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Abstract: Malware has emerged as a significant threat to end-users, businesses, and governments, resulting in 
financial losses of billions of dollars. Cybercriminals have found malware to be a lucrative business because of 
its evolving capabilities and ability to target diverse platforms such as PCs, mobile devices, IoT, and cloud 
platforms. While previous studies have explored single platform-based malware detection, no existing research 
has comprehensively reviewed malware detection across diverse platforms using machine learning (ML) 
tactics. With the rise of malware on PC/laptop devices, it is now targeting mobile devices and IoT systems, 
posing a significant threat to cloud environments. Therefore, a platform-based understanding of malware 
detection and defense mechanisms is essential for countering this evolving threat. To fill this gap and motivate 
further research, we present an extensive review of malware detection using ML techniques with respect to 
PCs, mobile devices, IoT, and cloud platforms. This paper begins with an overview of malware, including its 
definition, prominent types, impacts, analysis, and features. It presents a comprehensive review of machine 
learning-based malware detection from recent literature, including journal articles, conference proceedings, 
and online resources published since 2017. This survey also offers insights into current challenges and outlines 
future directions for developing adaptable cross-platform malware detection techniques. This survey is crucial 
for understanding the evolving threat landscape and developing robust detection strategies. 

Keywords: Machine learning; Malware detection; Multi-platform malware; Malware analysis; P.C. 
malware; Mobile malware; IoT malware defense; Cloud-based malware detection 

 

1. Introduction 

In recent years, malware has evolved into one of the most pervasive cybersecurity threats, 
capable of targeting not only traditional systems such as PCs, but also mobile devices, IoT, and cloud 
platforms. Malware is becoming increasingly complex and varied by employing methods such as 
code obfuscation, encryption, polymorphism, and metamorphism to avoid detection [1]. The 
increasing sophistication of malware and its capability to bypass conventional security measures 
have caused significant financial, operational, and reputational damage to individuals, businesses, 
and governments. As technology becomes increasingly integrated across platforms, cybercriminals 
can simultaneously exploit multiple systems. Therefore, a thorough investigation of multi-platform 
malware detection is not only timely but crucial for ensuring cybersecurity resilience. 

In the context of cybersecurity, malware refers to malicious software that is intentionally 
designed to disrupt, damage, or gain unauthorized access to computer systems. In contrast, multi-
platform malware is malware capable of infecting and spreading across various types of platforms, 
often simultaneously. Malware can be categorized into several forms depending on its purpose and 
information-sharing system, such as ransomware, spyware, adware, rootkits, worms, horses, botnets, 
trojans, and viruses. Machine learning (ML), in this study, refers to computational techniques that 
allow systems to learn from data and improve their performance over time without being explicitly 
programmed. The application of ML for malware detection has shown significant potential for 
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automating threat identification and reducing detection latency, especially in environments with 
high complexity and variability. 

The increasing prevalence of malware is evidenced by the increasing number of global 
cyberattacks. According to the 2024 Cisco Cybersecurity Readiness Index [2], 76% of firms experience 
malware attacks, as shown in Figure 1. Astra’s Malware Statistics 2024 reports that 560,000 new 
malware pieces are detected daily, adding to over 1 billion existing programs. This large volume of 
malware thwarts organizational security, often resulting in ransomware attacks [3]. The scale and 
impact of ransomware attacks are expected to increase significantly in the future. Cybersecurity 
Ventures predict that victims could pay approximately $265 billion annually by 2031, with costs 
increasing by 30% each year [4]. Malware targeting Linux systems has also increased, with a 35% 
increase in infections and the emergence of new malware families impacting Linux-based platforms 
[5]. 

 

Figure 1. Types of Attacks Experienced by Companies (Published September 2024 by CISCO) [2]. 

Furthermore, 2023 marked a pivotal moment for IoT security threats. A report from Zscaler 
ThreatLabz in October 2023 showed a 400% increase in IoT malware attacks compared to the previous 
year [6]. Overall, the global proliferation of mobile devices, IoT systems, and cloud computing has 
expanded the attack surface, providing cybercriminals with new vectors for deploying malware. 
Hence, new challenges have arisen for malware detection. Traditional malware detection methods 
tailored to specific platforms, such as PCs or mobile devices, are insufficient to counter these new 
threats. This underscores the necessity of adopting a unified, multi-platform approach to malware 
detection that can provide holistic defense strategies. 

In response to this evolving threat landscape, numerous studies have been conducted with an 
increasing focus on machine learning (ML), owing to its ability to handle the complexity of modern 
threats. Traditional approaches to malware detection, such as signature-based and heuristic methods, 
have proven inadequate for combating sophisticated and polymorphic malware, particularly in 
dynamic, multi-platform environments. Thus, the development of more advanced detection 
techniques, such as behavior-based and machine learning (ML)-driven approaches, has become 
essential in modern cybersecurity defenses 

Despite the rising threat of multi-platform malware, existing research on malware detection 
remains predominantly focused on single platforms, either PCs or mobile devices, with relatively few 
studies addressing IoT or cloud environments. Moreover, these studies often fail to account for the 
growing interconnectivity between platforms, which allows malware to migrate easily from one 
system to another. This creates a significant gap in the literature, as there is no comprehensive review 
of machine learning techniques that address malware detection across PCs, mobile devices, IoT, and 
cloud environments. 

Multi-platform malware detection is, therefore, critical for several reasons. Cyberattacks today 
often exploit the weakest link across interconnected systems. For instance, a single vulnerability in 
an IoT device can be leveraged to infiltrate broader networks, including enterprise cloud systems. 
Second, malware has evolved to operate across multiple platforms, with many modern malware 
variants designed to be adaptable to different operating environments. Mirai, a botnet initially 
designed to target IoT devices, was later modified to attack cloud-based systems and enterprise 
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networks. Hence, developing unified defense strategies is essential, as organizations adopt hybrid 
environments that combine on-premises and cloud-based systems. 

This survey aims to fill this gap by providing a holistic review of the recent literature on malware 
detection using ML methods across diverse platforms. This paper reviews the state-of-the-art ML 
techniques used to detect malware on PCs, mobile devices, IoT systems, and cloud environments. It 
also outlines the specific challenges encountered on each platform and provides insights for adapting 
techniques for cross-platform usage. In doing so, this survey not only serves as a valuable resource 
for researchers and practitioners in cybersecurity, but also offers a foundation for future research into 
adaptable, cross-platform malware detection strategies using machine learning. 

The key contributions of this study are as follows. 
 To the best of our knowledge, this is the first comprehensive review of malware detection in 

PCs, mobile devices, IoT systems, and cloud environments using machine-learning techniques. 
 This study details the various types of features (e.g., static, dynamic, memory, and hybrid) used 

to train the ML models. It also discusses the malware landscape across platforms and identifies 
both platform-specific challenges and cross-platform issues that affect the development of 
effective ML-based malware detection techniques. 

 This study examines existing malware detection techniques using various ML and DL models 
and provides the overall research trends observed for each platform. 

 This study highlights gaps in the existing research and proposes future directions, such as 
developing adaptable, scalable, and efficient ML algorithms for multiple platforms and 
promoting unified cross-platform malware detection approaches. 
The structure of this survey is organized as follows: Section 2 provides a comparison with 

previous related work. Section 3 provides an overview of malware, including malware definitions, 
leading malware threats, malware analysis, and features used to build the ML model for malware 
detection. Section 4 describes the malware landscape across diverse platforms. Section 5 presents an 
overview of machine learning algorithms for malware detection. Section 6 provides an extensive 
review of malware detection using ML techniques with respect to PCs, mobile devices, the IoT, and 
cloud platforms. Section 7 presents the challenges associated with platform and cross-platforms. 
Section 8 presents the limitations of the existing literature and future research directions. Finally, 
Section 9 concludes the paper. 

2. Comparison with Previous Related Surveys 

This section examines survey papers on malware detection via machine learning from 2017 
onwards, highlighting the gaps that we intend to address. This will help researchers to establish a 
baseline for developing countermeasures. Table 1 compares our survey with existing surveys. 

Existing surveys on malware detection using machine learning and deep learning typically focus 
on specific platforms such as Windows[7–9,11] or Android [10,12,13]. A small number of studies 
[17,18] have examined both Windows and Android. Some surveys [14–16] have addressed malware 
classification in IoT platforms using ML and DL techniques. However, many current studies lack a 
comprehensive understanding of the IoT malware. Few studies have focused on cloud malware. Belal 
and Sundaram [19] provided a taxonomy of ML/DL-based cloud security, addressing issues, 
challenges, and trends, whereas Aslan et al. [20] discussed behavior-based malware detection in the 
cloud. Table 1 also reveals that several surveys have focused exclusively on DL technologies for 
malware detection, such as those in [9,17,21,22], without focusing on traditional ML or ensemble 
learning techniques. However, traditional ML and ensemble learning offer distinct advantages 
including lower computational requirements, faster training times, and better performance on 
smaller datasets.
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Table 1. Summary of existing review papers for comparison with our study (myth: √ indicates complete information provided, ≈ indicates partial information provided, and × indicates 
no information provided). 

Papers Year Main contribution Insights into malware 
 

ML-based malware detection in diverse 
platform 

Challenges 
identified 

Latest 
prominent 
malware 
variants 
 

Platform-
based 
malware 
taxonomy  
 

Analysis 
methods (Static, 
dynamic, 
memory and 
hybrid) 

Feature 
details 
 
 

Pcs Mobile IoT Cloud 

Windows Linux 

[7] 2021 Survey on malware detection 
techniques using machine learning 
algorithms. 

× × √ × √ × × × × × 

[8] 2019 Survey on sophisticated attack 
and evasion techniques used by 
the contemporary malwares. 

× × ≈ × √ × × × × × 

[9] 2022 This survey is on the use of Deep 
Learning-based malware 
detection. 

× × ≈ × √ × × × × × 

[10] 2021 Reviewed machine learning 
methods for Android malware 
detection. 

× × √ × × × √ × × × 

[11] 2020 Study on traditional and state-of-
the- art ML techniques for 
malware detection 

× × ≈ √ √ × × × × × 

[12] 2023 DL approaches for malware 
defenses in the Android 
environment 

× × √ √ × × √ × × × 
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[13] 2020 Android malware detection using 
deep learning 

× × ≈ √ × × √ × × × 

[14] 2023 Survey on IoT malware taxonomy 
and detection mechanisms. 

× ≈ × × × × × √ × √ 

[15] 2023 Discussed IoT dataset use to 
evaluate the machine learning 
techniques. 

× × ≈ × × × × √ × × 

[16] 2023 Review on emerging machine 
learning algorithms for detecting 
malware in IoT. 

× × × × × × × √ × × 

[17] 2024 Modern deep learning 
technologies for identifying 
malware on Windows, Linux, and 
Android platforms. 

× × √ ≈ √ √ √ × × × 

[18] 2021 Computer-based and mobile-
based malware detection and, 
their countermeasures are 
presented. 

× × ≈ × √ × √ × × √ 

[19] 2022  ML and DL based defenses 
against attacks and security issues 
in cloud computing is provided. 

× × × × × × × × √ √ 

[20] 2021 Behavior-based malware 
detection system in the cloud 
environment 

× × ≈ × × × × × × × 

Our 
survey 

2024 Survey on malware detection in 
PC, mobile, IoT and cloud 
platform using ML techniques. 

√ √ √ √ √ √ √ √ √ √ 
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These benefits highlight the importance of exploring these techniques along with DL for 
comprehensive malware detection strategies. Moreover, existing surveys fail to comprehensively 
address malware detection across platforms such as Linux, macOS, iOS, IoT, and the cloud, which 
are also frequently targeted by malware. The lack of platform diversity in current surveys highlights 
the need for an inclusive review that covers various environments to thoroughly understand 
malware-detection methods. To fill these gaps, this study provides a comprehensive survey of recent 
ML and DL approaches for malware detection across Windows, Linux, macOS, Android, IoT, and 
cloud platforms, which are frequently targeted by malware. 

