

provided that τ ∈ Sd ∪ Dρ, m ∈ R.
Two situations ensue. In the case l2 = 2, we observe that 2k = kl2

l2−1 and in the situation

l2 > 2, we notice that 2k > kl2
l2−1 . In both cases, under the assumption (109), we deduce a constant

MSd ,k,l1,l2,αD ,ρ > 0 with

max(K1
ρ̃,k,l1,l2

|τ|k−1,K2
ρ,k,l1,l2

|τ|k−1+ k
l2−1 exp

(
|τ|

kl2
l2−1

(ρ/2)
k

l2−1

)
)

δSd ,k,αD exp
(
αDk2∆Sd ,k|τ|2k

)
× (1 + |τ|2k)e−ν|τ|k ≤ MSd ,k,l1,l2,αD ,ρ (147)

for all τ ∈ Sd ∪ Dρ.
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The collection of (146), (116) and (147) spawns

Cτ,m ≤ MSd ,k,l1,l2,αD ,ρ||ω||(ν,β,µ,k,ρ)Al
Rl

RD

[ |τ|
1 + |τ|2k eν|τ|k (1 + |m|)−µe−β|m|

]
A1(m) (148)

where A1(m) is stated in (119), whenever τ ∈ Sd ∪ Dρ, m ∈ R. Finally, the last bounds (148) and
(120) foster a constant C3 > 0 (depending on µ, RD, Rl , Sd, k, αD, l1, l2, ρ) with

Cτ,m ≤ C3||ω||(ν,β,µ,k,ρ)Al
|τ|

1 + |τ|2k exp(ν|τ|k)(1 + |m|)−µe−β|m| (149)

for all τ ∈ Sd ∪ Dρ, m ∈ R, which can be recast as (127).

The constituents of the fourth sum involved in (108) are evaluated in the next

Lemma 6. We select l = (l0, l1, l2) ∈ A with l0 ≥ 1 and l2 > 1. Then a constant C4 > 0 (relying on
µ, RD, Rl , Sd, k, αD, l0, l1, l2, ρ) can be found such that

|| 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)

( ∫
γ̃ k

l2
,τl2

Ck,l0,l1(ω)(ξ, m1)Dk, k
l2
(ξ, τl2)dξ

)
× Rl(

√
−1m1)dm1||(ν,β,µ,k,ρ) ≤ C4Al ||ω(τ, m)||(ν,β,µ,k,ρ) (150)

provided that ω ∈ Fd
(ν,β,µ,k,ρ).

Proof. The proof follows closely the one displayed for Lemma 5. The first part of the discussion is
devoted to upper bounds for the integral map

K̃(τ, m1) :=
∫

γ̃ k
l2

,τl2

Ck,l0,l1(ω)(ξ, m1)Dk, k
l2
(ξ, τl2)dξ (151)

where by definition

Ck,l0,l1(ω)(ξ, m1) :=
ξk

Γ(l0/k)

∫ ξk

0
(ξk − s)

l0
k −1(ks)l1 ω(s1/k, m1)

ds
s

(152)

for all τ ∈ Sd ∪ Dρ and m1 ∈ R. Namely, the following statement holds.

Sublemma 2. 1) For any prescribed ρ̃ ≥ ρ, there exists a constant K1
ρ̃,k,l0,l1,l2

> 0 with

|K̃(τ, m1)| ≤ K1
ρ̃,k,l0,l1,l2 ||ω||(ν,β,µ,k,ρ)|τ|k(1 + |m1|)−µe−β|m1| (153)

provided that τ ∈ Dρ̃ and m1 ∈ R.
2) A constant K2

ρ,k,l0,l1,l2
> 0 can be singled out such that

|K̃(τ, m1)| ≤ K2
ρ,k,l0,l1,l2 ||ω||(ν,β,µ,k,ρ)|τ|

k+ k
l2−1 exp

( |τ|
kl2

l2−1

(ρ/2)
k

l2−1

)
(1 + |m1|)−µe−β|m1| (154)

as long as τ ∈ Sd with |τ| ≥ (ρ/2)1/l2 and m1 ∈ R.
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Proof. We set up ω ∈ Fd
(ν,β,µ,k,ρ) and we take τ ∈ Sd ∪ Dρ̃ for some given ρ̃ ≥ ρ. Keeping the same

notations as in Lemma 5, we can break up the integral K̃(τ, m1) in three parts

K̃(τ, m1) = K̃γ+

τl2
(τ, m1)− K̃γ−

τl2
,γ+

τl2
(τ, m1)− K̃γ−

τl2
(τ, m1) (155)

where
K̃γ+

τl2
(τ, m1) =

∫
L
[0,ρ/2]; k

l2
;γ+

τl2

Ck,l0,l1(ω)(ξ, m1)Dk, k
l2
(ξ, τl2)dξ (156)

and
K̃γ+

τl2
,γ−

τl2
(τ, m1) =

∫
C

ρ/2;γ+
τl2

,γ−
τl2

Ck,l0,l1(ω)(ξ, m1)Dk, k
l2
(ξ, τl2)dξ (157)

together with

K̃γ−
τl2
(τ, m1) =

∫
L
[0,ρ/2]; k

l2
;γ−

τl2

Ck,l0,l1(ω)(ξ, m1)Dk, k
l2
(ξ, τl2)dξ (158)

where the paths of integration are the same as in the integrals (133), (134) and (135).
In the ongoing part of the proof, we disclose bounds for each piece of the decomposition

(155). As a preliminary, we rearrange the map (152) by means of the parametrization s = ξks1

where 0 ≤ s1 ≤ 1,

Ck,l0,l1(ω)(ξ, m1) =
ξ l0+kl1

Γ(l0/k)

∫ 1

0
(1 − s1)

l0
k −1kl1 sl1

1 ω(ξs1/k
1 , m1)

ds1

s1
(159)

and from the bounds (112), we observe that

|ω(ξs1/k
1 , m1)| ≤ ||ω||(ν,β,µ,k,ρ)(1 + |m1|)−µe−β|m1| |ξ|s1/k

1

1 + |ξs1/k
1 |2k

exp(ν|ξ|ks1) (160)

for all ξ ∈ γ̃ k
l2

,τl2 , 0 ≤ s1 ≤ 1 and m1 ∈ R.

Bounds for the integrals K̃γ+

τl2
(τ, m1) and K̃γ−

τl2
(τ, m1) along segments are first achieved.

