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Abstract: This paper extends Lyapunov stability theory to mixed fractional-order direct model reference 

adaptive control (FO-DMRAC), where the adaptive control parameter is of fractional order, and the control 

error model is of integer order. The proposed approach can also be applied to other types of model reference 

adaptive controllers (MRAC), provided the form of the control error dynamics and the fractional-order 

adaptive control law are similar. The paper demonstrates that the control error will converge to zero, even if 

the derivative of the classical Lyapunov function 𝑉̇ is positive during a transient period, as long as 𝑉̇(𝑒, 𝜙) 

tends to zero as time approaches infinity. Finally, the paper provides application examples that illustrate both 

the convergence of the control error to zero and the behavior of 𝑉̇(𝑒, 𝜙). 

Keywords: Lyapunov function; fractional order control; fractional order direct model reference 

adaptive control (FO-DMRAC); convergence of the control error 

 

1. Introduction 

The principal aim of this paper is to show that the control error 𝑒1(𝑡) for some class of fractional 

order dynamic systems as the fractional order direct model reference adaptive control (FO-DMRAC) 

tend to zero as time tend to infinite using the classical Lyapunov stability approach. 

The idea is not to show the performance of the controllers, but rather to show that although some 

of the conditions of the Lyapunov method (𝑉̇(𝑒, 𝜙) ≤ 0) are not met for all 𝑡, the control error 𝑒1(𝑡) =

𝑦𝑝(𝑡) − 𝑦𝑚(𝑡) converges to 0 as long as the limit of 𝑉̇(𝑒, 𝜙) tends to zero as t tends to infinity, where 

𝑦𝑝(𝑡) is the plant output and 𝑦𝑚(𝑡) is the reference model output. 

It is important to mention that the classic Lyapunov method has been used, avoiding conceptual 

complexities as much as possible. 

Many of the approaches applied to fractional adaptive systems use fractional (and not integer) 

derivatives of the Lyapunov function, achieving at most, demonstrate stability of the control error, 

but not convergence of this error to 0 [1–3]. 

Furthermore, many of these approaches are applied to fractional order systems with adaptive 

laws also of fractional order, facilitating the stability analysis for such systems. However, in most 

cases, the systems are of integer order and not fractional. Using the aforementioned approaches, it 

has only been possible to establish, that the limit of the integral of the mean square error to infinite 

grows at most with a certain speed ( lim
𝑡→∞

[𝑡𝛼−𝜀
∫ 𝑒(𝜏)2𝑑𝜏
𝑡
𝑡0

𝑡
] = 0,  ∀𝜀 > 0), which is useful but does not 

allow to establish convergence of the error itself to 0 [4,5]. 
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Other approaches have used the gradient technique, but the error model dynamic is of fractional 

order [6,7]. 

Finally, to carry out this analysis, the adaptive error model 3 has been used in which there is no 

access to the system's states, making the analysis more complex. 

The organization of the paper is as follows. Section 2 presents the classical or integer order 

implementation of the direct model reference adaptive control (IO-DMRAC). Section 3 shows some 

basic concepts and important results of the fractional calculus which will be the basis for analyzing 

the FO-DMRAC systems stability. Section 4 shows some of the difficulties in proving convergence of 

control error 𝑒1(𝑡) to 0 and the approach to establish such a convergence. In Section 5, simulation 

results are presented considering various examples that show the convergence to 0 of the control 

error and the behavior of the 𝑉̇(𝑒, 𝜙) function. Finally, in Section 6 some conclusions are drawn. 

2. Control Model System 

Figure 2 shows a simplified block diagram for the classical or integer order Direct Model 

Reference Adaptive Control (DMRAC), in which control parameters 𝑘 and 𝜃 are adjusted using 

their corresponding adaptive laws to keep the control error as small as possible. 

 

Figure 2. Classical DMRAC Block diagram. 

2.1. DMRAC Algorithm 

The objective of the MRAC is to minimize the control error 𝑒1(𝑡). In the DMRAC approach, for 

the adjustment of the controller parameters, it is not relevant that asymptotic convergence to the ideal 

parameters occurs, making the implementation simpler since the identification block is avoided [8]. 

Therefore, the DMRAC adaptive control scheme of a linear (or linearized) nth order plant, with 

relative degree 1 (𝑛∗ = 1) is shown in Figure 4, where only the control error 𝑒1(𝑡) is accessible (Error 

Model 3) but not the whole state error vector 𝑒(𝑡) (Error Model 2), in which case, the analysis for 

determining stability conditions is simpler [8]. 

Figure 3 shows the block implementation of the classical DMRAC in more detail. 
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Figure 3. DMRAC block diagram for Plant relative degree is 1 (𝑛∗ = 1). 

In which, the control law has the form  
𝑢(𝑡) = 𝜃𝑇(𝑡) ∙ 𝜔(𝑡) where 𝜃(𝑡) = [𝑘(𝑡), 𝜃1

𝑇 , 𝜃0(𝑡), 𝜃2
𝑇]𝑇 ∈ ℝ2𝑛 and  

𝜔(𝑡) = [𝑟(𝑡),𝜔1
𝑇 , 𝑦𝑝(𝑡), 𝜔2

𝑇]
𝑇

∈ ℝ2𝑛  are the controller parameters and the auxiliary signals 

respectively, and 𝑛, is the order of the plant. 