3. Malware Fundamentals 

This section explores the fundamental aspects of malware, including its definition, type, and 
disruptive impact on systems and data. It also highlights recent and significant malware threats, 
discusses standard analysis techniques, and examines the critical features that enable machine 
learning to detect and combat these threats. 

3.1. What is Malware 

Malware refers to malicious software designed to compromise computer systems or to gain 
unauthorized access. Despite advancements in cybersecurity, malware remains a significant threat, 
disrupting systems by stealing information, rendering services unavailable, or damaging files. 
Common malware categories include viruses, worms, trojans, backdoors, spyware, adware, botnets, 
rootkits and ransomware. Each exhibits distinct behaviors: viruses modify or delete files, worms self-
replicate across networks, rootkits allow remote control, and Trojans masquerade as legitimate 
applications for covert activities. Adware displays unwanted ads, spyware tracks user activities, 
botnets exploit resources, backdoors bypass security for unauthorized access, and ransomware 
encrypts data, demanding payments for decryption [23]. This classification highlights the diverse 
operational goals of the malware. 

3.2. Leading Malware Threats in the Current Cyber Landscape 

The cyberthreat landscape is dominated by sophisticated malware that targets multiple 
platforms. Malware increasingly employs evasive, polymorphic, and adaptive tactics to evade 
traditional security measures, thereby posing detection and mitigation challenges. Cybercriminals 
also leverage AI-powered malware, further complicating defense. 

In this section, we examine prevalent malware threats, their characteristics, attack methods, and 
associated damages, underscoring the need for cybersecurity professionals to remain informed and 
proactive against these evolving threats. 

Ransomware: Ransomware continues to be one of the most widespread and damaging forms of 
malware. The COVID-19 pandemic led to an increase in ransomware activities, which have further 
escalated in 2023. Ransomware attacks have shifted from targeting large enterprises with complex 
methods to widespread attacks on small businesses facilitated by Ransomware-as-a-Service kits. 
Currently, LockBit is the most prevalent ransomware toolset. In February 2024, an international law 
enforcement operation seized 34 LockBit servers; however, LockBit3.0 quickly emerged just five days 
later [24]. 

Ransomware attacks target a wide range of computing devices, including desktops, mobiles, 
IoT, and cloud environments. Cybercriminals employ various attack vectors such as phishing spams 
and exploit vulnerabilities to deliver malicious files [25]. The ransomware then encrypts the critical 
files and collects information regarding the target. They frequently connect to remote servers to 
obtain additional components or transfer files. Victims receive recovery instructions, often through 
ransom notes or desktop changes, in exchange for payments. 

Recent high-profile ransomware attacks by Conti, REvil, Darkside, and LockBit 3.0 have 
significantly impacted global infrastructure, healthcare, and businesses. For instance, Conti’s attack 
on Costa Rica’s government led to a national state of emergency [26], whereas REvil’s Kaseya breach 
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demanded a $70 million ransom [27]. Darkside is known for stealthy compromises such as the 
Colonial Pipeline incident, costing $5 million [28]. LockBit 3.0 has also carried out significant attacks, 
such as the Accenture breach, demanding a $50 million ransom [29]. 

Advanced Persistent Threats (APTs): Advanced Persistent Threats (APTs) have become a 
growing concern in recent malware trends, and are projected to reach a $12.5 billion market by 2025 
[30]. APTs are characterized by their sophistication, advanced tactics, and prolonged, targeted 
campaigns against digital infrastructure for sabotage or espionage. They differ from conventional 
cyber threats in that they are more persistent and complex than other malware, such as ransomware. 

APTs leverage obfuscation, anti-analysis tactics, and AI to evade detection and create zero-day 
exploits [31]. It operates through a multistage process to infiltrate and persist within a network. They 
start with reconnaissance, gathering information via open-source intelligence (OSINT) and social 
engineering, followed by initial access by spear phishing or system exploits. Attackers establish 
control, escalate privileges, move laterally, and exfiltrate data while maintaining a stealth to evade 
detection. 

Prominent APT attacks include Stuxnet, which disrupts Natanz’s centrifuges through zero-day 
vulnerabilities and fake software signatures [32]. The SolarWinds attack is another example of APT 
that deploys malware via a supply chain compromise in the Orion system [31]. 

Cryptojacking: Cryptojacking is a stealthy cyberattack in which malware is typically injected 
via malicious links into a network of devices and runs covertly in the background to harness the 
victim’s computing resources for mining cryptocurrency. In 2023, cryptojacking incidents 
skyrocketed, exceeding the previous year’s total by early April and reaching $1.06 billion by the year-
end–a 659% increase [33]. Unlike ransomware, cryptojacking avoids direct payment demands and 
uses obfuscation to avoid detection. Figure 2 [34] illustrates how this process works step-by-step. 

 
Figure 2. Step-by-step process of cryptojacking  [34]. 

Cryptojacking targets various platforms, including desktops, servers, mobile devices, and cloud 
services, using different forms of malware or scripts. 

Browser-based cryptojacking: This form of cryptojacking uses malicious JavaScript on websites to 
exploit user devices for cryptocurrency mining. It requires no software installation but may cause 
increased CPU usage, slowing down, or overheating devices. 

Host-based cryptojacking: In host-based cryptojacking, attackers misuse the CPU or GPU of a 
system to mine cryptocurrencies. Unlike browser-based methods, this approach involves direct 
installation of malicious scripts on a host, often through phishing or bundled software. These scripts 
exploit the system’s resources to convert cryptocurrencies. 

Cloud cryptojacking: Cloud cryptojacking involves exploiting server and container vulnerabilities 
to mine cryptocurrency, impacting providers and customers through financial losses and reduced 
performance. 

Notable cryptojacking incidents include the hacking of a European water utility, Tesla’s cloud 
breach, and the cryptojacking code hidden on the Los Angeles Times website in 2018 [33,34]. 
Moreover, in 2020, the U.S. Department of Defense found cryptojacking malware on its servers [35], 
and in 2019, a Russian nuclear facility employee was fined $7000 for mining Bitcoin illegally [36]. 
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Spyware: Spyware enables cybercriminals to infiltrate networks by stealing sensitive data such 
as login credentials, screenshots, and chat histories. Pegasus, a well-known spyware variant, steals 
data from mobile devices and leverages BYOD policies to infiltrate secure networks. It provides 
cybercriminals with insider access, enabling them to locate and compromise valuable assets such as 
emails, SMS messages, app data, and multimedia. Its ability to bypass multi-factor authentication by 
extracting one-time passwords makes it even more dangerous [24]. 

Wiper malware: Wipers are malicious programs that permanently destroy user data and target 
both public and private computer networks. Threat actors use wipers to conceal their intrusion and 
to hinder the victim’s response. Nation-state attackers deploy them to disrupt supply chains and 
military operations, while “hacktivists” use them to impede business activities in response to 
perceived injustices [37]. 

Recent examples include WhisperGate malware that targeted Ukraine in January 2022 [38] and 
HermeticWiper, which impacted various Ukrainian organizations in February 2022 [37]. 

Remote Access Trojans (RATs): RATs, a specific trojan type, are popular with cybercriminals 
for remotely controlling the endpoint devices. They trick users to run malicious codes by masking 
them as legitimate applications. Ghost, a Remote Access Trojan, controls the infected endpoints. 
Unlike typical malware, Ghost is manually deployed, suggesting that victims are already 
compromised by other malware [24]. 

Understanding the current landscape of malware threats is crucial for developing robust 
countermeasures and improving the detection capabilities. 

3.4. Malware Analysis 

In this subsection, we discuss various malware analysis methods that are crucial for the 
development of malware detection systems. The main goal of malware analysis is to identify the 
characteristics and purposes of suspicious files. Significant approaches for conducting malware 
analysis across platforms like Windows, Linux, and Android include [39]- 
 Static analysis 
 Dynamic analysis 
 Memory analysis and 
 Hybrid analysis 

Static analysis techniques extract static signatures, features, or patterns from binary files without 
execution. This method is fast, secure, and efficient in identifying known malware samples, and does 
not require kernel privileges or a virtual machine. However, static analysis has significant limitations: 
it cannot examine malware strains using obfuscation techniques and is ineffective against malware 
that uses packers to compress and encrypt payloads [40]. 

Conversely, dynamic analysis involves executing malware in a controlled environment to 
observe runtime behavior. This enhances the understanding of malware functionality and enables 
the identification of previously unknown or zero-day malware. However, this approach is often 
slower and more time-consuming [40]. Additionally, dynamic analysis also has limitations in 
tracking highly sophisticated malware, such as fileless (memory-resident) malware. 

Consequently, Memory analysis offers an alternative method for detecting malicious behaviors 
of fileless malware by capturing and examining volatile memory images during execution. While 
encryption and packing can conceal suspicious files, all processes are visible in the memory during 
runtime. Malware must disclose critical information (e.g., logs, code, and data segments) for 
operational functionality, making detection possible. Volatile memory analysis detects malware by 
examining its presence in the system’s RAM, identifying fileless malware that evades detection by 
not leaving traces on hard drives.[41]. 

The hybrid malware analysis methodology combines multiple analysis approaches, offering 
greater effectiveness than a single analysis technique. 

3.5. Features Used in ML-Based Malware Detection 
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This subsection provides an overview of the features extracted from various platforms, each of 
which uses distinct file formats and yields different features. In Windows, malware features are 
extracted from executable (EXE) files, whereas Linux malware is analyzed using Executable and 
Linkable Format (ELF) files. In macOS, the Mach-O file format is used to analyse and extract the 
features. Android relies on APKs, and iOS utilizes IPA files. The APK file enables the extraction of 
static features from classes.dex files and dynamic features from the AndroidManifest.xml file [42]. 
IoT platforms derive features from firmware binaries, whereas cloud environments use container 
images and VM disk files, such as Docker and VMDK, for feature extraction. Table 2 classifies 
platform-specific features into static, dynamic, and memory-based features suited to different file 
formats and operating environments. 

Table 2. Categorization of Platform-Specific Features: Static, Dynamic, and Memory-Based 
Approaches Across File Formats and Operating Environments. 

  File Format Static Features Dynamic Features Memory 
Features 

Windows Executable 
(EXE) files 

PE headers 
information: 
Import/export address 
tables, section headers, 
entry point address, 
date timestamp, code 
section size. 
File metadata: Size, 
creation/modification 
dates, access 
permissions. 
Strings: IP addresses, 
domain names. 
Opcode sequences: An 
opcode is an instruction 
executed by a CPU, 
describing an 
executable file’s 
behavior. Hence, 
opcode sequences are 
the specific sequences 
of operations extracted 
from the binary code.  

API Calls: Sequence and 
types of Windows API 
calls (e.g., CreateProcess, 
WriteFile) 
Registry modifications: 
Registry key creation, 
deletion, or modification. 
File system 
modifications: Deletes, 
create, or overwrites the 
existing file, encrypts all 
or a subset of files in case 
of ransomware. 
Host logs: Events 
extracted from host logs. 
Network activity: Source 
and destination IP 
addresses, TCP ports, 
Domain Names System 
(DNS) requests, and 
network protocols (e.g., 
HTTP, HTTPS, SMTP 
etc.)  
Resource usage: Higher 
CPU or memory usage 
may indicate the 
presence of malware in 
the system.  

