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1. Introduction

Pochhamer’s products or shifted factorials, falling (lower) and rising (upper), are often encoun-
tered in pure and applied mathematics and in several exact sciences too. For example, we meet them in
combinatorics, number theory, probability, statistics, statistical physics, etc. These products are closely
related to the famous Γ function which is well accessible also in a numerical sense.

The classical rising Pochhammer’s product1 of the order n ∈ N = {1, 2, 3, . . .} and the basis x ∈ C,

x(n) :=
n−1

∏
j=0

(x + j) = x · (x + 1) · . . . · (x + n − 1),

can be expressed, for x ∈ N, in terms of Γ function as

x(n) =
(x + n − 1)!
(x − 1)!

=
Γ(x + n)

Γ(x)
.

There are only a few articles on approximating the Pochhammer product. One of them is [3], where
are given several approximations to the products in question. In our paper, we would like to present
sharper and more general results than those given in [3].

The last equation above suggests the most useful extension of the classical rising discrete-order
Pochhammer’s factorial to a continuous-order Pochhammer’s factorial x(p) by setting the following
definition.

Definition 1. The rising Pochhammer’s factorial x(p) is defined as

x(p) :=
Γ(x + p)

Γ(x)
, for x ∈ R+ and a real p > −x. (1)

Obviously, x(0) = 1 and x(1) = x, for x ∈ R+.

Lemma 1. For p, q, x ∈ R+, we have

x(p) =
x(q)

(x + p)(q)
· (x + q)(p). (2)

1 Leo August Pochhammer, 1841–1920
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Proof. Considering Definition 1, we have, for p, q, x ∈ R+,

(x + q)(p) = Γ(x+q+p)
Γ(x+q) = Γ(x+p+q)

Γ(x+q) = (x+p)(q)Γ(x+p)
x(q)Γ(x)

= (x+p)(q)

x(q)
x(p). ■

The classical falling Pochhammer’s product of order n ∈ N = {1, 2, 3, . . .} and basis x ∈ C,

x(n) :=
n−1

∏
j=0

(x − j) = x · (x − 1) · . . . · (x − n + 1), (3)

can be expressed by the rising Pochhammer’s factorial as

x(n) =
x

x − n
(x − n)(n) , (4)

for an integer n and a real x satisfying x > n > 0. Therefore, we extend the domain of the falling
Pochhammer’s factorial to continuous case setting

x(p) =
x

x − p
· (x − p)(p) =

x
x − p

· Γ(x)
Γ(x − p)

.

Moreover, since yΓ(y) = Γ(y + 1), for y > 0, we set the next definition.

Definition 2. The falling Pochhammer’s factorial x(p) we define as

x(p) :=
Γ(x + 1)

Γ(x − p + 1)
= (x − p + 1)(p) , for x, p ∈ R+ such that x > p > 0.

Obviously, x(0) = 1 and x(1) = x, for x ∈ R+.

2. Auxiliary Result (Approximation of Γ Function)

The Stirling approximation formula of order r ≥ 0 for Γ function says that for x ∈ R+ we have [2]
[sect. 9.5]

Γ(x) =

√
2π

x
·
( x

e

)x
· exp

(
sr(x) + dr(x)

)
, (5)

where

s0(x) ≡ 0 and sr(x) =
r

∑
i=1

B2i

(2i − 1)(2i)x2i−1 for r ≥ 1, (6)

and, for some Θr(x) ∈ (0, 1),

dr(x) = Θr(x) · B2r+2

(2r + 1)(2r + 2) · x2r+1 . (7)

The numbers B2, B4, B6, . . . are known as the Bernoulli coefficients2. We have, for example,

B2 =
1
6

, B4 = B8 = − 1
30

, B6 =
1
42

, B10 =
5

66
, B12 = − 691

2730
,

B14 =
7
6

, B16 = −3617
510

, B18 =
43867
798

, B20 = −174611
330

, (8)

B22 =
854513

138
, B24 = −236364091

2730
and B26 =

8553103
6

,

2 The positive numbers (−1)k+1B2k are called the Bernoulli numbers.
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with the estimates − 1
3 < B12 < − 1

4 , −8 < B16 < −7, 54 < B18 < 55, −530 < B20 < −529,
6192 < B22 < 6193, −86581 < B24 < −86580, 1.42 · 106 < B26 < 1.43 · 106.