𝜙(𝑡) =

[
 
 
 
𝜓(𝑡)

𝜙1(𝑡)

𝜙0(𝑡)

𝜙2(𝑡)]
 
 
 

=

[
 
 
 
𝑘(𝑡) − 𝑘∗

𝜃1(𝑡) − 𝜃1
∗

𝜃0(𝑡) − 𝜃0
∗

𝜃2(𝑡) − 𝜃2
∗]
 
 
 

 𝜖 ℝ2𝑛 are the parameters error vector controller  

𝜃∗ = [

𝑘∗

𝜃1
∗

𝜃0
∗

𝜃2
∗

] are the ideal controller parameters. 

The auxiliary signals are defined by  
𝜔̇1(𝑡) = 𝛬𝜔1 + 𝑙𝑢(𝑡), 
𝜔̇2(𝑡) = 𝛬𝜔2 + 𝑙𝑦(𝑡), 

with 𝑘(𝑡), 𝜃0(𝑡), 𝑟(𝑡), 𝑦𝑝(𝑡) ∈ ℝ , 𝜃1(𝑡), 𝜃2(𝑡), 𝜔1(𝑡), 𝜔2(𝑡) ∈ ℝ𝑛−1  and (Λ, 𝑙)  is any arbitrary stable 

and controllable pair, with Λ ϵ ℝ𝑛−1𝑥𝑛−1 a Hurwitz matrix. 

For simplicity, we choose (Λ, 𝑙) in the controllable canonical form. Furthermore, when 𝑛∗ = 1, 

the control parameters for the classical or integer order adaptive laws (IO-DMRAC) can be chosen as: 
𝑘̇(𝑡) = −𝑠𝑔𝑛(𝑘𝑝)𝑒1(𝑡)𝑟(𝑡), 

𝜃̇0(𝑡) = −𝑠𝑔𝑛(𝑘𝑝)𝑒1(𝑡)𝑦𝑝(𝑡), 

𝜃̇1(𝑡) = −𝑠𝑔𝑛(𝑘𝑝)𝑒1(𝑡)𝜔1(𝑡), 

𝜃̇2(𝑡) = −𝑠𝑔𝑛(𝑘𝑝)𝑒1(𝑡)𝜔2(𝑡). 

and the output control error 𝑒1(𝑡) = 𝑦𝑝(𝑡) − 𝑦𝑚(𝑡) ℝ,  can be expressed as 𝑒1(𝑡) =
𝑘𝑝

𝑘𝑚
𝑊𝑚(𝑠)𝜙𝑇(𝑡)𝜔(𝑡), where 𝑊𝑚(𝑠) is a strictly positive real (SPR) transfer function. 

On the other hand, for the fractional order adaptive laws (FO-DMRAC) case, these adaptive laws 

can be written as 

3. Fractional Calculus Preliminaries 

In this section we present some definitions and the main advances in the stability of fractional 

order model reference adaptive control systems. 

𝐷𝑡
𝛼

𝑡0

𝐶 𝜃(𝑡) = 𝐷𝑡
𝛼

𝑡0

𝐶 𝜙(𝑡) = −𝑠𝑔𝑛(𝑘𝑝)𝑒1(𝑡)𝜔(𝑡) (1)  

ω1(t) ω2(t) 
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3.1. Basic concepts of fractional calculus 

The basic definitions of fractional derivative and integral most used in engineering are presented 

[9,10] that will be useful for the implementation of the FO-DMRAC control. 

Definition 1 [10]. The Riemann-Liouville fractional integral of order 𝛼 > 0 of a function 𝑓(𝑡) ∈ ℝ is 

defined by 

𝐼𝑡0
𝛼 𝑓(𝑡) =

1

𝛤(𝛼)
∫

𝑓(𝜏)

(𝑡−𝜏)1−𝛼 𝑑𝜏  
𝑡

𝑡0
, 𝑡 > 𝑡0 and ℛ𝑒(𝛼) > 0, 

(2) 

where Γ(𝛼) is the Gamma function defined as 

Γ(𝛼) = ∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡  
∞

0
.  (3) 

Definition 2 [10]. Let 𝛼 ≥ 0 and [𝑛] = 𝛼. The Caputo fractional derivative of order 𝛼 of a function 

𝑓(𝑡) ∈ ℝ is defined as 

𝐷𝑡
𝛼

𝑡0
𝐶 𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)
∫

𝑓(𝑛)(𝜏)

(𝑡 − 𝜏)𝛼−𝑛+1
𝑑𝜏; as long as 𝑓(𝑛) ∈  𝐿1[𝑡0, 𝑡].

𝑡

𝑡0

 
(4) 

Some additional lemmas and a theorem are important for the stability analysis of fractional order 

adaptive control systems, which will be mentioned and whose proofs will be referenced in what 

follows. 

Lemma 1. (Principle of fractional comparison): Let 𝑒(𝑡) ∈ ℝ𝑛 be a vector of differentiable functions. 

Then,∀ 𝑡 ≥ 𝑡0 the following inequality holds [1–5]. 

𝐷𝑡
𝛼

𝑡0
𝐶 {𝑒𝑇(𝑡)𝑃𝑒(𝑡)} ≤ 2𝑒𝑇(𝑡)𝑃 𝐷𝑡

𝛼
𝑡0
𝐶 𝑒(𝑡), ∀𝛼 ∈ (0,1], 

where 𝑃 ∈ ℝ𝑛𝑥𝑛 is a symmetric square matrix of constant coefficients and positive definite. Proof of 

this Lemma can be found in [3]. 

