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Abstract: Reinforcement learning is a major branch of machine learning which uses sequence of past experiences,
to help a system learn and predict optimal behaviour. There are multitude of proposed learning procedures that
have attempted to perform such learning. While typical prediction problems utilized the final outcome to minimize
the error, Sutton in [1] explores "temporally successive predictions" to assign credit for the actions performed.
Similar to a weather forecast for the weekend getting better as time progresses, TD (Temporal Difference) learning
utilizes the same method of updating estimates every time step to progress towards the optimal value. This
technical report discusses the background and intuition behind the original paper [1] by recreating the experiments
and investigates the reproduced empirical results to compare and contrast the assumptions and findings described

in the original literature.

Keywords: supervised learning; reinforcement learning; temporal difference; reproducibility; technical report

1. Introduction

Supervised learning was used to solve most problems including temporal (time step based)
updates with data being the current time step with the label identified based on the actual outcome
or simply the next time step. However, such methods lose the transference of the temporal nature of
these data points leading to a very poor learning experience and generating poor results for testing
data sets or future predictions.

This paper focuses on TD (Temporal Difference) based learning as a method for numerical predi-
cations unlike earlier discussions [2], which focused on Inductive learning to predict diagnostic rules,
or predicting the next character from a partially generated sequence. Rather this paper demonstrates
the ability to perform prediction based on numerical attributes in combination with weight parameters.
Another aspect of this paper is the focus on multi-step temporal problems rather than single-step
problems as their novelty is better demonstrated on multi-step problems.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. TD(0) learning convergence over episodes

1.1. TD (Temporal Difference)Algorithms

The classical Windrow-Hoff rule is used as the baseline for comparison to the TD and supervised
learning algorithms. Both Widrow-Hoff and TD generates the same set of weight changes, however
the first experiment shows how TD achieves this in an incremental fashion. The next experiments
demonstrate how TD(A) produces a varying range of weight changes enabling the process to identify
the best suited parameters with higher accuracy ranges than any supervised learning procedure.

A typical multi-step problem is constructed as a set of observation vectors and their outcome such
as x1, X2...Xy, z where x1, x2...x,, represent the observations while z indicates the outcome. Since the
TD is an incremental and temporal based algorithm, it equivalently produces a vector of predictions
Py, P, P3, ...P, representing an estimate of z at that time instance. The predictions can be constituted
as function of all the earlier predictions and outcomes along with the current sequence, though for
this particular discussion, P is determinant only on the current sequence of observations captured as
X1, X2...Xy, represented as x; as this is also considered to be a Markovian process.

The algorithm uses function approximation by using modifiable weights w as part of the predic-
tions, formulating predictions as a function of x; and w. The intuition lies in the repeated presentations
of experiences/observations to learn the appropriate weights, to learn the variance with low bias, and
predict outcomes based on future observations. This learning structure enables the algorithm to define
the learning process as updates to the w weights vector.

The update process to the weights w, after each observation is determined by Awx;, represent-
ing an increment/decrement to the weights and at the end of each observations-outcome pair, the
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Y.iq Awx; is applied to the weights as w < w + Y/ ; Awx; . The paper also demonstrates both
incremental updates to the weights and delayed updates after accumulating Awx; over a training set
of multiple sequences. A simple depicting of how TD algorithm learns the true values after multiple
presentations, is depicted in Figure (1), where the number of presentations increase and the predictions
get closer to the true value.

1.1.1. Comparison with Supervised Learning

Supervised learning treats the observation outcome sequence as pairs such as (x1, z), (x2,z), ...(x1,z)
while the weight updates are determined based on the error between the predictions at each time step,
and the rate of error updates is determined by a learning rate (¢) and given as Aw; = a(z — Pt) Vo Py
where V, P represents the partial derivatives of P; with respect to each w. If the predictions are con-
sidered a linear function (similar to above) of w and x; at each time step ¢, then they can be represented
as P = w'x; = ¥ w(i)x(i) and performing a partial derivative of this equation with request to V,
on both sides, converts the equation to V,,P; = x; and substituting these two values in the Awx;
expression gives us the Widrow-Hoff rule Aw; = a(z — wat)xt, also known as the delta rule.