Windows 
memory 
dumps 

Linux  Executable 
and 

ELF header 
information: Malware 

System-call patterns: 
Frequency and type of 

Sections and 
Segments: 
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Linkable 
Format 
(ELF): code, 
data, and 
metadata for 
execution. 

developers manipulate 
ELF headers to evade or 
crash standard analysis 
tools [43]. 
Internal Libraries: 
Most Linux malware is 
statically linked to its 
libraries, eliminating 
external dependencies 
[43]. 
Shared libraries: List of 
dynamically loaded 
libraries. 
Sections and segments: 
Information on the .text 
(code) and .data (global 
variables) segments. 

system calls. 
Network behavior: 
Monitoring 
outgoing/incoming 
connections and socket 
creation. 

Memory 
segments 
(.text, .data, 
.bss). 

macOS Mach-O 
files: native 
executable 
format for 
macOS. 

Code signatures: 
Presence and structure 
of code signing. 
Dynamic libraries: 
Information on loaded 
libraries (DYLIBs). 

File activity: Monitor file 
creations, deletions, 
modifications, and access 
patterns. 
Inbound and outbound 
traffic: observe and 
analyze all network 
traffic, including DNS, 
HTTP requests, and 
other communication 
protocols. 
Service start/stop: Track 
each modification linked 
to service operation. 
TI Reputation services: 
Utilize threat intelligence 
feeds to detect malicious 
files, IP addresses, and 
domains.  

Sandboxing: 
Memory 
protection 
through 
entitlements. 

Android APK 
(Android 
Package Kit) 
files: 
-It is a 
compressed 
archive that 

Strings: Domain names, 
IP addresses, and 
ransom notes in case of 
ransomware attack 
Permissions analysis: 
The set of permissions 
requested by the app to 

Behavioural features: 
Network 
communication, SMS, 
data storage behavior. 
File system features: 
Similar to PCs, features 
extracted from a mobile 

Embedded 
files: Presence 
of assets (e.g., 
shared 
libraries) 
impacting 
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includes all 
resources 
needed to 
distribute 
and install 
applications 
on Android 
devices.   

the users (e.g., camera 
access, network 
communication, 
Bluetooth, contacts, and 
more). 
Manifest information: 
Details about 
application components 
(e.g., activities, services, 
and receivers),  
Intents: Allows 
communication 
between various 
components of an app. 
API calls: API calls 
enable inter-application 
communication and 
monitoring them can 
detect malicious 
behavior. 

device’s file system can 
indicate the presence of 
malware. 
User interaction: 
Detecting ransomware 
can be achieved by 
correlating user 
interactions with 
application runtime 
events [44]. 
System resource 
analysis: CPU, memory 
and baterry, process 
reports and network 
usage. 
Network traffic 
analysis: URLs, IPs, 
Network Protocols, 
Certificates, Non-
encrypted data 

 

  

memory 
allocation. 
Memory 
dumps: A 
snapshot of 
Android’s 
memory that 
captures all 
data and 
processes in 
the RAM at a 
specific time, 
including 
system 
processes, 
application 
data, and 
temporary 
data from 
various 
programs 

iOS  iOS App 
Store 
Package 
(IPA): 
specific to 
iOS for app 
distribution. 

Code signing: 
Verification of 
signatures. 
Sandboxing and 
entitlements: 
Permission restrictions. 

Objective-C method 
calls: Runtime behavior. 
Dynamic behavior: API 
usage patterns (e.g., 
contacts, location access). 
Data encryption: 
Encrypted data usage. 

Entitlements: 
Defines 
memory 
boundaries 
through 
sandboxing. 

IoT  Various 
formats 
(e.g., BIN, 
HEX, Linux 
executables). 

Firmware version: 
Metadata, updates, and 
patches. 
Opcode sequences: 
extracting operational 
codes after 
disassembling the 
binary file. 
Control flow graph 
(CFG): extracting from 
the assembly file 

API calls: extracting 

from the binary  

Network traffic: Service 
type (http, smtp, ftp etc.), 
Device communication 
protocols (e.g., MQTT, 
CoAP), Packet size 
transmitted by Source IP 
address, etc. 
Device-specific 
behavior: Interactions 
with sensors, actuators, 
device ports. 
System-calls: 
Timestamp, return value, 

System-call 
sequences: 
System-level 
commands 
specific to 
device 
memory. 
Memory 
mapped IO: 
Monitoring 
interactions 
with memory 
mapped I/O 
(MMIO). 
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arguments, and name of 
each System-calls. 
CPU usage, Process 
usage, Ram usage and.  

Memory 
buffer usage: 
Analysis of 
memory 
buffers for 
potential 
overflows.  

Cloud VM disk 
images (e.g., 
VMDK, 
QCOW2), 
container 
formats 
(e.g., Docker 
im 
ages). 

VM metadata: 
Hypervisor information 
(e.g., VM details). 
Data storage patterns: 
Interactions with cloud 
storage. 
Strings and n-grams 

API usage patterns: 
Cloud-specific API calls 
(AWS SDK, Google 
Cloud API). 
Container activity: 
Monitoring processes, 
network activity in 
containers. 
System calls: Extracted 
from the interactions 
between applications 
and the OS’s kernel 
during runtime. 

Virtual 
memory 
dumps: 
Contains 
memory-
specific 
features 
(system calls, 
memory 
access).  

Static features derived from binaries or metadata without execution include file headers, opcode 
sequences, and metadata, which are essential for assessing executables and packages on Windows, 
Linux, macOS, Android, and iOS. Dynamic features capture behavior during execution, including 
system calls, API invocations, network activities, and registry or file system changes, aiding in the 
identification of complex or evasive malware. Memory features, such as memory allocation patterns 
and mapping, are vital for detecting sophisticated threats, particularly in IoT and cloud 
environments. This structured feature analysis underpins the implementation of machine learning 
models attached to each platform’s unique characteristics. 

4. Malware Landscape Across Platforms 

The proliferation of digital technologies has expanded the malware threat landscape across 
various platforms including PCs, mobile devices, IoT, and cloud systems. Understanding the targeted 
operating system or device is crucial to comprehending malware behavior, as malicious software is 
often crafted for specific platforms that exploit system-specific vulnerabilities. In this study, the terms 
“platform” and “operating system” will be utilized synonymously, and we classify the target 
platforms for malware into four primary categories: PCs, mobile devices, IoT and cloud systems. Each 
platform has unique vulnerabilities, attack vectors, and security issues that require distinct detection 
and mitigation strategies. This section provides an overview of the malware landscape across these 
platforms, as shown in Figure 3. 
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Figure 3. Taxonomy of malware landscape across various platforms. 

4.1. PCs 

The PC platform is a primary target for malware, facing various types that exploit specific 
vulnerabilities in Windows, macOS, and Linux environments. This study examines the malware 
landscape for each operating system, emphasizing common threats, typical attack vectors, and 
mitigation mechanisms. 

4.1.1. Windows 

The Windows platform remains a primary target for malware owing to its extensive use in 
personal and enterprise settings. Malware types include viruses, worms, trojans, ransomware, 
spyware, adware, and rootkits, each threatening system integrity and data security. Cybercriminals 
exploit phishing emails, malicious websites, software vulnerabilities, and removable media to initiate 
infection. Advanced techniques such as polymorphism, obfuscation, and encryption are used to 
avoid traditional detection, necessitating adaptive and robust detection mechanisms [8]. The 
platform’s broad software ecosystem provides numerous entry points for attack. Although Microsoft 
employs security measures, such as Windows Defender and regular updates, their effectiveness 
depends on users practicing safe computing and maintaining updated systems. The impact of 
malware on Windows can lead to system performance issues, data theft, system crashes, and financial 
losses, thereby highlighting the significant consequences of these attacks. 

4.1.2. Linux 

Linux has become the leading operating system in multi-cloud environments, powering 78% of 
the world’s top websites. This widespread use has increased the scale and complexity of linux-based 
systems [45]. The Linux OS supports various distributions for diverse hardware requirements, 
making it integral to many Internet-based desktop devices and a target for cybercriminals. The rise 
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in Linux-based malware attacks is mainly due to the prevalence of IoT devices running Linux-based 
firmware, such as smart home assistants, security cameras, and industrial control systems. These 
devices often lack robust security mechanisms, making them susceptible to attacks that can 
compromise the ecosystem. In addition, as more companies adopt Linux-based servers and networks, 
hackers increasingly target these systems for potentially greater rewards. Trend Micro’s research 
shows that 90% of public cloud workloads run on Linux, further motivating hackers to develop Linux 
malware [46]. Recently, Linux-based systems have become increasingly targeted for various malware 
attacks. According to the VMware threat report [45], these devices face an increase in cryptojacking 
malware, remote access trojans (RATs), SSH brute force attacks, web shell malware, and ransomware. 
The Trend Micro Linux Threat Landscape Report indicated a 62% increase in ransomware attacks on 
Linux from 2022 to 2023. The report identified that KillDisk Ransomware, among others, specifically 
targeted financial institutions, exploiting phishing attacks and outdated Linux systems and kernels. 
This report also states that Webshell exploits are the most common Linux malware at 49.6%, followed 
by Trojans at 29.4%, whereas backdoors and crypto miners are less prevalent [46]. Cybercriminals 
primarily exploit web vulnerabilities such as SQL injection, XSS, and SSRF to compromise web 
resources. They also targeted cloned websites, misconfigured firewalls, and SSH vulnerabilities to 
execute malware attacks on Linux systems. 

4.1.3. macOS 

The evolving macOS threat landscape necessitates greater vigilance from users and developers. 
Despite macOS’s reputation for robust security, it remains vulnerable to cyber threats in 2022; 
malware detection on macOS rose significantly by 165%, accounting for 6.2% of the total increase 
from the previous year [47]. 

MacOS employs security features such as XProtect and Gatekeeper; however, they have 
limitations. XProtect’s signature-based detection is ineffective against unknown or modified malware 
and lacks the dynamic scanning capabilities of third-party EDR tools. Gatekeeper is another security 
feature that blocks unsigned or malicious Internet applications, verifies developer IDs, and checks 
for alterations after signing. However, attackers can bypass this by using stolen developer IDs or 
exploiting legitimate apps to run malicious code. Additionally, while Sandboxing applications limit 
access to vital system resources, attackers have devised techniques to escape and obtain illicit access 
[47]. 

The most prevalent malware on macOS include adware, potentially unwanted programs (PUPs), 
backdoor spyware, remote access Trojans, stealers, ransomware, and other emerging malware types 
[47,48]. Over the years, new malware threats have emerged, including AppleJeus, which shifted 
tactics from Windows to macOS in 2018, and NukeSped, which functions as ransomware, spyware, 
and stealer and was detected in 2019. SquirtDanger, a macOS-targeting malware with advanced 
evasion techniques, was discovered in 2022 [47]. Common attack vectors include malvertising, 
phishing emails, malicious URLs, and unpatched vulnerabilities with persistent macOS 
vulnerabilities. 

4.2. Mobile Devices 

The increasing prevalence of mobile devices in modern society has made them prime targets for 
malware, particularly for smartphones. Malware developers primarily target Android and iOS 
operating systems, which dominate the global mobile OS market. 

4.2.1. Android 

The widespread adoption of Android platforms on smartphones, tablets, and IoT devices has 
increased its vulnerability to malicious cyber-attacks. The flexibility, cost-effectiveness, and 
computing power of Android devices have increased their popularity. They offer user-friendly third-
party applications, such as games, fitness, monitoring, and healthcare, accessible globally via on-
demand internet connections. However, the widespread popularity of Android has made it 
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susceptible to cyber-attack. A recent report revealed that over 438,000 mobile malware installation 
packages were detected in the third quarter of 2023, marking a 19% increase from the second quarter 
[49]. Another report revealed that in Q2 2024, Android led the global mobile market with a 71.65% 
share, while iOS accounted for approximately 27.62% [50]. Android platforms face a range of 
malware threats, including credential theft, privacy breaches, bank fraud, ransomware, adware, and 
SMS fraud. Therefore, the development of automatic Android malware detection methods is vital for 
protecting the system security and user privacy. 