As a consequence, we have for the (continuous) factorial function x! := Γ(x + 1) = xΓ(x) the
expression (the Stirling factorial formula)

x! =
√

2π x
( x

e

)x
exp(sr(x) + dr(x)) (x ∈ R+). (9)

3. Approximations to Pochhammer’s Products

Using (1) and (5) we calculate

x(p) =

√
2π

x + p
·
(

x + p
e

)x+p
· exp

(
sr(x + p) + dr(x + p)

)
·
[√

2π

x
·
( x

e

)x
· exp

(
sr(x) + dr(x)

)]−1

=

(
x + p

x

)x−1/2( x + p
e

)p
exp

(
sr(x + p)− sr(x)

)
· exp

(
dr(x + p)− dr(x)

)
, (10)

According to (7) we have, for p, x > 0,

∣∣dr(x + p)− dr(x)
∣∣ < 2 · |B2r+2|

(2r + 1)(2r + 2) · x2r+1 . (11)

At small x the estimate (11) becomes useless. Therefore, in (10) we replace x with x + m, where m
is a positive integer, not being too large. Using the Formulas (10) and (11) together with (2), we find an
asymptotic approximation of the generalized Pochhammer’s rising product given in the next theorem.

Theorem 1. For p, x ∈ R+ and for integers m, r ≥ 0, the equality

x(p) = Pr(x, m, p) · exp
(
δr(x, m, p)

)
(12)

holds, where3

Pr(x, m, p) := P∗(x, m, p) · exp
(
σr(x, m, p)

)
, (13)

P∗(x, m, p) :=
x(m)

(x + p)(m)

(
x + m + p

x + m

)x+m−1/2( x + m + p
e

)p
, (14)

σr(x, m, p) :=
r

∑
i=1

B2i
(2i − 1)(2i)

(
1

(x + m + p)2i−1 − 1
(x + m)2i−1

)
, (15)

and, uniformly in p,

∣∣δr(x, m, p)
∣∣ < δ̃r(x, m) :=

∣∣B2r+2
∣∣

(r + 1)(2r + 1)(x + m)2r+1 . (16)

3 considering σ0(x, m, p) = 0, by definition
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Example 1. For p, x > 0 we have

P0(x, 0, p) = P∗(x, 0, p) =
(

x
x + p

)1/2−x( x + p
e

)p
, δ̃0(x, 1) <

1
6(x + 1)

and
P1(x, 1, p) = x

x+p

(
x+p+1

x+1

)x+1/2( x+p+1
e

)p
exp

(
1

12

(
1

x+p+1 − 1
x+1

))
with δ̃1(x, 1) < 1

180(x+1)3 .

For x ∈ R+ and any integer p ≥ 2 we obviously have xp < x(p) < (x + p − 1)p. Moreover, setting
m = 1 and r = 0 in Theorem 1, we get a more accurate estimate, given in the next corollary4.

Corollary 1. For p, x ∈ R+, there hold the following inequalities:

x(p) > A(x, p) := x
x+p

(
x+p+1

x+1

)x+1/2( x+p+1
e

)p
exp

(
− 1

6(x+1)

)
(17)

x(p) < B(x, p) := x
x+p

(
x+p+1

x+1

)x+1/2( x+p+1
e

)p
exp

(
1

6(x+1)

)
. (18)

Figure 1 illustrates5 the relations (17) and (18) by plotting the graphs of the functions x 7→ A(x, π)

and x 7→ B(x, π), together with the graph (continuous line) of the function x 7→ P2(x, 3, π), which
nearly coincides with the function x 7→ x(π).

0.2 0.4 0.6 0.8 1.0

2

4

6

8

1 2 3 4 5 6 7 8 9

500

1000

1500

Figure 1. The graphs of the functions x 7→ A(x, π), x 7→ B(x, π) and x 7→ x(π) from Corollary 1.

