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1. Introduction

Pochhamer’s products or shifted factorials, falling (lower) and rising (upper), are often encoun-
tered in pure and applied mathematics and in several exact sciences too. For example, we meet them in
combinatorics, number theory, probability, statistics, statistical physics, etc. These products are closely
related to the famous I' function which is well accessible also in a numerical sense.

The classical rising Pochhammer’s product] of the ordern € N={1,2,3,...} and the basis x € C,

x(m ::ﬁ(x+j):x~(x-|-1)-...-(x+n—1),
j=0

can be expressed, for x € N, in terms of I' function as

x(n)_(x—l—n—l)!_l"(x—l—n)
 (x=1! T(x)

There are only a few articles on approximating the Pochhammer product. One of them is [3], where
are given several approximations to the products in question. In our paper, we would like to present
sharper and more general results than those given in [3].

The last equation above suggests the most useful extension of the classical rising discrete-order
Pochhammer’s factorial to a continuous-order Pochhammer s factorial x() by setting the following
definition.

Definition 1. The rising Pochhammer’s factorial xP) is defined as

x(P) = W , forxeRVandareal p > —x. (1)

Obviously, x(© = 1 and x(1) = x, for x € R*.

Lemmal. Forp,q,x € RT, we have

= ——— (x+q". @)

! Leo August Pochhammer, 1841-1920

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Proof. Considering Definition 1, we have, for p,q, x € RT,

T(xtq+p) _

C(x+pt+q) _ x+p)PT(x+p) _ x+p) D _(p)
T'(x+q) T(x+q) x@T(x) SR

- x@

The classical falling Pochhammer’s product of order n € N = {1,2,3,...} and basis x € C,
Xy = ] (x—j)=x-(x—=1)-...-(x—n+1), 3)

can be expressed by the rising Pochhammer’s factorial as

X

DR

(x—m)™, (4)

for an integer n and a real x satisfying x > n > 0. Therefore, we extend the domain of the falling
Pochhammer’s factorial to continuous case setting

Moreover, since yI'(y) = T'(y + 1), for y > 0, we set the next definition.
Definition 2. The falling Pochhammer’s factorial x ) we define as

o F(X—I—l) o B (p) +
p)._m—(x p+ 1)WY, forx,p € R such that x > p > 0.

X
Obviously, xg) = 1 and x(y) = x, for x € R™.

2. Auxiliary Result (Approximation of I Function)

The Stirling approximation formula of order r > 0 for I function says that for x € R™ we have [2]

[sect. 9.5]
2 x

I(x) = 7” : <§) -exp (sr(x) +d,(x)), (5)

where
_ . By;
so(x) =0 and s.(x) = 1121 i —1) (2@ forr >1, (6)

and, for some ©,(x) € (0,1),

d(x) = O, (x) - Bar+2 7)

(2r+1)(2r +2) - x2r+1°
The numbers By, By, Bg, ... are known as the Bernoulli coefficients?. We have, for example,

1 1 5 691

B, = %, 342382*51362513102&,3122*%,
By = Z/ 16 = —ﬂ/ 18 = %, 20 = —%, 8)
6 510 798 330
p, _ SM513 L 236364091 . 8553103
138 2730 6

2 The positive numbers (—1)k+1By are called the Bernoulli numbers.


https://doi.org/10.20944/preprints202412.0470.v2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2024 d0i:10.20944/preprints202412.0470.v2

30f13

with the estimates —% < Bpp < —%, —8 < Big < —7,54 < Big < 55, =530 < Byy < —529,
6192 < By < 6193, —86581 < Byy < —86580, 1.42 - 10 < Bpe < 1.43 - 10°.

As a consequence, we have for the (continuous) factorial function x! := I'(x + 1) = xT'(x) the
expression (the Stirling factorial formula)

x! = v2nx(§)xexp(sr(x) +d,(x)) (x e RT). )

3. Approximations to Pochhammer’s Products

Using (1) and (5) we calculate

-exp (sr(x +p) +di(x+p))

-1

x—1/2
:<xi) (xjp)pexp(sy(x—l—p)—sr(x))
oxp (dr(x 4 )~ (), )

According to (7) we have, for p,x > 0,

_ . |B2r+2|
|dr(x +p) —dp(x)| <2 CER (11)

At small x the estimate (11) becomes useless. Therefore, in (10) we replace x with x + m, where m
is a positive integer, not being too large. Using the Formulas (10) and (11) together with (2), we find an
asymptotic approximation of the generalized Pochhammer’s rising product given in the next theorem.