Android is an open-source Linux-based mobile OS that allows anyone to access and use its own 
code. Its architectural framework comprises several distinct layers: kernel, hardware abstraction 
layer, Android runtime, libraries, application framework, and applications. These components 
collectively serve to optimize the system efficiency and application performance. Android offers 
security mechanisms, such as sandboxing, permissions, and encryption to protect data and ensure 
app integrity [51]. Android apps operate in isolated sandboxes with user-approved permissions for 
resources like cameras and Wi-Fi. Therefore, users should exercise caution when granting 
permissions because malicious apps can access sensitive resources once allowed. 

Various forms of malware, such as SMS Trojans, Ransomware, Adware, Backdoors, Rootkits, 
Spyware, Botnets, and Installer malware, significantly threaten mobile device security [52,53]. 
Malware spreads on mobile devices through malicious links in emails or SMS, infected apps from 
Google Play Stores, third-party sources, or malicious Wi-Fi networks. Significant vulnerabilities in 
the Android OS include information gain, code execution, denial of service (DoS), overflow, SQL 
Injection, and privilege escalation [53]. 

4.2.2. iOS 

iOS, introduced in 2007, is a Unix-based operating system that powers popular Apple devices 
such as iPhones and iPads, ranking as the second most used mobile OS globally. The iOS architecture 
consists of four layers with specific functions: Core OS handles hardware interactions, Core Services 
provide data protection and storage features, media supports multimedia processing, and Cocoa 
Touch enables app development and user interface management [53]. 

iOS offers robust security compared with Android through a closed system design incorporating 
device-level protection (e.g., PINs, remote wipe), system-level features (e.g., Secure Enclave, secure 
boot), and mandatory data encryption. Apple’s control over hardware and software makes 
jailbreaking and unauthorized access challenging. The iOS enhances security through sandboxing, 
encryption, and automatic data erasure. Applications are isolated from each other to prevent 
unauthorized access, whereas encryption protects files using hardware and software keys [54]. iOS 
automatically grants most permissions, thereby reducing user involvement. In addition, the auto-
erase feature wipes data after multiple incorrect passcode attempts, offering a higher level of security 
than Android [55]. According to a McAfee report, iOS malware has surged in recent years, with a 
70% increase in malware targeting iPhones and iPads by 2020 [53]. The most common malware on 
the iOS platform are ransomware, spyware, viruses, trojans, and adware [53,56]. Notable attacks 
include Pegasus, which exploits zero-day vulnerabilities for surveillance [57]. Additionally, LightSpy 
Spyware, a sophisticated iOS implant, was infiltrated via compromised news sites [58]. Common 
vulnerabilities, such as memory overflow, remote code execution, and data leakage, present 
significant risks to iOS users, highlighting the need for enhanced device security. 

4.3. IoT platform 

The Internet of Things (IoT), introduced by Ashton in 1999, refers to a network of interconnected 
devices that collect and exchange data via the Internet or other networks. This is a combination of 
devices, sensors, networks, computing resources, and software tools. IoT devices fall into two main 
categories: Consumer IoT, such as personal and wearable smart devices, and Industrial IoT (IIoT), 
which includes interconnected industrial machinery and energy management devices. 

The number of IoT devices is increasing significantly every year. According to Statista, global 
IoT devices will nearly double from 15.9 billion in 2023 to over 32.1 billion by 2030. By 2033, China 
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will have the highest number of IoT devices, with approximately 8 billion consumer devices [59]. 
However, the rapid rise of IoT coupled with insufficient security measures has made these devices 
prime targets for malware. Recent reports from Zscaler ThreatLabz show a 400% increase in IoT 
malware attacks [60]. High-profile incidents, such as the Mirai botnet in 2016, exploit weak passwords 
and unpatched vulnerabilities, enabling DDoS attacks and data exfiltration [60]. IoT malware also 
takes advantage of other vulnerabilities, such as the absence of software and security updates, 
insecure networks, poor user security awareness, TCP/IP stack vulnerabilities, and a lack of 
encryption. Modern IoT malware, including Okane, VPNFilter, and Necurs, increasingly employs 
brute-force methods, spyware tactics, and anti-virtualization techniques to gain access to devices [14]. 

4.4. Cloud Environments 

Cloud computing enables remote access to computing resources such as storage, applications, 
networks, and servers via an Internet connection. Conversely, cloud malware is a cyberattack that 
targets cloud platforms with malicious code or services. 

Cloud computing offers three types of services: Platform as a Service (PaaS), Software as a 
Service (SaaS), and Infrastructure as a Service (IaaS). PaaS provides an environment for programmers 
to develop, deploy, and test applications, as exemplified by the Azure and Google App Engine. SaaS 
supports all applications within the cloud environment such as email and office software. IaaS offers 
hardware resources, computing capabilities, storage, servers, networking devices, and virtual 
machines [19,61]. Common examples of cloud malware include DDoS Attacks, Hypervisor DoS 
Attacks, Hypercall Attacks (exploits the hypervisor to gain cloud control), Hyperjacking (when an 
attacker takes control of a virtual machine for malicious purposes), Exploiting Live Migrations 
(moves a VM or application without client disconnection from one physical location to another), 
Ransomware, Spyware, Backdoor, Trojan horse etc.[19,62]. 

5. Machine Learning Algorithms for Malware Detection 

In this section, we present a summary of various machine learning algorithms used for malware 
detection on diverse platforms, including traditional, ensemble, and advanced deep learning 
approaches, as outlined in Table 3. Traditional algorithms such as SVM, KNN, and DT are simple yet 
effective in classifying malicious and benign samples. Ensemble methods, such as RF and Gradient 
Boosting, enhance the accuracy and robustness by combining multiple models. Deep learning 
algorithms, including CNN and transformers, excel in processing complex, high-dimensional, and 
sequential malware data. Techniques such as GAN and Transfer Learning address challenges such 
as limited datasets and feature extraction. The table underscores the diversity of machine learning 
methodologies in malware detection. The analysis outcomes of the table are reflected in the pie chart 
shown in Figure 4, highlighting the key trends in machine learning techniques for malware detection. 

 
Figure 4. Proportion of algorithm categories in recent malware detection. 
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Table 3. Summary of machine learning algorithms applied in various studies across diverse platforms for malware detection. 

ML techniques Algorithms References 

Traditional Machine Learning Algorithms 

Support Vector Machines (SVM): This method employs a hyperplane to maximize the margin between 

malicious and benign samples, proving effective for high-dimensional data. 

SVM [64–66] 

K-Nearest Neighbors (KNN): This algorithm classifies samples based on the predominant class of their nearest 

neighbors, utilizing feature similarity as the primary criterion. 

KNN [52,67] 

Logistic Regression (LR): This approach classifies malware by modelling the relationship between features and 

binary outcomes (malicious or benign) utilizing a sigmoid function. The sigmoid function converts input values 

to a range of  0 to 1, making it ideal for interpreting results as probabilities. It is used for binary classification 

tasks, especially in logistic regression and neural networks. 

LR [68–70] 

Naïve Bayes (NB): A probabilistic approach that assumes feature independence, which is efficient for text-

based malware detection. 

NB [65,66] 

Decision Trees (DT): Decision trees are a supervised learning method that classify data by building a tree-like 

model. The process identifies the most critical features and splits the data into subsets based on these 

attributes to form nodes. It recursively classifies each node until a final decision is reached as benign or 

malware 

DT 

 

 

[68,67] 

Ensemble Learning Algorithms 

Random Forest (RF): This approach constructs multiple decision trees and aggregates their outputs through 

majority voting or averaging, thereby enhancing robustness and accuracy. 

RF [65–68,70–72]  

Gradient Boosting (e.g., XGBoost, LightGBM): This approach sequentially constructs weak learners, 

specifically decision trees, to minimize errors, thereby providing high accuracy in the analysis of structured 

malware data. 

 

Gradient Boosting [70] 

XGBoost [67,70]  
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AdaBoost: This approach focuses on challenging samples by modifying weights during the training process, 

thereby combining weak classifiers into a robust one. 

AdaBoost [66,72]  

Bagging: The Bagging technique randomly divides the dataset into multiple subsets (bootstraps) based on in-

stances, each with unique instances, and then aggregates the results from models trained on these subsets to 

enhance generalization 

  

Deep learning technique 

Convolutional Neural Networks (CNNs): This approach demonstrates efficacy in image-based malware 

detection, utilizing automated extraction of spatial features from transformed malware binaries. 

CNN [63,68,73–89] 

Recurrent Neural Networks (RNNs): This method Facilitates the analysis of sequential data, including API call 

sequences and opcode patterns, for behavioral-based malware identification. 

RNN [63,88,90,91] 

Long Short-Term Memory (LSTM): A variant of Recurrent Neural Network (RNN) that effectively captures 

long-term dependencies, particularly applicable for time-series analysis of dynamic malware features. 

LSTM [73,77,79,84,[91–100]  

Gated Recurrent Unit (GRU): It is a type of recurrent neural network (RNN) designed to process sequential 

data, such as time series or text. This model is more computationally efficient than LSTMs due to fewer 

parameters and the absence of a separate output gate. 

GRU [93] 

Generative Adversarial Networks (GANs): This process generates synthetic malware samples for data 

augmentation, thereby enhancing the efficacy of detection systems with limited datasets. 

GAN [81] 

Autoencoders: Autoencoders are unsupervised neural networks used for dimensionality reduction, feature 

extraction, and anomaly detection. They aim to learn a compressed representation of the input data (encoding) 

and then reconstruct the input (decoding) as accurately as possible. 

VAEs, Sparse 

Autoencoders etc. 

[101] 

Transformer Models (e.g., BERT): Transformers are advanced deep learning architectures based on attention 

mechanisms designed to handle sequential or contextual data effectively. 

BERT (Bidirectional 

Encoder 

Representations from 

Transformers) 
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Transfer learning (TL): This is a deep learning approach where a model pre-trained on one task or dataset is 

reused and fine-tuned for a related but different task. It is particularly effective when the target dataset is small 

or lacks diversity. 

Pre-trained CNNs like 

ResNet, Inception, 

VGG, ResNet50 etc. 

[102–104] 

Multilayer Perceptron (MLP): It is a type of artificial neural network (ANN) consisting of multiple layers of 

nodes. It is commonly used in supervised learning tasks such as classification and regression. 

MLP [52,66,68,71,82,86,105]  
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Overall Research Trends on Machine Learning Algorithms for Malware Detection Across Different 
Platforms 

Table 3 and the pie chart reveal that deep learning is the leading approach in malware detection 
research across platforms, with CNNs and LSTMs excelling in image-based and sequential data 
analysis. Traditional ML techniques such as SVM and KNN remain adequate for high-dimensional 
feature-based tasks. Simultaneously, ensemble learning methods, such as Random Forest and 
Gradient Boosting, show substantial accuracy and generalization through model aggregation. These 
trends highlight the increasing preference for deep learning, while acknowledging the 
complementary roles of traditional and ensemble models. 

6. Application of Machine Learning on Malware Detection 
This section reviews recent studies that have utilized the various ML algorithms discussed in 

Section 5 to develop malware detection models for Windows, Linux, Android, IoT, and cloud 
platforms. 

