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Abstract: In the mining industry, mineral characterization provides data and parameters to support efficient and

profitable ore processing. However, mineral characterization techniques usually require extensive image analysis,

making manual large-scale image segmentation of mineral phases impractical. Considering the accuracy level

currently achieved with deep learning models, they represent a potential solution to the problem of automating

mineralogical ore characterization. However, training deep learning models generally requires an abundance

of annotated images. Additionally, supervised learning models trained on data of a given ore sample tend to

perform poorly on a sample with different characteristics, or of a different ore. In this work, we consider those

different samples as pertaining to different domains: a source domain, used for training the model, and a target

domain, in which the model will be tested. In such application context, domain divergences, also regarded as

domain shift, may emerge from differences in mineral composition, or from distinct sample preparation processes.

This research evaluates the use of the unsupervised deep domain adaptation to obtain models that generalize

properly for a target domain even though no labeled target domain samples are used during training. The task

of the models is to discriminate between ore and resin pixels in reflected light microscopy images. Preliminary

cross-validation experiments between different domains prior to domain adaptation revealed a pronounced

difficulty in the models’ generalization. This fact motivates the herein presented research regarding evaluation of

the potential of domain adaptation as an attempt to compensate for the loss of performance caused by domain

shifts. The results of the domain adaptation showed that a significative part of the adapted models presented

performance metrics considerably above the cross-validation baseline, achieving F1 score gains of up to 33% and

38% in the best cases, although in some source-target combinations limited performance gains were obtained.

This indicates that the intensity of the displacement between the source and target domains may limit the success

of the domain adaptation method.

Keywords: deep learning; semantic segmentation; domain adaptation; microscopy; ore characterization; iron ore;

copper ore

1. Introduction

The effective utilization of an ore is directly related to understanding its intrinsic characteristics,
such as its mineralogical composition and physicochemical properties. Therefore, ore characterization
plays a crucial role in the mining industry, providing essential data and parameters for the design and
control of ore processing plants. Process optimization also contributes to proper waste management,
thereby minimizing possible environmental impacts. The goal of this analytical stage is to identify and
quantify the entire mineral assembly, delineating the minerals of interest and gangue, as well as their
distribution within samples.
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Transmitted light microscopy and reflected light microscopy are the two main techniques used
in mineral identification. Opaque minerals are usually studied with reflected light microscopy. The
characterization of iron ores is, for instance, usually performed using reflected light microscopy, since
the main iron-bearing phases (hematite, magnetite, and goethite) are opaque and easily identifiable
by their characteristic reflectances [1]. However, discriminating between quartz, other non-opaque
minerals, and the embedding resin is a challenging task, as they have similar specular reflectance [2].

Manual techniques for ore characterization require the individual analysis of samples by profes-
sionals, which makes it impractical to segment mineral phases on a large scale. Appropriately, the
application of computational deep learning models represents a potential solution to the ore charac-
terization problem in industry. These models are considered state-of-the-art in the field of artificial
intelligence due to their high capacity for pattern identification in extremely complex problems –
notably in the area of computer vision – such as object detection, image classification, and semantic
segmentation. In simple terms, deep learning models are characterized by neural networks with a
relatively high number of layers, compared to older models. The large number of layers and trainable
parameters allows for the extraction and processing of a larger amount of information and patterns in
the input samples.

However, despite the success of deep learning models in complex computer vision tasks, such
models are known to require a vast amount of annotated images for training. In semantic segmentation
tasks, like the one herein reported, images in the training database need to be pixel-wise annotated
beforehand, and producing such large annotated datasets can be very expensive and time-consuming.
Accordingly, the amount of labeled information required for the training process makes deep learning
impractical for various applications.

Furthermore, deep learning models trained with samples from a specific domain tend to perform
poorly when validated on samples from another domain, which were not presented to the model
during the training phase. In the context of ore characterization, different domains can be associated
with discrepancies in mineral composition or with samples of the same origin but subjected to different
preparation processes. Other factors, such as sampling bias, substantial differences in image content,
brightness level, color scale, and excessive noise, can also vary between domains. Thus, images become
markedly different across domains, preventing a model trained with samples from a specific domain
to properly generalize to other domains. Such a difference in domain distributions is known in the
literature as domain shift or domain gap.

Dealing with the domain shift problem is the task of transfer learning techniques regarded as
domain adaptation (DA). In the context of DA, the domains are referred to as source or target. The source
domain is the one for which there is a sufficient number of annotated observations to train a model.
In the case of the target domain, there is either a small number, or no labeled samples available for
training. In this work, we focus on the unsupervised domain adaptation problem, in which the training
process relies on labeled source domain samples and unlabeled target domain samples [3].

Several deep domain adaptation techniques based on adversarial training have been recently
proposed. Domain adaptation in the context of computer vision is usually performed in two ways,
through appearance adaptation or feature adaptation. Appearance adaptation involves transforming im-
ages from the target domain into stylized equivalents of the source domain [4]. Thus, the transformed
images would have a similar appearance to those of the source domain, allowing a model trained
with source domain images to classify the adapted target domain images. This approach tends to
create visual artifacts on the adapted images, potentially limiting classifier performance [4,5]. Feature
adaptation involves aligning the features extracted from input images into a common latent feature
space across both domains [6].

In this work we employ a feature adaptation, unsupervised deep domain adaptation method
in a mineral categorization application. More specifically, we investigate the use of a particular
domain adaptation strategy, namely, Domain Adversarial Neural Networks (DANN) [7], in the task of
discriminating opaque and non-opaque minerals, and the embedding resin in reflected light microcopy

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2024 doi:10.20944/preprints202412.0572.v1

https://doi.org/10.20944/preprints202412.0572.v1


3 of 28

images. To the best of our knowledge this is the first attempt of applying unsupervised domain
adaptation to a problem concerning materials characterization.

The remainder of this document is organized as follows. Section 2 presents the fundamentals of
domain adaptation, while Section 3 brings together a review of the literature. Afterwords, Section 4
describes the materials and methods used in this research. Section 5 presents, discusses and analyses
the experimental results. Finally, Section 6 provides conclusions and suggestions for future work.

2. Domain Adaptation Fundamentals

The formalism adopted in this paper was adapted from [8], and is present in important pub-
lications regarding transfer learning and domain adaptation [3,9–12]. Attentive readers familiar to
that notation may notice the subtle adjustments herein introduced to support its application to dense
labeling.

A domain is denoted as D = {X , P(X)}. The definition is expressed in two parts: X ⊂ Rd

represents the domain feature space; and P(X) represents the marginal probability X , with X denoting
the set of samples obtained from the domain. The set X = {x1, . . . , xn} comprises n feature vectors,
being xi the d-dimensional feature vector relative to the object i.

Given a domain D, the task T = {Y , f (·)} represents the application goal. Broadly speaking, the
task T solution brings about the function f (·) : X → Y . Function f (·) maps the i-th object feature xi
to the dense class labels yi which belong to the label (or class) space Y , so that yi ∈ Y ⊂ Rm.

From a statistical point of view, it is possible to express f (·) as the posterior conditional probability
P(Y|X). In this article, we use f (·) instead, in order to enable its decomposition, i.e., f (·) = Gl(G f (·)),
where G f (·) represents an encoder, or feature extractor, which maps the input samples to a latent
feature space. A primary goal of feature adaptation is that such latent feature space is agnostic.
Henceforth, in this latent feature space, it is desired that differences in the representations of samples
belonging to a same class, but sampled from different domains are negligible.