Theorem 1. For p,x € R and for integers m,r > 0, the equality

xP) = P,(x,m, p) - exp (6,(x,m, p)) (12)
holds, where®
Pr(x,m,p) :=P*(x,m,p) - exp (o+(x,m, p)), (13)
P*(x,m, p) = x(m) X4+m+p x+m—1/2 x+m+p p (14)
T (x4 p)m U x+m e ’
.
_ By 1 _ 1
or(x,m,p) i= l; (2 —1)(2i) ( (x+m+p)2T  (x+m)21 ) 1)
and, uniformly in p,
|6, (x,m, p)| < & (x,m) := [Bar 2| (16)
AL IS o T = T Y 2+ 1) (x - m)2r L

3 considering o (x, m, p) = 0, by definition
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Example 1. For p,x > 0 we have

1/2—x p
. X x+ N 1
R0 =P eon = (F5) () e < g

and

_ xp+1 VT2 (xgpy1\P 1 1 1
Pl(x’l’p)_ﬁ( x+1 ) e Xp\ 12\ 3 Fp+1 — 71

with 61(x,1) < fgrys-

For x € R* and any integer p > 2 we obviously have x? < x(P) < (x + p — 1)P. Moreover, setting
m = 1and r = 0 in Theorem 1, we get a more accurate estimate, given in the next corollary*.

Corollary 1. For p,x € R, there hold the following inequalities:

K> A p) = 55 ()T (222 exp(— k) a7

2P < B(x,p) := ﬁp (x;ﬂrl)XH/z(L’;ﬂrl)pexp(a;Tl)). (18)

Figure 1 illustrates’ the relations (17) and (18) by plotting the graphs of the functions x + A(x, 77)
and x — B(x, 1), together with the graph (continuous line) of the function x — P,(x,3, 7r), which
nearly coincides with the function x + x(70).

8’ /
/
/
s
7/
Ay
7 S
6r 7
7 S
2
7 S
7z S
7 S
s S
4 7
< o

0.2 0.4 0.6 0.8 1.0

Figure 1. The graphs of the functions x — A(x, 77), x + B(x, ) and x + x(")) from Corollary 1.

Remark 1. In the Formula (16), m and r are the parameters that affect the error term 6} (x, m, p). We stress
that | By, 2| becomes very large for large r. Indeed, according to [1, 23.1.15], we have

(2n)!
(27t)2"

(2n)!

2
(27t)2" 4

< }an| <4

forn € N. (19)

In addition, referring to (5) and (7), or using [5], we have the double inequality

27Tm(%)m <m! < \/27T7m(%)mexp<ﬁ) , formeN. (20)
Consequently,
4%(%)271 < |Ba| < 9@(%)2’1, forneN. 1)

4
5

which can be improved by increasing m
All figures in this paper are produced using Mathematica [6].
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Thus, considering (16), we find®
g 5* . 9vr+1 r+1 2r+1 >0 0 22
H(x,m) <67 (x,m) = TS (en(Hm)) (m,r >0, x>0) (22)
2r+1
1 1
<L(Z25) (m=0r>1x>0) (23)

Corollary 2. For p,x € R and for integers m,r > 1, satisfying r < 4m — 1, the approximation x'V) =
Py(x,m, p), given in Theorem 1, has the relative error

x(P) — P.(x,m,p)
Py (x,m, p)

pr(x,m, p) == , (24)

estimated as _—
2 r+1
lor(x,m, p)| < (1+%)|5r(x,m,p)| < [<>> }

r\emn(x+m

Proof. According to Theorem 1, using Taylor’s formula, we obtain, for some ¢ € (0,1),

Py e — P
’pr(xrmrp)‘ = % = ‘e5r_1‘
T
= |0y + Le¥0r . 52
< |0+ &5 (& - |6 25)

Now, for integers m, r > 1, satisfying r < 4m — 1, and for x > 0, we have 0 < en@}rm) < S(Zilm) < %

2r+1
Consequently, referring to (16) and (23), we estimate |(5,’ < % (%) < %. Hence, considering (25),

we get
1/8

lorCrm,p)| < [0+ 52116 < (L4 o)l < V2-[8] < vV2-|o;|. m
The immediate consequence of Corollary 2 is the next corollary.

