

Brief Report

Not peer-reviewed version

Whole Exome Sequencing in Acquired Angioedema by Angiotensin-Converting Enzyme Inhibitors: A Pilot Study in Five Patients

[Alejandro Mendoza Alvarez](#) , Juan Antonio Martinez Tadeo , Eva Pérez Rodríguez , Javier Barrios Recio , Jose Carlos Garcia Robaina , Almudena Corrales , [Itahisa Marcelino Rodriguez](#) , Jose Miguel Lorenzo Salazar , [Rafaela Gonzalez Montelongo](#) , [Carlos Flores](#) , [Ariel Callero Viera](#) *

Posted Date: 5 December 2024

doi: [10.20944/preprints202412.0432.v1](https://doi.org/10.20944/preprints202412.0432.v1)

Keywords: acquired angioedema; bradykinin; ACEi; NGS; exome

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Brief Report

Whole Exome Sequencing in Acquired Angioedema by Angiotensin-Converting Enzyme Inhibitors: A Pilot Study in Five Patients

Running title: Utility of the WES in AAE-IECAs

Mendoza-Alvarez Alejandro ¹, Martínez-Tadeo Juan-Antonio ², Pérez-Rodríguez Eva ², Barrios-Recio Javier ², García-Robaina Jose-Carlos ², Corrales Almudena ^{1,3}, Marcelino-Rodríguez Itahisa ^{1,4,5}, Lorenzo-Salazar Jose-Miguel ⁶, González-Montelongo Rafaela ⁶, Flores Carlos ^{1,3,5,6,7} and Callero Ariel ^{2,8,*}

¹ Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife

² Allergy Service, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife

³ CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid

⁴ Preventive Medicine and Public Health Area, Universidad de La Laguna, Santa Cruz de Tenerife

⁵ Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife

⁶ Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife

⁷ Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria 8, Member of Angioedema Committee, Spanish Society of Allergy and Clinical Immunology (SEAIC)

* Correspondence: arielcallero@gmail.com

Abstract: Background/Objectives: One of the most common causes of bradykininergic angioedema (Bk-AE) is related to reduced Bk breakdown after the use of certain medications. This is the case of forms of Acquired Angioedema (AAE) due to the use of angiotensin-converting enzyme inhibitors (ACEi), which are used for the treatment of cardiovascular conditions. The AE causes is not clear in these patients. Given the limited number of AAE-ACEi genetic loci identified by genome-wide association studies, here we opted for assessing the utility of NGS of a panel of relevant genes to aim to identify candidate genetic risk factors in severely affected patients. Methods: Five Hypertensive patients from unrelated families with clinical AAE-ACEi were included in the study. Whole-exome sequencing, variant calling, and annotation techniques were used. ANNOVAR was used to annotate the variant calls. These variant were processed for each patient by Hereditary Angioedema Database Annotation tool and Franklin genomic platform for variant prioritization and clinical impact interpretation. Results: The genetic variant rs6025 in F5 gene was identified in all recruited samples, which has been associated with an increase in blood clotting in AAE-ACEi patients. In two patients, a common synonymous genetic variant of ACE gene was found (rs4343). Finally, we identified the ACE genetic variant rs142947404 in only one patient. This variant has not been assessed in AAE-ACEi. Conclusions: More studies will be needed to clarify the genetics involved in acquired forms of Bk-AE. In this way, we will be able to try to predict future episodes of angioedema due to use of ACEi.

Keywords: acquired angioedema; bradykinin; ACEi; NGS; exome

Introduction

Bradykinin (Bk)-induced angioedema (Bk-AE) is a medical condition often associated with reduced Bk degradation following the use of specific medications. A prominent example is acquired angioedema (AAE) triggered by angiotensin-converting enzyme inhibitors (ACEi) used as a treatment for cardiovascular conditions, referred to as AAE-ACEi. These medications interfere with the function of angiotensin-converting enzyme, leading to an excessive accumulation of Bk in some

patients.[1] AAE-ACEi symptoms can appear at any point during treatment, even after years of otherwise safe use.