6.1. PC (Personal Computers) Malware Detection 

This section covers malware detection on personal computers, including Windows, Linux, and 
macOS. Windows, the most widely used OS, are the primary target for malware. Despite Linux’s 
robust permission-based architecture, it is facing growing threats in the server and enterprise 
settings. With its increasing popularity, macOS has increased the risk of malware. Detection methods 
employ static, dynamic, and hybrid analyses, which are frequently enhanced using machine learning, 
to counter evolving threats. 

6.1.1. Malware Detection in Windows platform 

In this subsection, we provide an extensive review of machine learning-based malware detection 
techniques for the Windows platform are summarized in Table 4.
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Table 4. Summary of reviewed models for Windows-based malware detection: dataset sources, feature details, and experimental result. 

Reference Data source Feature 
category 

Features ML algorithms Result 
(accuracy) 

Limitations 

Static feature-based malware detection 
[63] Malimg Static Opcode sequences Deep RNN 96% It requires significant 

computational resources 
[73] Microsoft BIG 2015 Static Opcodes, images, byte 

sequence, etc 
DNN, LSTM, and 
CNN. 

98.35% It is useless against zero-day 
malware. 

[102] BIG 2015, Malimg, MaleVis and Malicia 
dataset 

Static 2D images DenseNet 98.23% It has high false negatives and 
highly imbalanced datasets 

[74] Microsoft BIG 2015 Static Image-based opcode features CNN 99.12% Outdated dataset 
[103] Malimg dataset, Microsoft BIG 2015 Static Grayscale images from PE 

files 
VGG16, VGG19, 
ResNet50, and 
inceptionV3 

98.92% Cannot detect advanced-
packed malware 

[106] Malimg Static Static signatures ATT-DNNs 98.09% Cannot detect obfuscated 
malware 

[75] Malware API-class Static Executable file to static images CNN 98.00% _ 
[76] VirusShare, Hybrid-Analysis Static Executable file to static images Xception 

Convolutional 
Neural Network 
(CNN) 

98.20% _ 

[107] Microsoft BIG 2015 Static Malware binary files into 
static images 

DNN 97.80% _ 

Dynamic feature-based malware detection 
[92] VirusShare Dynamic Sequences of API calls Bi-LSTM 97.31% Limited to execute samples in a 

Windows 7 environment.  
[108] Custom datasets Dynamic Sequences of API calls Markov chain 

representation 
99.7% - 

[109] VirusTotal Dynamic API calls  LSTM 95% Limited to execute samples in a 
Windows 7 environment. 

[93] VirusTotal Dynamic API call sequences LSTM and GRU 96.8% Highly imbalanced dataset 
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[64] CA Tech- 
neologises VET Zoo  

Dynamic Run time behaviour MRed, ReliefF, 
SVM 

99.499% High computational complexity 

[94] Audit log events Dynamic Process names, action types, 
and accessed file 

LSTM 91.05% High false positives and lack of 
scalability 

[77] Multiclass dataset (Ember Dataset, private 
dataset) 

Dynamic loaded DLLs, registry 
changes, API call sequences, 
file changes, and 

CNN-LSTM 96.8% Susceptible to adversarial 
attacks 

Hybrid feature-based Malware Detection Techniques 
[78] VirusTotal Hybrid 

(Static 
and 
dynamic) 
 

Combination of static and 
dynamic features (PE section, 
PE import, PE API, and PE 
images) 

CNN 97% Failed to validate the 
robustness against adversarial 
attacks 

[71] The Korea Internet & Security Agency 
(KISA) 

Hybrid Size of file and  
Header, Counts of file 
sections.  Entropy, File 
system changes API call, DLL 
loaded info, network 
activities, etc. 

RF, MLP 85.1% Extensive time is needed for 
feature extraction 

[104] VirusShare Hybrid Image-based static and 
dynamic features 

VGG16 94.70% - 

[110] VirusShare Hybrid Function Length Frequency 
Representation, Registry 
activities, API calls, and file 
operation features 

SVM 97.10% Small dataset 

[79] VirusTotal Hybrid Opcodes and system calls CNN, LSTM, and 
an attention-based 
LSTM 

99% Lack of diverse features. 

Memory-feature-based malware detection techniques. 
[80] Dumpware10 Memory Memory images of running 

processes 
CNN 98% Malware processing cost is high 

under limited resource 
capabilities 
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[81] Dumpware10, BIG2015 dataset Memory Memory images of running 
processes 

GAN and CNN 99.86% for 
BIG2015 
dataset  

Only one type of data, like 
bytes, is used. Need to make 
the dataset more diverse. 

[82] CIC-MalMem-2022 
https://www.unb.ca/cic/datasets/malmem-
2022.html 

Memory Memory images of running 
processes 

CNN and MLP 99.8% Training time complexity and 
vulnerability to adversarial 
attacks 

[68] CIC-MalMem-2022 
https://www.unb.ca/cic/datasets/malmem-
2022.html 

Memory Multi-memory features RF, DT, LR, MLP 
and CNN 

99.89% - 
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Static feature-Based Malware Detection Techniques 

Jeon and Moon [63] proposed a DL-based malware detection method using static opcode 
sequences with dynamic RNN and CNN. A convolutional autoencoder compresses long opcode 
sequences, and a recurrent neural network classifies malware using the features generated by the 
autoencoder. This method achieved 96% accuracy and 95% true-positive rate. However, it requires 
substantial computational resources owing to the inter-procedural control-flow analysis, making it 
less suitable for resource-limited systems. Snow et al. [73] developed a multi-modal deep-learning-
based malware detection method using the Microsoft BIG 2015 dataset. Although the model achieved 
a high accuracy rate of 98.35%, it proved ineffective against zero-day malware that evaded detection 
with new static signatures. A previous study [102] employed a CNN-based pre-trained DenseNet 
model for malware detection by converting benign and malicious binaries into 2D images. 
Experiments on Malimg, BIG 2015, MaleVis, and Malicia datasets showed 98.23% accuracy on 
Malimg but revealed high false negatives and used highly imbalanced datasets. Darem et al. [74] 
implemented a deep CNN-based model to detect malware using opcode-level features from malware 
and benign binary files converted into images for training. The model achieved a detection rate of 
99.12% %on the Microsoft BIG 2015 dataset. However, outdated datasets can affect the detection of 
new and unseen malware. Kumar & Janet [103] proposed an image-based deep transfer learning 
model for detecting Windows malware using a pre-trained deep CNN. The model efficiently extracts 
high-level features from grayscale images of Windows executables, conserving resources and time; 
however, it struggles to identify advanced-packed malware. A study in [106] introduced an attention-
based deep neural network (ATT-DNN) for malware detection, extracting static features from 
executable files. Despite achieving a high accuracy of 98.09%, its use is limited to malware detection 
based on static signatures. The research in [75,76,107] also focused on malware detection via static 
image analysis. 

Dynamic Feature-Based Malware-Detection Techniques 

Li et al. [92] developed a DL model for malware detection in executables using API call 
sequences within a Cuckoo sandbox, achieving an F1-score of 0.9724 and 97.31% accuracy on new 
sequences. The limitations of this study include its focus on Windows 7 executables and the 
potentially reduced effectiveness against zero-day malware over time. In [108], contextual analysis 
of API call sequences was utilized to enhance the dynamic detection and prediction of Windows 
malware, thereby improving both accuracy and adaptability to evolving threats. By employing the 
Markov chain method, they achieved an average accuracy of 99.7%. Catak et al. [109] proposed an 
LSTM-based malware detection method that achieved 95% accuracy and 0.83 F1 score using a 
behavioral dataset of API calls. They also released a new, publicly available API call dataset for 
malware detection. Aditya et al. [93] used LSTM and GRU deep learning models to classify malware 
based on API call sequences and achieved 96.8% accuracy with LSTM. However, their dataset was 
highly imbalanced, with only 1,035 benign samples of 8,142. In [64], a hybrid framework combining 
multiple complementary filters with a wrapper feature selection method was proposed to identify 
critical run-time behavioral traits of malware. The ML algorithms, including MRed, SVM, and Fisher, 
achieved a detection accuracy of 99.499%. Ring et al. [94] used an LSTM-based model to detect 
malware based on audit-log features. However, it suffers from high false positive rates and lacks the 
evaluation of larger datasets to assess the model’s scalability. Jindal et al. [77] proposed Neurlux, a 
stacked ensemble of CNN-LSTM with an attention mechanism to detect malware in Windows 
systems using dynamic features effectively but is susceptible to adversarial attacks. 

Hybrid-Feature-Based Malware Detection Techniques 

Hybrid feature-based learning approaches have shown promise in cybersecurity, outperforming 
single-type feature methods. By combining diverse feature types, such as static, dynamic, and 
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memory-based, these techniques enable learning from multiple semantic perspectives, leading to an 
enhanced model accuracy for malware detection and classification. 

The authors of article [78] created a CNN-based hybrid malware classification model for 
Windows, integrating static features from the executable section, static API call imports, dynamic 
API calls, and executable file images, achieving a detection accuracy of 97%. However, this method 
does not validate the effectiveness of the combined feature sets against adversarial attacks. AI-HydRa 
[71] represents an advanced hybrid malware classification method that combines RF and deep 
learning, achieving a mean detection rate of 0.851 with a standard deviation of 0.00588 over three 
tests. Huang et al. [104] introduced a hybrid method using static images and dynamic API call 
sequence visualizations to classify malicious behaviors. Utilizing a CNN (VGG16) for feature 
extraction, the technique attained 94.70% accuracy but had difficulty accurately identifying specific 
malware types, including password-stealing (PSW) Trojans and some outdated variants. RansHunt 
[110] integrated static and dynamic features for improved ransomware detection using an SVM, 
achieving an accuracy of 97.10%, outperforming traditional anti-virus solutions. Darabian et al. [79] 
used static and dynamic features from 1,500 cryptojacking malware samples. They used opcodes and 
system calls to construct CNN, LSTM, and attention-based LSTM classification models, achieving 
95% accuracy in static analysis and 99% accuracy in dynamic analysis. 

Karbab et al. [111] introduced SwiftR, an approach that detects ransomware attacks by 
integrating various static and dynamic features from benign and malicious executable file reports. 
The proposed method achieved an F1 score of 98%. 

Memory-Feature-Based Malware Detection Techniques 

Malware detection using static or dynamic analysis is insufficient for advanced memory-
resident malware and obfuscated malware. Thus, contemporary research emphasizes memory 
analysis methods that are effective in detecting sophisticated malware variants [41]. The study [80] 
developed a CNN model was developed that uses memory images of both suspicious and benign 
processes to detect malware attacks with a detection rate of 98%, leveraging features extracted from 
grey-level co-occurrence matrices and local binary patterns. Another study [81] proposed a DL-based 
approach that integrated GAN and CNN models, achieving 99.60% detection accuracy on unseen 
samples when tested on the DumpWare10 dataset to identify advanced malware by visualizing 
running processes. In addition, Naeem et al. [82] developed a high-performance stacked CNN and 
MLP model using memory images that achieved an accuracy of 99.8%. However, it has limitations in 
terms of the training time complexity and susceptibility to adversarial attacks. In [68], the authors 
used the latest dataset, the CIC-MalMem-2022 dataset, to develop a CNN-based detection model that 
detects obfuscated malware in memory. 

Summary of Key Trends and Insights on Malware Detection in Windows Platforms 

A summary of the malware detection methods for Windows is presented in Table 4. The table 
outlines the studies with respect to their data collection source, feature type, features, ML algorithms 
used, detection accuracies, and limitations. Figure 5 illustrates the distribution of the techniques, 
features, and evaluation datasets used in these studies. 

  
(a) (b) 
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(c) (d) 

Figure 5. Distribution of detection feature types, algorithms, accuracy by feature type, and image and 
non-image features. (a) Detection algorithms (b) Proportion of detection  feature type (c) Accuracy 
of malware detection  by feature type (d) Image-based vs non-image-based detection techniques. 