3.2. Principal adavances in stability of fractional order systems 

Theorem 1. Let the state error 𝑒(𝑡) and the control error 𝑒1(𝑡) be represented by equations 

𝐷𝑡
𝛽

𝑡0
𝐶 𝑒(𝑡) = 𝐴𝑚𝑛𝑒(𝑡) + 𝑏𝑚𝑛[𝜙𝑇(𝑡)𝜔(𝑡)],            𝑒(𝑡0) = 𝑒0,  

𝑒1(𝑡) = ℎ𝑚𝑛
𝑇 𝑒(𝑡),                             𝑒1(𝑡0) = 𝑒10,  

(5) 

where 𝐴𝑚𝑛 ∈ ℝ𝑛𝑥𝑛 is a Hurwitz matrix and such that given a matrix 𝑄 = 𝑄𝑇 > 0 ∈ ℝ𝑛𝑥𝑛. Then, there 

exists a matrix 𝑃 = 𝑃𝑇 > 0 ∈ ℝ𝑛𝑥𝑛 such that 

𝐴𝑚𝑛
𝑇 𝑃 + 𝑃𝐴𝑚𝑛 = −𝑄,  

𝑃𝑏𝑚𝑛 = ℎ𝑚𝑛 

whose adaptive adjustment laws, to estimate the unknown controller parameters, are given by 

𝐷𝑡
𝛼

𝑡0
𝐶 𝜙(𝑡) = 𝐷𝑡

𝛼
𝑡0
𝐶 𝜃(𝑡) = −𝛾𝑠𝑔𝑛(𝑘𝑝)𝑒1(𝑡)𝜔(𝑡),        𝜙(𝑡0) = 𝜙0 (6) 

where 𝑘𝑝 > 0 is the gain of the plant, which is unknow, but the sign is known. Also, 𝛼 < 𝛽 and 𝛼 ∈

(0,1]. Then, if 𝑒(𝑡) and 𝜙(𝑡) are differentiable and uniformly continuous functions, it holds that 

a) The parametric error 𝜙(𝑡), the state error 𝑒(𝑡) and the control error 𝑒1(𝑡) remain bounded for 

all time. 

b) Furthermore, if the auxiliary signal 𝜔(𝑡) is bounded, then 𝐷𝑡
𝛼

𝑡0
𝐶 𝜙(𝑡) and 𝐷𝑡

𝛽
𝑡0
𝐶 𝑒(𝑡) also remain 

bounded. 

c) The mean value of the squared norm of the state error ‖𝑒(𝑡)‖2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is 𝑜(𝑡𝜀−𝛼)  ∀𝜀 > 0, 

or equivalentelly 

where 𝑜(𝑡𝜀−𝛼) means that the speed of converges to zero is higher than 𝑡−𝛼 . The proof of this 

theorem can be found in [3]. 

lim
𝑡→∞

[𝑡𝛼−𝜀
∫ 𝑒(𝜏)2𝑑𝜏
𝑡
𝑡0

𝑡
] = 0,  ∀𝜀 > 0 (7)  
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Remark 1. This theorem applies to system whose relative degree 𝑛∗ is grater than 1 as long as the 

model trasfer function 𝑊𝑚(𝑠) is strictly positive real. Otherwise, it is necessary to modify 𝑊𝑚(𝑠) so that 

it meets this condition.   

From Theorem 1, since 𝑒1(𝑡) = ℎ𝑚𝑛
𝑇 𝑒(𝑡)  with ℎ𝑚𝑛

𝑇  a constant vector, then, the control error 

𝑒1(𝑡) also will be (𝑡𝜀−𝛼)  ∀𝜀 > 0. 

if (c) holds, it must also hold for the mean value of the square norm of 𝑒1(𝑡), since 𝑒1(𝑡) =

ℎ𝑚𝑛
𝑇 𝑒(𝑡) with ℎ𝑚𝑛

𝑇  a vector whose components are constants. 

There is a lemma that relaxes the hypothesis (b) imposed from Theorem 1 when 𝛽 = 1 (i.e. the 

error model equation is of integer order), therefore all the internal signals 𝜔(𝑡) are bounded and 

there is no need to impose the boundedness condition over 𝜔(𝑡). The proof of this lemma can be 

found in [13,14]. 

Furthermore, as the auxiliary signal 𝜔(𝑡) is bounded and Theorem 1 guarantees (c), then the 

squared norm of the control error |𝑒1(𝑡)|
2, also tends to 0 as t tends to infinity. That is 

Therefore, the stability of the proposed FO-DMRAC is guaranteed. 

Nevertheless, it is not possible to conclude convergence of the errors (𝑒(𝑡) and 𝑒1(𝑡)) to 0 as t 

tends to ∞. Also, it is still a pending issue to prove the analytical differentiability of 𝜙(𝑡). 

The high frequency gain of the plant 𝑏𝑝 is supposed to be unknown but its sign is assumed to 

be known (𝑠𝑔𝑛(𝑏𝑝) > 0). 

4. Some issues that difficult to prove convergence of errors to 0 in adaptive fractional order 

systems 

In the very well-known classical (or integer order) DMRAC, the proof of the convergence of the 

state error and the control error (𝑒(𝑡) and 𝑒1(𝑡) respectively) to 0 rests on the Barbalat Lemma. That 

is, the derivative of the Lyapunov function 

𝑉̇(𝑒, 𝜙) = −𝑒𝑇(𝑡)𝑄𝑒(𝑡) ≤ 0. 

Then, using Barbalat Lemma we can conclude that the state error tends to 0 ( lim
𝑡→∞

𝑒(𝑡) = 0) and 

therefore, the control error 𝑒1(𝑡) = ℎ𝑚𝑛
𝑇 𝑒(𝑡) also tend to 0 (lim

𝑡→∞
𝑒1(𝑡) = 0) [8]. 