On the ground of the bounds (136), the factorization (159) and the upper estimates (160),
under the assumption (10), a constant Kρ,k,l0,l1,l2 > 0 can be reached with

|K̃γ+

τl2
(τ, m1)| ≤

∫ ρ/2

0

rl0+kl1

Γ(l0/k)
×

( ∫ 1

0
(1 − s1)

l0
k −1kl1 sl1

1 s1/k
1

ds1

s1

)
× ||ω||(ν,β,µ,k,ρ)(1 + |m1|)−µe−β|m1|reνrk

Mk,k/l2,1,2
l2
k

|τ|k

r
k
l2
+1

dr

≤ Kρ,k,l0,l1,l2 ||ω||(ν,β,µ,k,ρ)|τ|k(1 + |m1|)−µe−β|m1|. (161)

together with

|K̃γ−
τl2
(τ, m1)| ≤ Kρ,k,l0,l1,l2 ||ω||(ν,β,µ,k,ρ)|τ|k(1 + |m1|)−µe−β|m1|. (162)

In the next phase, bounds for the integral K̃γ+

τl2
,γ−

τl2
(τ, m1) along the arc of circle are devised. Two

cases are distinguished.
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Case a. The variable τ belongs to Dρ̃. Based on the bounds (141), the factorization (159) and
the upper estimates (160), we are given a constant K+−

ρ̃,k,l0,l1,l2
> 0 such that

|K̃γ+

τl2
,γ−

τl2
(τ, m1)| ≤

∫ γ
τl2

+
πl2
2k + δ′

2

γ
τl2

− πl2
2k − δ′

2

(ρ/2)l0+kl1 1
Γ(l0/k)

( ∫ 1

0
(1 − s1)

l0
k −1kl1 sl1

1 s1/k
1

ds1

s1

)
× ||ω||(ν,β,µ,k,ρ)(1 + |m1|)−µe−β|m1| × (ρ/2)eν(ρ/2)k l2

k
1

(ρ/2)
k
l2
+1

|τ|k Ml2,ρ̃(ρ/2)dθ

≤ K+−
ρ̃,k,l0,l1,l2

||ω||(ν,β,µ,k,ρ)|τ|k(1 + |m1|)−µe−β|m1|. (163)

for all m1 ∈ R.
Eventually, departing from the splitting (155) and taking heed of the three upper bounds

(161), (162) and (163), the due bounds (153) from the first point 1) are established.

Case b. The variable τ is assumed to belong to Sd under the constraint |τ| ≥ (ρ/2)1/l2 .
Acquired from the bounds (143), the factorization (159) and the upper estimates (160), a constant
K+−;2

ρ,k,l0,l1,l2
> 0 exists such that

|K̃γ+

τl2
,γ−

τl2
(τ, m1)| ≤

∫ γ
τl2

+
πl2
2k + δ′

2

γ
τl2

− πl2
2k − δ′

2

(ρ/2)l0+kl1 1
Γ(l0/k)

( ∫ 1

0
(1 − s1)

l0
k −1kl1 sl1

1 s1/k
1

ds1

s1

)
× ||ω||(ν,β,µ,k,ρ)(1 + |m1|)−µe−β|m1|

× (ρ/2)eν(ρ/2)k l2
k

Mk,k/l2 |τ|
k+ k

l2−1 1

|ρ/2|
k
l2
+1+ k

l2(l2−1)

× exp
( |τ|

kl2
l2−1

|ρ/2|
k

l2−1

)
(ρ/2)dθ

≤ K+−;2
ρ,k,l0,l1,l2

||ω||(ν,β,µ,k,ρ)|τ|
k+ k

l2−1 exp
( |τ|

kl2
l2−1

|ρ/2|
k

l2−1

)
(1 + |m1|)−µe−β|m1| (164)

for all m1 ∈ R.
In conclusion, from the splitting (155) together with the three upper bounds (161), (162) and

(164), the forecast bounds (154) from the second point 2) hold.

The remaining part of the proof is similar to the one of Lemma 5. Namely, we define

C̃τ,m =
∣∣∣ 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)K̃(τ, m1)Rl(

√
−1m1)dm1

∣∣∣ (165)
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provided that τ ∈ Sd ∪ Dρ, m ∈ R. The definition Al displayed in (22), the lower bounds (74)
established in Lemma 2, the upper bounds (153) for ρ̃ = max(ρ, (ρ/2)1/l2) along with (154) and
the polynomial inequalities (114), beget the next inequality

C̃τ,m ≤ 1
RD(1 + |m|)deg(RD)

×
max(K1

ρ̃,k,l0,l1,l2
|τ|k−1,K2

ρ,k,l0,l1,l2
|τ|k−1+ k

l2−1 exp
(

|τ|
kl2

l2−1

(ρ/2)
k

l2−1

)
)

δSd ,k,αD exp
(
αDk2∆Sd ,k|τ|2k

) × (1 + |τ|2k)e−ν|τ|k

×
[ |τ|

1 + |τ|2k eν|τ|k ||ω||(ν,β,µ,k,ρ)

]
×

∫ +∞

−∞
Al(1 + |m − m1|)−µe−β|m−m1|(1 + |m1|)−µe−β|m1|

×Rl(1 + |m1|)deg(Rl)dm1 (166)

as long as τ ∈ Sd ∪ Dρ, m ∈ R.
Two alternative arise. In the case l2 = 2, we observe that 2k = kl2

l2−1 and in the situation l2 > 2,

we notice that 2k > kl2
l2−1 . Under the assumption (109), needed only in the case l2 = 2, we deduce a

constant MSd ,k,l0,l1,l2,αD ,ρ > 0 with

max(K1
ρ̃,k,l0,l1,l2

|τ|k−1,K2
ρ,k,l0,l1,l2

|τ|k−1+ k
l2−1 exp

(
|τ|

kl2
l2−1

(ρ/2)
k

l2−1

)
)

δSd ,k,αD exp
(
αDk2∆Sd ,k|τ|2k

)
× (1 + |τ|2k)e−ν|τ|k ≤ MSd ,k,l0,l1,l2,αD ,ρ (167)

for all τ ∈ Sd ∪ Dρ.
The gathering of (166), (116) and (167) yields

C̃τ,m ≤ MSd ,k,l0,l1,l2,αD ,ρ||ω||(ν,β,µ,k,ρ)Al
Rl

RD

[ |τ|
1 + |τ|2k eν|τ|k (1 + |m|)−µe−β|m|

]
A1(m) (168)

where A1(m) is defined in (119), whenever τ ∈ Sd ∪ Dρ, m ∈ R. Finally, the last bounds (168) and
(120) trigger a constant C4 > 0 (depending on µ, RD, Rl , Sd, k, αD, l0, l1, l2, ρ) with

C̃τ,m ≤ C4||ω||(ν,β,µ,k,ρ)Al
|τ|

1 + |τ|2k exp(ν|τ|k)(1 + |m|)−µe−β|m| (169)

provided that τ ∈ Sd ∪ Dρ, m ∈ R, which can be rewritten using norms as (150).