Genetic testing in Bk-AE mostly focuses on rare hereditary forms, relying on conventional methods such as Sanger sequencing, Multiplex Ligation-dependent Probe Amplification (MLPA), and PCR. However, these genetic tests are rapidly evolving towards the use of Next-Generation Sequencing (NGS), enabling highly efficient and holistic high-throughput genetic assessments. This transformation has paved the way for the identification of disease-causing variants, even in conditions with small genetic contributions. We have exposed the nuances of Bk-AE, shedding light on the acquired forms, their connection to medication use, and the evolving methods for genetic testing, including Whole Exome Sequencing (WES), as a powerful transformative tool to better understand and precisely manage this multifaceted condition in the patients.[1] Given the limited number of AAE-ACEi genetic loci identified by genome-wide association studies, here we opted for assessing the utility of NGS of a panel of relevant genes to aim to identify candidate genetic risk factors in severely affected patients.

Materials and Methods

Patient description

Five Hypertensive patients from unrelated families with clinical AAE-ACEi suspicion residing in the Canary Islands were included in the study (**Table 1**). The most commonly used drug was enalapril. These patients maintained treatment with ACEi for more than 15 months. The patients had, at least, one life-threatening episode of angioedema. The oropharynx was the most common location. All patients required assistance in the critical care unit. Complement studies were normal in all patients.

Table 1. Patients data collection.

ID	Sex	Age	C4 mg/dl	C1q mg/dl	Drug	HTA Diagnosis	Onset of ACEI	Onset of AE (months)	Localization
AM_2450	Male	64	25,5	18	Enalapril	2014	2014	47	Oropharynx
AM_2419	Male	43	26,1	19	Enalapril	2016	2016	27	Oropharynx
AM_2498	Male	62	24,3	21	Enalapril	2010	2010	82	Oropharynx, lips
AM_2569	Male	49	28	17	Ramipril	2019	2020	16	Oropharynx, lips
AM_2712	Female	90	27,2	ND	Perindopril	2010	2012	78	Oropharynx

ID: Identification number; ND: No data; ACEI: Angiotensin-converting enzyme inhibitors; AE: Angioedema.

Whole-exome sequencing, variant calling, and annotation

DNA was extracted from 4 mL of peripheral blood with Illustra™ blood genomicPrep kit (GE Healthcare; Chicago, IL). DNA concentration was evaluated using the dsDNA BroadRange Assay Kit for the Qubit® 3.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA). Libraries were prepared using the DNA Prep with Exome 2.0 Plus Enrichment Kit (Illumina, San Francisco, CA), with fragment sizes and concentrations assessed on a TapeStation 4200 (Agilent Technologies, Santa Clara, CA) and sequencing obtained with a NovaSeq 6000 Sequencing System (Illumina, San Francisco, CA) with paired-end 101-base reads. PhiX was loaded and sequenced at 1% as an internal control of the experiments.

Sequencing reads were preprocessed with bcl2fastq v2.18 and mapped to hg19/GRCh37 reference genome with Burrows-Wheeler Aligner v0.7.15, [2] and BAM files were processed with Qualimap v2.2.1, [3] SAMtools v1.3, [4] BEDTools, [5] and Picard v2.10.10 (<http://broadinstitute.github.io/picard>) for quality control steps. Variant calling of small germline

variants was performed using the Genome Analysis Toolkit (GATK) v.3.8 for the detection of nucleotide substitutions (SNVs) and small indels (<50 bp) following the best practices. [6] The pipeline description is publicly available (<https://github.com/genomicsITER/benchmarking/tree/master/WES>).

The identified genetic variation was filtered by means of SAMtools and VCFtools based on "PASS" filter, depth of coverage per position ($\geq 20\times$), genotype quality (≥ 100), and mapping quality (≥ 50).

ANNOVAR [7] was used to annotate the variant calls by including the allele frequency in reference populations, gene location, known functional consequences, links with disease based on ClinVar [8] and The Human Gene Mutation Database, [9] and several pathogenicity scores including the Combined Annotation-Dependent Depletion (CADD) in the context of the Mutation Significance Cutoff (MSC), among others. The classification of pathogenic potential of variants was obtained and annotated using InterVar software following the American College of Medical Genetics and Genomics (ACMG) guidelines. [10]

The analysis was carried out at the Teide-HPC Supercomputing facility (<http://teidehpc.itec.es/en>).