Dataset evaluation: Table 4 reveals that many recent studies have relied on outdated datasets, 
such as Malimg (2011) and Microsoft BIG 2015. VirusTotal and Virus Share remain the most popular 
data sources for Windows malware detection systems, followed by dumpware10 and Hybrid 
Analysis. com. In contrast, newer datasets such as CIC-MalMem-2022 provide updated benchmarks. 
However, the prevalence of outdated datasets and the lack of diversity in recent studies have limited 
their effectiveness against zero-day malware and emerging threats. 

Detection algorithms used in the studies: The bar chart in Figure 5 (a) illustrates the distribution 
of detection algorithms employed in various detection techniques, highlighting their relative 
popularity among the studies. Convolutional Neural Networks (CNNs) are the most utilized 
algorithms, likely because of their efficiency in handling images and spatial data. LSTM networks 
also stand out and are likely to be favored because of their strength in temporal or sequential data 
processing. Algorithms such as GANs and transfer learning are used less frequently and hint at 
emerging or specialized applications. However, GRU, RNN, and Markov Chains appear less favored, 
possibly because of their limited generalizability or lower performance in detection tasks. The chart 
collectively underscores the significance of choosing algorithms that align with the nature of the 
problem and the data characteristics. 

Detection feature type: The chart 5 (b) highlights the distribution of feature types in malware 
detection techniques. Static features lead by 33.3%, favoring their simplicity and effectiveness against 
known malware. Dynamic features follow closely at 29.2%, offering strong runtime analysis 
capabilities but requiring controlled execution environments. Hybrid features, at 20.8%, integrate 
static and dynamic methods for comprehensive detection but involve higher computational 
demands. Memory-based features, representing 16.7%, are powerful for analyzing runtime data, such 
as API calls, but are less commonly used because of their resource-intensive nature. 

Accuracy of malware detection techniques by feature type: The bar chart as outlined in Figure 
5 (c) compares the accuracy of malware detection techniques based on four feature types: static, 
dynamic, hybrid, and memory. Memory-based features achieved the highest accuracy (~99.89%), 
demonstrating their effectiveness in capturing runtime behaviors, although they may require higher 
computational resources. Dynamic features also perform well (~99.49%), leveraging runtime analysis, 
whereas static features (~99.12%) offer robust results through code and signature analysis. Hybrid 
features (~99%) combine static and dynamic methods but do not significantly outperform individual 
approaches. Overall, memory-based and dynamic features demonstrated the highest potential for 
accurate malware detection. 

Image-based vs. non-image-based detection techniques: The pie chart in Figure 5 (d) shows a 
close competition between the non-image-based (52%) and image-based (48%) detection methods. 
While non-image-based methods lead slightly because of their flexibility with diverse data types, 
image-based approaches are emerging as powerful tools in malware detection. By converting 
malware binaries into images, image-based methods use CNNs to analyze spatial patterns and 
effectively identify complex obfuscated malware. The availability of labelled malware datasets, 
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efficient pre-trained models, and generalization capabilities further drive their adoption, reflecting 
the growing significance and scalability of image-based methods in modern malware detection. 

6.1.2. Malware Detection in Linux OS 

Researchers have also utilized various ML algorithms to detect malware attacks on Linux 
systems. The ML-based Linux detection techniques are listed in Table 5. Xu et al. [105] developed a 
graph-based Linux malware detection system called HawkEye that achieved 96.82% accuracy. 
Hwang et al. [112] also demonstrated the effectiveness of deep learning for Linux threat detection, 
using a large dataset of 10,000 malicious and 10,000 benign files to train and test a DNN model. Bai 
et al. [72] proposed a Linux malware detection method that analyzes system calls in ELF executable 
symbol tables using 756 benign and 763 malware ELF samples. They achieved up to 98% accuracy 
with various classifiers, including J48, random forest, AdaBoostM1, and IBk. Landman and Nissim’s 
Deep-Hook [83] used CNNs to analyze VM-captured memory dumps and identify Linux malware 
with up to 99.9% accuracy. Similarly, another study [43] classified malware using behavioral features 
from volatile memory. 

Table 5. Summary of reviewed models for Linux-based malware detection: dataset sources, feature 
details, and experimental result. 

Summary of Key Trends on Malware Detection in Linux Platform 

Most current studies have focused on malware detection in Windows and Android platforms, 
with few addressing advanced ML-based malware detection in Linux. According to current 
literature, Linux-based malware detection has advanced through the integration of diverse machine 
learning algorithms, feature types, and datasets, achieving high accuracy. Memory-based detection, 
in particular, has gained popularity owing to its effectiveness in identifying sophisticated threats. 
Owing to ’s widespread adoption of the Linux OSin online supercomputers and devices globally, 
cybercriminals have increasingly targeted Linux-based devices. Thus, the success of deep learning in 
Windows and Android indicates its potential for Linux malware detection. Additionally, exploring 
hybrid models and cross-platform techniques could enhance the detection capabilities and adapt to 
the evolving landscape of Linux malware. 

6.1.3. Malware Detection in macOS 

Despite the rising threats of OS X malware, research on its detection remains scarce, with only a 
few studies focusing on malware detection on the macOS platform. For example, a study [113] 
proposed OS X malware and rootkit detection by analyzing static file structures and tracing memory 
activities. Pajouh et al. [114] developed an SVM model with novel library call weighting for OS X 

Reference Data source Feature 
category 

Features ML algorithms Result 
(accuracy) 

[105] AndroZoo, 
VirusShare, and 
clean Ubuntu 
libraries. 

Static  Assembly 
instructions 
(control flow 
graphs) 

MLP 96.82% 

[112] VirusShare Static Strings from binary 
data 

DNN 94%  

[72] VX heavens Dynamic System calls J48, random 
forest, 
AdaBoostM1 
(J48), and IBk 

98% 

[83] VirusShare Memory Memory dumps CNN 99.9% 
[43] VirusTotal 

and ViruShare. 
Memory Multi-memory 

features 
DNNs 98.8% 
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malware detection, attaining 91% accuracy on a balanced dataset. SMOTE-enhanced datasets 
increased the accuracy to 96%, with slight false alarm increases, indicating that larger synthetic 
datasets enhance accuracy, but may impact false-positive rates. 

Summary of Key Trends on Malware Detection in macOS Platform 

The application of machine learning to OS X malware detection is underexplored, likely owing 
to the scarcity of suitable datasets and the difficulty in collecting malware samples. Future research 
should focus on overcoming these challenges to enhance machine learning techniques for detecting 
OS X malware. 

6.2. Malware Detection in Mobile Platform 

The increase in mobile device usage, mainly Android, has led to increased malware threats. This 
section reviews machine learning techniques for detecting malicious applications on both Android 
and iOS platforms. 

6.2.1. Android Malware Detection 

This subsection examines ML-based Android malware detection techniques categorized by APK 
file features, with the dataset details summarized in Table 6. 

Table 6. Summary of reviewed models for Android-based malware detection: dataset sources, feature 
details, experimental result, and limitation. 

Refere
nce 

Data source Featur
e 
catego
ry 

Features ML 
algorit
hms 

Accur
acy 

Limitatio
ns 

Static feature-based Android malware detection techniques. 
[115] MalGenome Static Call 

graphs 
GCN 98.99

% 
Lack of 
represent
ative of 
real-
world 
scenarios. 

[84] Contagio Mobile Static Opcode 
sequences 

CNN-
LSTM 

91.42
% 

Unable to 
manage 
obfuscate
d 
malware 

[69] MalDroid-2020 dataset Static Opcode 
sequences 
(histogra
ms of n-
grams) 

LR 93.56
% 

Adversari
al attack 
resistance 
and 
handling 
evolving 
malware 
are not 
addressed
. 

[95] CIC-Inves2017 Static Opcode 
sequences 

LSTM 96% Small 
dataset 
(1,500 
apps) 
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[70] Drebin, VirusShare, AndroZoo Static Permissio
ns, Intents 

Base 
models 
(LR, 
MLP, 
and 
SGD), 
Ensemb
le 
learnin
g 

99.1% - 

[85] Drebin dataset Static Opcode 
sequences, 
Permissio
ns, API 
calls  

CNN 99.92
% 

lack of 
malware 
diversity 
and 
scalability  

Dynamic feature-based Android malware detection techniques 
[65] McAfee Dyna

mic 
Actions/E
vents 

Base 
models 
(NB, 
SL, 
SVM 
Linear, 
SVM 
RBF, 
J48, 
PART, 
RF), 
deep 
learnin
g 

97.8% - 

[96] Google Play Store 
https://play.google.com/store/ga
mes?pli=1 

Dyna
mic 

API calls Bi-
LSTM 

97.22
% 

High 
detection 
time 

[116] Drebin dataset Dyna
mic 

Network 
traffic 
Permissio
ns, Intents, 
API calls 

C4.5 97.89
% 

Small 
dataset 

[97] MalGenome Dyna
mic 

System 
call 
sequences 

LSTM 99.23
%. 

- 

[98] Custom dataset Dyna
mic 

API and 
system 
call 
sequences 

LSTM 96.8% 
 

 

Hybrid feature-based Android malware detection techniques 
[65] McAfee Hybri

d 
Permissio
ns, Intents, 
API Calls, 
Actions/E
vents 

Base 
models 
(NB, 
SL, 
SVM 
Linear, 

99.6% 
detecti
on 

- 
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SVM 
RBF,  
J48, 
PART, 
RF), 
deep 
learnin
g  

[52] Contagio Mobile, 
http://contagiominidump.blogsp
ot.com/ 
VirusShare and Genome 

Hybri
d 

Runtime 
behaviors 
across 
various 
levels—
kernel, 
applicatio
n, user, 
and 
package 

K-NN, 
LDC, 
QDC, 
MLP, 
Parzen 
Classifi
er 
(PARZ
C) and 
RBF 

96% This 
method is 
susceptibl
e to 
mimicry 
attacks 
and 
ineffectiv
e against 
unknown 
malware. 

[99] VirusShare, Drebin, 
DroidAnalytics and 
CICInvesAndMal2019/2000 
https://www.unb.ca/cic/datasets/
invesandmal 2019.html. 

Hybri
d 

Permissio
ns 
requests, 
API and 
system 
call 
sequences, 
opcode 
sequences, 
and graph 
structures, 
including 
abstract 
syntax 
trees, 
control-
flow, and 
data-flow 
graphs. 

Bi-
LSTM 
and 
GNN 

95.94
% 

Need 
more 
scalable 
static 
analyses 

[101] CICMal- Droid2020 Hybri
d 

Permissio
ns, intents, 
system 
calls, 
composite 
behaviors, 
and 
network 
traffic 
packets. 

Pseudo
-label 
stacked 
auto-
encoder 
(PLSAE
) 

98.28
% 

- 

Memory feature-based Android malware detection techniques. 
[86] AndroZoo project 

https://androzoo.uni.lu/ 
 

Memo
ry 

Process 
memory 
dumps 

Ensemb
le of 
MLP 

94.3% 
 

Vulnerabl
e to 
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and 
CNN 

adversari
al attacks 

Static Feature-Based Malware Detection Techniques 

A study [115] proposed GDroid, a graph convolutional neural network model for detecting 
Android malware through API call patterns using static analysis. Although effective in detecting 
malicious apps, its accuracy decreases in real-world Android devices. 