An integral expression related to the fifth building block of (108) is assessed in the next

Lemma 7. One can single out a constant C5 > 0 (relying on µ, RD, Q1, Q2, Sd, k, αD) with

|| 1
Pm(τ)

∫ +∞

−∞

(
τk

∫ τk

0
ω1((τ

k − s)1/k, m − m1)Q1(
√
−1(m − m1))

× ω2(s1/k, m1)Q2(
√
−1m1)

1
(τk − s)s

ds
)

dm1||(ν,β,µ,k,ρ) ≤ C5||ω1||(ν,β,µ,k,ρ)||ω2||(ν,β,µ,k,ρ) (170)

for all ω1, ω2 ∈ Fd
(ν,β,µ,k,ρ).
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Proof. Let us take ω1, ω2 ∈ Fd
(ν,β,µ,k,ρ). Owing to the bounds (112), we deduce the next upper

estimates

|ω1((τ
k − s)1/k, m − m1)| ≤ ||ω1||(ν,β,µ,k,ρ)(1 + |m − m1|)−µe−β|m−m1|

× |(τk − s)1/k|
1 + |τk − s|2

exp(ν|τk − s|) (171)

and

|ω2(s1/k, m1)| ≤ ||ω2||(ν,β,µ,k,ρ)(1 + |m1|)−µe−β|m1| |s1/k|
1 + |s|2 exp(ν|s|) (172)

for all τ ∈ Sd ∪Dρ, all s ∈ [0, τk], with m, m1 ∈ R. Besides, since Q1(X) and Q2(X) are polynomials,
two constants Q1,Q2 > 0 can be exhibited such that

|Q1(
√
−1(m − m1))| ≤ Q1(1 + |m − m1|)deg(Q1) , |Q2(

√
−1m1)| ≤ Q2(1 + |m1|)deg(Q2) (173)

for all m, m1 ∈ R. From these latter bounds and bearing in mind the lower estimates (74), we come
up to

Dτ,m =
∣∣∣ 1
Pm(τ)

∫ +∞

−∞

(
τk

∫ τk

0
ω1((τ

k − s)1/k, m − m1)Q1(
√
−1(m − m1))

× ω2(s1/k, m1)Q2(
√
−1m1)

1
(τk − s)s

ds
)

dm1

∣∣∣
≤ 1

RD(1 + |m|)deg(RD)δSd ,k,αD exp(αDk2∆Sd ,k|τ|2k)

×
∫ +∞

−∞
|τ|k

∫ |τ|k

0
||ω1||(ν,β,µ,k,ρ)(1 + |m − m1|)−µe−β|m−m1| (|τ|k − h)1/k

1 + (|τ|k − h)2 exp(ν(|τ|k − h))

×Q1(1 + |m − m1|)deg(Q1) × ||ω2||(ν,β,µ,k,ρ)(1 + |m1|)−µe−β|m1|

× h1/k

1 + h2 eνhQ2(1 + |m1|)deg(Q2)
1

(|τ|k − h)h
dhdm1 (174)

for all τ ∈ Sd ∪ Dρ, m ∈ R. Moreover, by using the change of variable h = |τ|ku, for 0 ≤ u ≤ 1,
one can select a constant M̌Sd ,k,αD > 0 such that

sup
τ∈Sd∪Dρ

(1 + |τ|2k)|τ|k−1
∫ |τ|k

0
(|τ|k−h)1/kh1/k

(|τ|k−h)h
1

1+(|τ|k−h)2
1

1+h2 dh

exp(αDk2∆Sd ,k|τ|2k)

= sup
τ∈Sd∪Dρ

(1 + |τ|2k)|τ|
∫ 1

0
(1−u)

1
k −1

1+|τ|2k(1−u)2
u

1
k −1

1+|τ|2ku2 du

exp(αDk2∆Sd ,k|τ|2k)
≤ M̌Sd ,k,αD . (175)

Combining (174) and (175) prompts

Dτ,m ≤
M̌Sd ,k,αD

δSd ,k,αD

Q1Q2

RD
||ω1||(ν,β,µ,k,ρ)||ω2||(ν,β,µ,k,ρ)

×
{ |τ|

1 + |τ|2k exp(ν|τ|k)(1 + |m|)−µe−β|m|
}
A2(m) (176)
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provided that τ ∈ Sd ∪ Dρ, m ∈ R, where

A2(m) = (1 + |m|)µ−deg(RD)
∫ +∞

−∞

1
(1 + |m − m1|)µ−deg(Q1)

1
(1 + |m1|)µ−deg(Q2)

dm1. (177)

According to Lemma 2.2 of [5] and under the assumptions (12) and (21), a constant C5.1 > 0 is
obtained with

A2(m) ≤ C5.1 (178)

for all m ∈ R. Finally, from (176) and (178) we deduce a constant C5 > 0 (depending on
µ, RD, Q1, Q2, Sd, k, αD) with

Dτ,m ≤ C5||ω1||(ν,β,µ,k,ρ)||ω2||(ν,β,µ,k,ρ) ×
{ |τ|

1 + |τ|2k exp(ν|τ|k)(1 + |m|)−µe−β|m|
}

(179)

for all τ ∈ Sd ∪ Dρ, m ∈ R which precisely means that (170) holds true.

In the next lemma, the tail piece of (108) is investigated.

Lemma 8. A constant FJ > 0 (depending on Fj, j ∈ J, RD, Sd, k, αD, ν) can be singled for which

||∑
j∈J

Fj(m)

Pm(τ)
τ j||(ν,β,µ,k,ρ) ≤ FJ . (180)

Proof. By definition of (24), we notice that

|Fj(m)| ≤ Fj(1 + |m|)−µe−β|m| (181)

for all m ∈ R. Besides, according to the geometric assumption (14) and the lower bounds (74)
reached in Lemma 2, we see that

|Pm(τ)| ≥ min
m∈R

|RD(
√
−1m)|δSd ,k,αD exp(αDk2∆Sd ,k|τ|2k) (182)

for all τ ∈ Sd ∪ Dρ, all m ∈ R. As a result, we get

Eτ,m =
∣∣∣ ∑

j∈J

Fj(m)