The intuition lies in the error difference between the actual outcome z and the prediction P,
represented by (z — w’x;) and its weightage by the observation vector x; to determine the direction
and magnitude of the weight updates to minimize the error. This intuition directly translates to TD,
where the error difference between current prediction and outcome can be computed incrementally as
a sum of difference in predictions where each Awx; depends only on each successive prediction pairs
and previous values of V,P; as (2)

t
Aw; = a(Piyr — Pr) Y Vo Py (1)
k=1

1.1.2. Extension of TD to TD(A) Algorithms

While TD discussed until now, utilizes all the previous values of VP, the paper introduces a
more wider range of tuning capability in the TD algorithm with the introduction of A, representing
the dynamic weightage applied to V,P;, representing the temporal difference predictions. The TD(A)
algorithm garners more sensitivity to the most recent prediction change while a lower weightage to
a prediction change few steps earlier, using an exponential weighting based on their recency and
frequency heuristics. Introducing the new parameter A and updating the earlier equation produces (2)

t
Awy = a(Priq — Pr) Y ARV, Py 2)
k=1

Having A = 1, represents equal weightage and generates the same equivalent equation to the
Widrow-Hoff rule and defined as TD(A = 1) or TD(1).

While TD(1) utilizes all the previous predictions, TD(0) where A = 0, essentially utilizes only
the most recent observation to determine the weight update and represented as Aw; = a (P11 —
P;) Yt _; VPr. .This provides the intuition that any value for A between 0 < A < 1 will produce
different weight changes and their error rates with the outcome would be different based on the
problem space and available training datasets etc., These equations clearly demonstrate the ability
of TD to benefit from the temporal structure of the observations which typical supervised learning
algorithms ignore.

1.1.3. Instability Prevention for Incremental Updates

As illustrated above, TD learning method performs incremental weight updates every step, using
the weighted previous predictions. However, as the paper explains, intra-sequence updates such
as wy41 = w + Awy where Aw; is represented by (1) need to be handled carefully, since they are
influenced by the change in the observation x;and the w;as well, which would lead to instability. To
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prevent the instability due to such oscillation of weight values, the equation is modified to update
the weights only for predictions generated by x;, the observation involved. The modified equation is
given by (3)

t
i1 = Wi+ a(P(xpr1,we) — P(xe, wy)) 2 /\tikva(xtrwt) (©)
k=1

1.1.4. Note on Lambda (A) and Discount Factor (7y)

In a MRP (Markov Reward Process) or MDP (Markov Decision Process) the discount factor ()
helps determine the value function for a particular state based on immediacy of the rewards. It
helps compute the value applicable to a particular state dependent on its distance from the actual
reward available in the future, immediate or delayed i.e., , the discount factor, helps weigh delayed
rewards versus immediate rewards and determine value functions for a state. The A parameter helps
in evaluating the right level of bias to be adopted in choosing the previous predictions to be utilized,
while predicting the outcome based on recent observation. Intuitively, the discount factor () helps
determine the objective to be achieved in the MDP, by discounting possible future rewards to help
determine a particular action in MDPs or compute the value function for a MRP. The discount factor is
independent of parameters of a learning algorithm and specifically used as part of the MDP definition
itself. The lambda (A) parameter on the other hand functions similar to a hyperparameter of a learning
algorithm, lower the errors to the least minimum possible. However, they function outside the MDP
and influence only the range of the learning algorithm and does not affect the reward function.