Corollary 3. For p,x € R and for integers m,r > 1, satisfying r < 4m — 1, the inequalities

2r+1

MOES (1 - ﬂ(mz;;lm)) )Pr(x, m,p) (26)
2r+1

x(P) < (1 + \/E(szjm)) >Pr(x, m,p) (27)

hold.

Example 2. Setting r = 1 and r = 7 in Corollary 3 we obtain the following double inequalities:

(1 sogem ) Prem p) < 2 < (14 g ) Patem, ), (28)

true for p,x € R™ and m > 1, and

(1 — 74(xfm)15)P7(x, m,p) < xP) < (1 + W)Pﬂx, m, p), (29)

6 considering the estimate v/r +1/(2r + 1) < 1/(2+/r), forr >0
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valid for p,x € R and m > 2.

The inequalities in (28) are illustrated in Figure 2, where the dashed line represents the graph
of the function x — Py(x, 1, 71) and the continuous line, compressed between the nearly coinciding

. 1 .
graphs of the functions x — <1 F W) Pi(x,1, 7r), represents the graph of the function x — x(™).

7EY 7

L V7,
6F 7

[ ///
St y=Po(x,1,m)_~
4r /// y:x(ﬂ)
30 //
2¢ =
1 C

I L Il L L L Il L L L Il L L L Il L L L X\

0.2 0.4 0.6 0.8 1.0

Figure 2. The graph of the function x — Py(x, 1, r) (dashed line) and the practically coinciding graphs
of the functions x (1 F m) P;(x,1, 1) (continuous line).

We are interested in how the sequence r — 6, (x, m, p) varies. Indeed, thanks to Theorem 1, for
p,x € RT and integers m, r,7’ > 0, we have

P*(x,m, p) - exp (ov(x,m, p) + 6 (x,m, p))
= x(P) = P*(x,m, p) - exp (0 (x,m, p) + 8y (x,m, p)).

Therefore, for integers 0 < r < ' and m > 0, for real p, x > 0, and for the difference D, (x,m,p),

Dy (x,m, p) = 0y (x,m, p) — 07(x,m, p) (30)

/

_ By, 1 B 1
a i:rz+1 (2i —1)(20) <(x +m+p)2-1 (x+ m)2i1>’

using (16), we estimate

66, m,p) > Dy (1, p) — G (x,m)
6,(x,m,p) < Dy p(x,m,p) + Sy (x,m). (31)

The inequalities (31) can be used to estimate the error 6, (x, m, p) by using the appropriate ' > r, which
specifies a negligibly small 8,/ (x,m) < &%(x,m) (see (22)) and thus provides a useful estimate for
0 (x,m, p). Figures 3 and 4 illustrate the estimate (31), for r € {0,1, 2,3}, by showing the graphs of the
functions” x +— D, 5(x,4, ) — 65(x,4) and x — D,5(x,4, 77) + d5(x,4), cramming the graphs of the
functions x — &,(x,4, 7).

Remark 2 (open problem). Figures 3—6 suggest the hypotheses that
(=1)"*16,(x,m, p) > 0, for all allowed values of all arguments.

~ 2:5+1
: 1 5+1 —
7 withds(x4) < & (§¥5)T <5x1077
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—0.0065 F
-3.x107" ¢
-0.0070 F r=0 =2
—0.0075 -4.x1077
~0.0080 | -5.x107 |
—-0.0085 - —-6.% 10—7 [
02 04 06 08 10 02 04 06 08 10
Figure 3. The graphs of the functions x — &,(x,4, 7).
0.000035
3.x107°
0.00003 25%1078
r=1 )
0.000025 | 2.x10
1.5x107
0.00002 1Lx10°
02 04 06 08 10 02 04 06 08 10

Figure 4. The graphs of the functions x — D, 5(x,4, 1) F d5(x,4) ~ &, (x, 4, 7).