Remark 1. In the Formula (16), m and r are the parameters that affect the error term δ∗r (x, m, p). We stress
that |B2r+2| becomes very large for large r. Indeed, according to [1, 23.1.15], we have

2
(2n)!
(2π)2n <

∣∣B2n
∣∣ < 4

(2n)!
(2π)2n , for n ∈ N . (19)

In addition, referring to (5) and (7), or using [5], we have the double inequality

√
2πm

(m
e

)m
< m! <

√
2πm

(m
e

)m
exp

(
1

12m

)
, for m ∈ N . (20)

Consequently,

4
√

π n
( n

e π

)2n
<
∣∣B2n

∣∣ < 9
√

π n
( n

e π

)2n
, for n ∈ N . (21)

4 which can be improved by increasing m
5 All figures in this paper are produced using Mathematica [6].
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Thus, considering (16), we find6

δ̃r(x, m) < δ∗r (x, m) := 9
√

r+1
e
√

π(2r+1)

(
r+1

eπ(x+m)

)2r+1
(m, r ≥ 0, x > 0) (22)

< 1√
r

(
r+1

e π(x+m)

)2r+1
(m ≥ 0, r ≥ 1, x > 0). (23)

Corollary 2. For p, x ∈ R+ and for integers m, r ≥ 1, satisfying r ≤ 4m − 1, the approximation x(p) ≈
Pr(x, m, p), given in Theorem 1, has the relative error

ρr(x, m, p) :=
x(p) − Pr(x, m, p)

Pr(x, m, p)
, (24)

estimated as ∣∣ρr(x, m, p)
∣∣ < (1 + 8

100
)∣∣δr(x, m, p)

∣∣ < √2
r

(
r + 1

e π(x + m)

)2r+1
.

Proof. According to Theorem 1, using Taylor’s formula, we obtain, for some ϑ ∈ (0, 1),

∣∣ρr(x, m, p)
∣∣ = ∣∣∣∣Pr eδr − Pr

Pr

∣∣∣∣ = ∣∣eδr − 1
∣∣

=
∣∣∣δr +

1
2 eϑ·δr · δ2

r

∣∣∣
≤
∣∣δr
∣∣+ e|δr |

2

∣∣δr
∣∣ · ∣∣δr

∣∣. (25)

Now, for integers m, r ≥ 1, satisfying r ≤ 4m − 1, and for x > 0, we have 0 < r+1
e π(x+m)

< r+1
8(x+m)

< 1
2 .

Consequently, referring to (16) and (23), we estimate
∣∣δr
∣∣ < 1√

r

(
1
2

)2r+1
≤ 1

8 . Hence, considering (25),
we get ∣∣ρr(x, m, p)

∣∣ < ∣∣δr
∣∣+ e1/8

2 · 1
8 · |δr| <

(
1 + 8

100
)∣∣δr

∣∣ < √
2 ·
∣∣δr
∣∣ < √

2 ·
∣∣δ∗r ∣∣. ■

The immediate consequence of Corollary 2 is the next corollary.

Corollary 3. For p, x ∈ R+ and for integers m, r ≥ 1, satisfying r ≤ 4m − 1, the inequalities

x(p) >

(
1 −

√
2
r

(
r + 1

e π(x + m)

)2r+1
)

Pr(x, m, p) (26)

x(p) <

(
1 +

√
2
r

(
r + 1

e π(x + m)

)2r+1
)

Pr(x, m, p) (27)

hold.

Example 2. Setting r = 1 and r = 7 in Corollary 3 we obtain the following double inequalities:(
1 − 1

50(x+m)3

)
P1(x, m, p) < x(p) <

(
1 + 1

50(x+m)3

)
P1(x, m, p), (28)

true for p, x ∈ R+ and m ≥ 1, and(
1 − 1

4(x+m)15

)
P7(x, m, p) < x(p) <

(
1 + 1

4(x+m)15

)
P7(x, m, p), (29)

6 considering the estimate
√

r + 1/(2r + 1) < 1/(2
√

r), for r > 0
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valid for p, x ∈ R+ and m ≥ 2.

