Pre prints.org

Review Not peer-reviewed version

A Survey on Machine Learning
Techniques in Multi-platform Malware
Detection: Securing PC, Mobile Devices,
loT, and Cloud Environments

Jannatul Ferdous * and Rafiqul Islam

Posted Date: 4 December 2024
doi: 10.20944/preprints202412.0348v1

Keywords: Machine learning; Malware detection; Multi-platform malware; Malware analysis; P.C. malware;
Mobile malware; loT malware defense; Cloud-based malware detection

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4056492
https://sciprofiles.com/profile/2086174

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Review

A Survey on Machine Learning Techniques in
Multi-platform Malware Detection: Securing PC,
Mobile Devices, IoT, and Cloud Environments

Jannatul Ferdous * and Rafiqul Islam

School of Computing, Mathematics and Engineering, Charles Sturt University, Australia
* Correspondence: jferdous@csu.edu.au

Abstract: Malware has emerged as a significant threat to end-users, businesses, and governments, resulting in
financial losses of billions of dollars. Cybercriminals have found malware to be a lucrative business because of
its evolving capabilities and ability to target diverse platforms such as PCs, mobile devices, IoT, and cloud
platforms. While previous studies have explored single platform-based malware detection, no existing research
has comprehensively reviewed malware detection across diverse platforms using machine learning (ML)
tactics. With the rise of malware on PC/laptop devices, it is now targeting mobile devices and IoT systems,
posing a significant threat to cloud environments. Therefore, a platform-based understanding of malware
detection and defense mechanisms is essential for countering this evolving threat. To fill this gap and motivate
further research, we present an extensive review of malware detection using ML techniques with respect to
PCs, mobile devices, IoT, and cloud platforms. This paper begins with an overview of malware, including its
definition, prominent types, impacts, analysis, and features. It presents a comprehensive review of machine
learning-based malware detection from recent literature, including journal articles, conference proceedings,
and online resources published since 2017. This survey also offers insights into current challenges and outlines
future directions for developing adaptable cross-platform malware detection techniques. This survey is crucial
for understanding the evolving threat landscape and developing robust detection strategies.

Keywords: Machine learning; Malware detection; Multi-platform malware; Malware analysis; P.C.
malware; Mobile malware; IoT malware defense; Cloud-based malware detection

1. Introduction

In recent years, malware has evolved into one of the most pervasive cybersecurity threats,
capable of targeting not only traditional systems such as PCs, but also mobile devices, IoT, and cloud
platforms. Malware is becoming increasingly complex and varied by employing methods such as
code obfuscation, encryption, polymorphism, and metamorphism to avoid detection [1]. The
increasing sophistication of malware and its capability to bypass conventional security measures
have caused significant financial, operational, and reputational damage to individuals, businesses,
and governments. As technology becomes increasingly integrated across platforms, cybercriminals
can simultaneously exploit multiple systems. Therefore, a thorough investigation of multi-platform
malware detection is not only timely but crucial for ensuring cybersecurity resilience.

In the context of cybersecurity, malware refers to malicious software that is intentionally
designed to disrupt, damage, or gain unauthorized access to computer systems. In contrast, multi-
platform malware is malware capable of infecting and spreading across various types of platforms,
often simultaneously. Malware can be categorized into several forms depending on its purpose and
information-sharing system, such as ransomware, spyware, adware, rootkits, worms, horses, botnets,
trojans, and viruses. Machine learning (ML), in this study, refers to computational techniques that
allow systems to learn from data and improve their performance over time without being explicitly
programmed. The application of ML for malware detection has shown significant potential for

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202412.0348.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

automating threat identification and reducing detection latency, especially in environments with
high complexity and variability.

The increasing prevalence of malware is evidenced by the increasing number of global
cyberattacks. According to the 2024 Cisco Cybersecurity Readiness Index [2], 76% of firms experience
malware attacks, as shown in Figure 1. Astra’s Malware Statistics 2024 reports that 560,000 new
malware pieces are detected daily, adding to over 1 billion existing programs. This large volume of
malware thwarts organizational security, often resulting in ransomware attacks [3]. The scale and
impact of ransomware attacks are expected to increase significantly in the future. Cybersecurity
Ventures predict that victims could pay approximately $265 billion annually by 2031, with costs
increasing by 30% each year [4]. Malware targeting Linux systems has also increased, with a 35%
increase in infections and the emergence of new malware families impacting Linux-based platforms

[5].
Malware

Phishing

Credential Stuffing
3rd Party & Social

Cryptojacking 27%

Figure 1. Types of Attacks Experienced by Companies (Published September 2024 by CISCO) [2].

Furthermore, 2023 marked a pivotal moment for IoT security threats. A report from Zscaler
ThreatLabz in October 2023 showed a 400% increase in IoT malware attacks compared to the previous
year [6]. Overall, the global proliferation of mobile devices, IoT systems, and cloud computing has
expanded the attack surface, providing cybercriminals with new vectors for deploying malware.
Hence, new challenges have arisen for malware detection. Traditional malware detection methods
tailored to specific platforms, such as PCs or mobile devices, are insufficient to counter these new
threats. This underscores the necessity of adopting a unified, multi-platform approach to malware
detection that can provide holistic defense strategies.