1.1.5. Temporal Difference (TD) Comparison with Widrow-Hoff & Monte Carlo

Similar to TD, Monte Carlo represents a set of methods to solve learning problems based on
averaging sample returns and utilized in reinforcement learning similar to TD learning. The primary
contrast between TD and MC methods, are the incremental prediction updates performed in TD,
while MC methods requires the experience of a completed episode with actual returns as part of their
learning procedure. While TD perform updates during the sequence of the observations, MC would
update only at the completion of an episode and hence cannot be used in an online learning system.
Widrow-Hoff and TD learning are similar in the aspect of being online-learning procedures since the
perform updates based on the observations and primarily move towards minimizing the RMSE for
the observation-outcome pairs. However, whereas Widrow-Hoff is modelled as a linear function,
Monte Carlo methods are more generalized for any model-free learning problems. Though TD(1) and
Widrow-Hoff produces the same updates, as per the paper, TD can be generalized as well to perform
learning for non-linear functions. As Sutton & Barto note in [3], TD learning is biased towards the
parameters and the bootstrapping performed, and runs the risk of high bias. While Monte Carlo does
not have this issue, it suffers from high variance and requires a large number of samples to achieve
similar levels of TD learning. In conclusion, though Monte-Carlo performs very similarly to TD(1),
there are subtle differences in their learning process and underlying assumptions.

2. Random Walk Problem

A Markov chain in [4] is described as a sequence of possible stochastic events in which the
probability of each event depends only on the state attained in the previous event. In continuous-time,
it is known as a Markov process. Markov Reward Process (MRP) extends the Markov chain by adding
a reward rate to each possible state. The paper utilizes one of the simplest dynamic model systems,
which generates bounded random walks, to demonstrate that the TD methods are more efficient and
learns faster than supervised learning. The bounded random walk MRP demonstrates the Markovian
property where each state depends only on its previous state. The random walk depicts a set of
terminal states and non-terminal states with transition probabilities that can be observed over time
which can be utilized to predict their values using TD.
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A bounded random walk with 7 states, depicted in Figure (2), always begins in the middle state D
and determines the action of going left or right to its neighbour based on a random policy with equal
probability until it reaches one of the terminal states A or G. If the walk reaches the terminal state G,
then the MRP terminates and receives a reward of 1 (z = 1), while on reaching terminal state A, the
outcome is determined as 0 (z = 0).

Begin here
(A)—(8 )—{(c )—{(p )—(& )—(F —(5)

Figure 2. Seven state random walk

The learning problem is structured around this reward outcome where the expected value
functions of each state would be equal to the probability of reaching state G from each of these states
i.e., the probability of reaching G from B,C,D,E and F would be 1/6,1/3,1/2,2/3 and 5/6 respectively.
For simpler computation purposes, each state within a sequence of random walk was represented as a
unit basic vector of length 5 with the iy, position representing the current state. For example, the state
B was represented as Xp = (1,0,0,0,0) while state E was noted as Xg = (0,0,0,1,0). When the walk
is at a particular state where its "1" is at the iy, component of the observation vector, the prediction (P)
at time t, is simply the value of the i, component of the weight vector w since P; = w” x; as depicted
in Figure (3). This one-hot encoding structure helps with applying the incremental updates only for
predictions generated by x;. The MRP is undiscounted for their future rewards and has a discount
factor () as 1.

OEF~O

|

0..[0,0,1,0,0]
E..[0,0,0,1,0] 1
F.2[0,0,0,0,1]

Figure 3. Unit vector representation of simple sequence

For a simple sequence, such as D — E — F — G, the observation sequence would be
x1, X2, x3with predictions as P;, P», P; and z = 1. The prediction differences would be (P2 — P1), (P3 —
P2), (z — P3) and the weight update using the equation (2) is given as (4) for the F — G transition.

Aw; = a(1—-0)(A%[0,0,1,0,0] + A[0,0,0,1,0] + [0,0,0,0,1]) 4)

3. Experiments

The paper performs three computational experiments to analyze the capabilities and performance
of TD(A) algorithm on the bounded random walk MRP in comparison with supervised learning
Widrow-Hoff rule. The experiments also expand on the role of the A parameter and how each specific
MRP can have optimized specific A values. To provide reliable results, the paper generates training
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data with 100 training sets, where each training set consists of 10 sequences and every sequence
represents a terminated episode of bounded random walk as illustrated in Figure (4). Though, the
original paper does not mention the parameters used for training dataset generation, the algorithms
are generalized sufficiently to converge on appropriate values as demonstrated in the later section of
this paper. Though not specified in the original paper, sequences are limited to a length of 20 to derive
similarity with the original paper results. Limiting the sequence length, helps ensure that TD(0) or
lower A values get reward propagation quick enough to reproduce the results. These experiments
are implemented as "Forward view", where the updates for next states are performed incrementally.
However, as the original paper states, performing these experiments using "backward view" should
not alter the results.