Nevertheless, even that is not explicitly mentioned in the literature, because of the above, it must 

also be satisfied that lim
𝑡→∞

𝑉̇(𝑒, 𝜙) = 0. 

In the case of mixed fractional order direct model reference adaptive control (FO-MRAC), there 

is not an equivalent Barbalat Lemma, therefore, it is not possible to conclude the convergence of the 

state error 𝑒(𝑡) and the control error 𝑒1(𝑡) to 0. 

If we write the Lyapunov function for the mixed adaptive system, we have (considering, from 

Figure 3, 𝑘𝑝 = 1 for simplicity) 

therefore, 

As we can see, it is not easy to know the sign of the second term  2𝜙𝑇(𝑡){𝑒1(𝑡)𝜔(𝑡) −

𝐷1−𝛼(𝑒1(𝑡)𝜔(𝑡))} or the term  

lim
𝑡→∞

[𝑡𝛼−𝜀
∫ 𝑒1(𝜏)2𝑑𝜏
𝑡
𝑡0

𝑡
] = 0,  ∀𝜀 > 0 (8)  

𝑉(𝑒, 𝜙) = 𝑒𝑇(𝑡)𝑃𝑒(𝑡) + 𝜙𝑇(𝑡)𝜙(𝑡)  (9)  

𝑉̇(𝑒, 𝜙) = −𝑒𝑇𝑄𝑒 + 2𝜙𝑇(𝑡){𝑒1(𝑡)𝜔(𝑡) − 𝐷1−𝛼(𝑒1(𝑡)𝜔(𝑡))}  (10)  

𝜙𝑇(𝑡){𝑒1(𝑡)𝜔(𝑡) − 𝐷1−𝛼(𝑒1(𝑡)𝜔(𝑡))} (11)  
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with 𝛼𝜖(0,1). To make easier the notation, we can make the variable change 𝛽 = 1 − 𝛼, therefore 

𝛽𝜖(0,1). Then, (11) could be re-written as 

By Lemma 2 [11,12] we know that 𝜔(𝑡)  is boundness. By part (a) of Theorem 1, 𝑒1(𝑡)  is 

boundness, therefore, 𝐷𝛽(𝑒1(𝑡)𝜔(𝑡)) = 0 (when 𝑡 tends to infinity) by Caputo derivative property. 

Moreover, as 𝜙(𝑡) is boundness by the same theorem. Then, (12) is a boundedness term. 

Still, we cannot prove that the term  

𝑉̇(𝑒, 𝜙) = −𝑒𝑇𝑄𝑒 + 2𝜙𝑇(𝑡){𝑒1(𝑡)𝜔(𝑡) − 𝐷𝛽(𝑒1(𝑡)𝜔(𝑡))} ≤ 0 

Remark 2. If the signals are of the PE type (Persisting Excitation type) class of an adequate order, 

lim
𝑡→∞

𝜙(𝑡) could converge to 0, but this is more related to the case of identification problems [8,13]. In 

the direct model reference adaptive control (DMRAC), not necessarily lim
𝑡→∞

𝜙(𝑡) = 0. 

Even in this case, we can only show that lim
𝑡→∞

𝑉̇(𝑒, 𝜙) = lim
𝑡→∞

−𝑒𝑇𝑄𝑒  but it is not enough to 

conclude that lim
𝑡→∞

𝑉̇((𝑒, 𝜙) = 0 or lim
𝑡→∞

−𝑒𝑇𝑄𝑒 = 0 and thus, also conclude that lim
𝑡→∞

𝑒 = 0. Remember 

that Q is a constant and symmetric matrix. 

Therefore, we need to explore what happens with the term inside the parenthesis. That is, the 

term {𝑒1(𝑡)𝜔(𝑡) − 𝐷𝛽(𝑒1(𝑡)𝜔(𝑡))}. 

First, we know that all the signal inside the parenthesis is boundedness, then 

lim
𝑡→∞

{𝑒1(𝑡)𝜔(𝑡) − 𝐷𝛽(𝑒1(𝑡)𝜔(𝑡))} = lim
𝑡→∞

𝑒1(𝑡)𝜔(𝑡)  because as we show before, by Caputo 

derivative property, 𝐷𝛽(𝑒1(𝑡)𝜔(𝑡)) = 0, as t tends to ∞, because the term 𝑒1(𝑡)𝜔(𝑡) will be at least 

constant. Then, as 𝜔(𝑡)  is a bounded signal, if lim
𝑡→∞

𝑒1(𝑡) = 0  then lim
𝑡→∞

𝑉̇(𝑒, 𝜙) = 0  and also 

lim
𝑡→∞

−𝑒𝑇𝑄𝑒 = 0 and therefore lim
𝑡→∞

𝑒 = 0 and that will be the prove for the convergence to 0 of all 

errors (state error 𝑒(𝑡) and control error 𝑒1(𝑡)). But we are assumed that lim
𝑡→∞

𝑒1(𝑡) = 0 which is not 

possible to stablish a priori. 

It is important to mention that several fractional adaptive systems present this behavior. That is, 

lim
𝑡→∞

𝑉̇(𝑒, 𝜙) = 0 and lim
𝑡→∞

𝑒1(𝑡) = 0. In the simulation results section (Section 5) we will show some 

examples that show this behavior for both, stable and unstable systems. 