In response to this evolving threat landscape, numerous studies have been conducted with an
increasing focus on machine learning (ML), owing to its ability to handle the complexity of modern
threats. Traditional approaches to malware detection, such as signature-based and heuristic methods,
have proven inadequate for combating sophisticated and polymorphic malware, particularly in
dynamic, multi-platform environments. Thus, the development of more advanced detection
techniques, such as behavior-based and machine learning (ML)-driven approaches, has become
essential in modern cybersecurity defenses

Despite the rising threat of multi-platform malware, existing research on malware detection
remains predominantly focused on single platforms, either PCs or mobile devices, with relatively few
studies addressing IoT or cloud environments. Moreover, these studies often fail to account for the
growing interconnectivity between platforms, which allows malware to migrate easily from one
system to another. This creates a significant gap in the literature, as there is no comprehensive review
of machine learning techniques that address malware detection across PCs, mobile devices, IoT, and
cloud environments.

Multi-platform malware detection is, therefore, critical for several reasons. Cyberattacks today
often exploit the weakest link across interconnected systems. For instance, a single vulnerability in
an IoT device can be leveraged to infiltrate broader networks, including enterprise cloud systems.
Second, malware has evolved to operate across multiple platforms, with many modern malware
variants designed to be adaptable to different operating environments. Mirai, a botnet initially
designed to target IoT devices, was later modified to attack cloud-based systems and enterprise

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

networks. Hence, developing unified defense strategies is essential, as organizations adopt hybrid
environments that combine on-premises and cloud-based systems.

This survey aims to fill this gap by providing a holistic review of the recent literature on malware
detection using ML methods across diverse platforms. This paper reviews the state-of-the-art ML
techniques used to detect malware on PCs, mobile devices, IoT systems, and cloud environments. It
also outlines the specific challenges encountered on each platform and provides insights for adapting
techniques for cross-platform usage. In doing so, this survey not only serves as a valuable resource
for researchers and practitioners in cybersecurity, but also offers a foundation for future research into
adaptable, cross-platform malware detection strategies using machine learning.

The key contributions of this study are as follows.

. To the best of our knowledge, this is the first comprehensive review of malware detection in
PCs, mobile devices, [oT systems, and cloud environments using machine-learning techniques.

e This study details the various types of features (e.g., static, dynamic, memory, and hybrid) used
to train the ML models. It also discusses the malware landscape across platforms and identifies
both platform-specific challenges and cross-platform issues that affect the development of
effective ML-based malware detection techniques.

e This study examines existing malware detection techniques using various ML and DL models
and provides the overall research trends observed for each platform.

e This study highlights gaps in the existing research and proposes future directions, such as
developing adaptable, scalable, and efficient ML algorithms for multiple platforms and
promoting unified cross-platform malware detection approaches.

The structure of this survey is organized as follows: Section 2 provides a comparison with
previous related work. Section 3 provides an overview of malware, including malware definitions,
leading malware threats, malware analysis, and features used to build the ML model for malware
detection. Section 4 describes the malware landscape across diverse platforms. Section 5 presents an
overview of machine learning algorithms for malware detection. Section 6 provides an extensive
review of malware detection using ML techniques with respect to PCs, mobile devices, the IoT, and
cloud platforms. Section 7 presents the challenges associated with platform and cross-platforms.
Section 8 presents the limitations of the existing literature and future research directions. Finally,
Section 9 concludes the paper.

2. Comparison with Previous Related Surveys

This section examines survey papers on malware detection via machine learning from 2017
onwards, highlighting the gaps that we intend to address. This will help researchers to establish a
baseline for developing countermeasures. Table 1 compares our survey with existing surveys.

Existing surveys on malware detection using machine learning and deep learning typically focus
on specific platforms such as Windows[7-9,11] or Android [10,12,13]. A small number of studies
[17,18] have examined both Windows and Android. Some surveys [14-16] have addressed malware
classification in IoT platforms using ML and DL techniques. However, many current studies lack a
comprehensive understanding of the [oT malware. Few studies have focused on cloud malware. Belal
and Sundaram [19] provided a taxonomy of ML/DL-based cloud security, addressing issues,
challenges, and trends, whereas Aslan et al. [20] discussed behavior-based malware detection in the
cloud. Table 1 also reveals that several surveys have focused exclusively on DL technologies for
malware detection, such as those in [9,17,21,22], without focusing on traditional ML or ensemble
learning techniques. However, traditional ML and ensemble learning offer distinct advantages
including lower computational requirements, faster training times, and better performance on
smaller datasets.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024

doi:10.20944/,

reprints202412.0348.v1

Table 1. Summary of existing review papers for comparison with our study (myth: v indicates complete information provided, = indicates partial information provided, and x indicates

no information provided).

Papers Year Main contribution Insights into malware ML-based malware detection in diverse Challenges
platform identified
Latest Platform- Analysis Feature Pcs Mobile IoT Cloud
prominent based methods (Static, details ~ Windows Linux
malware malware dynamic,
variants taxonomy memory and
hybrid)
[7] 2021 Survey on malware detection x x \ x \ x x x x x
techniques using machine learning
algorithms.
[8] 2019 Survey on sophisticated attack x x = x V x x x x x
and evasion techniques used by
the contemporary malwares.
[9] 2022 This survey is on the use of Deep x x = x v x x x x x
Learning-based malware
detection.
[10] 2021 Reviewed machine learning x x \ x x x \ x x x
methods for Android malware
detection.
[11] 2020 Study on traditional and state-of- x = \ \ x x x x x
the- art ML techniques for
malware detection
[12] 2023 DL approaches for malware x x v v x x V x x x

defenses in the Android

environment

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

[13] 2020 Android malware detection using x = \ x x v x x x

deep learning

[14] 2023 Survey on IoT malware taxonomy x = x x x x x v x v

and detection mechanisms.