Let us now assume the existence of two types of domains. A source domain SD = {SX , P(SX)}
and a target domain TD = {TX , P(TX)}. The domains are associated with their respective tasks
ST = {SY , Sf (·)} and TT = {TY , Tf (·)}. When SD = TD and ST = TT it is possible to succeed in
the tasks related to both domains using Sf (·) and Tf (·) interchangeably, or even using a function f (·)
obtained considering data from both domains simultaneously.

However, when dealing with image analysis, real problems without any discrepancies in terms
of X , P(X) or Y between the source and target domains are an exception. Any violation, SX ̸= TX
or SY ̸= TY or P(SX) ̸= P(TX), leads us to problems of transfer learning. In the literature, transfer
learning covers very diverse sets of topics and approaches. In this paper, we investigate the study of
domain adaptation techniques applied to image classification at the pixel level, more specifically to
minerals segmentation in epoxy-embeddings reflected light microscopy images. In domain adaptation
problems, both label spaces SY and TY and tasks ST and TT are similar, but changes in the appearance
of the objects of interest are observed. These changes manifest themselves through differences in the
marginal probabilities of both domains, P(SX) ̸= P(TX).

3. Related Works

The use of deep learning models for image analysis in the mining industry, materials science and
material engineering provided several academic works and studies. Among the seminal deep learning
based studies is [13] that proposed an automatic inspection approach for the steel industry.

A prominent part of deep learning applications dedicated to materials science consists of pixel
level image classification, so-called semantic segmentation. Jiang et al. [14] proposed a three-step
semantic grain segmentation method for sandstone images. The authors argued that the features ex-
tracted by a Convolutional Neural Network (CNN) are suitable for characterizing mineral grains from
sandstone images and that the proposal is more effective than previous state-of-the-art segmentation
methods. Liu et al. [15] proposed a method for segmentation of ore images on conveyor belts. The
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approach combines the results of a U-Net with a ResUNet. The efficiency of the method is established
through comparison with existent image segmentation methods.

Svensson [16] compared the pixel-level classification performance of five distinct semantic seg-
mentation architectures on iron ore pellets’ optical microscopy images. Lorenzoni et al. [17] used a
U-Net semantic segmentation network to analyze the microstructure of strain-hardening cement-based
composites in high-resolution X-ray micro-computed tomography images. That application requires
precise segmentation of the different material phases, a complex task for conventional segmentation
algorithms, demanding accurate identification of polymer fibers and air voids in the cement matrices.

Within the context of semantic segmentation applied to ore images, Cai et al. [18] investigated the
application of transfer learning using a model known as Swin Transformer [19]. The transfer learning
was achieved by pre-training the network with the public computer vision dataset ImageNet-1K [20].
Following pre-training, the Swin Transformers were fine-tuned for the classification of five metallic
minerals (arsenopyrite, chalcopyrite, gold, pyrite, and stibnite) in optical microscopy images. A
comparison was made with two CNN models: ResNet-50 [21] and MobileNetv2 [22].

Recently, a growing number of semantic segmentation approaches applied to mineral technology
have been presented. Sun et al. [23], for example, proposed an approach to determine the particle
size distribution of crushed ores in practical engineering. The framework is efficient and lightweight,
designed to operate in complex work environments where large, high-power computing equipment
is not feasible. The authors introduced a neural network called LosNet, consisting of a lightweight
backbone for feature extraction, followed by a compact pyramidal network to reduce computational
complexity and unnecessary semantic information, and finally, an optimized detection structure to
maintain accuracy.

In [24], Nie et al. proposed a method for detecting quartz sand particle size based on a ResNet-50.
The network segments images of sand, and the average particle size of quartz sand is obtained by
converting the particle size in pixels to a physical particle size. The method offers the advantages
of fast sampling and low equipment costs, increasing the efficiency of quartz sand classification and
promoting automation of the process.

Bukharev et al. [25] developed a method for instance segmentation of mineral grains in thin
section images of sandstone. The algorithm is based on a cascade of two fully convolutional neural
networks. Caldas et al. [26] proposed an instance segmentation method based on the Mask R-CNN
algorithm [27] to recognize different textures of hematite particles in iron ore (pellet feed). Pairs of
reflected light microscope images obtained in bright field mode and under circular polarized light
were used to reveal different characteristics of each class. Ferreira et al. [28] trained a Mask R-CNN
model to identify and segment quartz particles in iron ore reflected light microscopy images. The
model was trained with datasets composed of quartz particles manually delimited and labeled. The
metrics obtained in terms of precision, recall, and F1-score were approximately 90%.

Despite the recent significant advances in computer vision, relatively few studies address the
problem of domain adaptation in semantic segmentation problems, whether through feature adaptation
or appearance adaptation. Wittich and Rottensteiner [29] explored domain adaptation in deep neural
networks for remote sensing image segmentation, following the Adversarial Discriminative Domain
Adaptation (ADDA) strategy [30]. The proposed architecture consists of a deep fully convolutional
network, which is attached to a domain discriminator network. During training the goal is to make
the discriminator incapable to determine from which domain the representations produced by the
encoder belong to.

In the medical field, Du et al. [31] developed an innovative approach to reduce metal artifacts in
computed tomography (CT) scans using a method called UDAMAR (Unsupervised Domain Adapta-
tion for Metal Artifact Reduction), based on domain adaptation. Metal artifacts in CT scans, caused
by objects such as implants, create streaks and distortions, making image interpretation difficult.
Traditional supervised deep learning methods for metal artifact reduction (MAR) perform well with
simulated data but struggle with real-world data due to differences between the two. The method
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introduces an unsupervised regularization loss into a typical supervised MAR method. This helps to
reduce the domain gap between simulated and real metal artifacts and, consequently, promotes feature
alignment during training. Experiments on clinical datasets of teeth and torso demonstrated that
UDAMAR outperforms both its baseline supervised MAR method and two state-of-the-art unsuper-
vised methods, indicating the potential application of adversarial training-based domain adaptation in
fields beyond mineralogy.

Soto et al. [32] evaluated the use of the Domain Adversarial Neural (DANN) strategy, proposed
by Ganin and Lempitsky [7], for deforestation detection using remote sensing images. The application
is characterized by high image variability and critical class imbalance. Alongside DANN, an unsuper-
vised pseudo-labeling method based on change vector analysis (CVA) was applied to address the class
imbalance in the target domain image pair samples. The results showed that the proposed solution
improved classification performance compared to the baseline. Furthermore, when compared with
other domain adaptation methods, the proposed solution demonstrated performance gains in almost
all cases analyzed.

Motivated by the their own results, Soto et al. [33] proposed the Weakly-Supervised Domain
Adversarial Neural Network (DANN-WS) method for deforestation detection. The aim was to im-
prove the discriminability of the DANN feature space by using pseudo-labels, which provide mild
supervision to balance the target domain classes and train the feature classifier within the overall
DANN structure. The study employed a fully convolutional architecture and evaluated the proposed
methodology across different regions of the Amazon and Brazilian Cerrado biomes. The results
demonstrated that combining DANN with noisy labels of the target domain (weak supervision) led to
improvements in classification accuracy in all cross-validation scenarios analyzed.