Pektaş and Acarman [84] proposed a CNN- and LSTM-based model utilizing static features, 
including opcodes, API calls, and call graphs, for Android malware detection. Despite achieving 
91.42% accuracy and 91.91% F-measure on unknown samples, the model’s dependence on static 
features may restrict its effectiveness against obfuscated malware. Similarly, in [69], the authors 
proposed H-LIME, a novel XAI method that enhances LIME by incorporating opcode-sequence 
hierarchy for better Android malware detection explanations. They evaluated H-LIME using the 
MalDroid-2020 dataset, and H-LIME outperformed LIME in explanation quality and efficiency, but 
they faced challenges with shorter programs in real-world malware. Lakshmanarao and Shashi [95] 
created an LSTM-based malware detection model using opcode sequences from Android apps, 
achieving 96% accuracy, albeit on a limited dataset of 1,500 apps. Potha et al. [70] created an ensemble 
model combining LR, MLP, and Stochastic Gradient Descent (SGD), demonstrating that larger, 
homogeneous ensembles with feature selection outperformed smaller ones, achieving strong AUC 
and accuracy on Android malware datasets. Furthermore, Aamir et al. [85] introduced the AMDDL 
model, achieving a 99.92% accuracy in malware detection using CNNs. This study highlights the 
challenges related to limited malware diversity, deep learning interpretability, and scalability. 

Dynamic Feature-Based Malware Detection Techniques 

Ma et al. [96] proposed Droidect, a Bi-LSTM-based model for classifying malicious Android 
apps, achieving 97.22% accuracy on a dataset of 11,982 benign and 9,616 malicious files. Despite its 
success, this model suffers from long detection times. Wang et al. [116] presented a malware detection 
technique employing network traffic analysis and the C4.5 algorithm, achieving a 97.89% detection 
rate on the Drebin dataset, outperforming current methods. The study in [97] introduced MemDroid, 
an LSTM-based detection method trained on Androzoo malware samples. Apps were run in a 
sandbox to capture system call sequences, which were used to train the LSTM classifier, achieving 
99.23% malware detection accuracy. The study in [98] used LSTM to develop classifiers for detecting 
Android malware via dynamic API and system calls, achieving F1-scores of 0.967 and 0.968, 
respectively, across different datasets. 

Hybrid-Feature-Based Malware Detection Techniques 

Alzaylaee et al. [65] introduced DL-Droid, a deep learning-based framework for Android 
malware detection using static and dynamic analysis. They achieved 97.8% detection with dynamic 
features and 99.6% with combined features, taking 190 s/app on average. Saracino et al. [52] 
introduced MADAM, an Android malware detection system analyzing kernel, application, user, and 
package-level features. MADAM detected over 96% of malicious apps in a 2800-app test but is 
susceptible to mimicry attacks and cannot identify unknown malware. Wu et al. [99] presented 
DeepCatr, a hybrid learning approach for Android malware detection, which combines text mining 
and call graphs with bidirectional LSTM and graph neural networks, achieving accuracies of 95.94% 
and 95.83% on 18,628 samples. Mahdavifar et al. [101] created a semi-supervised deep learning model 
for Android malware detection, employing a stacked auto-encoder trained on hybrid features, 
obtaining a 98.28% accuracy and 1.16% false positive rate. 

Memory-Feature-Based Malware Detection Techniques 

Memory analysis has been utilized to develop deep learning models for detecting obfuscated 
and memory-resident Android malware. A framework combining weak learners (CNNs) and a meta-
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learner (MLP) to create a deep-stacked ensemble model along with an explainable AI approach for 
result interpretation and validation was proposed by Naeem et al. [86]. The framework achieved an 
accuracy of 94.3% using 2,375 images in an empirical evaluation. 

Summary of Research Trends on Malware Detection in the Android Platform 

Table 6 summarizes mobile device malware detection systems, including datasets, features, 
detection algorithms, and study accuracy. Figure 6 shows the distribution of the dataset sources, 
techniques, and features used in these studies. 

 
(a) (b) (c) 

Figure 6. Distribution of detection techniques, detection features, and evaluation datasets used in 
mobile malware detection solutions. (a) Proportion of dataset sources (b) Detection algorithms (c) 
Detection features. 

Proportion of datasets used: The pie chart in Figure 6 (a) reveals a clear preference for 
established datasets in Android malware detection studies. Drebin emerges as the most-used dataset 
(31%), owing to its extensive malware diversity and widespread acceptance as a benchmark in the 
field. Medium-utilized datasets, including MalGenome, VirusShare, and CICMal-Droid2020 (23% 
each), are valued for their reliability and growing prominence in the evaluation of detection 
techniques. The relatively low adoption of custom datasets highlights the focus on standardized 
datasets, limiting opportunities for novel malware detection approaches tailored to evolving threats. 

Detection algorithms: The pie chart in Figure 6 (b) demonstrates that base models (31%), 
including Logistic Regression and Random Forest, are the most commonly used detection algorithms, 
valued for their reliability, simplicity, and ease of implementation. Deep learning methods, such as 
LSTM (23%) and CNN (15%), are gaining popularity owing to their ability to process complex and 
large-scale malware patterns effectively. Hybrid techniques (8%), ensemble models (8%), and 
exploratory approaches, such as Pseudo-label SAE and K-NN (8% each), showcase ongoing 
innovations aimed at improving detection accuracy and robustness. This distribution underscores 
the balance between traditional dependable methods and modern complexity-driven approaches to 
malware detection. 

Detection features: As shown in Figure 6 (c), the chart indicates that opcode sequences (31%) 
are the most commonly used features because of their effectiveness in static analysis. Permissions, 
intents, and API calls (23% each) are essential for identifying behavioral anomalies. System call 
sequences (23%) and network traffic (15%) are gaining prominence in runtime analyses. Composite 
behaviors and memory dumps (8% each) remain underexplored, likely due to their complexity and 
resource demands 

6.2.2. Malware Detection in iOS 

In [117], the authors focused on identifying iOS malware using static analysis and machine 
learning, achieving a high precision of 0.971 and recall of 1.0. It addresses the underexplored domain 
of iOS malware detection owing to the platform’s closed source nature. Zhou et al. [118] examine the 
risks of legitimate applications being hijacked for malware communication. They presented the 
ChanDet model to identify potential channel applications and proposed mitigation strategies. 
Mercaldo and Santone[119]successfully classified 50,000 Android and 230 iOS malware samples 
using deep learning on grayscale images of executables, tackling obfuscation and false positives. 
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Summary of Research Trends on Malware Detection in iOs Platform 

The current literature highlights advancements in iOS malware detection, leveraging machine 
learning and static analysis to address the platform’s closed-source challenges. Researchers have 
introduced high-precision models and deep learning techniques, such as those using executable 
images, to mitigate obfuscation. Despite these advancements, challenges such as limited datasets, 
lack of hybrid analysis, and insufficient attention to real-time cross-platform threats persist. Future 
work should focus on expanding the datasets, utilizing transfer learning, enhancing anti-obfuscation 
methods, and developing comprehensive detection frameworks. 

6.3. Malware Detection in IoT Platform 

This section compares the surveys on machine-learning-based malware detection in IoT, which 
are summarized in Table 7. 

Ali et al. [66] used machine learning algorithms on the IoT-23 dataset to detect IoT network 
anomalies. The RF algorithm demonstrated the highest efficacy, achieving 99.5% accuracy. Sudheera 
et al. [87] introduced Adept, a distributed framework that detects and classifies attack stages in IoT 
networks through local anomaly detection, pattern mining for correlated alerts, and machine 
learning-based classification. This method can identify five times more attack patterns with 99% 
accuracy in classifying attack stages. Vasan et al. [88] proposed a cross-architectural malware 
detection method suitable for diverse IoT processor architectures, such as MIPS, PowerPC, and 
SPARC. 

Researchers have used sandboxing as a dynamic method to detect malware in IoT environments. 
However, existing sandboxes are inadequate for resource-limited IoT settings, lack support for 
diverse CPU architectures, and do not offer library sharing options [120]. Hai-Viet et al. [89] proposed 
an IoT botnet detection approach using system call graphs and a one-class CNN classifier, which 
improved sandboxing to capture system behaviors and utilized graph features for robust detection, 
overcoming dataset imbalance and architectural constraints, attaining 97% accuracy. Jeon et al. [100] 
introduced HyMalD, a hybrid IoT malware detection method using Bi-LSTM and SPP-Net to analyze 
static and dynamic features, extracting opcode and API call sequences for classification. It achieved 
92.5% accuracy, surpassing the 92.09% accuracy of the static analysis. Researchers have now 
converted network traffic or OpCode into 2D images for malware detection using visual methods. 
Shire et al. [90] utilized visual detection techniques in IoT malware detection, transforming network 
traffic into 2D images for machine learning analysis. He et al. [67] proposed an efficient and scalable 
lightweight IoT intrusion detection method utilizing feature grouping, which attained over 99.5% 
accuracy on three public IoT datasets while consuming fewer computational resources than baseline 
methods. Jiang et al. [91] proposed FGMD, a framework that protects IoT intrusion detectors from 
adversarial attacks, preserving efficacy and performance. Conversely, Zhou et al. [121] introduced 
HAA, a hierarchical adversarial attack strategy for GNN-based IoT detectors, which reduces the 
classification accuracy by over 30% through minor perturbations and node prioritization techniques.
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Table 7. Summary of reviewed models for IoT-based malware detection: dataset sources, feature details, experimental result, and limitation. 

Reference Data source Feature 
category 

Features ML algorithms Accuracy 
(%) 

[66] IoT-23 dataset Static Network capture files include IP address, 
ID of the capture, protocol, etc. 

RF, NB, MLP, SVM, and 
AdaBoost. 

99.5 

[87] NSS Mirai Dataset 
latest relevant, balanced data sets 
https://www.stratosphereips.org/datasets-iot23 

Static Alert level (Source and Destination IP 
Addresses, C&C activities, Protocol) and 
packet level features ((IP address or port 
number, packet size, etc.) 

CNN 99 

[88] ARM-based IoT Static OpCode features RNN and CNN 99.98 
[89] Executable and Linkable Format (ELF) file 

templates are executed in the QEMU sandbox. 
Dynamic System call graph CNN 97 

[100] KISA-data challenge 2019-Malware.04, provided by 
the Korea Internet & Security Agency 

Hybrid Opcode and API call sequences Bi-LSTM and spatial 
pyramid pooling network 
(SPP-Net) 

92.09 

[90] Network traffic is collected from external 
repositories. 

Dynamic 2D Image-Based Network Traffic Features Neural network 91.32 

[67] Bot-IoT, MedBIoT, and MQTT-IoT-IDS2020 
datasets 

Dynamic Packet-level metadata of the raw PCAP file DT, RF, K-nearest 
neighbor (KNN), and 
extreme gradient 
boosting (XGB) 

99.5 with 
RF 

[91] MedBIoT dataset [122]. 
IoTID (IoT network intrusion dataset) 
http://dx.doi.org/10.21227/q70p-q449. 
 

Dynamic PCAP files LSTM, RNN and DT, 
respectively. 

98.71 

[121] UNSW-SOSR2019 Static Network packets (source IP, destination IP, 
timestamp, traffic flows, etc.) 

Graph neural network 
(GNN) 

- 
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Summary of Research Trends on Malware Detection in IoT Platform 

Table 7 summarizes IoT malware detection systems, detailing data sources, features, detection 
models, and accuracies. 

Dataset utilization and challenges: Table 7 shows that datasets such as IoT-23, MedBIoT, and 
Bot-IoT are frequently utilized. However, issues such as dataset imbalances and limited architectural 
diversity remain unclear. 

Diverse feature categories: IoT malware detection employs a mix of static (e.g., network packet 
features and opcode sequences) and dynamic features (e.g., system call graphs and network traffic 
metadata), with some methods integrating hybrid approaches (e.g., opcode and API calls). 