[15] 2023 Discussed IoT dataset use to x x = x x x x \ x x
evaluate the machine learning
techniques.

[16] 2023 Review on emerging machine x x x x x x x v x x

learning algorithms for detecting
malware in [oT.
[17] 2024 Modern deep learning x x N = v \/ + x x x

technologies for identifying

malware on Windows, Linux, and
Android platforms.
[18] 2021 Computer-based and mobile- x x = x \ x \ x x \

based malware detection and,

their countermeasures are
presented.
[19] 2022 ML and DL based defenses x x x x x x x x S \

against attacks and security issues

in cloud computing is provided.

[20] 2021 Behavior-based malware x x = x x x x x x x

detection system in the cloud

environment
Our 2024 Survey on malware detectionin v v v v v v v v v
survey PC, mobile, IoT and cloud

platform using ML techniques.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

These benefits highlight the importance of exploring these techniques along with DL for
comprehensive malware detection strategies. Moreover, existing surveys fail to comprehensively
address malware detection across platforms such as Linux, macOS, iOS, IoT, and the cloud, which
are also frequently targeted by malware. The lack of platform diversity in current surveys highlights
the need for an inclusive review that covers various environments to thoroughly understand
malware-detection methods. To fill these gaps, this study provides a comprehensive survey of recent
ML and DL approaches for malware detection across Windows, Linux, macOS, Android, IoT, and
cloud platforms, which are frequently targeted by malware.

3. Malware Fundamentals

This section explores the fundamental aspects of malware, including its definition, type, and
disruptive impact on systems and data. It also highlights recent and significant malware threats,
discusses standard analysis techniques, and examines the critical features that enable machine
learning to detect and combat these threats.

3.1. What is Malware

Malware refers to malicious software designed to compromise computer systems or to gain
unauthorized access. Despite advancements in cybersecurity, malware remains a significant threat,
disrupting systems by stealing information, rendering services unavailable, or damaging files.
Common malware categories include viruses, worms, trojans, backdoors, spyware, adware, botnets,
rootkits and ransomware. Each exhibits distinct behaviors: viruses modify or delete files, worms self-
replicate across networks, rootkits allow remote control, and Trojans masquerade as legitimate
applications for covert activities. Adware displays unwanted ads, spyware tracks user activities,
botnets exploit resources, backdoors bypass security for unauthorized access, and ransomware
encrypts data, demanding payments for decryption [23]. This classification highlights the diverse
operational goals of the malware.

3.2. Leading Malware Threats in the Current Cyber Landscape

The cyberthreat landscape is dominated by sophisticated malware that targets multiple
platforms. Malware increasingly employs evasive, polymorphic, and adaptive tactics to evade
traditional security measures, thereby posing detection and mitigation challenges. Cybercriminals
also leverage Al-powered malware, further complicating defense.

In this section, we examine prevalent malware threats, their characteristics, attack methods, and
associated damages, underscoring the need for cybersecurity professionals to remain informed and
proactive against these evolving threats.

Ransomware: Ransomware continues to be one of the most widespread and damaging forms of
malware. The COVID-19 pandemic led to an increase in ransomware activities, which have further
escalated in 2023. Ransomware attacks have shifted from targeting large enterprises with complex
methods to widespread attacks on small businesses facilitated by Ransomware-as-a-Service kits.
Currently, LockBit is the most prevalent ransomware toolset. In February 2024, an international law
enforcement operation seized 34 LockBit servers; however, LockBit3.0 quickly emerged just five days
later [24].

Ransomware attacks target a wide range of computing devices, including desktops, mobiles,
IoT, and cloud environments. Cybercriminals employ various attack vectors such as phishing spams
and exploit vulnerabilities to deliver malicious files [25]. The ransomware then encrypts the critical
files and collects information regarding the target. They frequently connect to remote servers to
obtain additional components or transfer files. Victims receive recovery instructions, often through
ransom notes or desktop changes, in exchange for payments.

Recent high-profile ransomware attacks by Conti, REvil, Darkside, and LockBit 3.0 have
significantly impacted global infrastructure, healthcare, and businesses. For instance, Conti’s attack
on Costa Rica’s government led to a national state of emergency [26], whereas REvil’s Kaseya breach

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

demanded a $70 million ransom [27]. Darkside is known for stealthy compromises such as the
Colonial Pipeline incident, costing $5 million [28]. LockBit 3.0 has also carried out significant attacks,
such as the Accenture breach, demanding a $50 million ransom [29].

Advanced Persistent Threats (APTs): Advanced Persistent Threats (APTs) have become a
growing concern in recent malware trends, and are projected to reach a $12.5 billion market by 2025
[30]. APTs are characterized by their sophistication, advanced tactics, and prolonged, targeted
campaigns against digital infrastructure for sabotage or espionage. They differ from conventional
cyber threats in that they are more persistent and complex than other malware, such as ransomware.

APTs leverage obfuscation, anti-analysis tactics, and Al to evade detection and create zero-day
exploits [31]. It operates through a multistage process to infiltrate and persist within a network. They
start with reconnaissance, gathering information via open-source intelligence (OSINT) and social
engineering, followed by initial access by spear phishing or system exploits. Attackers establish
control, escalate privileges, move laterally, and exfiltrate data while maintaining a stealth to evade
detection.