Now, from (7), as 𝜀 is arbitrary, as long as 𝜀 > 0 we can choose 𝜀 = 𝛼 , therefore, (7) can be re-

written as 

 lim
𝑡→∞

[
∫ 𝑒(𝜏)2𝑑𝜏
𝑡
𝑡0

𝑡
] = 0, which give a term that is divide by ∞. Even more, as part (a) of Theorem 1, 

𝑒(𝑡) is boundedness or by part (b) of the same theorem, 𝑒̇(𝑡) is boundedness and as 𝑒(𝑡) is part of 

(5), where all the other terms are boundedness, then 𝑒(𝑡)  must be boundedness, therefore the 

numerator of (5) (lim
𝑡→∞

∫ 𝑒(𝜏)2𝑑𝜏
𝑡

𝑡0
) can be infinite or constant (if 𝑒(𝑡) is square integrable), then, we 

can use L’Hopital rule, that is 

lim
𝑡→∞

[
∫ 𝑒(𝜏)2𝑑𝜏
𝑡
𝑡0

𝑡
] = lim

𝑡→∞
[

𝑑

𝑑𝑡
(∫ 𝑒(𝜏)2𝑑𝜏

𝑡
𝑡0

)

𝑑

𝑑𝑡
(𝑡)

] = lim
𝑡→∞

[
𝑒(𝑡)2

1
] = lim

𝑡→∞
𝑒(𝑡)2 = 0 ⇒

lim
𝑡→∞

𝑒(𝑡) = 0. 

Then, since 𝑒1(𝑡) = ℎ𝑚𝑛
𝑇 𝑒(𝑡) with ℎ𝑚𝑛 a constant vector, then lim

𝑡→∞
𝑒1(𝑡) = 0 which mean that the 

control error 𝑒1(𝑡) tends to 0 conform t tends to ∞. Therefore, we have proven the convergence of 

the state and control error to 0 which is new for fractional order direct model reference adaptive 

control systems (FO-DMRAC). Also, this result means that lim
𝑡→∞

𝑉̇(𝑒, 𝜙) = 0 as in the integer order 

case. 

5. Simulation results 

𝜙𝑇(𝑡){𝑒1(𝑡)𝜔(𝑡) − 𝐷𝛽(𝑒1(𝑡)𝜔(𝑡))} (12)  
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In this section we will show some examples (of different relative degree plants) that support 

what has been developed and conclude in section 4. The simulations were performed using Matlab-

Simulink [14,15]. For all examples, zero initial conditions were considered. 

For simplicity of the analysis but without loss of generality 𝑘𝑝 = 1 is considered. Then, as it was 

said before (9), a typical Lyapunov function can be choose such as 𝑉(𝑒, 𝜙) = 𝑒𝑇(𝑡)𝑃𝑒(𝑡) + 𝜙𝑇(𝑡)𝜙(𝑡). 

Therefore 

𝑉̇(𝑒, 𝜙) = −𝑒𝑇𝑄𝑒 + 2𝜙𝑇(𝑡){𝑒1(𝑡)𝜔(𝑡) − 𝐷1−𝛼(𝑒1(𝑡)𝜔(𝑡))}. If 𝛽 = 1 − 𝛼, then, the above term can 

be rewritten as 

Unlike the classic case, in (13), a term with a fractional derivative appears. For doing the 

simulation analysis, the designer can choose any 𝛼, 𝛽 ∈ (0,1] such as 𝛽 = 1 − 𝛼. In this case, we will 

choose 𝛼 = 0.8 ⇒ 𝛽 = 0.2. 

In the mixed FO-DMRAC control case where error model dynamics is of integer order and the 

adaptive laws are fractional (see Equation (1)), the dynamic of the state error 𝑒(𝑡), considering the 

plant together with the controller (error model 3) [13], is 

where 

𝐴𝑚𝑛 = [

𝐴𝑝 + 𝑏𝑝𝜃0
∗ℎ𝑝

𝑇 𝑏𝑝𝜃1
∗𝑇 𝑏𝑝𝜃2

∗𝑇

𝑙𝜃0
∗ℎ𝑝

𝑇 Λ + 𝑙𝜃1
∗𝑇 𝑙𝜃2

∗𝑇

𝑙ℎ𝑝
𝑇 0 Λ

] 𝑏𝑚𝑛 = [
𝑏𝑝

𝑙
0

] 

and 

ℎ𝑚𝑛 = [ℎ𝑝
𝑇

0 0]
𝑇

, 𝑥(𝑡) = [𝑥𝑝
𝑇(𝑡) 𝜔1

𝑇(𝑡) 𝜔2
𝑇(𝑡)]

𝑇
 and 

𝑥𝑚𝑛(𝑡) = [𝑥𝑝
∗𝑇(𝑡) 𝜔1

∗𝑇(𝑡) 𝜔2
∗𝑇(𝑡)]

𝑇
, where 𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑚𝑛(𝑡). 

Although from a theoretical point of view, it is not necessary to calculate the value of 𝑃 from 𝑄 

since it is enough that the conditions of the Meyer-Kalman-Yakubovich (MKY) lemma are met, it is 

important for the purposes of carrying out the calculation of 𝑉̇(𝑒, 𝜙). 

Next, we present some examples to show the behavior of the control error 𝑒1(𝑡)  and the 

derivative of the Lyapunov function 𝑉̇(𝑒, 𝜙) that confirm the convergence to 0 of 𝑒1(𝑡) which is the 

main result of this paper and it was proven in the previous section.   

5.1. Scalar stable plant 

Example 1: (𝑛 = 1 and 𝑛∗ = 1) 

Table 1. FO-DMRAC implementation for a stable plant. 