Prioritization of potential deleterious variants

The annotated variant calls were processed for each patient by Hereditary Angioedema (HAE) Database Annotation tool (HADA, <http://hada.hpc.itec.es/>), to rule out undiagnosed HAE. This tool facilitates the identification of the variants affecting function as well as other accompanying information from the literature. [11]

We used the Franklin genomic platform for variant prioritization and clinical impact interpretation as a second tier for identifying genetic factors that could be responsible of AAE-ACEi symptoms. For this approach, we extracted from scientific literature the most common affected genes in AAE-ACEi and designed a virtual gene panel composed by *ACE*, *BDKRB2*, *XPEPNP2*, *MME*, *F5*, *ETV6*, *DENND1B*, and *CRB1*. [12] This assessment was done combining the search with a list of phenotypic abnormalities related with Bk-AE (HP:0100665, HP:0025018, HP:0100540, HP:0002098, HP:0040315, HP:0031244, HP:0010783, HP:0002781, HP:0012027, HP:0011855).

Patient population and sequencing summary

WES of the five patients yielded an average of 6.58 Gb sequence, with an average of 100% of on-target reads and a median depth of 139.8 \times , and a transition/transversion ratio in the range of the expected (3.1 to 3.3).

Results and Discussion

HADA did not reveal previously reported HAE causal variants present in these patients, thus reducing the possibility that the symptoms could be due to an undiagnosed HAE. Franklin was able to prioritize interesting likely deleterious variants (Table 2).

Table 2. Prioritized genetic variants in patients with AAE-ACEi.

Individual ID	Gene	RS ID	Chromosome	Position start-end	Reference allele	Alternate allele	Total depth (ref/alt)	HGV codin g	HGV prot ein	ACMG class	ACMG criteria	GnomAD	CADD Phred score	MSC 95% HGM D	Predicted effect*
AM_241 9							156 (0 / 156)			PM1 (moderate), PM5 (moderate), PM2 (supporting)					
AM_245 0							124 (0 / 124)							Increased blood clotting ^{g13}	
AM_249 8	F5	rs6025	1	169,51 9,049 - 169,51	C	T	145 (75 / 70) c.1601 C>T	p.Gln534 Arg	Likely pathogenic	Abse nte, PM5 (moderate), PM2 (supporting)	0.255	12.286			
AM_256 9				9,049			121 (0 / 121)								
AM_271 2							125 (0 / 125)								
AM_241 9	CRB	rs27860 1 98	1	197,32 5,908 -	T	G	101 (0 / 101)			Benign (stable)	BA1 0.796	0.446	11.653	Higher risk of	

AM_245 0	197,32 5,908	117 (0 / 117)	d alon e), BP4 (stro ng), BP 6 (mo dera te)	ACEi induce d angioe dema ¹²
AM_249 8		96 (1 / 95)		
AM_256 9		c.989- 87 (47 / 40) 53T> (intr G onic)		
AM_271 2		102 (0 / 102)		
AM_249 8		213 (138 / 75)	BA1 (stan d alon e), BP6 (ver y stron g), BP 7 (stro ng), BP 7 (sup porti ng)	
AM_271 2	AC E rs4343 17	61,566, 031 - 61,566, 031	G A c.2328 G>A p.Th r776 = Benign 206 (136 / 70)	0.472 7 0.083 0.177 increas ed ACE activit y ¹⁴
AM_245 0	AC E rs14294 17	61,570, 992 - 61,570, 992	C A c.3108 C>A p.As n103 6Lys Uncert ain signifi cance 1 (sup porti ng), PM2 (sup porti ng)	BP4 (stro ng), BP 7 (sup porti ng), PM2 (sup porti ng) Not report ed in the scienti fic literat ure ¹⁵

ACMG: American College of Medical Genetics and Genomics; CADD: Combined Annotation Dependent Depletion; GnomAD: Genome Aggregation Database; HGMD: Human Gene Mutation Database; HGVS: Human Genome Variation Society; MSC: Mutation Significance Cutoff.

The genetic variant rs6025 in *F5* gene was identified in all recruited samples, which has been associated with an increase in blood clotting in AAE-ACEi patients. [13] Franklin also prioritized the intronic variant rs2786098 in *CRB1* gene, likely due to the association between the increased risk of angioedema attacks and ACEi intake in the ONTARGET dataset.¹²

In two patients, AM_2498 and AM_2712, a common synonymous genetic variant of *ACE* gene was found (rs4343). This variant was previously assessed to determine the association with AAE-ACEi, specifically with captopril. [14] In addition, *ACE* gene is one of the mainly components that inactivate the Bk activity. However, this variant has not been associated with AAE-ACEi, and the different pathogenic scores and allele frequency support it as benign.