Prominent APT attacks include Stuxnet, which disrupts Natanz’s centrifuges through zero-day
vulnerabilities and fake software signatures [32]. The SolarWinds attack is another example of APT
that deploys malware via a supply chain compromise in the Orion system [31].

Cryptojacking: Cryptojacking is a stealthy cyberattack in which malware is typically injected
via malicious links into a network of devices and runs covertly in the background to harness the
victim’s computing resources for mining cryptocurrency. In 2023, cryptojacking incidents
skyrocketed, exceeding the previous year’s total by early April and reaching $1.06 billion by the year-
end-a 659% increase [33]. Unlike ransomware, cryptojacking avoids direct payment demands and
uses obfuscation to avoid detection. Figure 2 [34] illustrates how this process works step-by-step.

You click on a maliciou
link in an email

The cryptojacker monitors
the crypto being mined and
collects it in their digital
wallet

The email and link may look
completely innocent

HOW
CRYPTOJACKING
WORKS

The script captures
some or all of your
device’s computing
power and uses it to
mine cryptocurrency

i %
N (=) h
The script is designed to ~ — Which places a mining script

control your computer in the background

Clicking on the link
loads cryptomining
code into you
computer

Figure 2. Step-by-step process of cryptojacking [34].

Cryptojacking targets various platforms, including desktops, servers, mobile devices, and cloud
services, using different forms of malware or scripts.

Browser-based cryptojacking: This form of cryptojacking uses malicious JavaScript on websites to
exploit user devices for cryptocurrency mining. It requires no software installation but may cause
increased CPU usage, slowing down, or overheating devices.

Host-based cryptojacking: In host-based cryptojacking, attackers misuse the CPU or GPU of a
system to mine cryptocurrencies. Unlike browser-based methods, this approach involves direct
installation of malicious scripts on a host, often through phishing or bundled software. These scripts
exploit the system’s resources to convert cryptocurrencies.

Cloud cryptojacking: Cloud cryptojacking involves exploiting server and container vulnerabilities
to mine cryptocurrency, impacting providers and customers through financial losses and reduced
performance.

Notable cryptojacking incidents include the hacking of a European water utility, Tesla’s cloud
breach, and the cryptojacking code hidden on the Los Angeles Times website in 2018 [33,34].
Moreover, in 2020, the U.S. Department of Defense found cryptojacking malware on its servers [35],
and in 2019, a Russian nuclear facility employee was fined $7000 for mining Bitcoin illegally [36].

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

Spyware: Spyware enables cybercriminals to infiltrate networks by stealing sensitive data such
as login credentials, screenshots, and chat histories. Pegasus, a well-known spyware variant, steals
data from mobile devices and leverages BYOD policies to infiltrate secure networks. It provides
cybercriminals with insider access, enabling them to locate and compromise valuable assets such as
emails, SMS messages, app data, and multimedia. Its ability to bypass multi-factor authentication by
extracting one-time passwords makes it even more dangerous [24].

Wiper malware: Wipers are malicious programs that permanently destroy user data and target
both public and private computer networks. Threat actors use wipers to conceal their intrusion and
to hinder the victim’s response. Nation-state attackers deploy them to disrupt supply chains and
military operations, while “hacktivists” use them to impede business activities in response to
perceived injustices [37].

Recent examples include WhisperGate malware that targeted Ukraine in January 2022 [38] and
HermeticWiper, which impacted various Ukrainian organizations in February 2022 [37].

Remote Access Trojans (RATs): RATSs, a specific trojan type, are popular with cybercriminals
for remotely controlling the endpoint devices. They trick users to run malicious codes by masking
them as legitimate applications. Ghost, a Remote Access Trojan, controls the infected endpoints.
Unlike typical malware, Ghost is manually deployed, suggesting that victims are already
compromised by other malware [24].

Understanding the current landscape of malware threats is crucial for developing robust
countermeasures and improving the detection capabilities.

3.4. Malware Analysis

In this subsection, we discuss various malware analysis methods that are crucial for the
development of malware detection systems. The main goal of malware analysis is to identify the
characteristics and purposes of suspicious files. Significant approaches for conducting malware
analysis across platforms like Windows, Linux, and Android include [39]-

e Static analysis

e Dynamic analysis

¢ Memory analysis and
e Hybrid analysis

Static analysis techniques extract static signatures, features, or patterns from binary files without
execution. This method is fast, secure, and efficient in identifying known malware samples, and does
not require kernel privileges or a virtual machine. However, static analysis has significant limitations:
it cannot examine malware strains using obfuscation techniques and is ineffective against malware
that uses packers to compress and encrypt payloads [40].

Conversely, dynamic analysis involves executing malware in a controlled environment to
observe runtime behavior. This enhances the understanding of malware functionality and enables
the identification of previously unknown or zero-day malware. However, this approach is often
slower and more time-consuming [40]. Additionally, dynamic analysis also has limitations in
tracking highly sophisticated malware, such as fileless (memory-resident) malware.

Consequently, Memory analysis offers an alternative method for detecting malicious behaviors
of fileless malware by capturing and examining volatile memory images during execution. While
encryption and packing can conceal suspicious files, all processes are visible in the memory during
runtime. Malware must disclose critical information (e.g., logs, code, and data segments) for
operational functionality, making detection possible. Volatile memory analysis detects malware by
examining its presence in the system’s RAM, identifying fileless malware that evades detection by
not leaving traces on hard drives.[41].