Machine learning algorithms: A wide range of ML algorithms, including RF, CNN, RNN, Bi-
LSTM, and GNN, has been utilized. The RF and CNN models dominate owing to their high accuracy 
and adaptability to IoT-specific constraints. 

Image-based detection advances in sandboxing: Image-based approaches and sandboxing 
improvements, such as QEMU-based execution and system behavior capture, have addressed 
limitations in resource-constrained IoT environments while enhancing the malware detection 
performance. 

Adversarial vulnerabilities: Many existing models are susceptible to adversarial attacks, which 
reduces their real-world applicability. 

6.4. Malware Detection in Cloud Platform 

Malware detection in cloud platforms is becoming increasingly vital as organizations move data 
and services to the cloud. Unlike traditional systems, cloud environments pose unique challenges 
due to their distributed architecture, multi-tenancy, and scalability. The dynamic and large-scale 
nature of the cloud enables rapid malware propagation, outpacing traditional detection methods. 
Detection agents on cloud servers provide security services, allowing users to upload files and receive 
malware reports. 

Xiao et al. [123] proposed a cloud-based malware detection scheme utilizing Q-learning to 
optimize the offloading rate for mobile devices without prior knowledge of trace generation or radio 
bandwidth. They employed the Dyna architecture and post-decision state learning to enhance 
performance and expedite the reinforcement learning process. Testing revealed that their scheme 
improved detection accuracy by 40%, reduced delay by 15%, and increased mobile device utility by 
47% with 100 devices, thereby enhancing overall performance. Additionally, Yadav R. Mahesh [61] 
introduced a malware detection system for cloud environments using a novel consolidated Weighted 
Fuzzy K-means clustering algorithm with an Associative Neural Network (WFCM-AANN). The 
proposed classifier identified malware with a high detection precision of 92.45%, surpassing existing 
classifiers. 

Summary of research Trends on Malware Detection in IoT Platform 

According to the studies reviewed in this work, advanced methods such as Q-learning and 
Weighted Fuzzy K-means clustering combined with neural networks have shown promising results. 
However, large-scale and highly variable cloud environments render malware detection challenging. 
Hence, existing solutions often lack scalability to handle the rapid increases in traffic and malware 
propagation. To overcome this issue, adaptive ML models that can efficiently handle the dynamic 
and multi-tenant nature of cloud systems can be developed. 

7. Challenges Associated with Platform-Specific and Cross-Platform 

This section discusses platform-specific research challenges related to malware detection, such 
as Windows, Linux, macOS, Android, iOS, IoT and Cloud. We also present the cross-platform 
challenges in ML-based malware detection. 

Windows platform- 
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 The use of outdated Windows versions, which no longer receive official support, exposes the 
systems to unpatched vulnerabilities. 

 The variety of third-party applications on Windows expands the attack surface, thereby 
increasing the risk of exploitation. 

 The rise of fileless malware, which primarily lives in memory, presents challenges for traditional 
detection and mitigation methods. 

 Inconsistent user behavior and poor adherence to security best practices increases vulnerability. 
Linux platform: The primary challenges in Linux malware research include the following. 

 Linux systems support diverse computer architectures, requiring analysts to create specific 
malware analysis codes for each architecture, leading to high costs and operational complexity 
owing to extensive code management. 

 The analysis environment may lack the necessary loader for the ELF file format, thereby 
preventing sample execution. 

 Constructing refined datasets is difficult because of the varied devices, vendors, and 
architectures of Linux systems. 

 Moreover, complexity demands expert manual analysis. 
macOS platform- 

 As macOS gains market share, it increasingly targets malware, which requires continuous 
advancements in detection techniques. 

 The limited tools available for malware analysis of macOS hinder large-scale studies. 
 Owing to the historically low prevalence of malware, MacOS users may be less vigilant about 

security risks. 
Android platform- 

 Android’s dependency on multiple manufacturers slows OS updates, leaving many outdated 
devices and exposed to security risks. 

 Third-party Android apps elevate malware risks, thereby threatening device security and user 
privacy. 

 Unlike iOS, Android allows users to control permissions, potentially enabling malicious apps to 
misuse the granted access. 

 The variety of Android devices and OS versions complicate uniform patching and security 
protocols. 

 Android’s open-source framework enables adversaries to examine their code, facilitating reverse 
engineering and exploitation creation. 
iOS platform- 

 iOS’s auto-erase feature of iOS enhances security but may cause unintended data loss following 
unsuccessful login attempts. 

 Despite advanced Face ID, earlier iOS versions were vulnerable to photos or masks, 
compromising security. 

 iOS apps use obfuscation to prevent reverse engineering; however, skilled attackers can bypass 
these defenses to access sensitive data. 
In summary, Android’s flexibility through open-source and diverse devices creates scalability 

but risks security, whereas iOS enhances security with strict policies, thus limiting flexibility. Future 
research should focus on balancing security, usability, and standardization. 

IoT platform: The rapid growth and heterogeneity of IoT devices introduce significant security 
challenges, especially in combating malware threats. 
 Most IoT devices use the Android operating system, which is open-sourced and, unlike iOS, is 

more vulnerable to exposure. 
 IoT devices possess considerably less computing power than x86-architecture PCs, making them 

highly vulnerable to malware due to their limited resources. 
 In machine and deep learning, larger datasets facilitate faster model learning and improvement. 

However, there is a significant shortage of valid datasets of IoT malware. 
Cloud platform: The dynamic and distributed nature of cloud environments poses distinct 

challenges to the malware landscape. 
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 The interconnected nature of the cloud infrastructure increases the impact of malware. 
 A shared responsibility model for cloud security can obscure responsible security tasks. This can 

lead to organizations having limited visibility and control, thus hindering threat detection and 
response. 

 Attackers can leverage the automation and scalability features of the cloud to quickly launch 
large-scale attacks. 
Cross-platform issues- 

 Data heterogeneity: Variations in file formats, system call sequences, and behavioral patterns 
across platforms make it challenging to create generalized models. 

 Lack of unified datasets: The absence of a standardized, diverse, and large-scale dataset that 
incorporates samples from Windows, macOS, Linux, Android, IoT, and cloud environments. 

 Inconsistent feature representations: Differences in how features like static metadata, dynamic 
behavior, and memory traces are extracted and represented across platforms. 

 Transferability of models: ML models trained on one platform (e.g., Windows) may not generalize 
well to others (e.g., Linux or IoT) because of differences in malware characteristics. 

 Performance scalability: Ensuring scalability and efficiency of detection techniques when applied 
to cloud and IoT systems with resource limitations. 
These challenges emphasize the need for a multi-platform approach to malware detection that 

considers platform-specific constraints while addressing overarching cross-platform issues.  

8. Limitations in the Existing Literature and Future Research Directions 

Based on a comprehensive review, we identified some significant research gaps or limitations 
and list some significant future works to enhance malware detection using machine learning 
techniques 

Lack of Unified Cross-Platform Detection Frameworks 

Current ML models are typically designed for a single platform, limiting their ability to detect 
malware across interconnected systems like PCs, mobile devices, IoT, and cloud environments. To 
mitigate this issue, we can develop adaptable unified ML frameworks that may use transfer learning 
and cross-platform training strategies to allow models to generalize effectively across platforms. This 
approach enables a single model to adapt to different environments, reducing the need for platform-
specific datasets. 

Insufficient Model Adaptability to Emerging Malware Variants 

Malware continually evolves, with new variants employing polymorphic and metamorphic 
techniques to evade detection, rendering static or narrowly trained ML models ineffective. Transfer 
learning and continual learning strategies can be used to train models incrementally using new data 
from different platforms and emerging malware types. This can help maintain model accuracy 
without retraining from scratch, thereby addressing the limitations of static ML approaches in 
dynamic threat landscapes. 

High Computational Demands of ML Models in Resource-Constrained Environments 

The IoT and mobile devices typically have limited processing power and memory, making it 
challenging to implement advanced ML-based detection techniques that require substantial 
computational resources. We need to develop lightweight, energy-efficient ML algorithms that are 
explicitly optimized for IoT and mobile environments. Techniques such as model pruning, 
quantization, and distillation can reduce the computational load, enabling robust malware detection, 
even in devices with limited resources. 

Limited Transparency and Interpretability of ML-Driven Detection Systems 
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The opacity of complex ML models’ intense learning methods hinders their adoption in security-
critical applications, where interpretability is essential for understanding detection decisions and 
incident responses. Incorporate explainable AI (XAI) techniques are used in malware detection 
models, making it easier for cybersecurity professionals to interpret ML-driven decisions. XAI 
methods, such as Shapley Additive exPlanations) or Local Interpretable Model-agnostic Explanations 
(LIME), could provide insights into model predictions, enhancing trust and transparency. 

Lack of Comprehensive, Labelled Datasets for Multi-Platform Malware Detection 

Effective multi-platform malware detection models require large, labelled datasets that 
encompass diverse attack patterns and behaviors across PCs, mobile devices, IoT, and cloud 
platforms, which are currently scarce. To mitigate this issue, foster collaborative data-sharing 
frameworks among academic and industry researchers can be built to develop large and diverse 
datasets that include benign and malicious samples from various platforms. Moreover, synthetic data 
generation techniques such as Generative Adversarial Networks (GANs) can also be employed to 
augment existing datasets and enhance model robustness and performance. 

Vulnerability to Adversarial Attacks 

Adversarial examples, where attackers subtly alter input data to deceive ML models, remain a 
challenge for malware detection systems, particularly in high-stakes environments, such as IoT and 
cloud systems. Adversarial training techniques can be integrated to improve model robustness 
against adversarial samples. Additionally, anomaly detection methods can help identify abnormal 
patterns that adversarial examples might exhibit, thereby strengthening defense mechanisms. 

Limited Research on Hybrid Detection Approaches Combining Static, Dynamic, and Memory Analysis 

Most malware detection techniques rely on either static or dynamic analysis, omitting the 
combined potential of hybrid models that use static, dynamic, and memory features for enhanced 
detection. To approach this issue, hybrid models can be implemented that integrate static, dynamic, 
and memory-based analysis techniques, thereby creating a more comprehensive view of malware 
behaviors across platforms. This approach can improve the detection accuracy and adaptability, 
especially against complex and evasive malware that may bypass single-method detection. 

The proposed solutions offer a roadmap for future research aimed at enhancing the resilience, 
adaptability, and effectiveness of ML-based malware detection across interconnected digital 
environments. 

9. Conclusion 

This comprehensive review examined machine learning (ML)-based malware detection 
techniques across diverse platforms, including PCs, mobile devices, IoT systems, and cloud 
environments, each presenting unique security challenges owing to distinct vulnerabilities, 
operational constraints, and resource limitations. ML techniques utilizing static, dynamic, memory, 
and hybrid features show considerable promise for identifying malware effectively; however, they 
face challenges in handling adaptive and polymorphic malware that exploit platform-specific 
weaknesses. Furthermore, a significant gap persists in cross-platform detection capabilities because 
most ML models are optimized for specific platforms and lack adaptability to other environments 
without retraining or additional data. To address these limitations, future research should prioritize 
adaptable frameworks that leverage transfer and federated learning, enhance model resilience across 
platforms, and reduce the need for platform-specific labelled datasets. Additionally, advancements 
in explainable AI (XAI) are critical for improving transparency in ML-driven detection systems, 
particularly in complex threat scenarios. Lightweight models tailored to resource constrained IoT and 
edge devices are also essential for effective deployment across increasingly interconnected 
ecosystems. Ultimately, this survey underscores the necessity of developing robust, unified ML-
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based malware detection systems capable of defending against sophisticated, multi-platform threats, 
thus advancing cybersecurity resilience across digital environments. 
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