Pm(τ)
τ j
∣∣∣ ≤ ∑

j∈J
Fj(1 + |m|)−µe−β|m| 1

minm∈R |RD(
√
−1m)|δSd ,k,αD

× |τ|j−1 exp(−αDk2∆Sd ,k|τ|2k)(1 + |τ|2k) exp(−ν|τ|k)×
[ |τ|

1 + |τ|2k exp(ν|τ|k)
]

(183)

provided that τ ∈ Sd ∪ Dρ, m ∈ R. Since J ⊂ N∗ does not contain the origin, a constant
M̂j,Sd ,k,ν,αD > 0 can be pinpointed such that

sup
τ∈Sd∪Dρ

|τ|j−1(1 + |τ|2k) exp(−αDk2∆Sd ,k|τ|2k) exp(−ν|τ|k) = M̂j,Sd ,k,ν,αD . (184)

Lastly, adding up (183) and (184), we arrive at

Eτ,m ≤
{

∑
j∈J

Fj
M̂j,Sd ,k,ν,αD

minm∈R |RD(
√
−1m)|δSd ,k,αD

}
(1 + |m|)−µe−β|m| |τ|

1 + |τ|2k exp(ν|τ|k) (185)
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as long as τ ∈ Sd ∪ Dρ, m ∈ R. Lemma 8 follows.

Now, we choose the constants Al for l ∈ A and cQ1Q2 ∈ C∗ close enough to 0 in a manner
that one can find some radius ϖ > 0 fulfilling the next constraint

∑
l=(l0,l1,l2)∈A
l0=0,l2=1

1
(2π)1/2 kl1 C1Alϖ + ∑

l=(l0,l1,l2)∈A
l0≥1,l2=1

1
(2π)1/2

kl1

Γ(l0/k)
C2Alϖ

+ ∑
l=(l0,l1,l2)∈A
l0=0,l2>1

1
(2π)1/2 kl1 k2/l2

2π
C3Alϖ + ∑

l=(l0,l1,l2)∈A
l0≥1,l2>1

1
(2π)1/2

k2/l2
2π

C4Alϖ

+ |cQ1Q2 |
1

(2π)1/2 C5ϖ2 +FJ ≤ ϖ (186)

for the constants Cj > 0, 1 ≤ j ≤ 5 and FJ > 0 appearing in the above lemmas. Eventually, the
appliance of the bounds recorded in the lemmas 3, 4, 5, 6, 7 and 8 under the condition (186) yields
the expected inclusion (110).

We turn to the second item 2. Let us fix the radius ϖ > 0 as above and select ω1, ω2 ∈
Bϖ ⊂ Fd

(ν,β,µ,k,ρ). In the next list of lemmas, we discuss bounds for each piece of the difference
H(ω1)−H(ω2).

A direct issue of Lemma 3 gives rise to

Lemma 9. Take l = (l0, l1, l2) ∈ A with l0 = 0 and l2 = 1. Then,

|| 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)τ

kl1
[
ω1(τ, m1)− ω2(τ, m1)

]
Rl(

√
−1m1)dm1||(ν,β,µ,k,ρ)

≤ C1Al ||ω1 − ω2||(ν,β,µ,k,ρ) (187)

holds for the constant C1 > 0 disclosed in Lemma 3.

As a consequence of Lemma 4, we obtain

Lemma 10. Let l = (l0, l1, l2) ∈ A with l0 ≥ 1 and l2 = 1. Then,

|| 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)

[
τk

∫ τk

0
(τk − s)

l0
k −1sl1

[
ω1(s1/k, m1)− ω2(s1/k, m1)

]ds
s

]
× Rl(

√
−1m1)dm1||(ν,β,µ,k,ρ) ≤ C2Al ||ω1 − ω2||(ν,β,µ,k,ρ) (188)

holds for the constant C2 > 0 croping up in Lemma 4.

An application of Lemma 5 yields

Lemma 11. Let l = (l0, l1, l2) ∈ A with l0 = 0 and l2 > 1. The next inequality

|| 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)

( ∫
γ̃ k

l2
,τl2

ξkl1
[
ω1(ξ, m1)− ω2(ξ, m1)

]
Dk, k

l2
(ξ, τl2)dξ

)
× Rl(

√
−1m1)dm1||(ν,β,µ,k,ρ) ≤ C3Al ||ω1(τ, m)− ω2(τ, m)||(ν,β,µ,k,ρ) (189)
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holds for the constant C3 > 0 appearing in Lemma 5.

Lemma 6 enables to set up the next

Lemma 12. We choose l = (l0, l1, l2) ∈ A with l0 ≥ 1 and l2 > 1. Then,

|| 1
Pm(τ)

∫ +∞

−∞
Al(m − m1)

( ∫
γ̃ k

l2
,τl2

Ck,l0,l1(ω1 − ω2)(ξ, m1)Dk, k
l2
(ξ, τl2)dξ

)
× Rl(

√
−1m1)dm1||(ν,β,µ,k,ρ) ≤ C4Al ||ω1 − ω2||(ν,β,µ,k,ρ) (190)

holds true for the constant C4 > 0 showing up in Lemma 6.

In order to control the norm of the nonlinear terms of the difference H(ω1)−H(ω2), we
rewrite the next difference as a sum

ω1((τ
k − s)1/k , m − m1)Q1(

√
−1(m − m1))ω1(s1/k , m1)Q2(

√
−1m1)

− ω2((τ
k − s)1/k , m − m1)Q1(

√
−1(m − m1))ω2(s1/k , m1)Q2(

√
−1m1)

=
[
ω1((τ

k − s)1/k , m − m1)− ω2((τ
k − s)1/k , m − m1)

]
Q1(

√
−1(m − m1))× ω1(s1/k , m1)Q2(

√
−1m1)

+ ω2((τ
k − s)1/k , m − m1)Q1(

√
−1(m − m1))×

[
ω1(s1/k , m1)− ω2(s1/k , m1)

]
Q2(

√
−1m1). (191)

As a result of Lemma 7 and the above reordering (191), we come up with the next

Lemma 13. The following inequality

|| 1
Pm(τ)

∫ +∞

−∞

(
τk

∫ τk

0
ω1((τ

k − s)1/k, m − m1)Q1(
√
−1(m − m1))

× ω1(s1/k, m1)Q2(
√
−1m1)

1
(τk − s)s

ds
)

dm1

− 1
Pm(τ)

∫ +∞

−∞

(
τk

∫ τk

0
ω2((τ

k − s)1/k, m − m1)Q1(
√
−1(m − m1))

× ω2(s1/k, m1)Q2(
√
−1m1)

1
(τk − s)s

ds
)

dm1|| ≤ C5||ω1 − ω2||(ν,β,µ,k,ρ)

×
[
||ω1||(ν,β,µ,k,ρ) + ||ω2||(ν,β,µ,k,ρ)

]
(192)

holds where C5 > 0 is the constant arising in Lemma 7.