020 p— 4> 04 06 05 L
005 ™= 6 } 6 08 10
=5.x107 ¢
-0.10
—0.150 -0.00001
-0.20 -0.000015 ¢
-0.25+
-0.00002 y
Figure 5. The graphs of the functions x > J,(x, m, 7).
0.00030
-6
0.00025 | 15x10
0.00020 F
1.x107
0.00015 ¢
0.00010 ¢

5.x1077
0.00005 |

02 04 06 08 1.0

Figure 6. The graphs of the functions x — d,(x, m, 77).
For p € N, the quantity p! = H,’(J:l k = 1) is called p—factorial. The discrete factorial function

p + p!is extended continuously, for real p > —1,as p! := 1(P). Immediately from Theorem 1 we read
the next corollary, which presents a formula for p! that does not contain the constant 7.
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Corollary 4 (approximation of continuous factorial function). For p € R* and integers m,r > 0 we have®

' m+1/2 p
Pt = m! (m+p+1) (m+p+1) (32)
(p+1)m) m+1 e

e By; 1 1 0w&rﬂ
- eXp (Z% 1)) <(m+p+1)21‘1 - (m+1)2i1> T (r+1)(zr+1)(+p+m)27+1>'

for some & = 8(m, p,r) from the interval (—1,1).

Using Definition 2 and Theorem 1 we obtain the approximation of generalized Pochhammer’s
falling product presented in the next theorem.

Theorem 2. For real x, p, satisfying x > p > 0 and for integers m,r > 0, we have the equality

X(p) = Qr(x,m, p) - exp (Ar(x,m, p)), 33)

where Qy(x,m, p) = Pr(x — p+1,m, p), that is

Qr(x,m, p) :=

(x—p+1)M ( xp14m T2
(x+1)m (x—p+1+m>
x+1+4+m

.(e

p
) exp (o7(x —p+1,m,p)), (34)
with oy (x, m, p) defined in (15), and

|Bor o]

(1’+1)(21’+1)(x—p+1+m)2r+1 : (35)

|Ar(x,m, p)| < Ay (x,m, p) =

Remark 3. For x € RT and any integer p, satisfying2 < p < x, we obviously have (x — p+1)? < X(py < xP.

In addition, using the inequality (1 + ?)t < eP, true for t > |p|, from (34) we obtain

X+m—p _
Qlemp) <5 B (14 b ) b m) T ’
-1/2 B
() e
< (xx(’:”)) el (xtm)P-1-eF.

Thus, for all integers m > 0 and x, p € RY such that p < x, we have a rough estimate’

x  (x—p)™
xX—p x(m)

Qr(x,m, p) < (x+m)P.

Using Definition 2 and Corollary 3 we read the next result.

Corollary 5. For real p, x satisfying x > p > 0and for integers m,r > 1 such that r < 4m — 1, the inequalities

2 r+1 el
X(p) =~ (1—\/:<m(x_p+1+m)> )Qr(x,m,p) (36)

8
9

taking into account the definition Y-9_; x; =: 0.
interesting for a larger m
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and

2 r+1 2r+1
X(p) < (H\[(m(x_HHm)) )Qr(x,m,rf) (37)

hold.

Thanks to Corollary 5, the approximation X(p) ™ Q:(x, m, p) has the relative error &,(x, m, p) :=

(x(P) — Qr(x,m, P)) /Qr(x, m, p) estimated as

[er (e, m, p)| < r<e7r(x—p+1+m)> ’

true for x, p, m, r that meet all conditions given in Corollary 5.

4. Sequences of Classical Binomial Coefficients

According to (3), the binomial coefficient “x over n”,

<x> B

n n! 1(n)

can be expressed using the upper Pochhammer product in the way, given in the next Proposition.

Proposition 1. For every real x and any integer n > 3, we have'"

(=17 x| (x<0),
(ﬁ)’”= (W @ ) T (1) =) <<, @)
(x—n—l—l)(n) (x > n).

Proof. The first and the last cases are obvious. Relating to the second one, for 0 < x < 1, we have'!

n—1 \_XJ n—1
H(x—k)—n(x—k) H (x —k)
k=0 k=0 k=x]+1
| x] n—1
=TI =[xl +j)- ()" T (k—x)
j=0 k=|x]+1
= (1) (e — LxJ)(LXJH) (x) +1—2) (nflfoj)‘ -

Thanks to Proposition 1, Theorem 1 and (9), we present the following three examples.