Plant model Reference Model 

𝑥̇𝑝(𝑡) = −𝑥𝑝(𝑡) + 𝑢(𝑡).   

𝑦𝑝(𝑡) = 𝑥𝑝(𝑡). 

𝑊𝑝(𝑠) =
1

𝑠+1
. 

𝑎𝑝 = −1, 𝑏𝑝 = 1, ℎ𝑝 = ℎ𝑝
𝑇 = 1. 

 

 

𝑥̇𝑚(𝑡) = −2(𝑡) + 2𝑟(𝑡). 

𝑟(𝑡) = 1. 

𝑦𝑚(𝑡) = 𝑥𝑚(𝑡). 

𝑊𝑚(𝑠) =
2

𝑠+2
. 

𝑎𝑚 = −2, 𝑏𝑚 = 2, ℎ𝑚 = ℎ𝑚
𝑇 = 1. 

 

Λ = 0, 𝑙 = 0, 𝐴𝑚𝑛 = −2,  𝑏𝑚𝑛 = −1,
𝑒(𝑡) = 𝑒1(𝑡) = 𝑥𝑝 − 𝑥𝑚 

Remark 3. In the scalar case, 𝜃0
∗ = 𝜃∗ =

𝑎𝑚−𝑎𝑝

𝑏𝑝
 and 𝑘∗ =

𝑏𝑚

𝑏𝑝
 where 𝜃∗ and 𝑘∗ are the ideal control 

parameters and 𝑢(𝑡) = 𝑘(𝑡)𝑟(𝑡) + 𝜃(𝑡)𝑥𝑝(𝑡) is the control law. 

𝑉̇(𝑒, 𝜙) = −𝑒(𝑡)𝑇𝑄𝑒(𝑡) + 2𝜙𝑇(𝑡){𝑒1(𝑡)𝜔(𝑡) − 𝐷𝛽(𝑒1(𝑡)𝜔(𝑡))}  (13)  

𝑒̇(𝑡) = 𝐴𝑚𝑛𝑒(𝑡) + 𝑏𝑚𝑛[𝜙𝑇(𝑡)𝜔(𝑡)] 

 𝑒1(𝑡) = ℎ𝑚𝑛
𝑇 𝑒(𝑡) 

(14) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2024 doi:10.20944/preprints202412.0573.v1

https://doi.org/10.20944/preprints202412.0573.v1


 8 

 

Then, using MKY lemma, that is, for any 𝑄 = 𝑄𝑇 > 0 exist a 𝑃 = 𝑃𝑇 > 0 such that 

𝐴𝑚𝑛
𝑇 𝑃 + 𝑃𝐴𝑚𝑛 = −𝑄. 

𝑃𝑏𝑚𝑛 = ℎ𝑚𝑛 . 

we may calculate 𝐴𝑚𝑛 , 𝑃, and 𝑄 for the system of Example 1 and thus, be able to calculate 𝑉̇(𝑒, 𝜙). 

In this example, 𝐴𝑚𝑛 = −2, 𝑃 = 1, 𝑄 = 2, 𝑘∗ =
𝑏𝑚

𝑏𝑝
= 2 and 𝜃∗ =

𝑎𝑚−𝑎𝑝

𝑏𝑝
= −1. 

The fractional adaptive laws were implemented using the Ninteger Toolbox [15]. Specifically, 

the NID block was used based on the Oustaloup method [16]. 

Figure 4 shows the plant response 𝑦𝑝(𝑡) , reference output 𝑦𝑚(𝑡)  and control error 𝑒1(𝑡) 

respectively. From Figure 5 we can see the evolution of 𝑉̇(𝑒, 𝜙) respectively. 

  
(a) (b) 

Figure 4. (a) FO-DMRAC reference output, response and (b) control error when 𝑟(𝑡) = 1. 

 

Figure 5. FO-DMRAC graph of 𝑉̇(𝑒, 𝜙)𝑣𝑠 𝑡 when 𝑟(𝑡) = 1. 

Also, from Figures 4 and 5 it can be seen that the control error 𝑒1(𝑡) converges to 0 and 𝑉̇(𝑒, 𝜙) 

can be greater than 0 in some time intervals, but also converge to 0 conform 𝑡 tends to ∞ such as 

the classical case. 

If we change 𝑟(𝑡) by a sinusoidal signal such as 𝑟(𝑡) = 2sin (𝑡), the response, control error and 

the graph of 𝑉̇(𝑒, 𝜙) are shown in Figures 6 and 7 respectively. 
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(a) (b) 

Figure 6. (a) FO-DMRAC reference output, response and (b) control error when 𝑟(𝑡) = 2sin (𝑡). 

 

Figure 7. FO-DMRAC graph of 𝑉̇(𝑒, 𝜙) when 𝑟(𝑡) = 2sin (𝑡). 

From Figure 6 it can be seen that the control error 𝑒1(𝑡) convergence takes more time than the 

stable case but the convergence is assured anyway. The similar convergence behavior can be seen 

from Figure 7. 

5.2. Scalar unstable plant 

Example 2: (𝑛 = 1 and 𝑛∗ = 1) 

Table 2. FO-DMRAC implementation for an unstable plant. 

Plant model Reference Model 

𝑥̇𝑝(𝑡) = 1(𝑡) + 1𝑢(𝑡).   

𝑦𝑝(𝑡) = 𝑥𝑝(𝑡). 

𝑊𝑝(𝑠) =
1

𝑠−1
. 

𝑎𝑝 = 1, 𝑏𝑝 = 1, ℎ𝑝 = ℎ𝑝
𝑇 = 1. 