The hybrid malware analysis methodology combines multiple analysis approaches, offering
greater effectiveness than a single analysis technique.

3.5. Features Used in ML-Based Malware Detection

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024

doi:10.20944/preprints202412.0348.v1

This subsection provides an overview of the features extracted from various platforms, each of
which uses distinct file formats and yields different features. In Windows, malware features are
extracted from executable (EXE) files, whereas Linux malware is analyzed using Executable and
Linkable Format (ELF) files. In macOS, the Mach-O file format is used to analyse and extract the
features. Android relies on APKs, and iOS utilizes IPA files. The APK file enables the extraction of
static features from classes.dex files and dynamic features from the AndroidManifest.xml file [42].

IoT platforms derive features from firmware binaries, whereas cloud environments use container

images and VM disk files, such as Docker and VMDK, for feature extraction. Table 2 classifies
platform-specific features into static, dynamic, and memory-based features suited to different file

formats and operating environments.

Table 2. Categorization of Platform-Specific Features: Static, Dynamic, and Memory-Based

Approaches Across File Formats and Operating Environments.

File Format Static Features Dynamic Features Memory
Features
Windows Executable PE headers API Calls: Sequence and Windows
(EXE) files information: types of Windows API memory
Import/export address calls (e.g., CreateProcess, dumps
tables, section headers, WriteFile)
entry point address, Registry modifications:
date timestamp, code Registry key creation,
section size. deletion, or modification.
File metadata: Size, File system
creation/modification modifications: Deletes,
dates, access create, or overwrites the
permissions. existing file, encrypts all
Strings: IP addresses, or a subset of files in case
domain names. of ransomware.
Opcode sequences: An Host logs: Events
opcode is an instruction extracted from host logs.
executed by a CPU, Network activity: Source
describing an and destination IP
executable file’s addresses, TCP ports,
behavior. Hence, Domain Names System
opcode sequences are (DNS) requests, and
the specific sequences network protocols (e.g.,
of operations extracted HTTP, HTTPS, SMTP
from the binary code. etc.)
Resource usage: Higher
CPU or memory usage
may indicate the
presence of malware in
the system.
Linux Executable ELF header System-call patterns: Sections and
and information: Malware = Frequency and type of Segments:

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024

doi:10.20944/preprints202412.0348.v1

10

Linkable developers manipulate system calls. Memory
Format ELF headers to evade or Network behavior: segments
(ELF): code, crash standard analysis ~ Monitoring (.text, .data,
data, and tools [43]. outgoing/incoming .bss).
metadata for Internal Libraries: connections and socket
execution. Most Linux malware is creation.

statically linked to its

libraries, eliminating

external dependencies

[43].

Shared libraries: List of

dynamically loaded

libraries.

Sections and segments:

Information on the .text

(code) and .data (global

variables) segments.

macOS Mach-O Code signatures: File activity: Monitor file Sandboxing:
files: native Presence and structure creations, deletions, Memory
executable of code signing. modifications, and access protection
format for Dynamic libraries: patterns. through
macOS. Information on loaded Inbound and outbound entitlements.

libraries (DYLIBs). traffic: observe and
analyze all network
traffic, including DNS,
HTTP requests, and
other communication
protocols.
Service start/stop: Track
each modification linked
to service operation.
TI Reputation services:
Utilize threat intelligence
feeds to detect malicious
files, IP addresses, and
domains.

Android APK Strings: Domain names, Behavioural features: Embedded
(Android IP addresses, and Network files: Presence
Package Kit) ransom notesin case of = communication, SMS, of assets (e.g.,
files: ransomware attack data storage behavior. shared
-Itisa Permissions analysis: File system features: libraries)
compressed The set of permissions Similar to PCs, features impacting

archive that

requested by the app to

extracted from a mobile

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024

doi:10.20944/preprints202412.0348.v1

11

includes all
resources
needed to
distribute

and install

the users (e.g., camera
access, network
communication,
Bluetooth, contacts, and

more).

device’s file system can
indicate the presence of
malware.

User interaction:

Detecting ransomware

memory
allocation.
Memory

dumps: A

snapshot of

applications Manifest information: can be achieved by Android’s
on Android Details about correlating user memory that
devices. application components interactions with captures all
(e.g., activities, services, application runtime data and
and receivers), events [44]. processes in
Intents: Allows System resource the RAM at a
communication analysis: CPU, memory specific time,
between various and baterry, process including
components of an app. reports and network system
API calls: API calls usage. processes,
enable inter-application =~ Network traffic application
communication and analysis: URLs, IPs, data, and
monitoring them can Network Protocols, temporary
detect malicious Certificates, Non- data from
behavior. encrypted data various
programs
iOS iOS App Code signing: Objective-C method Entitlements:
Store Verification of calls: Runtime behavior. Defines
Package signatures. Dynamic behavior: API memory
(IPA): Sandboxing and usage patterns (e.g., boundaries
specific to entitlements: contacts, location access). through
iOS for app Permission restrictions. Data encryption: sandboxing.
distribution. Encrypted data usage.

IoT Various Firmware version: Network traffic: Service ~ System-call
formats Metadata, updates, and type (http, smtp, ftp etc.), sequences:
(e.g., BIN, patches. Device communication System-level
HEX, Linux Opcode sequences: protocols (e.g., MQTT, commands
executables). extracting operational CoAP), Packet size specific to

codes after
disassembling the
binary file.