The inequalities in (28) are illustrated in Figure 2, where the dashed line represents the graph
of the function x 7→ P0(x, 1, π) and the continuous line, compressed between the nearly coinciding
graphs of the functions x 7→

(
1 ∓ 1

50(x+1)3

)
P1(x, 1, π), represents the graph of the function x 7→ x(π).

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

7

x

y

y=P0Hx,1,ΠL

y=x
HΠL

Figure 2. The graph of the function x 7→ P0(x, 1, π) (dashed line) and the practically coinciding graphs

of the functions x 7→
(

1 ∓ 1
50(x+1)3

)
P1(x, 1, π) (continuous line).

We are interested in how the sequence r 7→ δr(x, m, p) varies. Indeed, thanks to Theorem 1, for
p, x ∈ R+ and integers m, r, r′ ≥ 0, we have

P∗(x, m, p) · exp
(
σr(x, m, p) + δr(x, m, p)

)
= x(p) = P∗(x, m, p) · exp

(
σr′(x, m, p) + δr′(x, m, p)

)
.

Therefore, for integers 0 ≤ r < r′ and m ≥ 0, for real p, x > 0, and for the difference Dr,r′(x, m, p),

Dr,r′(x, m, p) := σr′(x, m, p)− σr(x, m, p) (30)

=
r′

∑
i=r+1

B2i
(2i − 1)(2i)

(
1

(x + m + p)2i−1 − 1
(x + m)2i−1

)
,

using (16), we estimate

δr(x, m, p) > Dr,r′(x, m, p)− δ̃r′(x, m)

δr(x, m, p) < Dr,r′(x, m, p) + δ̃r′(x, m). (31)

The inequalities (31) can be used to estimate the error δr(x, m, p) by using the appropriate r′ > r, which
specifies a negligibly small δ̃r′(x, m) < δ∗r′(x, m) (see (22)) and thus provides a useful estimate for
δr(x, m, p). Figures 3 and 4 illustrate the estimate (31), for r ∈ {0, 1, 2, 3}, by showing the graphs of the
functions7 x 7→ Dr,5(x, 4, π)− δ̃5(x, 4) and x 7→ Dr,5(x, 4, π) + δ̃5(x, 4), cramming the graphs of the
functions x 7→ δr(x, 4, π).

Remark 2 (open problem). Figures 3–6 suggest the hypotheses that
(−1)r+1δr(x, m, p) > 0, for all allowed values of all arguments.

7 with δ̃5(x, 4) < 1√
5

(
5+1

8(0+4)

)2·5+1
< 5 × 10−9
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-0.0080

-0.0075

-0.0070

-0.0065
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-3.´10
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r=2

Figure 3. The graphs of the functions x 7→ δr(x, 4, π).

0.2 0.4 0.6 0.8 1.0

0.00002

0.000025

0.00003

0.000035

r=1

0.2 0.4 0.6 0.8 1.0

1.´10
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1.5´10
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-8

2.5´10
-8

3.´10
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r=3

Figure 4. The graphs of the functions x 7→ Dr,5(x, 4, π)∓ δ̃5(x, 4) ≈ δr(x, 4, π).

0.2 0.4 0.6 0.8 1.0

-0.25

-0.20

-0.15

-0.10

-0.05

r=0

m=0

m=1

m=2 0.2 0.4 0.6 0.8 1.0

-0.00002

-0.000015

-0.00001

-5.´10
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r=2

m=2

m=3
m=4

Figure 5. The graphs of the functions x 7→ δr(x, m, π).

0.2 0.4 0.6 0.8 1.0

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

r=1

m=2

m=3

m=4

0.2 0.4 0.6 0.8 1.0

5.´10
-7

1.´10
-6

1.5´10
-6 r=3

m=2

m=3

m=4

Figure 6. The graphs of the functions x 7→ δr(x, m, π).