In a previous study of this group of authors, we evaluated the use of variants of the DeepLabV3+
architecture for semantic segmentation of microscopy images [34]. The target application was the same
of this work, namely, discriminating opaque and non-opaque minerals from epoxy resin in reflected
light microscopy images. The deep learning model was trained and tested using four different datasets
of copper and iron ore images, acquired under various experimental setups. The experimental results
demonstrated significant performance, with overall accuracy and F1-score consistently above 90%,
reaching up to 94% for some datasets. The authors also conducted cross-validation assessments to
analyze the method’s ability to generalize to other datasets, and the results showed that the obtained
accuracy values were very low in those cases, with a notable drop in the F1-score values. Those
results highlight the high sensitivity of deep neural networks to the domain shift, leading to poor
generalization while presented to data from other domains.

4. Materials and Methods

This section presents the materials and methods used in the course of this research. It first describes
the domain adaptation framework. Then, it presents the deep learning architectures implemented for
this research. Finally, it presents the different datasets used in the experiments, and the metrics used in
the performance evaluation.

4.1. Domain Adversarial Neural Network (DANN)

Proposed in [7], DANN (Domain Adversarial Neural Network) consists of an adversarial training
strategy aiming at producing a latent feature space, agnostic with respect to domains. Thus, its goal
is to minimize the difference between the latent probability distributions of the source and target
domains while projected to that feature space.

The architecture proposed in DANN is schematically represented by Figure 1. The neural
networks assembly design consists of three modules: feature extractor; label predictor; and domain
discriminator. The feature extractor G f (·, θ f ) is a conventional CNN encoder which maps the features
from the source and target domains into the common latent space. That single G f (·, θ f ) function
preforms simultaneous non-linear regression over SX and TX domains data, bringing about a latent
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feature space. The adversarial estimation of θ f through out DANN training process is supposed
to make that latent features space agnostic, so that the probabilities of source and target domains
data, while projected on that space, fit to a common probability distribution, making P(G f (

SX, θ f )) ≡
P(G f (

TX, θ f )).
The classifier Gl(·, θl), referred to as the label predictor, or decoder, classifies the input image

based on its projection to the latent space. In the original DANN approach [7], the label predictor
produces one label per input image. In contrast, on semantic segmentation problems like the one
addressed in this study, this classification is done on the pixel level. Therefore, the herein presented
classifier produces one label for each input image pixel.

The domain discriminator Gd(·, θd) is used during training to distinguish between latent features
provided for samples of the source and target domains. In the course of the DANN training procedure,
the domain discriminator competes with the feature extractor G f (·, θ f ) aiming at motivating it to
produce agnostic features. Nonetheless, we emphasize that in the training procedure proposed by
DANN, since the true labels for the target domain samples are not available for training, gradients
which reach to the encoder G f (·, θ f ) are not influenced by the gradients originated by the flow of
target samples through the label predictor. Anyway, features derived from both source and target
domains are passed to the domain discriminator Gd(·, θd). That arrangement produces an adversarial
scheme encompassing the feature extractor and the domain classifier. On the one hand, the feature
extractor tends to produce agnostic features, while, on the other hand, that adversarial scheme leads
the discriminator to learn to discern the origin of an image between source and target domains based
on subtle features.

Figure 1. General DANN architecture. [33]

The objective function E to be optimized is defined by Equation (1), expressed as the sum of the
losses of the classifier, represented by the first term of the equation, and the domain discriminator,
represented by the second term. The term Rλ(x) is described as a pseudo-function, defined by two
mathematically incompatible equations, as shown in Equation (2).

E(θ f , θl , θd) =
N

∑
i; di=0

Ll(Gl(G f (xi, θ f ), θl), yi) +
N

∑
i

Ld(Gd(Rλ(G f (xi, θ f )), θd), yi) (1)

Rλ(x) = x

dRλ
dx = −λ

(2)
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The parameter λ controls the influence of the gradients provided by domain discriminator in updating
the encoder’s weights. Thus, the gradient of Ld is used to update the weight values of the domain
discriminator and the encoder in opposite directions, setting up the adversarial training scheme. In
practice, this operation is implemented through a gradient reversal layer (GRL) positioned between
the network’s encoder and the domain discriminator. The gradient reversal layer has no trainable
parameters, and its function is merely to control the value of the gradients which are propagated back
from the domain discriminator, acting as an identity function during network inference, but inverting
the gradient value during the backpropagation process. Figure 1 schematically shows the gradient
reversal layer positioned in the DANN structure.

During the training process, in order to obtain domain-invariant features, the parameters θ f of
the encoder are updated to maximize the loss of the domain discriminator. This effect means that the
feature distributions are perfectly aligned, making it impossible for the discriminator to discern the
origin domain of the sample. Simultaneously, the parameters of the domain discriminator are updated
to minimize its loss. Thus, the encoder competes with the domain discriminator with opposing
objectives. The optimization schemata for weights θ f , θl and θd are defined by equations (3), (4) and
(5).

θ f ← θ f − µ

(
∂Ll
∂θ f
− λ

∂Ld
∂θ f

)
(3)

θl ← θl − µ
∂Ll
∂θl

(4)

θd ← θd − µ
∂Ld
∂θd

(5)

4.2. DeepLabv3+ Implementation

The DeepLab model family introduced a particular implementation of the hole algorithm [35],
also known in DL terminology as atrous, or dilated convolution. Dilated convolutions have the ability
of enlarging the field-of-view of traditional convolutional filters, incorporating larger spatial contexts
without increasing the number of parameters or the amount of computations. In its next generation
[36], the so-called atrous spatial pyramid pooling (ASPP) was introduced for capturing image contexts
at multiple scales. Then, in the third generation of DeepLab [37], the original Conditional Random
Fields (CRF) component was dropped out, and the ASPP component was extended incorporating
image level features produced by an average pooling [38] that encodes global image context. Finally,
the DeepLabv3+ model [39] adopts an encoder-decoder structure. The encoder follows the DeepLabv3
model while a simple but efficient decoder module was devised to enhance segmentation results
especially along object boundaries.

The neural network architecture used in this work was inspired by [33], which corresponds to a
variant of the original DeepLabv3+ architecture. The modifications of this work include the addition of
dropout layers throughout the network and the replacement of the 8× upsample with a 2× upsample
immediately at the network’s output. An illustration of the current DeepLabv3+ architecture is shown
in the block diagram of Figure 2.

Dropout layers were added to prevent overfitting and enhance the network’s generalization
capability, with all dropouts using a probability of 0.2. In the original architecture used by [33], an
8× upsample layer is used immediately before the softmax. However, preliminary tests indicated
that such an abrupt interpolation complicates the classification of samples with large patch sizes.
To address this issue, the 8× upsample layer was replaced by a 2× upsample layer to reduce the
interpolation strength. This change required adjustments throughout the network by introducing an
additional upsample layer positioned at the decoder input to properly scale the activations.
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The output stride in fully convolutional networks like DeepLabv3+ controls the spatial dimen-
sional reduction imposed to the activation maps which reach the network’s bottleneck. These dif-
ferences are represented by the parameters A, B, and C presented with reddish letters in Figure 2.
Parameter A denotes the stride value for an specific 1× 1 convolutional block in the encoder, assuming
1 for an output stride equal to 8, or 2 for an output stride equal to 16. The parameter B represents a
function defined as a bypass y = x for an output stride equal to 8 or a MaxPooling operation with a
2× 2 kernel and a stride of 2 for an output stride equal to 16. In the experiments reported in this work,
we opted for an output stride of 16.
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Figure 2. DeepLabv3+ architecture. Notation, the text inside the boxes denotes: (1) Type of layer,
(2) number of filters, (3) filter size, (4) stride, (5) dilation rate. Layers types: Conv - Convolutional;
SConv - Separable convolution; MaxPooling - Max pooling; BatchNorm - Batch normalization; Dropout;
Upsample.