Control flow graph
(CFG): extracting from
the assembly file

API calls: extracting

from the binary

transmitted by Source IP
address, etc.
Device-specific
behavior: Interactions
with sensors, actuators,
device ports.
System-calls:

Timestamp, return value,

device
memory.
Memory
mapped IO:
Monitoring
interactions
with memory
mapped I/O
(MMIO).

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024

doi:10.20944/preprints202412.0348.v1

12

arguments, and name of
each System-calls.
CPU usage, Process

usage, Ram usage and.

Memory
buffer usage:
Analysis of
memory

buffers for

potential
overflows.
Cloud VM disk VM metadata: API usage patterns: Virtual
images (e.g., Hypervisor information Cloud-specific APl calls memory
VMDK, (e.g., VM details). (AWS SDK, Google dumps:
QCOW2), Data storage patterns: Cloud API). Contains
container Interactions with cloud Container activity: memory-
formats storage. Monitoring processes, specific
(e.g., Docker Strings and n-grams network activity in features
im containers. (system calls,
ages). System calls: Extracted =~ memory
from the interactions access).

between applications
and the OS’s kernel

during runtime.

Static features derived from binaries or metadata without execution include file headers, opcode
sequences, and metadata, which are essential for assessing executables and packages on Windows,
Linux, macOS, Android, and iOS. Dynamic features capture behavior during execution, including
system calls, API invocations, network activities, and registry or file system changes, aiding in the
identification of complex or evasive malware. Memory features, such as memory allocation patterns
and mapping, are vital for detecting sophisticated threats, particularly in IoT and cloud
environments. This structured feature analysis underpins the implementation of machine learning
models attached to each platform’s unique characteristics.

4. Malware Landscape Across Platforms

The proliferation of digital technologies has expanded the malware threat landscape across
various platforms including PCs, mobile devices, IoT, and cloud systems. Understanding the targeted
operating system or device is crucial to comprehending malware behavior, as malicious software is
often crafted for specific platforms that exploit system-specific vulnerabilities. In this study, the terms
“platform” and “operating system” will be utilized synonymously, and we classify the target
platforms for malware into four primary categories: PCs, mobile devices, IoT and cloud systems. Each
platform has unique vulnerabilities, attack vectors, and security issues that require distinct detection
and mitigation strategies. This section provides an overview of the malware landscape across these
platforms, as shown in Figure 3.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

13

Attack

Operating
vectors/vulnerabilities

environment

Platform types

Phishing, social engineering,
compromised credentials, infected
software, insider threat, security
vulnerabi poor encryption etc.

Ransomware (WannaCry), Trojan (Emotet, jesus), Spyware (DarkComet,)
FinFisher), Adware (Fireball, Gator), Botnet (Zitmo)

Phishing, outdated Linux system and
Ransomware (KillDisk, Ransomexx, Cylance, GonnaCry), Rootkit kernels, misconfigured network

(Syslogk Linux rootkit), Cryptojacking, Remote Access Trojans (RATS), firwalls, web vulnerabilities,

S$SH Brute Force Attacks compromised websites, SSH

vulnerabilities.

Personal
Computers (PCs)

Remote Access Trojans (VPN Trojan, BadRAT), Adware, Spyware, Phishing email, malicious URLS,
Backdoors, AppleJeus, NukeSped, SquirtDanger and unpatched vulnerabilities, Mavertising
Potentially Unwanted Applications (PUA) ete.

Taxonomy of Ransomware (Simplocker, Xbot and adult player), Rootkit Malicious link in an email, infected app)
I Android (HummingBad), Worm (Cabir, Mobler, CommWarrior), Trojan malicious sms/mms, copromised wifi
malware (FakeDolphin, Harly), Spyware (Joker, FlexiSpy) network, USB flash drive

landscape Mobile devices

across diverse Virus (XcodeGhost, Masque Attack, CoinThief), Trojan Malicious websites, security
latforms (GoldPickaxe.iOS), Spyware (LightSpy,Pegasus), Adware (AdThief), vulnerabilities, app vulnarabilities,
P! Ransomware remote code execution, data leakage

Smart
Devices
(CCTV, Smart|
TVs,)

(Necurs) software vulnerabilities etc.

Internet of
Things (loT)

Mirai Botnet, Worm (Okane, Okiru, Persiral, Gitpaste-12), Spyware Brute-force technique to crack the
(VPNFilter, psybot), DDoS Botnet (RapperBot, Zerobot), Ransomware weak password, insecure networks,

industrial loT Spyware, Virus, Worm, Ransomware, Adware, Info stealer malware, DoS Weak password, mPoor user security
(loT) attacks , TCP/IP stack iliti
Lack of encryption for shared files etc.

Unprotected edge servers,
Outdated software packages
I

e
as a Service
(laas)

C jacking malware, Cloud Snooper, IPStorm, Drovorub, Trojans,
DoS malware attacks, Backdoor, DoS attack

g laterally a
virtual machines,

Platform as a
Service
(PaaS)

Virus, Trojan Horse, Session Hijacking Ransomware, Spyware WellMess, APl insecure interfaces, Social
SQL Injection attacks, engineering, Vulnerabilities of Internet

Protoco

hrough shared resource, Social
DDoS Attacks, Hypervisor DoS Attacks, Hypercall engineering, Phising, Advanced
Attacks,Ransomware, Spyware, Backdoor, Trojan horse cross site scripting (XSS)
etc. techniques.
Avoid

Software as
Service
(SaaS)

Figure 3. Taxonomy of malware landscape across various platforms.