 

 

𝑥̇𝑚(𝑡) = −2(𝑡) + 2𝑟(𝑡). 

𝑟(𝑡) = 1.  

𝑦𝑚(𝑡) = 𝑥𝑚(𝑡). 

𝑊𝑚(𝑠) =
2

𝑠+2
. 

𝑎𝑚 = −2, 𝑏𝑚 = 2, ℎ𝑚 = ℎ𝑚
𝑇 = 1. 

 

Λ = 0, 𝑙 = 0, 𝐴𝑚𝑛 = −2,  𝑏𝑚𝑛 = −1,
𝑒(𝑡) = 𝑒1(𝑡) = 𝑥𝑝 − 𝑥𝑚 

𝐴𝑚𝑛 = −2, 𝑃 = 1, 𝑄 = 2, 𝑘∗ =
𝑏𝑚

𝑏𝑝
= 2 and 𝜃∗ =

𝑎𝑚−𝑎𝑝

𝑏𝑝
= −3. 

The next figures show similar convergence behavior as the graphics of Example 1 for the 

unstable plant. 

  
(a) (b) 
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Figure 8. (a) FO-DMRAC reference output, response and (b) control error when 𝑟(𝑡) = 1. 

 

Figure 9. FO-DMRAC graph of 𝑉̇(𝑒, 𝜙)𝑣𝑠 𝑡 when 𝑟(𝑡) = 1. 

Now, if we change the reference to 𝑟(𝑡) = 2sin (𝑡) the figures are the following (Figures 10 and 

11). 

 
 

(a) (b) 

Figure 10. (a) FO-DMRAC reference output, response and (b) control error when 𝑟(𝑡) = 2sin (𝑡). 

 

Figure 11. FO-DMRAC graph of 𝑉̇(𝑒, 𝜙) when 𝑟(𝑡) = 2sin (𝑡). 
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As we can see, from Figures 10 and 11, both the control error 𝑒1(𝑡) and 𝑉̇(𝑒, 𝜙) converge to 0, 

even if 𝑉̇(𝑒, 𝜙) can take positive values in some time intervals.  

5.3. Vectorial case (stable plant) 

Example 3: (𝑛 = 2 and 𝑛∗ = 1)  

Table 3. FO-DMRAC implementation. 

Plant model Reference Model 

𝑥̇𝑝(𝑡) = 𝐴𝑝(𝑡)𝑥𝑝(𝑡) + 𝑏𝑝𝑢(𝑡).   

𝑦𝑝(𝑡) = ℎ𝑝
𝑇𝑥𝑝(𝑡). 

𝑊𝑝(𝑠) =
𝑠 + 1

𝑠2 + 7𝑠 + 12
 

 

Controllable canonical form: 

𝐴𝑝 = [
0 1

−12 −7
] , 𝑏𝑝 = [

0
1
], 

 
ℎ𝑝

𝑇 = [1 1] 

𝑥̇𝑚(𝑡) = −2(𝑡) + 2𝑟(𝑡).   

𝑦𝑚(𝑡) = 𝑥𝑚(𝑡). 

𝑟(𝑡) = 1.  

𝑊𝑚(𝑠) =
2

𝑠+2

(𝑠+1)

(𝑠+1)
. 

Controllable canonical form: 

𝐴𝑝 = [
0 1

−2 −3
] , 𝑏𝑝 = [

0
1
], 

 
ℎ𝑚

𝑇 = [1 1] 
 

Λ = −1, 𝑙 = 1,  𝑏𝑚𝑛 = [0 1 1 0]𝑇 , ℎ𝑚𝑛
𝑇 = [1 1 0 0] 

  𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑚𝑛(𝑡), 𝑒1(𝑡) = ℎ𝑚𝑛
𝑇 𝑒(𝑡) 

Remark 4. The reference model transfer function 𝑊𝑚(𝑠) has been changed (order 2) just to match the 

conditions for finding the control ideal parameters 𝜃∗, but the behavior is the same as the original 

transfer function 𝑊𝑚(𝑠) =
2

𝑠+2
. 

Control Laws: 
𝜃(𝑡) = [𝑘(𝑡) 𝜃1

𝑇(𝑡)     𝜃0(𝑡) 𝜃2
𝑇(𝑡)]𝑇 ∈ ℝ4 

𝜔(𝑡) = [𝑟(𝑡) 𝜔1
𝑇(𝑡)     𝑦𝑝(𝑡) 𝜔2

𝑇(𝑡)]
𝑇

∈ ℝ4 

𝑢(𝑡) = 𝜃𝑇(𝑡)𝜔(𝑡) 

Note: 𝜃1
𝑇(𝑡) and 𝜃2

𝑇(𝑡) ∈ ℝ 

Internal auxiliary signals: 
𝜔̇1(𝑡) = Λ𝜔1(𝑡) + 𝑙𝑢(𝑡) 

𝜔̇2(𝑡) = Λ𝜔2(𝑡) + 𝑙𝑦𝑝(𝑡) 

Λ = −1 

𝑙 = 1 

Fractional order adaptive laws: 
𝐷𝑡

𝛼𝑖
𝑡0

𝐶 𝜃(𝑡) = −Γ𝑖𝑒1(𝑡)𝜔(𝑡) 

Remark 5. Γ𝑖 is a diagonal matrix where 𝑖 = 1,… ,4. For practical implementation simplicity, we choose Γ𝑖 = 𝐼 

(identity matrix of appropriated dimension). 