In the block diagram shown in Figure 2, the first parameter indicates the type of layer, the
second parameter indicates the number of filters, the third parameter indicates the stride, and the last
parameter indicates the dilation rate. For pooling layers, which do not have a dilation rate, the last
parameter refers to the stride. The network’s bottleneck, a critical region where the activations are
maximally reduced and discriminator is positioned, is located between the ASPP and the decoder. In
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Figure 2, the encoder is depicted by the green and blue blocks, while the decoder is represented by the
dark orange block.

4.3. Discriminator Implementation

In the present DANN implementation, the domain discriminator consists of a fully connected
network. Following [33], this network encompass two fully connected hidden layers containing
1024 neurons each and followed by ReLU activations. These layers are followed by an output layer
containing two neurons with softmax activation layer. Table 1 provides a detailed description of the
discriminator architecture.

Table 1. Discriminator Architecture.

Layer Output shape

Input (16, 16, 256)
Flatten (65536, 1)
Dense (1024, 1)
ReLU
Dense (1024, 1)
ReLU
Dense (2, 1)
Softmax

4.4. Domain Datasets

The datasets used in this work are composed of pairs of correlated images, each pair contains
one image acquired through reflected light microscopy, and the corresponding binary reference image,
in which the pixels are labeled as belonging to one of two classes: embedding resin or ore particles.
Correlative microscopy, also known as multimodal microscopy [40], was used to obtain properly
registered images from a reflected light microscope and a SEM. The optical images were acquired
at 24-bit RGB color quantization, and BSE images from SEM are 8-bit gray-level. Subsequently, the
BSE images were processed using Fiji/ImageJ open source software [41] to generate the reference
binary images. This annotation method, originally proposed by Filippo et al. [34], is objective and
reproducible, avoiding the traditional and subjective method of producing reference images through
manual delimitation and labeling.

In this study we did not consider errors arising from correlative microscopy (co-localization of
fields and image registration) or due to image processing (delineation filtering and thresholding),
as well as differences due to the distinct nature of the employed imaging techniques. For instance,
images from reflected light microscopy and SEM come from different depths in the polished specimen,
therefore these techniques may show ore particles differently if they are slightly under the polished
surface. Nevertheless, in this study we assume that each reference image is considered as a correctly
labeled image.

4.4.1. Fe19 dataset

This dataset contains images of an iron ore sample from the Serrote do Breu deposit (Brazil).
Its mineralogy comprises quartz, magnetite, hematite, amphibole (hastingsite), albite, biotite, calcite,
goethite, and kaolinite, with minor chlorite. Magnetite is the major iron mineral, followed by hematite,
and rare goethite. The fraction +212–300 µm was cold mounted with epoxy resin and subsequently
ground and polished. A total of 19 fields were imaged on a reflected light microscope with a 5×(NA
0.13) objective lens and on a SEM. Subsequently, the images from these different sensors were registered,
resulting in image pairs of 972×972 pixels with a resolution of 2.17 µm/pixel. The complete description
of this sample and its imaging procedure can be found in the work of Gomes et al. [42].

The images from SEM were then processed to compose the reference images. First, they were
preprocessed with a delineation filter (radius = 1.5 and gradient threshold = 40) [43] implemented
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as a Fiji macro, as described in [44]. The delineation (edge enhancement) converts gray-level ramps
between phases in BSE images, the so-called halo effect, into sharp steps, so that the transition from one
phase to the other occurs in a single pixel step. In sequence, the delineated images were thresholded:
pixels with gray-levels between 0 and 80 were segmented as resin, and pixels with gray-levels above
80 were set as the ore particles.

4.4.2. Fe120 dataset

The images that compose this dataset came from the same epoxy embedding used to obtain the
Fe19 dataset. However, despite it had been acquired with a experimental setup similar to Fe19, images
of Fe120 dataset depicts a different cross-section. From such cross-section, 120 fields were imaged on
a reflected light microscope with a 5×(NA 0.13) objective lens and on a SEM. Following, they were
registered, resulting in images of 976×976 pixels with a resolution of 2.17 µm/pixel. Then, as described
above, the images from SEM were processed to compose the reference images.

4.4.3. FeM dataset

This dataset was composed by images of an itabiritic iron ore concentrate from Quadrilátero
Ferrífero (Brazil) mainly composed of hematite and quartz, with little magnetite and goethite. An
ore sample was classified by size and concentrated with a dense liquid. Then, the sample +105–149
µm with density greater than 3.2 was cold mounted with epoxy resin and subsequently ground and
polished. A total of 81 fields were imaged on a reflected light microscope with a 10×(NA 0.20) objective
lens and on a SEM. In sequence, they were registered, resulting in images of 999×756 pixels with a
resolution of 1.05 µm/pixel. The complete description of this sample and its imaging procedure can be
found in the work of Gomes and Paciornik [45]. Finally, the images from SEM were thresholded to
compose the reference images: pixels that have gray-levels between 0 and 70 were segmented as the
resin, and pixels with gray-levels above 70 were set as the ore particles.

4.4.4. Cu dataset

This dataset contains images of a copper ore from Yauri Cusco (Peru) with a complex mineralogy,
mainly composed of sulfides, oxides, silicates, and native copper. The ore was classified by size. The
sample +74–100 µm was cold mounted with epoxy resin and subsequently ground and polished. A
total of 121 fields were imaged on a reflected light microscope with a 20×(NA 0.40) objective lens and
on a SEM. Following, they were registered, resulting in images of 1017×753 pixels with a resolution of
0.53 µm/pixel. The complete description of this sample and its imaging procedure can be found in
the work of Gomes and Paciornik [46]. Finally, the images from SEM were thresholded to compose
the reference images: pixels that have gray levels between 0 and 30 were segmented as the resin, and
pixels with gray-levels above 30 were set as the ore particles.

4.4.5. Dataset Complexity

Concerning the results that will be presented in the following sections, we anticipate that the
domain adaptation process exhibited different performances depending on the particular combinations
of source and target domains. In order to provide some means to understand that behavior, we
analyzed the complexity of each dataset.

We adopted the methodology employed in [4], where the number of clusters of a difference image
(composed of channel-wise differences of images from different epochs) was used to describe domain
complexity in the context of deforestation detection. We adapted methodology to the current context,
and used the RGB intensities of the image pixels.

In the analysis, we computed the optimal number of clusters k considering all pixel locations of
all images, for each domain, as shown in Table 2. To determine k, we executed the k-means algorithm
a number of times and employed the Calinski-Harabasz criterion [47] for the different numbers of
clusters in the respective domains. We observe that the number of clusters is associated with the
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diversity of patterns in the respective domains, thus indicating the complexity of different domains in
terms of spectral variability.

Table 2. Optimal number of clusters k found within the set of all pixels considering all images in each
dataset using the k-means algorithm and the Calinski-Harabasz criterion.