Finally, we identified the *ACE* genetic variant rs142947404 in AM_2450. This variant has not been assessed in AAE-ACEi despite it is included in ClinVar as variant of uncertain significance. [15] Some of the prediction scores such as SIFT and PROVEAN suggest a deleterious effect. The allele frequency in European populations is <0.1%.

More studies will be needed to clarify the genetics involved in acquired forms of Bk-AE. In this way, we will be able to try to predict future episodes of angioedema due to use of ACEi.

Author Contributions: AMA, IMR, and ACo wrote the first draft of the manuscript and designed the table. AMA and IMR performed the statistical analysis. JAMT, EPR, JBR, and ACo contributed to the sample and clinical data collection. JMLS, ACo, and RGM performed the experiments. CF, ACo, and JCGR designed the project. CF, ACo, and IMR obtained funding. All the authors revised and approved the final version of the manuscript.

Funding: This work was supported by the Ministerio de Ciencia e Innovación (RTC-2017-6471-1; AEI/FEDER, UE), co-financed by the European Regional Development Funds 'A way of making Europe' from the European Union; Cabildo Insular de Tenerife (CGIEU0000219140); Agreements OA17/008 and OA23/043 with the Instituto Tecnológico y de Energías Renovables (ITER); Fundación Canaria Instituto de Investigación Sanitaria de Canarias (PIFIISC19/48); and SEAIC Foundation (18_A01). The content of this publication is solely the responsibility of the authors and does not necessarily reflect the views or policies of the funding agencies.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Marcelino I, Callero A, Mendoza-Alvarez A, et al. Bradykinin-mediated angioedema: an update of the genetic causes and the impact of genomics. *Front Genet.* 2019;10:900. doi:10.3389/fgene.2019.00900
2. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics.* 2009;25(14):1754-1760. doi:10.1093/bioinformatics/btp324
3. García-Alcalde F, Okonechnikov K, Carbonell J, et al. Qualimap: evaluating next-generation sequencing alignment data. *Bioinformatics.* 2012;28(20):2678-2679. doi:10.1093/bioinformatics/bts503
4. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. *Bioinformatics.* 2009;25(16):2078-2079. doi:10.1093/bioinformatics/btp352
5. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics.* 2010;26(6):841-842. doi:10.1093/bioinformatics/btq033
6. McKenna N, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 2010;20(9):1297-1303. doi:10.1101/gr.107524.110
7. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res.* 2010;38(16):e164. doi:10.1093/nar/gkq603
8. Landrum MJ, Lee JM, Riley GR, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. *Nucleic Acids Res.* 2014;42(Database issue):D980-5. doi:10.1093/nar/gkt1113
9. Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. *Hum Genet.* 2017;136(6):665-677. doi:10.1007/s00439-017-1779-6
10. Li Q, Wang K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. *Am J Hum Genet.* 2017;100(2):267-280. doi:10.1016/j.ajhg.2017.01.004
11. Mendoza-Alvarez A, Muñoz-Barrera A, Rubio-Rodríguez LA, et al. Interactive Web-Based Resource for Annotation of Genetic Variants Causing Hereditary Angioedema (HADA): Database Development, Implementation, and Validation. *J Med Internet Res.* 2020;22(10):e19040. doi:10.2196/19040
12. Pare G, Kubo M, Byrd JB, et al. Genetic variants associated with angiotensin-converting enzyme inhibitor-associated angioedema. *Pharmacogenet Genomics.* 2013;23(9):470-478. doi:10.1097/FPC.0b013e328363c137
13. Maroteau C, Kalhan Siddiqui M, Veluchamy A, et al. Exome sequencing reveals common and rare variants in F5 associated with ACE inhibitor and ARB induced angioedema. *Clin Pharmacol Ther.* Published online June 4, 2020. doi:10.1002/cpt.1927
14. Ghafil FA, Mohammad BI, Al-Janabi HS, Hadi NR, Al-Aubaidy HA. Genetic polymorphism of angiotensin converting enzyme and angiotensin II type 1 receptors and their impact on the outcome of acute coronary syndrome. *Genomics.* 2020;112(1):867-872. doi:10.1016/j.ygeno.2019.05.028
15. National Center for Biotechnology Information. ClinVar; [VCV000324414.10], <https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000324414.10> (accessed Aug. 29, 2023).

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.