D->E->F->G

D>C->B->A

D->C->B->C->A

D->E->F->G

D>C->B->C->A
D->C->B->A
D->E->F->G

D>C->B->C->A
D->E->F->G

D->C-3B->C->A

Figure 5. Weight accumulation and update after each training set

3.1. Experiment 1 — Convergence with Repeated Presentations

The first experiment performs "repeated presentations” of the training data, using the TD(A)
learning procedure, and gathers the average error against a range of A values from A = 1(the Widrow-
Hoff procedure) and A = O(one-step linear TD) and intermediate values between 0 and 1. Performing
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weight updates within a walk sequence, poses the risk of probable instability with continuous weight
alterations, without any convergence. In order to prevent the instability and ensure convergence
of weights for each A value, as the original paper suggested, the algorithm accumulated the weight
differences Aw over a complete presentation of a training set and then the weights are updated for the
next training set, rather than being changed within the execution of a sequence itself. Each training
set was repeated until there were no changes to the weight vectors within tolerance and termed as
"repeated presentations” as depicted in Figure (5)

Figure 3- Average Error on the random-walk problem
under repeated

Widrow-Hoff
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Figure 6. Repeated presentations result — Reproduced (middle), Sutton (left) and their comparison
along with decay (right)

3.1.1. Description and Implementation

As suggested in the paper, a very low value of learning rate («) of 0.0044 was used to ensure
that the weight vectors converged to values closer to the originally presented results. To measure the
performance of the learning procedure, the root mean squared (RMS) error was computed comparing
the ideal values for each state and the predicted values by TD learning process for various values of
A. The step-by-step procedure is available in Algorithm (1), while Figure (5) depicts the application
of weight updates after the complete presentation of a training set each with 10 sequences after
convergence of weight changes. The convergence of weights is determined by measuring the maximum
difference of weight update between iterations to be lesser than a threshold of 0.001.
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Algorithm 1: Average error on random walk problem under repeated presentations

Result: Mean RMSE for each A over all training sets
for each A do
for each training set do
initialize weights;
while weights not converged do
for each episode in the 10 sequences of the training set do
for each state in the episode do
prediction_error = P 1) — Py);
for each previous time steps in the episode do
weighted_errors = Astep=length y state vector ;
Aw+ = a * (prediction_error) = weighted_errors;
end

end
end

end
weights = weights + Y Aw;

end

Compute RMSE for the weights against ideal predictions;
end

Compute RMSE mean for all training sets for that A;

3.1.2. Results

The original results from the paper (deduced from the image) and the reproduction results are
plotted together for comparison in Figure (6). On plotting the results, a surprising discovery is the
poor performance of TD(1) which generates the same weight updates as Widrow-Hoff. Since TD(1)
has the actual outcome available before making the predictions, conventionally, they should have
exhibited the least RMSE. However, on introspection, as the paper denotes, the TD(1) is biased by the
observation-outcome pairs provided as training dataset and minimizes error only for the provided
data, similar to the overfitting phenomenon observed in supervised learning. However, TD(0) on the
other hand converges to the optimal estimates with significantly lesser error than TD(1), in line with
the maximum likelihood estimate of the Markov Reward Process.