Domain Clusters

FeM 9
Fe19 25

Fe120 25
Cu 15

According to the Calinski-Harabasz criterion, the Fe19 and Fe120 pixels optimally fitted to a total
of 25 clusters, which is the highest value among the evaluated datasets, reflecting the largest number
of phases, particularly non-opaque minerals, as shown in Section 4.4.1. On the other hand, the FeM
database presented the smallest number of clusters in this evaluation, just 9 clusters, reflecting its
simpler mineralogy, as it can be observed in Section 4.4.3. Furthermore, FeM contains images of an ore
concentrate, unlike the other datasets, therefore it presents much less gangue minerals, as quartz and
other non-opaque silicates.

4.5. Evaluation Metrics

In this work, the assessment of the DL semantic segmentation is based on a number of metrics,
namely: overall accuracy; precision; recall; F1-score; and average precision. These metrics are cal-
culated based on the label predictor outcome. To calculate these metrics, each pixel of the semantic
segmentation outcome is first assigned one of the following labels:

• True Positive (TP) - pixels correctly predicted as ore;
• False Positive (FP) - pixels predicted as ore, but should have been assigned to resin;
• True Negative (TN) - pixels correctly predicted as resin;
• False Negative (FN) - pixels predicted as resin, but should have been assigned to ore.

The descriptors that follow, which are derived from the TP, TN, FP and FN values, are used in
the course of the experimental evaluation.

The overall accuracy (OA) measures the proportion of correct predictions in the outcome:

OA =
TP + TN

TP + FP + TN + FN
· (6)

Precision expresses the ratio between the number of true positives and the total of positive claims:

Precision =
TP

TP + FP
· (7)

Recall indicates the ratio between true positives and total number of positives in the reference:

Recall =
TP

TP + FN
· (8)

F1-score is the harmonic mean of the precision and recall metrics:

F1− score = 2× Precision× Recall
Precision + Recall

· (9)

Several deep learning models, like the one herein exploited, uses softmax activations functions at
the output layers. Such models present decision values between 0 and 1, representing for each pixel
the probabilities of belonging to a certain group of classes. In general, the highest probability indicates
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the pixel class prediction. Given the decisions for an entire image, the ground truth image can then be
applied for accounting TP, TN, FP and FN. In problems involving discriminating among two classes,
however, is there an usual and more independent way of evaluating these metrics. The idea is to
model the decisions as a function of the decision threshold value t. Distinct values of t, between 0 and
1, promote different TP, TN, FP and FN values, from which distinct values of precision and recall can
be derived.

The average precision (AP) considers both precision and recall across different threshold levels.
AP provides a single numerical value that summarizes the model’s performance over the threshold
spectrum:

AP =
∫ 1

0

p(r) dr, (10)

where p(r) is a curve which plots the values of precision as a function of r, the recall values. The highest
possible value of the AP is 1, indicating a result which agrees to the ground truth to all threshold t
values in [0, 1].

5. Results and Discussion

We start this section by detailing the image data used in the experimental evaluation, obtained
from each domain dataset presented in Section 4.4. Then, in order to guarantee experiments re-
producibility, Section 5.2 contains a detailed description of the hyperparameters employed on the
experimental setups. Finally, the experimental results are presented and discussed. First, in Section
5.3, we present cross-validation experiments, in which the DeepLabv3+ model was trained using data
from a specific domain, and tested on the other domains. Considering the baseline and top-performing
cross-validation results, Section 5.4 presents and discusses experiments using the DANN framework
for different combinations of source and target domains.

5.1. Image Datasets

Table 3 presents the number of images available for each domain. The first column indicates the
domain, the next column presents the total amount of images available, and the following columns
indicate the number of images used for training, validation, and testing. The training and validation
images numbers are shown together because training and validation patches are split on the course of
the training cycle, just after data augmentation.

Table 3. Images from each domain dataset made available for the experiments .

Dataset Total Training + Validation Test

Fe19 19 15 4
Fe120 120 116 4
FeM 81 77 4
Cu 121 117 4

Before being processed by the DL models, the the intensity values in the RGB reflected light
microscopy images were scaled to the range of [0, 1]. From the resulting images, 256× 256 pixels
patches were extracted, being these patches the actual inputs for the models.

The patches for training and validation were generated with a stride of 128, while the test patches
were generated with a stride of 256, ensuring no overlap between them. The total number of patches for
training, validation, and testing for each database is shown on Table 4. Two types of data augmentation
were applied to the training and validation patches: rotation and flipping. The patches were rotated by
90◦, 180◦, and 270◦. Flipping was performed along both the vertical and horizontal axes. Thus, the
data augmentation operations added 5 patches for each originally available patch. Finally, the training
and validation patches were divided respecting a 10% ratio for validation and the rest for training.
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Table 4. Number of image patches generated per dataset for training, validating and test procedures.

Dataset Training + Validation Test

Fe19 540 36
Fe120 4176 36
FeM 1848 24
Cu 2808 24

5.2. Experimental Parametrization

In all experiments the binary cross-entropy was used as loss function, for both the label predictor
and domain discriminator of the DANN scheme (refer to Section 4.1 and Equation (1)). By and large,
binary cross-entropy function summarizes the average difference between the real and predicted
probabilities distributions for the positive class. The positive class, indicates ore in the case of the label
predictor, and the source domain in the case of the domain discriminator. The binary cross entropy
loss L formula is shown in Equation (11):

L(x) = −[yx × log p(x)) + (1− yx)× log(1− p(x))]· (11)

When addressing the label predictor, yx means the ground truth label for the input pixel x, while
p(x) is the predicted probability for that pixel x belonging to ore. Regarding the entire patch, the
overall loss concerns the mean loss for all pixels in that patch. On the other hand, concerning the
domain discriminator, since we have a single label per patch, x simply means an entire patch.

The optimizer used during training was Adam [48], an extension of the stochastic gradient
descent (SGD) method, which relies on the adaptive estimation of first and second order momenta.
This approach is computationally efficient, it has few memory requirements, and is invariant for the
diagonal rescheduling of gradients. The parametrization of the optimizer was done following the
recommendations suggested by [48]. Accordingly, the selected parameter values were set as β1 equal
to 0.9; β2 equal to 0.999; and ϵ equal to 1× 10−7.

The learning rate was empirically defined, as preliminary tests showed excellent results and
satisfactory convergence at these levels. The learning rate calculation is defined by Equation 12:

µ = 10−(p+4), (12)

where p means the training progress, whose value varies linearly from zero, reaching one at the last
training epoch.

Preliminary experiments revealed that in the current application, the gradients in the gradient
reversal layer might explode, reaching very high values. To control the magnitude of the gradients
that are backpropagated to the encoder, an additional parameter λ0 was introduced in the original
formulation prescribed in [7] for the computation of in Equation (3), as shown in Equation (13). The
parameter λ0 plays an essential role in the domain adaptation process, since it directly controls the
magnitude of the gradients backpropagated to the network encoder. Therefore, the values of λ0 must
be fine-tuned for each experimental case.

λ = λ0 ×
[

2
(1 + exp(−γ · p)) − 1

]
(13)

In Equation (13), p is the training progress, having the same meaning as in Equation (12), while
γ = 10, in accordance with [7].

The weights of the network layers of all models were initialized randomly, following the uniform
technique, described by [49].