10" For x > 0, the floor symbol | x| means the integer part of x.
11 considering the equality [T}_,, yx = 1, for m > n, true by definition
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Example 3. Using m = 4 and r = 1 in Theorem 1 and in (9), we obtain, for some 9 € (0,1) and ©® € (—1,1),

Thus, for every n € N and some ¢ € (0,1) and ® € (—1,1), we have

-3\ (-=1)"-3-5-7-9- (11 +2n)° 11/2\"
(”2) (3—|—21’l)(5+2n)(7+2n)(9—|—2n)~115-\/27Tn(1+ n )

Pluz\iren "1 ) " 3600 1803 143 )

Hence,

bi(n) := (=1)"

1%

_3-5-7-9V§E_ p(11 2 >

157 OP(2 121
1128

~ (1" 1000

)

Vn,  foraninteger n > 1.

) —bi(n)]

1”)|

Figure 7 shows the graphs of the sequences n — |(71%)| and n — , left and right

respectively.
ol 0035},
0030,
8r .
0.025¢ o
61 0020f %
4 0.015}
2 0.010
20 40 60 80 100 20 40 60 80 100

Figure 7. The graphs of the sequences |(_n%)| and |(_n%) — by (n)|/|b1(n)|, left and right respectively.
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Example 4. Setting m = 3 and r = 2 in Theorem 1 and in (9), we get, for some ¢ € (0,1) and ©® € (—1,1),

1 1 1
1 (E)"exp A LA v
2n\n 1-2.n 3-4.-n3 5.6-u5)
Therefore, for any n € N, using some ¢ € (0,1) and © € (—1,1), we find

N (-1)"-3-5-(7+2n)° 7/2\"
< 2) (14 2n)( +2n)(5+2n)-73.\/27rn<1+7>

3
Tra 2 1 L (a1 1 1
o (g5~ 3 3) + 365 (>~ st * )

N ©) R )
1260(1 +3)5  1260n° )

Hence,

Cﬁ) ~ ba(n) = <—1>“% eXp@ _ $> ‘ %
564

~ (=1)"———, foraninteger n > 1.
1000 /n

() ~ba(n)]

Figure 8 shows the graphs of the sequences n > |(_n%)| and n , left and right

bz 1’l)|
respectively.
. 0012} °
020} % 0010F %,
. 0008F %
ISP %, 0006 3
0.004 |
0.10
0.002
20 40 60 80 100 20 40 60 80 100

Figure 8. The graphs of the sequences |(:l%)| and |(7n%) — by(n)|/|ba(n)|, left and right respectively.
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Example 5. Using m = 3 and r = 2 in Theorem 1 and in (9), and considering Example 4, we have
(n)
1 - 1)
5 1 1\ (M) /1y (r=1) 1 (2
2 = (=11 == (=1L
<n> ~n! (=1) (2) (2) 2(n— 1) (=1) n!
1 (<1)"-3-5- (7+2n)° (1+7/2)”
T 2n—1) (1+2n)( 3+2n) 5+42n)-73-y2mn n
Lo 2 L g 1
P (12 (7 7 7) + %(7 TP T (%+3)3)
" ® 1% >
1260(% +3)5 126015 )7
for some ¢ € (0,1) and © € (—1,1). Thus, for every n € N there exists some ¢ € (0,1) and some ® € (—1,1)
such that

(%) _ (_1)n+1 15- (7+2n)3 (1+ 7/2)n
n) (2n—1)- (142n)(3+2n)(5+2n)-73 - 2mn n
. Lra 2 0y, 1 1
P (12(”*1 7 ) + 360( EEEEERANT )

N S) 9 )
1260(% +3)5 126015 )"

Consequently,

' ai1 15 7 1 1
(i) ~ta(n) = (- exp<2 _ 42) T
~ (_1)n+1 282

——— foraninteger n > 1.
1000y 3
1

Figure 9 shows the graphs of the sequences n +— ’(é)’ and n — M left and right

[ratm] 7
respectively.
0041 o
0.008 - .
006 * 0.03}
(UOTT Y 0o %

e ¥ B

20 40 60 80 100

20 40 60 80 100

Figure 9. The graphs of the sequences |(%)| and |(2) %1 — by (n)|/|bs(n)

Remark 4. More about binomial coefficients can be find in [4].

12 using the identity x(") = (x +n — 1)x("~1
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