We adjust the constants Al , l ∈ A and cQ1Q2 ∈ C∗ nearby the origin in a way that the next
restriction

∑
l=(l0,l1,l2)∈A
l0=0,l2=1

1
(2π)1/2 kl1 C1Al + ∑

l=(l0,l1,l2)∈A
l0≥1,l2=1

1
(2π)1/2

kl1

Γ(l0/k)
C2Al

+ ∑
l=(l0,l1,l2)∈A
l0=0,l2>1

1
(2π)1/2 kl1 k2/l2

2π
C3Al + ∑

l=(l0,l1,l2)∈A
l0≥1,l2>1

1
(2π)1/2

k2/l2
2π

C4Al

+ |cQ1Q2 |
1

(2π)1/2 C52ϖ ≤ 1/2 (193)
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holds. The collection of lemmas 9,10,11,12 and 13, accounting of the above condition (193) yields
the contraction property (111).

At the end, we choose the constants Al for l ∈ A and cQ1Q2 ∈ C∗ appropriately close to 0,
along with a radius ϖ > 0 in a manner that both conditions (186) and (193) hold at once. It follows
that the map H obeys both features (110) and (111). Proposition 9 follows.

The next proposition provides sufficient conditions for which the auxiliary equation (72) is
endowed with a solution in the Banach space described in Definition 5.

Proposition 10. Under the assumptions made in the statement of Proposition 9, we can find a constant
ϖ > 0 for which the auxiliary equation (72) hosts a unique solution ωd which belongs to the space Fd

(ν,β,µ,k,ρ)
and is subjected to the bounds

||ωd||(ν,β,µ,k,ρ) ≤ ϖ. (194)

Proof. For ϖ > 0 suitably chosen as in Proposition 9, we observe that the map H induces a
contractive application from the metric space (Bϖ , d) into itself, where Bϖ stands for the closed ball
of radius ϖ > 0 centered at 0 in Fd

(ν,β,µ,k,ρ) and the distance d is induced from the norm ||.||(ν,β,µ,k,ρ)

by the expression d(x, y) = ||x − y||(ν,β,µ,k,ρ). Since (Fd
(ν,β,µ,k,ρ), ||.||(ν,β,µ,k,ρ)) is a Banach space, the

metric space (Bϖ, d) is complete. Then, according to the classical contractive mapping theorem,
the map H has a fixed point we denote ωd in Bϖ, meaning that

H(ωd) = ωd, (195)

which implies in particular that the analytic map ωd solves the equation (72). Proposition 10
ensues.

5. Statement of the Main Results

We are in position to state the first prominent result of our work.

Theorem 1. Let us take for granted that the assumptions (9), (10), (11), (12), (14), (21), (23), (25), (26)
hold for the shape of the main problem (8) with vanishing initial condition u(0, z) ≡ 0.

We assume furthermore that the sector SQ,RD defined in (13) obeys the requirements asked in Lemma
2. We select

− an unbounded sector Sd edged at 0, with bisecting direction d belonging to the set ΘQ,RD (introduced
in Lemma 2) fulfilling the two conditions (86), (87),

− a disc Dρ whose radius ρ > 0 fits the restrictions (88), (89).

Then, provided that

− the constant αD appearing in the leading operator (15) of infinite order in (8) is chosen in agreement
with (109),

− the constants Al , for l ∈ A, set up in (22) and the coefficient cQ1Q2 of the nonlinear term of (8) are
taken close enough to 0

there exist a formal power series û(t, z) = ∑n≥1 un(z)tn solution to (8) with û(0, z) ≡ 0,

• whose coefficients un belong to the Banach space Ob(Hβ′) of bounded holomorphic functions on the
strip Hβ′ (given in (18)) for any prescribed 0 < β′ < β endowed with the sup norm ||.||∞,

• which is mk−summable in any direction d chosen as above in the set ΘQ,RD as a series with coefficients
in (Ob(Hβ′), ||.||∞) (see Definition 3).
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Proof. Under the assumptions made in Theorem 1, we observe that Proposition 10 holds. For the
given sector Sd with d ∈ ΘQ,RD and disc Dρ as constructed in Lemma 2, for any given real number
ν > 0 and for the constants β, µ, k > 0 prescribed in Section 2, we depart from the solution ωd of
the auxiliary equation (72) that belongs to the Banach space Fd

(ν,β,µ,k,ρ) under the condition

||ωd||(ν,β,µ,k,ρ) ≤ ϖ (196)

for some well chosen constant ϖ > 0. By construction, since the partial map τ 7→ ωd(τ, m) is
holomorphic on the disc Dρ it has a convergent power series expansion

ωd(τ, m) = ω̂(τ, m) := ∑
n≥1

ωn(m)τn (197)

on the disc Dρ/2, where the coefficients ωn(m) can be expressed in integral form

ωn(m) =
1

2π
√
−1

∫
Cρ/2

ωd(ξ, m)

ξn+1 dξ (198)

along the positively oriented circle Cρ/2 centered at 0 with radius ρ/2. According to (196), a
constant Cϖ,k,ν,ρ > 0 (relying on ϖ, k, ν, ρ) can be deduced with

|ωn(m)| ≤ Cϖ,k,ν,ρ(2/ρ)n(1 + |m|)−µe−β|m| (199)

for all m ∈ R. In particular, each coefficient m 7→ ωn(m) belongs to the Banach space
(E(β,µ), ||.||(β,µ)) and

ω̂(τ, m) ∈ E(β,µ){τ}. (200)

Furthermore, owing to (196), we notice that the partial map τ 7→ ω̂(τ, m), seen as a holomorphic
map on Dρ/2 in the Banach space E(β,µ) can be extended to a holomorphic map denoted τ 7→
ωd(τ, m) on the sector Sd with bounds

||ωd(τ, m)||(β,µ) ≤ ϖ
|τ|

1 + |τ|2k exp(ν|τ|k) (201)

for all τ ∈ Sd.
Let us define the formal power series

Û(t, m) = ∑
n≥1

Un(m)tn (202)

where the coefficients Un(m) are defined by

Un(m) = ωn(m)Γ(n/k) (203)

for all n ≥ 1. By construction, the series ω̂(τ, m) given by (197) represents the mk−Borel transform
of the formal power series (202). From (200) and (201), we deduce that the formal series Û(t, m) is
mk−summable in direction d, viewed as series with coefficients in (E(β,µ), ||.||(β,µ)), see Definition
3.
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According to Proposition 10, the convergent series ω̂(τ, m) matches the auxiliary equation
(72). Taking heed of Proposition 8, we deduce that the formal series (202) solves the differen-
tial/convolution equation (30). Let us introduce the formal power series

û(t, z) = ∑
n≥1

un(z)tn (204)

where the coefficients un(z) are defined as the inverse Fourier transform

un(z) =
1

(2π)1/2

∫ +∞

−∞
Un(m)e

√
−1zmdm (205)

for all integers n ≥ 1, z ∈ Hβ′ , for any given 0 < β′ < β. As claimed by Proposition 1, it follows
that û(t, z) formally solves the main equation (8).