For p ∈ N, the quantity p ! = ∏
p
k=1 k = 1(p) is called p–factorial. The discrete factorial function

p 7→ p ! is extended continuously, for real p > −1, as p ! := 1(p). Immediately from Theorem 1 we read
the next corollary, which presents a formula for p! that does not contain the constant π.
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Corollary 4 (approximation of continuous factorial function). For p ∈ R+ and integers m, r ≥ 0 we have8

p ! =
m !

(p + 1)(m)

(
m + p + 1

m + 1

)m+1/2(m + p + 1
e

)p
(32)

· exp

(
r

∑
i=1

B2i
(2i−1)(2i)

(
1

(m+p+1)2i−1 − 1
(m+1)2i−1

)
+

ϑ·
∣∣B2r+2

∣∣
(r+1)(2r+1)(p+m)2r+1

)
,

for some ϑ = ϑ(m, p, r) from the interval (−1, 1).

Using Definition 2 and Theorem 1 we obtain the approximation of generalized Pochhammer’s
falling product presented in the next theorem.

Theorem 2. For real x, p, satisfying x > p > 0 and for integers m, r ≥ 0, we have the equality

x(p) = Qr(x, m, p) · exp
(
∆r(x, m, p)

)
, (33)

where Qr(x, m, p) = Pr(x − p + 1, m, p), that is

Qr(x, m, p) :=
(x − p + 1)(m)

(x + 1)(m)

(
x + 1 + m

x − p + 1 + m

)x−p+m+1/2

·
(

x + 1 + m
e

)p
exp

(
σr(x − p + 1, m, p)

)
, (34)

with σr(x, m, p) defined in (15), and

∣∣∆r(x, m, p)
∣∣ < ∆∗

r (x, m, p) :=

∣∣B2r+2
∣∣

(r + 1)(2r + 1)(x − p + 1 + m)2r+1 . (35)

Remark 3. For x ∈ R+ and any integer p, satisfying 2 ≤ p < x, we obviously have (x− p+ 1)p < x(p) < xp.

In addition, using the inequality
(
1 + p

t
)t

< ep, true for t > |p|, from (34) we obtain

Qr(x, m, p) < x
x−p · (x−p)(m)

x(m)

(
1 + p

x+m−p

)x+m−p
(x + m)phhhhhhh(x + m − p)−p

·
(

x+m
x+m−p

)−1/2hhhhhh(x + m − p)p · e−p

< x
x−p · (x−p)(m)

x(m) · ep · (x + m)p · 1 · e−p.

Thus, for all integers m ≥ 0 and x, p ∈ R+ such that p < x, we have a rough estimate9

Qr(x, m, p) <
x

x − p
· (x − p)(m)

x(m)
· (x + m)p.

Using Definition 2 and Corollary 3 we read the next result.

Corollary 5. For real p, x satisfying x > p > 0 and for integers m, r ≥ 1 such that r ≤ 4m− 1, the inequalities

x(p) >

(
1 −

√
2
r

(
r + 1

e π(x − p + 1 + m)

)2r+1
)

Qr(x, m, p) (36)

8 taking into account the definition ∑0
i=1 xi =: 0.

9 interesting for a larger m
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and

x(p) <

(
1 +

√
2
r

(
r + 1

e π(x − p + 1 + m)

)2r+1
)

Qr(x, m, p) (37)

hold.

Thanks to Corollary 5, the approximation x(p) ≈ Qr(x, m, p) has the relative error εr(x, m, p) :=(
x(p) − Qr(x, m, p)

)
/Qr(x, m, p) estimated as

∣∣εr(x, m, p)
∣∣ < √2

r

(
r + 1

e π(x − p + 1 + m)

)2r+1
,

true for x, p, m, r that meet all conditions given in Corollary 5.

4. Sequences of Classical Binomial Coefficients

According to (3), the binomial coefficient “x over n”,(
x
n

)
:=

∏n−1
k=0 (x − k)

n!
=

x(n)
1(n)

(x ∈ R, n ∈ N),

can be expressed using the upper Pochhammer product in the way, given in the next Proposition.