4.1. PCs

The PC platform is a primary target for malware, facing various types that exploit specific
vulnerabilities in Windows, macOS, and Linux environments. This study examines the malware
landscape for each operating system, emphasizing common threats, typical attack vectors, and
mitigation mechanisms.

4.1.1. Windows

The Windows platform remains a primary target for malware owing to its extensive use in
personal and enterprise settings. Malware types include viruses, worms, trojans, ransomware,
spyware, adware, and rootkits, each threatening system integrity and data security. Cybercriminals
exploit phishing emails, malicious websites, software vulnerabilities, and removable media to initiate
infection. Advanced techniques such as polymorphism, obfuscation, and encryption are used to
avoid traditional detection, necessitating adaptive and robust detection mechanisms [8]. The
platform’s broad software ecosystem provides numerous entry points for attack. Although Microsoft
employs security measures, such as Windows Defender and regular updates, their effectiveness
depends on users practicing safe computing and maintaining updated systems. The impact of
malware on Windows can lead to system performance issues, data theft, system crashes, and financial
losses, thereby highlighting the significant consequences of these attacks.

4.1.2. Linux

Linux has become the leading operating system in multi-cloud environments, powering 78% of
the world’s top websites. This widespread use has increased the scale and complexity of linux-based
systems [45]. The Linux OS supports various distributions for diverse hardware requirements,
making it integral to many Internet-based desktop devices and a target for cybercriminals. The rise

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

14

in Linux-based malware attacks is mainly due to the prevalence of IoT devices running Linux-based
firmware, such as smart home assistants, security cameras, and industrial control systems. These
devices often lack robust security mechanisms, making them susceptible to attacks that can
compromise the ecosystem. In addition, as more companies adopt Linux-based servers and networks,
hackers increasingly target these systems for potentially greater rewards. Trend Micro’s research
shows that 90% of public cloud workloads run on Linux, further motivating hackers to develop Linux
malware [46]. Recently, Linux-based systems have become increasingly targeted for various malware
attacks. According to the VMware threat report [45], these devices face an increase in cryptojacking
malware, remote access trojans (RATs), SSH brute force attacks, web shell malware, and ransomware.
The Trend Micro Linux Threat Landscape Report indicated a 62% increase in ransomware attacks on
Linux from 2022 to 2023. The report identified that KillDisk Ransomware, among others, specifically
targeted financial institutions, exploiting phishing attacks and outdated Linux systems and kernels.
This report also states that Webshell exploits are the most common Linux malware at 49.6%, followed
by Trojans at 29.4%, whereas backdoors and crypto miners are less prevalent [46]. Cybercriminals
primarily exploit web vulnerabilities such as SQL injection, XSS, and SSRF to compromise web
resources. They also targeted cloned websites, misconfigured firewalls, and SSH vulnerabilities to
execute malware attacks on Linux systems.

4.1.3. macOS

The evolving macOS threat landscape necessitates greater vigilance from users and developers.
Despite macOS’s reputation for robust security, it remains vulnerable to cyber threats in 2022;
malware detection on macOS rose significantly by 165%, accounting for 6.2% of the total increase
from the previous year [47].

MacOS employs security features such as XProtect and Gatekeeper; however, they have
limitations. XProtect’s signature-based detection is ineffective against unknown or modified malware
and lacks the dynamic scanning capabilities of third-party EDR tools. Gatekeeper is another security
feature that blocks unsigned or malicious Internet applications, verifies developer IDs, and checks
for alterations after signing. However, attackers can bypass this by using stolen developer IDs or
exploiting legitimate apps to run malicious code. Additionally, while Sandboxing applications limit
access to vital system resources, attackers have devised techniques to escape and obtain illicit access
[47].

The most prevalent malware on macOS include adware, potentially unwanted programs (PUPs),
backdoor spyware, remote access Trojans, stealers, ransomware, and other emerging malware types
[47,48]. Over the years, new malware threats have emerged, including AppleJeus, which shifted
tactics from Windows to macOS in 2018, and NukeSped, which functions as ransomware, spyware,
and stealer and was detected in 2019. SquirtDanger, a macOS-targeting malware with advanced
evasion techniques, was discovered in 2022 [47]. Common attack vectors include malvertising,
phishing emails, malicious URLs, and unpatched wvulnerabilities with persistent macOS
vulnerabilities.

4.2. Mobile Devices

The increasing prevalence of mobile devices in modern society has made them prime targets for
malware, particularly for smartphones. Malware developers primarily target Android and iOS
operating systems, which dominate the global mobile OS market.

4.2.1. Android

The widespread adoption of Android platforms on smartphones, tablets, and IoT devices has
increased its vulnerability to malicious cyber-attacks. The flexibility, cost-effectiveness, and
computing power of Android devices have increased their popularity. They offer user-friendly third-
party applications, such as games, fitness, monitoring, and healthcare, accessible globally via on-
demand internet connections. However, the widespread popularity of Android has made it

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

15

susceptible to cyber-attack. A recent report revealed that over 438,000 mobile malware installation
packages were detected in the third quarter of 2023, marking a 19% increase from the second quarter
[49]. Another report revealed that in Q2 2024, Android led the global mobile market with a 71.65%
share, while iOS accounted for approximately 27.62% [50]. Android platforms face a range of
malware threats, including credential theft, privacy breaches, bank fraud, ransomware, adware, and
SMS fraud. Therefore, the development of automatic Android malware detection methods is vital for
protecting the system security and user privacy.