3.1.3. Observations and Analysis

The results were in line with the original results made available in the paper. The values for TD(0)
converged to the likelihood estimates around 0.19 similar to the paper. However, for higher values of
A, especially for 0.9 and 1.0, the error values were slightly higher (for TD(1), 0.28 instead of 0.25). This
can be attributed to the randomness of the training data set used and also the sequence run lengths
being generated in the training data sets. TD(1) as described attempts to overfit the training dataset
initially and for longer sequences, incurred more bias leading to a higher RMSE values. However, for
lower A values (A < 0.7), the reproduction results were close to the original paper with deviations less
than 0.01 as illustrated in Figure (6).
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3.1.4. Parameter Determination — Learning Rate

Effect of different a values in TD(0) leaming
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Figure 7. Effect of different « values in TD(0) learning

One of the key parameters, learning rate («), was not made available as part of the original paper
and plays an important role in the determination of the RMSE. This value determines the rate at which
the weight adjustments are assimilated by the learning procedure. To ascertain, the best value for the
random walk example, since the 100 training set consists of 10 sequences each, an experiment inspired
by the random walk example in [3] was conducted to identify the RMS Error over 1000 episodes for
different values of & and also evaluate the convergence of TD(0) algorithm over these episodes. As
illustrated in Figure (7), 0.001 was way too slow to converge within 1000 episodes, while higher values
overfit the training data quickly producing higher errors. The value of & = 0.0044 performed well with
high error at the beginning and converging to low RMSE error at the end of the training episodes.

3.1.5. Standard Error

The paper notes the standard error of results as 0.01, which helps in verifying the statistical
validity of the results being within a 0.01 range of variance and estimates the variability between
samples of the RMSE values for each A. All the calculated values in this experiment have a standard
error less than 0.01 while only A = 1 had a slightly higher value of 0.011 as illustrated in Figure (8).
This verifies the validity of the reproduced results for the first experiment.
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Figure 8. Standard RMSE on the random-walk problem after repeated presentations

3.2. Experiment 2 - Learning Rate « Analysis

The goal of the next experiment is to analyze the effects of learning rate () on TD learning
algorithms and identify the appropriate learning rates for the each of the A values being investigated.
This would generate interesting insights on the learning rate effects and aid in determination of the
best A to solve this MRP.

3.2.1. Description and Implementation

For this experiment, the earlier procedure has been updated as follows. (1) Instead of "repeated
presentations", each training set was presented only once i.e, "single presentation" (2) Weight updates
accumulated over one sequence Aw were updated after each random walk sequence itself, rather
than at the end of each training set as convergence was not required as depicted in Figure (10). The
experiment is conducted over a range of alpha («) values and the weight vectors are initialized at 0.5
for each run to prevent any inductive bias, as the training sets are presented. Root mean squared (RMS)
error was computed between the ideal values and the predicted values as described step-by-step in
Algorithm (2)
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Algorithm 2: Average error on random walk problem after experiencing 10 sequences.

Result: Mean RMSE for each A over all training sets
foreach A do
for each « do
for each training set do
initialize weights;
for each episode in the 10 sequences of the training set do
for each state in the episode do
prediction_error = Py 1) — Py);
for each previous time steps in the episode do
weighted_errors = Astep=length y state vector ;
Aw+ = a * (prediction_error) = weighted_errors;
end
end
weights = weights + Y Aw ;
end
end
Compute RMSE for the weights against ideal predictions;
end
Compute RMSE mean for all training sets for that A ;

end

AW ' v | L T_¥ L] L] .

Figure 10. Weight updates after each sequence

3.2.2. Results

As with the earlier experiment results, TD(1) continues to have the highest range of errors for
all alpha («) values and the learning rate () has a significant impact on the performance of the TD
algorithm. Intermediate A values between 0.2 — 0.3 perform the best with the least error and also
produces minimal error over a range of values. It is also worthy to note that TD(0) performs better
than TD(1) as earlier but produces more error than the optimal values. This lends the intuition that for
an MRP problem such as this 7-state random walk, the influence of the past predictions is necessary to
some extent to drive towards the ideal prediction values faster.