Proposition 1. For every real x and any integer n ≥ 3, we have10

(
x
n

)
n! =


(−1)n|x|(n) (x ≤ 0),

(−1)n−1−⌊x⌋(x − ⌊x⌋
)(⌊x+1⌋)(⌊x + 1⌋ − x

)(n−1−⌊x⌋)
(0 < x < n),(

x − n + 1
)(n)

(x ≥ n).

(38)

Proof. The first and the last cases are obvious. Relating to the second one, for 0 < x < n, we have11

n−1

∏
k=0

(x − k) =
⌊x⌋

∏
k=0

(x − k)
n−1

∏
k=⌊x⌋+1

(x − k)

=
⌊x⌋

∏
j=0

(x − ⌊x⌋+ j) · (−1)n−1−⌊x⌋
n−1

∏
k=⌊x⌋+1

(k − x)

= (−1)n−1−⌊x⌋ ·
(
x − ⌊x⌋

)(⌊x⌋+1) ·
(
⌊x⌋+ 1 − x

)(n−1−⌊x⌋
)

. ■

Thanks to Proposition 1, Theorem 1 and (9), we present the following three examples.

10 For x > 0, the floor symbol ⌊x⌋ means the integer part of x.
11 considering the equality ∏n

k=m yk = 1, for m > n, true by definition
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Example 3. Using m = 4 and r = 1 in Theorem 1 and in (9), we obtain, for some ϑ ∈ (0, 1) and Θ ∈ (−1, 1),

(
− 3

2
n

)
= (−1)n

( 3
2
)(n)
n!

= (−1)n
( 3

2
)(4)( 3

2 + n
)(4)

(
3
2 + 4 + n

3
2 + 4

) 3
2+4− 1

2
(

3
2 + 4 + n

e

)n

· exp

(
1
6

1 · 2

(
1

3
2 + 4 + n

− 1
3
2 + 4

)
+

Θ · (− 1
30

2 · 3( 3
2 + 4)3

)

· 1√
2π n

( e
n

)n
exp

(
−

1
6

1 · 2 · n
−

ϑ · (− 1
30 )

3 · 4 · n3

)
.

Thus, for every n ∈ N and some ϑ ∈ (0, 1) and Θ ∈ (−1, 1), we have(
− 3

2
n

)
=

(−1)n · 3 · 5 · 7 · 9 · (11 + 2n)5

(3 + 2n)(5 + 2n)(7 + 2n)(9 + 2n) · 115 ·
√

2π n

(
1 +

11/2
n

)n

· exp

(
1

12

( 2
11 + n

− 2
11

− 1
n

)
+

ϑ

360 n3 − Θ
180( 3

2 + 4)3

)
.

Hence, (
− 3

2
n

)
≈ b1(n) := (−1)n · 3 · 5 · 7 · 9

√
2n

115
√

π
· exp

(
11
2

− 2
12 · 11

)
≈ (−1)n 1128

1000
√

n , for an integer n ≫ 1.

Figure 7 shows the graphs of the sequences n 7→
∣∣(− 3

2
n )
∣∣ and n 7→

∣∣(− 3
2

n )−b1(n)
∣∣∣∣b1(n)

∣∣ , left and right

respectively.
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20 40 60 80 100
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0.020
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0.030

0.035

Figure 7. The graphs of the sequences
∣∣(− 3

2
n )
∣∣ and

∣∣(− 3
2

n )− b1(n)
∣∣/∣∣b1(n)

∣∣, left and right respectively.
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Example 4. Setting m = 3 and r = 2 in Theorem 1 and in (9), we get, for some ϑ ∈ (0, 1) and Θ ∈ (−1, 1),

(
− 1

2
n

)
= (−1)n

(
1
2

)(n)
n!

= (−1)n

(
1
2

)(3)
(

1
2 + n

)(3)
(

1
2 + 3 + n

1
2 + 3

) 1
2+3− 1

2
(

1
2 + 3 + n

e

)n

· exp
( 1

6
1 · 2

(
1

1
2+3+n

− 1
1
2+3

)
+

− 1
30

3 · 4

(
1

( 1
2+3+n)3 − 1

( 1
2+3)3

)
+

Θ · 1
42

5 · 6( 1
2 + 3)5

)

· 1√
2π n

( e
n

)n
exp

(
−

1
6

1 · 2 · n
−

− 1
30

3 · 4 · n3 −
ϑ · 1

42
5 · 6 · n5

)
.