The training procedure was programmed for lasting 100 epochs, with 25 epochs of patience for
early stopping.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 December 2024 doi:10.20944/preprints202412.0572.v1

https://doi.org/10.20944/preprints202412.0572.v1


15 of 28

The experiments were carried out on a Ubuntu Linux operating system computer equipped with
an Intel Xeon Silver 4214 processor and 128GB of RAM. The GPU used for DL models training was an
24GB NVIDIA GeForce RTX 4090.

5.3. Cross-Validation Experiments

As a practical evaluation for the original generalization ability of the DeepLabv3+ in the so-called
cross-validation experiments, the model was trained with data from one domain and tested in all
domains. The accuracy values presented in the following tables represent the average of five rounds
of experiments. Standard deviation values for the exploited metrics obtained on these five rounds
are indicated by the numbers in parentheses. The results are consistent with those presented in [34],
although the implementations of the DeepLabv3+ architectures were slightly different.

According to the results, it is evident that all models performed very well when tested with
samples from their own training set, achieving accuracy, precision, and recall values above 90%.
However, when evaluated on datasets not used on training, the metrics exhibited consistently lower
values, indicating the challenge of generalization. An exception was observed in the cross-validation
with Fe19 and Fe120, as both datasets consist of images from the same ore sample, but acquired from
different cross-sections. Furthermore, the metrics presented low dispersion among the five experiment
rounds, as evidenced by the standard deviation values. This outcome suggests a consistent model
performance.

Another interesting point to note is the asymmetry of the metrics. This means, for example,
that a model trained on Fe19 and tested on Cu (Fe19-Cu) will not necessarily perform the same as a
model trained on Cu and tested on Fe19 (Cu-Fe19). This effect is noticeable in the cases of FeM-Cu
and Cu-FeM. The FeM-Cu case exhibited very low metrics, with accuracy and precision close to 35%,
whereas the Cu-FeM case, while not achieving an ideal result, showed significantly higher metrics,
with accuracy, precision, and recall close to 80%.

In fact, the model trained with the Cu dataset produced the highest overall cross-validation
accuracy. Filippo et al. [34] suggested that this was due to the greater color variability of the optical
images from the Cu dataset, which are quite colorful, while those of iron ores show mostly gray tones.

5.4. Domain Adaptation Experiments

Considering the structural similarities between the Fe19 and Fe120 databases described in Sections
4.4.1 and 4.4.2 and the results presented in Section 5.3, the Fe19 and Fe120 databases can be considered
as originate from the same domain. Therefore, for the sake of computational economy, we opted to
discard the Fe120 database, during the DA experiments.

In the following experiments, a total of 500 patches from the source and target domains were
randomly selected from the training patches mentioned in Table 4. These images were then subjected
to the same data augmentation described in Section 5.1. As a consequence, a sum of 3,000 training
images per domain are presented at each training epoch.

Another important issue considered is that controlling the training process is a challenge in DA.
In a preliminary analysis, we observed numerical instabilities during training as the λ0 value of the
gradient reversal layer increased. These instabilities manifested as a sudden drop in the source domain
classification accuracy, reaching bellow 5% in some cases. Consequently, it was necessary to adjust this
hyperparameter to optimize model performance and, subsequently, the alignment of features during
training.

During the investigation about the impact of the λ parameter on model performance, three
experiments rounds were run for each λ value. Starting from 5× 10−6 and increasing its significant
digits by increments in their values of one unit, a linear search for λ was carried out. Afterwords, the
optimal value of λ0 was selected as the highest value at which none of the experiments exhibited the
aforementioned drop in classification accuracy for the source domain.
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Table 9 shows the λ0 values for each source-target combination analyzed. According to the table,
the lowest λ0 value was 9 × 10−6 for the FeM-Fe19 case, and the highest value was 1 × 10−2 for
the Cu-Fe19 case. In practice, most of the λ0 values were on the order of 10−5, indicating a certain
consistency in the definition of this hyperparameter.

Using the λ0 values presented in Table 9, in a procedure analogous to that performed in the
cross-domain experiments, five DA training rounds were carried out per source-target domain com-
bination. DA results with our DeepLabv3+ implementation are present in Tables 10–15 alongside
cross-validation, and training on the target results, which respectively play the lower bound and upper
bound roles in the DA performance evaluation. The columns of these tables present average values
for accuracy, F1 score, average precision, and the linear performance gaps of these metrics computed
for their respective averages. In such linear performance gap assessment, lower bounds are marked
as 0% while the upper bound are assigned to 100%. The percentage for DA outcomes is linearly
scaled in relation to that 0-100 range. The rows in these tables, on the other hand, reflect the results
for different configurations with and without DA. The upper row presents results for a conventional
cross-validation experiment using only training data of the source domain, and evaluated on the target
domain test data. The bottom row presents the values for experiments training on the target data and
testing also on target. These results are the same as previously presented in Tables 5–8. The middle
row presents the results for source-target DA.

Table 5. Cross-validation results provided by DeepLabv3+ trained on the Fe19 dataset.

Training set Fe19
Test set Fe19 Fe120 FeM Cu
Accuracy 0.9175 (0.0086) 0.9251 (0.0055) 0.4354 (0.0154) 0.3548 (0.0003)

Precision 0.9148 (0.0153) 0.9225 (0.0103) 0.4048 (0.0066) 0.3538 (0.0001)

Recall 0.9287 (0.0036) 0.9348 (0.0072) 0.9757 (0.0096) 0.9989 (0.0007)

F1 score 0.9216 (0.0069) 0.9285 (0.0035) 0.5721 (0.0070) 0.5225 (0.0001)

Avg. precision 0.9753 (0.0066) 0.9804 (0.0032) 0.8213 (0.0194) 0.6085 (0.2050)

Table 6. Cross-validation results provided by DeepLabv3+ trained on the Fe120 dataset.

Training set Fe120
Test set Fe19 Fe120 FeM Cu
Accuracy 0.9258 (0.0063) 0.9345 (0.0092) 0.4861 (0.0380) 0.4073 (0.1017)

Precision 0.9266 (0.0080) 0.9375 (0.0088) 0.4282 (0.0189) 0.3783 (0.0481)

Recall 0.9327 (0.0037) 0.9398 (0.0087) 0.9666 (0.0099) 0.9876 (0.0202)

F1 score 0.9296 (0.0056) 0.9386 (0.0081) 0.5932 (0.0177) 0.5447 (0.0438)

Avg. precision 0.9809 (0.0034) 0.9867 (0.0030) 0.8618 (0.0181) 0.8064 (0.0837)

Table 7. Cross-validation results provided by DeepLabv3+ trained on the FeM dataset.

Training set FeM
Test set Fe19 Fe120 FeM Cu
Accuracy 0.5199 (0.0026) 0.5270 (0.0162) 0.9557 (0.0010) 0.3534 (0.0001)

Precision 0.5249 (0.0028) 0.5295 (0.0151) 0.9467 (0.0033) 0.3534 (0.0000)

Recall 0.9748 (0.0111) 0.9824 (0.0151) 0.9384 (0.0036) 0.9999 (0.0001)

F1 score 0.6823 (0.0025) 0.6881 (0.0162) 0.9425 (0.0014) 0.5222 (0.0001)

Avg. precision 0.6255 (0.0929) 0.6228 (0.0873) 0.9884 (0.0004) 0.4940 (0.1976)
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Table 8. Cross-validation results provided by DeepLabv3+ trained on the Cu dataset.