𝜙(𝑡) =

[
 
 
 
𝜓(𝑡)

𝜙1(𝑡)

𝜙0(𝑡)

𝜙2(𝑡)]
 
 
 

=

[
 
 
 
𝑘(𝑡) − 𝑘∗

𝜃1(𝑡) − 𝜃1
∗

𝜃0(𝑡) − 𝜃0
∗

𝜃2(𝑡) − 𝜃2
∗]
 
 
 

 ∈ ℝ4 are the parameters error vector controller and 𝜃∗ = [

𝑘∗

𝜃1
∗

𝜃0
∗

𝜃2
∗

] =

[

2
0
4
6

] are the ideal controller parameters. 

Finally, 𝐴𝑚𝑛 = [

0
−8
4
1

 

1
−3
4
1

 

0
0

−1
0

 

0
6
6

−1

] , whose eigenvalues are -1, -2, -1 and -1 therefore 𝐴𝑚𝑛  is 

Hurwitz. Also, if 𝑄 = [

2
26.5

−23.5
−6

 

26.5
33

−16.5
−8

 

−23.5
−16.5

4
0

 

−6
−8
0
2

] which is a symmetrical and positive defined matrix, 
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then 𝑃 = [

4
0.5
0.5
1

 

0.5
3

−2
0

 

0.5
−2
2
0

 

1
0
0
1

] which is also a symmetrical and positive defined matrix that satisfies the 

MKY Lemma. That is 

𝐴𝑚𝑛
𝑇 𝑃 + 𝑃𝐴𝑚𝑛 = −𝑄,  

𝑃𝑏𝑚𝑛 = ℎ𝑚𝑛. 
As before, Figures 12 and 13 show the response, control error 𝑒1(𝑡)  and 𝑉̇(𝑒, 𝜙)  behavior 

respectively. 

  
(a) (b) 

Figure 12. (a) FO-DMRAC reference output, response and (b) control error when 𝑟(𝑡) = 1. 

 

Figure 13. FO-DMRAC graph of 𝑉̇(𝑒, 𝜙) when 𝑟(𝑡) = 1. 

From Figure 12 it can see a similar behavior as the examples 1 and 2, that is, the plant output 

𝑦𝑝(𝑡) converges to the model reference output 𝑦𝑚(𝑡) which is equivalent to saying that the control 

error tends to 0 as t tends to ∞. Also, from Figure 13 we confirm that lim
𝑡→∞

𝑉̇(𝑒, 𝜙) = 0 even if in some 

time intervals (mainly in the transient period), 𝑉̇(𝑒, 𝜙) can be positive. 

Now, changing the reference signal to a sinusoidal one as in the previous example, that is, 𝑟(𝑡) =

2sin (𝑡), we obtain the following dynamic behavior which are show in the next figures. 
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(a) (b) 

Figure 12. (a) FO-DMRAC reference output, response and (b) control error when 𝑟(𝑡) = 2sin (𝑡). 

 

Figure 13. FO-DMRAC graph of 𝑉̇(𝑒, 𝜙) when 𝑟(𝑡) = 2sin (𝑡)1. 

Remark 5. These simulations are made to show that lim
𝑡→∞

𝑒1(𝑡) = 0 (control error converge to 0) in the 

case of fractional order model reference adaptive control implementation (FO-DMRAC) and not to 

show the performance of the controllers. Better performance can be achieved by using an 

optimization algorithm such as PSO [17] or another one, in such a way as to choose the fractional 

parameters 𝛼𝑖 and adaptive gains Γ𝑖 more conveniently.    

Finally, it can be established new conditions of the Lyapunov method applied to FO-DMRAC. 

That is, let be a 𝑉(𝑒, 𝜙) a continuous and derivable function, then 

i) 𝑉(𝑒, 𝜙) > 0 
ii) 𝑉̇(0,0) = 0 
iii) If lim

𝑡→∞
𝑉̇(𝑒, 𝜙) = 0, then, lim

𝑡→∞
𝑒(𝑡) = 0, which implies that the control error 𝑒1(𝑡) also converge 

to 0. 

6. Conclusions 

In this article, we have proven that in the FO-DMRAC case, the control error 𝑒1(𝑡) = 𝑦𝑝(𝑡) −

𝑦𝑚(𝑡) converges to 0 even if the derivative of the Lyapunov function 𝑉(𝑒, 𝜙) is greater than 0 in 

some time intervals (mainly in the transient periods). Some examples have been presented to show 

the convergence of the control error 𝑒1(𝑡) and the behavior of the function 𝑉̇(𝑒, 𝜙) as 𝑡 approaches 

infinity. 

One of the main difficulties in carrying out the synthesis of 𝑉̇(𝑒, 𝜙) for simulation purposes is 

that we need to compute the ideal control parameters 𝜃∗ analytically and the matrix Q explicitly, 

which is not an easy task when the order of the plant to control grows in order. One practical 
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approach to determine the ideal controller parameters 𝜃∗ is to implement the controller system using 

a Persistent Excitation (PE) reference input signal and wait for convergence. Sometimes, it could take 

a long time depending on the systems order because the higher the order, the more parameters we 

must compute. 

In conclusion, the convergence of the state error 𝑒(𝑡) and the control error 𝑒1(𝑡) to zero has 

been demonstrated for a class of fractional adaptive control systems (FO-DMRAC) using the classical 

Lyapunov approach avoiding additional complexities in the analysis. Previously, it had only been 

established that the mean square errors converge to zero as time approaches infinity; however, the 

convergence of errors themselves had not been explicitly demonstrated until now. 
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