Therefore, for any n ∈ N, using some ϑ ∈ (0, 1) and Θ ∈ (−1, 1), we find(
− 1

2
n

)
=

(−1)n · 3 · 5 · (7 + 2n)3

(1 + 2n)(3 + 2n)(5 + 2n) · 73 ·
√

2π n

(
1 +

7/2
n

)n

· exp
(

1
12

(
2

7+n − 2
7
− 1

n

)
+

1
360

(
1

n3 − 1
( 1

2+3+n)3 +
1

( 1
2+3)3

)
+

Θ
1260( 1

2 + 3)5
− ϑ

1260n5

)
.

Hence, (
− 1

2
n

)
≈ b2(n) := (−1)n 3 · 5

73
√

2π
exp

(
7
2
− 1

42

)
· 1√

n

≈ (−1)n 564
1000

√
n

, for an integer n ≫ 1.

Figure 8 shows the graphs of the sequences n 7→
∣∣(− 1

2
n )
∣∣ and n 7→

∣∣(− 1
2

n )−b2(n)
∣∣∣∣b2(n)

∣∣ , left and right

respectively.
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Figure 8. The graphs of the sequences
∣∣(− 1

2
n )
∣∣ and

∣∣(− 1
2

n )− b2(n)
∣∣/∣∣b2(n)

∣∣, left and right respectively.
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Example 5. Using m = 3 and r = 2 in Theorem 1 and in (9), and considering Example 4, we have12

( 1
2
n

)
=

1
n!

· (−1)n−1
(1

2

)(1)(1
2

)(n−1)
= − 1

2(n − 1
2 )

· (−1)n

(
1
2

)(n)
n!

= − 1
2(n − 1

2 )
· (−1)n · 3 · 5 · (7 + 2n)3

(1 + 2n)(3 + 2n)(5 + 2n) · 73 ·
√

2π n

(
1 +

7/2
n

)n

· exp
(

1
12

(
2

7+n − 2
7
− 1

n

)
+

1
360

(
1

n3 − 1
( 1

2+3+n)3 +
1

( 1
2+3)3

)
+

Θ
1260( 1

2 + 3)5
− ϑ

1260n5

)
,

for some ϑ ∈ (0, 1) and Θ ∈ (−1, 1). Thus, for every n ∈ N there exists some ϑ ∈ (0, 1) and some Θ ∈ (−1, 1)
such that ( 1

2
n

)
= (−1)n+1 15 · (7 + 2n)3

(2n − 1) · (1 + 2n)(3 + 2n)(5 + 2n) · 73 ·
√

2π n

(
1 +

7/2
n

)n

· exp
(

1
12

(
2

7+n − 2
7
− 1

n

)
+

1
360

(
1

n3 − 1
( 1

2+3+n)3 +
1

( 1
2+3)3

)
+

Θ
1260( 1

2 + 3)5
− ϑ

1260n5

)
.

Consequently, ( 1
2
n

)
≈ b3(n) := (−1)n+1 15

73
√

2π
exp

(
7
2
− 1

42

)
· 1
(2n − 1)

√
n

≈ (−1)n+1 282
1000 n

√
n

, for an integer n ≫ 1.

Figure 9 shows the graphs of the sequences n 7→
∣∣( 1

2
n)
∣∣ and n 7→

∣∣( 1
2
n )−b3(n)

∣∣∣∣b3(n)
∣∣ , left and right

respectively.

20 40 60 80 100

0.002

0.004

0.006

0.008

20 40 60 80 100

0.01

0.02

0.03

0.04

Figure 9. The graphs of the sequences
∣∣( 1

2
n)
∣∣ and

∣∣( 1
2
n)− b3(n)

∣∣/∣∣b3(n)
∣∣, left and right respectively.

Remark 4. More about binomial coefficients can be find in [4].

12 using the identity x(n) = (x + n − 1)x(n−1)
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