Training set Cu
Test set Fe19 Fe120 FeM Cu
Accuracy 0.7033 (0.0233) 0.7110 (0.0189) 0.8894 (0.0060) 0.9388 (0.0026)

Precision 0.8936 (0.0246) 0.8960 (0.0223) 0.8666 (0.0190) 0.9380 (0.0067)

Recall 0.4759 (0.0368) 0.5131 (0.0265) 0.8448 (0.0132) 0.8855 (0.0096)

F1 score 0.6204 (0.0349) 0.6522 (0.0256) 0.8553 (0.0064) 0.9109 (0.0040)

Avg. precision 0.8015 (0.0368) 0.8201 (0.0335) 0.9284 (0.0032) 0.9678 (0.0011)

Table 9. Values of λ0 for each source-target combination.

Source Target λ0

Fe19 FeM 2 · 10−5

Fe19 Cu 1 · 10−5

FeM Fe19 9 · 10−6

FeM Cu 1 · 10−5

Cu Fe19 1 · 10−2

Cu FeM 4 · 10−5

Table 10. Domain adaptation results for the domain combination source-target: Fe19-FeM.

Metrics Performance Gap

Accuracy F1 AP Accuracy [%] F1 [%] AP [%]

source-target
(no DA) 0.4405 0.5713 0.7241 0.0 0.0 0.0

source-target
(DA) 0.7079 0.7118 0.8007 52.35 38.41 29.29

target-target
(no DA) 0.9513 0.9369 0.9856 100.0 100.0 100.0

Table 11. Domain adaptation results for the domain combination source-target: Fe19-Cu

Metrics Performance Gap

Accuracy F1 AP Accuracy [%] F1 [%] AP [%]

source-target
(no DA) 0.3556 0.5227 0.4781 0.0 0.0 0.0

source-target
(DA) 0.4009 0.5315 0.4749 7.743 2.248 -0.6612

target-target
(no DA) 0.9419 0.9153 0.9707 100.0 100.0 100.0

Table 12. Domain adaptation results for the domain combination source-target: FeM-Fe19.

Metrics Performance Gap

Accuracy F1 AP Accuracy [%] F1 [%] AP [%]

source-target
(no DA) 0.5414 0.6648 0.6898 0.0 0.0 0.0

source-target
(DA) 0.5469 0.6688 0.6984 1.454 1.464 3.008

target-target
(no DA) 0.9181 0.9395 0.9750 100.0 100.0 100.0
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Table 13. Domain adaptation results for the domain combination source-target: FeM-Cu.

Metrics Performance Gap

Accuracy F1 AP Accuracy [%] F1 [%] AP [%]

source-target
(no DA) 0.3576 0.5237 0.6254 0.0 0.0 0.0

source-target
(DA) 0.3534 0.5222 0.6771 -0.7228 -0.3755 14.96

target-target
(no DA) 0.9419 0.9153 0.9707 100.0 100.0 100.0

Table 14. Domain adaptation results for the domain combination source-target: Cu-Fe19.

Metrics Performance Gap

Accuracy F1 AP Accuracy [%] F1 [%] AP [%]

source-target
(no DA) 0.6962 0.6057 0.7889 0.0 0.0 0.0

source-target
(DA) 0.7032 0.6286 0.7957 2.871 7.393 3.762

target-target
(no DA) 0.9181 0.9395 0.9750 100.0 100.0 100.0

Table 15. Domain adaptation results for the domain combination source-target: Cu-FeM.

Metrics Performance Gap

Accuracy F1 AP Accuracy [%] F1 [%] AP [%]

source-target
(no DA) 0.8518 0.7887 0.8809 0.0 0.0 0.0

source-target
(DA) 0.8760 0.8380 0.9133 24.32 33.25 30.97

target-target
(no DA) 0.9513 0.9369 0.9856 100.0 100.0 100.0

The cases with the most evident domain adaptation were Fe19-FeM and Cu-FeM. In the Fe19-FeM
case exhibited in Table 10, approximately 52%, 38%, and 29% of the performance gaps in accuracy,
F1 score, and average precision, respectively, were filled. In the Cu-FeM case presented in Table 15,
around 24%, 33%, and 31% of the performance gaps in the same metrics were recorded. Although the
performance gap fillings are higher in the Fe19-FeM case, it is important to emphasize that the baseline
accuracy value for the Cu-FeM case is higher (85%), making any performance gain substantially more
challenging due to a narrower domain gap between the source and target domains. Conversely, in the
Fe19-FeM case, the baseline accuracy value may be considered low (44%), providing the model with a
much larger margin for performance improvement when domain adaptation is performed.

Regarding the domain combinations outcomes exploiting FeM database as source, both performed
poorly. In the FeM-Cu case denoted by Table 13, the performance gap fillings for accuracy and F1
score were negligible. Both values were negative but with small absolute values, suggesting minimal
influence of domain adaptation on these metrics. However, the average precision stood out with a
performance gap filling of approximately 15%. This observation may indicate that domain adaptation
in this case might have affected the probability threshold regulation, suggesting that domain adaptation
can manifest in different ways and have varied impacts on the model’s performance. In the FeM-Fe19
evaluation depicted by Table 12, accuracy and F1 scores were significantly poor, showing small positive
values.
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An asymmetry in the metrics was also observed with respect to homologous source-target
combinations. Comparing the outcomes for Fe19-Cu and Cu-Fe19 combinations presented in Tables
11 and 14, it is possible noticing an intrinsic asymmetry between baseline values for F1 score, for
instance, which presented approximately 0.52 for Fe19-Cu and 0.6 for Cu-Fe19. Concerning the F1
score performance gaps filled by DA for such combinations, one can notice that for Fe19-Cu 2.2% was
filled, while for the Cu-Fe19 7.4% of the performance gap was filled.

The same discrepancies are present in FeM-Cu and Cu-FeM combinations, which presented
approximate baseline values for F1 score of 0.52 and 0.79, see Tables 13 and 15. Addressing the F1 score
performance gaps provided by DA, it can be seen that for the Fe19-Cu combination domain adaptation
led to a 3.7% worsening in performance. Nonetheless, while for Cu-FeM DA was able to fill more than
33% of the F1 score performance gap.

Regarding the Fe19-FeM and FeM-Fe19 experimental results presented in Tables 10 and 12
respectively, F1 score values for the baseline outcomes were around 0.57 and 0.66. Addressing the F1
score performance gaps reduction provided by DA, it can be seen that for the Fe19-FeM combination
the domain adaptation led to fill 38.7% of the performance gap. For the FeM-Fe19 combination,
however, less than 1.5% was filled.

Another important aspect to be conjectured concerns what domain features may lead to a positive
and significant DA contribution. Observing the previously presented results, one can notice that the
use of FeM as source domain provided systematically poor results. However, on the other hand, when
the FeM database takes on the role of target domain, the results show undeniably positive metrics.
DA results combining Fe19 and Cu as source and target indistinctly were positive, however, with a
small absolute improvement values. The examination of Table 2 may bring some important elements
to this evaluation. According to the variability metrics presented in Table 2, Fe19 is the most complex
domain, since the set of pixels of this domain fits to 25 clusters according to k-means algorithm and
the Calinski-Harabasz criterion. The Cu domain dataset, in turn, fitted to 15 clusters, while the FeM
database fitted to only 9 clusters.