3.2.3. Observations and Analysis

The results match closely with the original results for most of the values. Only the error rate for
TD(A = 1) does not rise at the rate represented in the original paper, though the difference in errors at
« = 0.4 between the paper and the reproduction results are minimal. For other A values, the errors
are close to the original paper, lending the argument that the difference in the values for A = 1 might
be due to the randomness of the training data set and different length of sequences generated for the
original paper, allowing A = 1 curve to accumulate more error than the training sets used for the
reproduction results.
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Figure 3 - Average Error at best a value on random-walk problem
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Figure 11. Single presentation result with best a values for each A - Sutton (left), Reproduced (middle),
and their comparison along with decay (right)

3.2.4. Parameter — Learning Rate Decay

A key distinction was added to the original algorithm for reproduction of the above experiment,
in the form of a learning rate decay to generate plots closer to the original result. As noted in the paper
[1] as part of the convergence proof, "if « is reduced according to an appropriate schedule, then the
variance converges to zero as well". Hence the experiment was conducted with a decay rate of 0.995 to
perform updates lesser as the learning proceeds iterating over the training set. It is known for larger
learning rate values, the weights will oscillate with a magnitude of « and the TD error. The replicated
experiment results without an alpha decay is provided for reference in Figure (9) and as expected, the
errors increase at a higher rate, as continued learning happens throughout the training set. From these
results, though not recorded it is evident that the original paper performed this experiment with a
learning rate & decay schedule.

3.2.5. Optimal Learning Rates

Using the experiment, the optimal learning rates « for each of the A values were determined. The
interesting aspect of this observation was irrespective of decay usage, the optimal learning rates remain
unchanged [see Table (1)). This provides the intuition that for more complex MDPs, the learning rate
might be determined as a hyper parameter for optimal performance.

Table 1. Best a value for each A

A 00 01 03 05 07 09 1.0
« 020 020 020 015 015 0.10 0.05

3.3. Experiment 3—TD(A) with Best Learning Rate («)

The goal for this final experiment was to prove the intuitions around TD(0) and TD(A) on how the
optimal A usually lies between 0 and 1 and the convergence of the TD learning methods at different A
to sub optimal values for the same training set for the given MRP. Weight updates were performed
after each random walk sequence itself and the weight vectors are initialized at 0.5 similar to the
previous experiment.

3.3.1. Description and Implementation

The previous experiment is repeated for a range of A values using the best learning rate «
values (learning rate & producing the lowest RMSE) for each A identified. The training set data is
presented only once and the mean RMSE is computed for the 100 training sets. Similar to the previous
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experiments, weight updates are performed after every sequence itself and the step-by-step procedure
is available in Algorithm (3).

Algorithm 3: Average error on random walk problem after experiencing 10 sequences using
best a for each A

Result: Mean RMSE for each A over all training sets

Input: map of A to best «

for each A do
for each training set do
initialize weights;
for each episode in the 10 sequences of the training set do
for each state in the episode do
prediction_error = Py 1) — Py

for each previous time steps in the episode do
weighted_errors = Astep=length y state vector ;
o = lookup_from_map(A) ;
Aw+ = a * (prediction_error) x weighted_errors;

end
end
weights = weights +) Aw ;
end
end
Compute RMSE mean for all training sets for that A ;

end

3.3.2. Results

Observing the RMSE for each A, the earlier intuition of the best A being around 0.3, is verified.
TD(1) (Widrow-Hoff) results continue to exhibit the highest error values even at its best learning
rate « similar to the earlier experiments. Interestingly, for this Markov reward process, TD(0) has a
slightly higher error rate than the optimal value, which might be attributed to the slowness of reward
propagation in a typically long sequenced MRP such as the random walk. As noted in Table (2) , when
an observation-outcome pair of (xp, xg, xf, 1) is used, the iteration update depicts the slowness of
prediction propagation. In TD(0) only the weights of state F is updated, while in TD(A = 0.3), both
states E and F were updated enabling the procedure to learn faster. The TD(0) does perform better
than the first experiment with lower RMSE at its best learning rate «, however, A o~ 0.3 has the least
RMSE of all A values. Note that this problem does not manifest with repeated presentations as the
propagation happens eventually.