Bearing in mind (199) and (203), the next upper bounds

|un(z)| ≤
1

(2π)1/2 Cϖ,k,ν,ρΓ(n/k)(2/ρ)n
∫ +∞

−∞
(1 + |m|)−µe−(β−β′)|m|dm (206)

hold provided that n ≥ 1 and z ∈ Hβ′ , with prescribed 0 < β′ < β. In particular, we observe that
each coefficient un belongs to (Ob(Hβ′), ||.||∞), for n ≥ 1. It ensues that the series

∑
n≥0

supz∈Hβ′
|un(z)|

Γ(n/k)
(ρ′)n

is convergent for any 0 < ρ′ < ρ/2. As a result, the mk−Borel transform of û given by

Bmk (û)(τ) = ∑
n≥1

un(z)
Γ(n/k)

τn (207)

is convergent on Dρ′ as a series in coefficients in the Banach space (Ob(Hβ′), ||.||∞), meaning that

Bmk (û) ∈ τOb(Hβ′){τ}. (208)

Besides, the expansion (197) allows the mk−Borel transform Bmk (û) to be expressed in integral
form

Bmk (û)(τ) =
1

(2π)1/2

∫ +∞

−∞
ωd(τ, m)e

√
−1zmdm (209)

for all z ∈ Dρ′ with 0 < ρ′ < ρ/2. Based on the bounds (201), it follows that the map τ 7→
Bmk (û)(τ) viewed as a function from Dρ′ into (Ob(Hβ′), ||.||∞) can be analytically continued
along the unbounded sector Sd and is subjected to the bounds

sup
z∈Hβ′

|Bmk (û)(τ)| ≤
ϖ

(2π)1/2
|τ|

1 + |τ|2k exp(ν|τ|k)
( ∫ +∞

−∞
(1 + |m|)−µe−(β−β′)|m|dm

)
(210)

as long as τ ∈ Sd. Finally, bearing in mind Definition 3, on the ground of the two above features
(208) and (210), we deduce that the formal solution û(t, z) to (8) with û(0, z) ≡ 0 given by (204) is
mk−summable in direction d.

In the second foremost outcome of the paper (Theorem 2), we disclose some functional
equations satisfied by the mk−sum of the formal solution û(t, z) to (8) built up in Theorem 1.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2024 doi:10.20944/preprints202412.0591.v1

https://doi.org/10.20944/preprints202412.0591.v1


40

Before stating the main result, we need to introduce some integral operators acting on Fourier-
Laplace transforms that are described in the next

Proposition 11. We consider an unbounded sector Sd edged at 0 with bisecting direction d ∈ ΘQ,RD and a
small disc Dρ centered at 0 with radius ρ > 0 chosen as in Lemma 2. We take for granted that the constant
αD > 0 appearing in (15) fulfills the condition (109). We fix some real number ν > 0 and prescribe the
constants β, µ, k > 0 as in Section 2.

For any given ωd in Fd
(ν,β,µ,k,ρ), we define the Fourier-Laplace transform

ud(t, z) =
k

(2π)1/2

∫ +∞

−∞

∫
Ld

ωd(τ, m) exp
(
− (

τ

t
)k)e

√
−1zm dτ

τ
dm (211)

along the halfline Ld = [0,+∞)e
√
−1d. According to Definitions 2 and 3, we know that the function ud

represents a bounded holomorphic map on the product Sd,ϑ,R × Hβ′ , where Sd,ϑ,R is a bounded sector of the
form (35) for an angle ϑ satisfying π

k < ϑ < π
k + Op(Sd), with Op(Sd) standing for the opening of Sd

and for a small enough radius R > 0, where Hβ′ is the strip displayed in (18) for any given 0 < β′ < β.
We distinguish two different situations.

• We assume that the constant ∆Sd ,k > 0 appearing in the lower bounds (74) satisfies the requirement

cos(2kθ) > ∆Sd ,k (212)

for all θ ∈ R with e
√
−1θ ∈ Sd. We introduce the next integral operator defined by its action on ud as

follows

exp
(
− αD(tk+1∂t)

2)ud(t, z) :=
k

(2π)1/2

∫ +∞

−∞

∫
Ld

exp
(
− αD(kτk)2)ωd(τ, m)

× exp
(
− (

τ

t
)k)e

√
−1zm dτ

τ
dm. (213)

Let l = (l0, l1, l2) ∈ A, where A is depicted in Section 2. According to the notation (70), we set

Ck,l0,l1(ω
d)(τ, m) :=

τk

Γ(l0/k)

∫ τk

0
(τk − s)

l0
k −1(ks)l1 ωd(s1/k, m)

ds
s

(214)

for all integers l0 ≥ 1, l1 ≥ 0. Besides, when l0 = 0, we denote

Ck,0,l1(ω
d)(τ, m) := (kτk)l1 ωd(τ, m). (215)

We define the next integral operator through its action on ud by

G−
l0,l1,l2,k,αD

(ud)(t, z) :=
k

(2π)1/2

∫ +∞

−∞

∫
Ld

exp
(
− αD(kτk)2)

×
(
− k2/l2

2
√
−1π

∫
γ̃ k

l2
,τl2

Ck,l0,l1 (ω
d)(ξ, m)Dk, k

l2
(ξ, τl2 )dξ

)
× exp

(
− (

τ

t
)k)e

√
−1zm dτ

τ
dm. (216)

Then, both functions (213) and (216) are well defined and bounded holomorphic on the product
Sd,ϑ,R × Hβ′ .