Taking into account the values observed in Table 2 and the results presented in Tables 10–15, some
preliminary hypotheses could be raised for explaining the results obtained in the present research. The
first is that there needs to be a certain fit between the characteristics and complexity of the source and
target domains. This may partially explain the method’s poor performance in certain combinations.
Secondly, these domain combinations should privilege combinations in which the source domain
presents more variability than the target domain. That perhaps be the reason why having the FeM as
target provided a consistent DA result of high magnitude. Besides, it may explain why using FeM as
source domain was so unsuccessful.

It’s important to emphasize that the relationship between classifier performance and complexity is
consistent with the findings presented in [4], using k-means in conjunction with the Calinski-Harabasz
criterion. Although the target application discussed in [4] differs from the one explored in this study,
the domain complexity measure has been used to provide a more objective explanation of classifier
performance when trained and tested within specific domains. The results of domain adaptation,
particularly those indicating negative transfer — such as the case of FeM-Cu (Table 13) — can be
partially understood through this perspective on complexity. Specifically, as shown in Table 2, FeM
represents the domain with the lowest spectral variability according to the number of clusters found.

In the remaining of this section a qualitative assessment of the DA results is provided for the two
more successful combinations of source target domains: Fe19-FeM and Cu-FeM. Figure 3 presents
a 5× 5 grid concerning OS 16 models, in which columns represent the results for a patch randomly
selected from the target domain. The first row of each grid displays the RGB optical microscopy images
of the selected input patches. The second row shows the reference ground truth data. Rows 3, 4 and
5 concern probabilities maps provided by a DeepLabv3+ model randomly selected among the five
available trained models. Notice the numbers on the top of each probability map which express the
accuracy and F1 scores values provided by the respective model for that given target patch. Specifically,
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the third row presents the baseline result – source-target model (without DA) – corresponding to
DeepLabv3+ models conventionally trained based on the source domain training data and tested on
the target domain. The fourth row shows the probability results from the DA source-target model
trained with the DANN method. The final row displays the probability results from the upper bound
result – the target-target model (without DA) –, concerning a DeepLabv3+ model trained using target
training data.

Figure 3. Comparison between probability maps. (source: Fe19 / target: FeM)

Results present in Figure 3 reveal that the baseline model failed to adequately identify resin
pixels, classifying most of the image as ore. However, with domain adaptation, the model was able
to accurately delineate the ore particles and the resin region. Despite this improvement, the particle
edges appeared overly rounded, lacking geometric refinement.

This lack of edge refinement is confirmed in Figure 4, which shows the classification results using
a 50% probability threshold. According to the color legend, black means TP, white pixels refer to TN,
red express FP, while blue indicates FN. It is evident that the model trained with the DANN method
produces a significant number of false positives along the edges and in narrow regions between
particles, causing them to merge with each other. The fact that the reference images were derived
from SEM images may have contributed to the concentration of errors at the particle edges, since
the reflected light microscopy images and the labels originated from different sources and relate to
different sample depths.
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Figure 4. Comparison between inferences. (source: Fe19 / target: FeM)

The image in Figure 5 shows the probability maps for the Cu-FeM case, where domain adaptation
also yielded satisfactory results, although less evident, as indicated in Table 15. In this case, the baseline
model produced a relatively acceptable result with approximately 82% accuracy, suggesting a narrow
domain gap. It can also be observed that in the baseline model, the ore particle edges have a wider
region of intermediate probabilities close to 50%. The use of the DANN method successfully refined
these edges and reduced the width of such regions.
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Figure 5. Comparison between probability maps. (source: Cu / target: FeM)

The image in Figure 6 shows that the baseline model generated an excessively high number of
false negatives, clustered in blue, which represent ore particles classified as resin. Domain adaptation
achieved a slight refinement of these clusters, resulting in a modest increase in performance metrics.
However, a significant portion of these particles remained undetected.
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Figure 6. Comparison between inferences. (source: Cu / target: FeM)

The image in Figure 7 displays the probability maps for the Fe19-Cu domain combination, where
the results of domain adaptation were unsatisfactory, as indicated in Table 11. Almost the entire image
was classified by the baseline model as ore particles. In this case, domain adaptation did not provide
any visible benefit for image inference, with classification metrics remaining practically unchanged.
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Figure 7. Comparison between probability maps. (source: Fe19 / target: Cu)

6. Conclusions

The present work concerns the discrimination of opaque and non-opaque minerals from the
embedding epoxy resin in reflected light microscopy images. The major difficulty in such a classical ore
microscopy problem arises from the spectral similarity, in terms of specular reflectance, between non-
opaque minerals and the embedding resin. In this application, conventional deep learning semantic
segmentation approaches have been performing consistently well on data from the same image domain,
from which they were trained on. However, in general, they struggle with cross-domain generalization.

This limitation became clear in the cross-validation experiments using DeepLabv3+ model imple-
mented in this research, with few exceptions, such as when trained with the Cu dataset and tested
on data from the FeM dataset, which displayed relatively high accuracy. Those results motivated the
engagement regarding the evaluation of domain adaptation to this application. Domain adaptation is
an emerging topic in computer vision, and has come to compensate for the loss of performance caused
by domain shifts in cross-domains situations.

Another important point which arose in this experimental evaluation is that the models showed
an asymmetry in generalization ability. For instance, a model trained in the Cu dataset and evaluated
on FeM dataset data does not necessarily perform similarly when trained with the FeM data and tested
with the Cu. This trend was observed across all experiments. Those experimental results provided over
five independent trials for each setup showed low standard deviation, indicating the robustness and
consistency of the models even when they performed poorly. Consequently, we believe that asymmetry
is due to some intrinsic inter-domains issue. Thus, compatibility between the structural complexities of
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the source and the target domains needs to be respected with special attention. Therefore, in principle,
based on the evidence gathered here, it is necessary to create a strategy in which the complexity of
the target domain can be received by the characteristics constructed for the classification of the source
domain. Better controlling that compatibility is an important issue to be addressed in future works.

Domain adaptation presents significant challenges due to the large number of hyperparameters
and their specific effects on classification performance. Optimizing these models requires an extensive
search for the right hyperparameters space. Though, this process is computationally expensive and
demands efficient search strategies.

Domain adaptation proved to be effective in some source-target combinations, although not for
all cases. In particular, notable performance improvements were observed using the FeM database as
target while either Fe19 or Cu databases could indistinctly assume the role of source domain. This
bring attention to fact that domain adaptation for semantic segmentation can be a pathway for research
in the ore characterization field. The increase in generalization capacity of DL models for the semantic
segmentation of minerals in reflected light microscopy images opens up possibilities for developing
automated mineralogy solutions based on this microscopy technique. This is of great interest for the
mining industry due to its ability to identify minerals and its lower cost compared to SEM-based
systems.

Besides, the suggestions provided in this conclusion, readers may notice other research opportu-
nities for domain adaptation not listed in this section and that also may come about in the exploitation
of other applications.
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ASPP Atrous spatial pyramid pooling
CNN Convolutional Neural Network
CRF Conditional Random Fields
DA Domain Adaptation
DANN Domain Adversarial Neural Network
DL Deep Learning
FN False negative
FP False positive
Gd Domain discriminator
G f Feature Extractor
Gl Label predictor
GRL Gradient reversal layer
OS Output Stride
SEM Scanning electron microscopy
TN True negative
TP True positive
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