Table 2. TD(0) and TD(A=0.3) update on the first iteration

a=01 TD(0) TD(0.3)
Iteration =0 [0.50, 0.50, 0.50, 0.50, 0.50]  [0.50, 0.50, 0.50, 0.50, 0.50]
Iteration=1 [0.50, 0.50, 0.50, 0.50, 0.55] ~ [0.50, 0.50, 0.50, 0.52, 0.55]

3.3.3. Observations and Analysis

The results match closely with the original paper results with A ~ 0.3 having the lowest RMSE
errors. Performing the experiment with a learning rate & decay, generates results close to the ones
without decay as the presentation of 10 sequences per training set, seems to converge to an optimum
value as depicted in Figure (11). The comparative analysis with the paper results, show a slight
variation for A values 0 and 0.1 indicating that the training dataset from the original paper, gathered
more error due to the slow prediction propagation in comparison to the training dataset used for
reproduction. However, the rest of the results follow closely the paper results within a tolerance of less
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than 0.05. This minor differences are expected due to the randomness of the training data set used and
also possibly due to different sequence run lengths being generated in the training data sets.

3.3.4. High RMSE in TD(1)

In spite of choosing the best suited learning rate &, TD(1) still exhibits the highest RMSE, while an
intermediate value of A ~ 0.3, performs with the least RMSE. Intuitively, the high error rate in TD(1)
can be attributed to the dependency on the final outcome for calculating the predictions, rather than
maximum likelihood estimates. An outcome-based approach such as TD(1) or Monte-Carlo methods
rely on sufficient samples being available to converge to the global optimum values. Especially
with limited training dataset, the effects of a less likely trajectory have a larger influence in TD(1)
in comparison to TD(A) with values lesser than 1. TD(A < 1) performs similar to the maximum
likelihood estimate structure and base predictions on all available trajectories, rather than depending
more on a less likely sample.

4. Additional Experiments

Two additional experiments (not performed in the original paper) were conducted. Training datasets
with varying sizes of 50, 200 and 500 were generated, and repeated presentations was performed
to observe any change as illustrated in Figure (12). The predictions across different episodes do
not converge due to the stochasticity involved with the experience and rather oscillates around the
expected values. However, the behaviour of TD for different values of A remain consistent with the
earlier findings.
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Average Error on the random-walk problem
under repeated presentations for different training set sizes
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Figure 12. Repeated presentations for different training sizes

The second experiment was conducted by limiting the length of a walk sequence for different
values and under "repeated presentations” exhibited very similar behaviour as the previous experiment
of varying training data sizes. The values again fluctuate around the previous experiment results but
demonstrate the same behaviour for different A values as discussed above and illustrated in Figure

(13).
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Average Error on the random-walk problem
under repeated presentations for various episode lengths.
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Figure 13. Repeated presentations for different episode lengths

5. Conclusion

As the original paper concludes, TD learning provides a great framework model to predict
future values incrementally based on observed measurements and actions. Such temporal predication
problems are multi-step and TD learning is well suited to provide such predictions with high fidelity.
TD(1) has proven to be a cheaper and faster alternative to supervised learning while TD(A) provides
an optimal prediction method for finite training datasets, using "repeated presentations".

A key problem with TD learning rises from the bootstrapping process, creating high bias for
predictions based on the initial conditions. Though with infinite samples, the bias gets reduced, they
can still cause significant instability if used on problems with "deadly-triad" [3] of value function
approximation, bootstrapping and off-policy learning. Recent papers have shown usage of experience
replay and other methods that work around the deadly triad restriction. The above experiments
demonstrate that TD learning astutely captures the negative impact of a state accurately and utilizes
that information to determine the outcome, effectively eliminating other noise possibly contributed by
optimistic sequences etc., Though, there are niche hand-crafted MDPs that are capable of posing more
difficulty to TD learning as described in the paper, most common problems are always benefitted by
the usage of TD learning. The paper discusses few semantic cases that could be constructed which fails
with TD, but for most common temporal problems, they perform admirably better. With the surge
of temporal and credit assignment problems, reinforcement learning algorithms are found to be best
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suited to solve such domains and TD performs extremely well with incremental computation and
lesser memory as would be demonstrated in the later portions of the paper.
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