• The constant ∆Sd ,k > 0 that arises in the lower bounds (74) is assumed to obey the condition

cos(2kθ) < −∆Sd ,k (217)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2024 doi:10.20944/preprints202412.0591.v1

https://doi.org/10.20944/preprints202412.0591.v1


41

for all θ ∈ R with e
√
−1θ ∈ Sd. We set up the following two integral operators acting on ud by means

of

exp
(
αD(tk+1∂t)

2)ud(t, z) :=
k

(2π)1/2

∫ +∞

−∞

∫
Ld

exp
(
αD(kτk)2)ωd(τ, m)

× exp
(
− (

τ

t
)k)e

√
−1zm dτ

τ
dm (218)

and for any l = (l0, l1, l2) ∈ A,

G+
l0,l1,l2,k,αD

(ud)(t, z) :=
k

(2π)1/2

∫ +∞

−∞

∫
Ld

exp
(
αD(kτk)2)

×
(
− k2/l2

2
√
−1π

∫
γ̃ k

l2
,τl2

Ck,l0,l1 (ω
d)(ξ, m)Dk, k

l2
(ξ, τl2 )dξ

)
× exp

(
− (

τ

t
)k)e

√
−1zm dτ

τ
dm, (219)

keeping the notations (214) and (215). As a result, the two expressions (218) and (219) represent
bounded holomorphic maps on the product Sd,ϑ,R × Hβ′ .

Proof. We focus on the first item. Under the restriction (212), we remind from (98) that the
inequality

| exp(−αDk2τ2k)| ≤ exp
(
− αDk2∆Sd ,k|τ|2k) (220)

holds provided that τ ∈ Sd. It follows that the expression (213) is well defined and bounded
holomorphic on Sd,ϑ,R × Hβ′ . For l = (l0, l1, l2) ∈ A, one sets

K(τ, m) =
∫

γ̃ k
l2

,τl2

Ck,l0,l1(ω
d)(ξ, m)Dk, k

l2
(ξ, τl2)dξ. (221)

According to Sublemma 1 and 2, we get that

1. For any given ρ̃ ≥ ρ, there exists a constant K1
ρ̃,k,l0,l1,l2

> 0 with

|K(τ, m)| ≤ K1
ρ̃,k,l0,l1,l2 ||ω

d||(ν,β,µ,k,ρ)|τ|k(1 + |m|)−µe−β|m| (222)

provided that τ ∈ Dρ̃ and m ∈ R.
2. A constant K2

ρ,k,l0,l1,l2
> 0 can be reached such that

|K(τ, m)| ≤ K2
ρ,k,l0,l1,l2 ||ω

d||(ν,β,µ,k,ρ)|τ|
k+ k

l2−1 exp
( |τ|

kl2
l2−1

(ρ/2)
k

l2−1

)
(1 + |m|)−µe−β|m| (223)

as long as τ ∈ Sd with |τ| ≥ (ρ/2)1/l2 and m ∈ R.

Since 2k = kl2
l2−1 when l2 = 2 and 2k > kl2

l2−1 for l2 > 2, from the bounds (220), (222), (223), under
the constraint (109), we deduce that the integral (216) is well defined and represents a bounded
holomorphic function on Sd,ϑ,R × Hβ′ .

In the second part of the proof, the second item is discussed. It follows from the condition
(217) and the lower bounds (105) showing that

| exp(αDk2τ2k)| ≤ exp
(
− αDk2∆Sd ,k|τ|2k) (224)
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for all τ ∈ Sd. Hence, the expression (218) turns out to be well defined and bounded holomorphic
on Sd,ϑ,R × Hβ′ .

At last, taking heed of the above upper bounds (222), (223), (224) and the restriction (109), we
observe that the integral (219) represents a bounded holomorphic function on Sd,ϑ,R × Hβ′ .

The second principal result of this paper is disclosed in the next

Theorem 2. Let us assume that the hypotheses formulated in Theorem 1 hold. Let d ∈ R be a direction
chosen in the set ΘQ,RD (discussed in Lemma 2). We consider the formal power series û(t, z) solution of
our main equation (8) with initial vanishing data û(0, z) ≡ 0. From Theorem 1, we know that û(t, z) is
mk−summable in the given direction d. We denote ud(t, z) its mk−sum in the direction d. The map ud(t, z)
defines a bounded holomorphic function on the product Sd,ϑ,R × Hβ′ , where Sd,ϑ,R denotes a bounded sector
shaped as (35) for an angle ϑ satisfying π

k < ϑ < π
k + Op(Sd), with Op(Sd) representing the opening of

Sd and for a small enough radius R > 0, where Hβ′ is the strip given in (18) for any given 0 < β′ < β.
Two alternatives arise.

• Assume that the unbounded sector Sd (displayed in the first item of Theorem 1) and the constant
∆Sd ,k > 0 stemming from the lower bounds (74) conform the condition (212). Then, the mk−sum
ud(t, z) solves the next functional equation involving the integral operators (213) and (216) given by

exp(−αD(tk+1∂t)
2)Q(∂z)ud(t, z) =

[1
2
+

1
2

exp(−2αD(tk+1∂t)
2)
]
RD(∂z)ud(t, z)

+ ∑
l=(l0,l1,l2)∈A;l2=1

al(z)Rl(∂z) exp(−αD(tk+1∂t)
2)[tl0(tk+1∂t)

l1 ud(t, z)]

+ ∑
l=(l0,l1,l2)∈A;l2>1

al(z)Rl(∂z)G−
l0,l1,l2,k,αD

(ud)(t, z)

+ cQ1Q2 exp(−αD(tk+1∂t)
2)[Q1(∂z)ud(t, z)Q2(∂z)ud(t, z)]

+ exp(−αD(tk+1∂t)
2) f (t, z) (225)

on the domain Sd,ϑ,R × Hβ′ provided that the radius R > 0 is taken small enough.
• Take for granted that the sector Sd and the constant ∆Sd ,k > 0 obey the condition (217). Then,

the mk-sum ud(t, z) is a solution of the following functional equation which comprises the integral
operators (218) and (219) displayed as

exp(αD(tk+1∂t)
2)Q(∂z)ud(t, z) =

[1
2
+

1
2

exp(2αD(tk+1∂t)
2)
]
RD(∂z)ud(t, z)

+ ∑
l=(l0,l1,l2)∈A;l2=1

al(z)Rl(∂z) exp(αD(tk+1∂t)
2)[tl0(tk+1∂t)

l1 ud(t, z)]

+ ∑
l=(l0,l1,l2)∈A;l2>1

al(z)Rl(∂z)G+
l0,l1,l2,k,αD

(ud)(t, z)

+ cQ1Q2 exp(αD(tk+1∂t)
2)[Q1(∂z)ud(t, z)Q2(∂z)ud(t, z)]

+ exp(αD(tk+1∂t)
2) f (t, z) (226)

on the product Sd,ϑ,R × Hβ′ as long as the radius R > 0 is chosen nearby the origin.

Proof. The assumptions made in Theorem 1 enable Proposition 10 to be applied. For some
prescribed sector Sd with d ∈ ΘQ,RD and disc Dρ as put forward in Lemma 2, for any given real
number ν > 0 and for the constants β, µ, k > 0 chosen in Section 2, we depart from the solution
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ωd of the auxiliary equation (72) that belongs to the Banach space Fd
(ν,β,µ,k,ρ) under the condition

(196) for some well chosen constant ϖ > 0. Owing to the integral representation (209), we know
from Definition 3 and the expression (34) of the Laplace transform of order k, that the mk−sum
ud(t, z) of the formal solution û(t, z) of (8) given by (204) is expressed as the next Fourier-Laplace
transform

ud(t, z) =
k

(2π)1/2

∫ +∞

−∞

∫
Ld

ωd(τ, m) exp
(
− (

τ

t
)k)e

√
−1zm dτ

τ
dm (227)

which defines a bounded holomorphic map on the product Sd,ϑ,R × Hβ′ , where Sd,ϑ,R stands for a
bounded sector shaped as (35) with an angle ϑ subjected to π

k < ϑ < π
k + Op(Sd), where Op(Sd)

represents the opening of Sd and for a small enough radius R > 0, where Hβ′ represents the strip
given in (18) for any given 0 < β′ < β.

We first assume the condition (212) imposed in the first item of Theorem 2. We multiply the
auxiliary equation (72) fulfilled by ωd(τ, m) by the function exp(−αD(kτk)2) which yields the
next equality

Q(
√
−1m) exp(−αD(kτk)2)ωd(τ, m) =

[1
2
+

1
2

exp(−2αD(kτk)2)
]
RD(

√
−1m)ωd(τ, m)

+ ∑
l=(l0,l1,l2)∈A;l2=1

1
(2π)1/2

∫ +∞

−∞
Al(m − m1) exp(−αD(kτk)2)Ck,l0,l1 (ω

d)(τ, m1)Rl(
√
−1m1)dm1

+ ∑
l=(l0,l1,l2)∈A;l2>1

1
(2π)1/2

∫ +∞

−∞
Al(m − m1) exp(−αD(kτk)2)

×
(
− k2/l2

2
√
−1π

∫
γ̃ k

l2
,τl2

Ck,l0,l1 (ω
d)(ξ, m1)Dk, k

l2
(ξ, τl2 )dξ

)
× Rl(

√
−1m1)dm1

+ cQ1Q2

1
(2π)1/2

∫ +∞

−∞
exp(−αD(kτk)2)

(
τk

∫ τk

0
ωd((τk − s)1/k, m − m1)Q1(

√
−1(m − m1))

× ωd(s1/k, m1)Q2(
√
−1m1)

1
(τk − s)s

ds
)

dm1 + exp(−αD(kτk)2)× ∑
j∈J

Fj(m)τ j (228)

for all τ ∈ Sd ∪ Dρ and all m ∈ R. We apply the Laplace transform Lmk of order k in direction d
displayed by the formula (34) and the inverse Fourier transform (17) to the left and right handside
of the above equality (228). From the first item of Proposition 11, together with the identities (19),
(20) in Definition 2 and the formula (38) disclosed in Proposition 4, we deduce that the mk−sum
ud(t, z) given by (227) solves the functional equation (225) on the domain Sd,ϑ,R × Hβ′ , provided
that the radius R > 0 is chosen small enough.
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Assume the condition (217) holds as asked in the second item of Theorem 2. Each side of
the equation (72) satisfied by ωd(τ, m) is then multiplied by the function exp(αD(kτk)2) which is
recast in the form

Q(
√
−1m) exp(αD(kτk)2)ωd(τ, m) =

[1
2
+

1
2

exp(2αD(kτk)2)
]
RD(

√
−1m)ωd(τ, m)

+ ∑
l=(l0,l1,l2)∈A;l2=1

1
(2π)1/2

∫ +∞

−∞
Al(m − m1) exp(αD(kτk)2)Ck,l0,l1 (ω

d)(τ, m1)Rl(
√
−1m1)dm1

+ ∑
l=(l0,l1,l2)∈A;l2>1

1
(2π)1/2

∫ +∞

−∞
Al(m − m1) exp(αD(kτk)2)

×
(
− k2/l2

2
√
−1π

∫
γ̃ k

l2
,τl2

Ck,l0,l1 (ω
d)(ξ, m1)Dk, k

l2
(ξ, τl2 )dξ

)
× Rl(

√
−1m1)dm1

+ cQ1Q2

1
(2π)1/2

∫ +∞

−∞
exp(αD(kτk)2)

(
τk

∫ τk

0
ωd((τk − s)1/k, m − m1)Q1(

√
−1(m − m1))

× ωd(s1/k, m1)Q2(
√
−1m1)

1
(τk − s)s

ds
)

dm1 + exp(αD(kτk)2)× ∑
j∈J

Fj(m)τ j (229)

whenever τ ∈ Sd ∪ Dρ and m ∈ R. The Laplace transform Lmk of order k in direction d given by
the formula (34) and the inverse Fourier transform (17) are applied to the left and right handside
of the above equality (229). According to the second item of Proposition 11 and the identities
discussed in Definition 2 and Proposition 4, we deduce that the mk−sum ud(t, z) expressed as
a double integral (227) obeys the functional equation (226) on the product Sd,ϑ,R × Hβ′ , on the
condition that the radius R > 0 is chosen small enough.

At last, we justify the statement of Theorem 2 with the next

Remark Observe that the mk−sum ud(t, z) of the formal solution of (8) given by the expression
(227) does not (in general) fulfill the same equation (8). There are two reasons for that.

− The action of the infinite order differential operator

cosh(αD(tk+1∂t)
2) =

1
2

exp(αD(tk+1∂t)
2) +

1
2

exp(−αD(tk+1∂t)
2)

given in (15) is not well defined on ud(t, z) since the map τ 7→ exp(αD(kτk)2) or τ 7→
exp(−αD(kτk)2) has an exponential growth of order 2k where a growth rate of at most order
k is required on the sector Sd.

− The action of the Mahler operator t 7→ tl2 is not properly settled on tl0(tk+1∂t)l1 ud(t, z) for
any given l = (l0, l1, l2) ∈ A since the analytic map

τ 7→
∫

γ̃ k
l2

,τl2

Ck,l0,l1(ω
d)(ξ, m)Dk, k

l2
(ξ, τl2)dξ

endows (at most) an exponential growth of order kl2
l2−1 which exceeds the admissible order k

on the sector Sd.
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