Android is an open-source Linux-based mobile OS that allows anyone to access and use its own
code. Its architectural framework comprises several distinct layers: kernel, hardware abstraction
layer, Android runtime, libraries, application framework, and applications. These components
collectively serve to optimize the system efficiency and application performance. Android offers
security mechanisms, such as sandboxing, permissions, and encryption to protect data and ensure
app integrity [51]. Android apps operate in isolated sandboxes with user-approved permissions for
resources like cameras and Wi-Fi. Therefore, users should exercise caution when granting
permissions because malicious apps can access sensitive resources once allowed.

Various forms of malware, such as SMS Trojans, Ransomware, Adware, Backdoors, Rootkits,
Spyware, Botnets, and Installer malware, significantly threaten mobile device security [52,53].
Malware spreads on mobile devices through malicious links in emails or SMS, infected apps from
Google Play Stores, third-party sources, or malicious Wi-Fi networks. Significant vulnerabilities in
the Android OS include information gain, code execution, denial of service (DoS), overflow, SQL
Injection, and privilege escalation [53].

4.2.2.10S

iOS, introduced in 2007, is a Unix-based operating system that powers popular Apple devices
such as iPhones and iPads, ranking as the second most used mobile OS globally. The iOS architecture
consists of four layers with specific functions: Core OS handles hardware interactions, Core Services
provide data protection and storage features, media supports multimedia processing, and Cocoa
Touch enables app development and user interface management [53].

iOS offers robust security compared with Android through a closed system design incorporating
device-level protection (e.g., PINs, remote wipe), system-level features (e.g., Secure Enclave, secure
boot), and mandatory data encryption. Apple’s control over hardware and software makes
jailbreaking and unauthorized access challenging. The iOS enhances security through sandboxing,
encryption, and automatic data erasure. Applications are isolated from each other to prevent
unauthorized access, whereas encryption protects files using hardware and software keys [54]. i0OS
automatically grants most permissions, thereby reducing user involvement. In addition, the auto-
erase feature wipes data after multiple incorrect passcode attempts, offering a higher level of security
than Android [55]. According to a McAfee report, iOS malware has surged in recent years, with a
70% increase in malware targeting iPhones and iPads by 2020 [53]. The most common malware on
the iOS platform are ransomware, spyware, viruses, trojans, and adware [53,56]. Notable attacks
include Pegasus, which exploits zero-day vulnerabilities for surveillance [57]. Additionally, LightSpy
Spyware, a sophisticated iOS implant, was infiltrated via compromised news sites [58]. Common
vulnerabilities, such as memory overflow, remote code execution, and data leakage, present
significant risks to iOS users, highlighting the need for enhanced device security.

4.3. IoT platform

The Internet of Things (IoT), introduced by Ashton in 1999, refers to a network of interconnected
devices that collect and exchange data via the Internet or other networks. This is a combination of
devices, sensors, networks, computing resources, and software tools. IoT devices fall into two main
categories: Consumer IoT, such as personal and wearable smart devices, and Industrial IoT (IloT),
which includes interconnected industrial machinery and energy management devices.

The number of IoT devices is increasing significantly every year. According to Statista, global
IoT devices will nearly double from 15.9 billion in 2023 to over 32.1 billion by 2030. By 2033, China

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

16

will have the highest number of IoT devices, with approximately 8 billion consumer devices [59].
However, the rapid rise of IoT coupled with insufficient security measures has made these devices
prime targets for malware. Recent reports from Zscaler ThreatLabz show a 400% increase in IoT
malware attacks [60]. High-profile incidents, such as the Mirai botnet in 2016, exploit weak passwords
and unpatched vulnerabilities, enabling DDoS attacks and data exfiltration [60]. IoT malware also
takes advantage of other vulnerabilities, such as the absence of software and security updates,
insecure networks, poor user security awareness, TCP/IP stack vulnerabilities, and a lack of
encryption. Modern IoT malware, including Okane, VPNFilter, and Necurs, increasingly employs
brute-force methods, spyware tactics, and anti-virtualization techniques to gain access to devices [14].

4.4. Cloud Environments

Cloud computing enables remote access to computing resources such as storage, applications,
networks, and servers via an Internet connection. Conversely, cloud malware is a cyberattack that
targets cloud platforms with malicious code or services.

Cloud computing offers three types of services: Platform as a Service (PaaS), Software as a
Service (SaaS), and Infrastructure as a Service (IaaS). PaaS provides an environment for programmers
to develop, deploy, and test applications, as exemplified by the Azure and Google App Engine. SaaS
supports all applications within the cloud environment such as email and office software. IaaS offers
hardware resources, computing capabilities, storage, servers, networking devices, and virtual
machines [19,61]. Common examples of cloud malware include DDoS Attacks, Hypervisor DoS
Attacks, Hypercall Attacks (exploits the hypervisor to gain cloud control), Hyperjacking (when an
attacker takes control of a virtual machine for malicious purposes), Exploiting Live Migrations
(moves a VM or application without client disconnection from one physical location to another),
Ransomware, Spyware, Backdoor, Trojan horse etc.[19,62].

5. Machine Learning Algorithms for Malware Detection

In this section, we present a summary of various machine learning algorithms used for malware
detection on diverse platforms, including traditional, ensemble, and advanced deep learning
approaches, as outlined in Table 3. Traditional algorithms such as SVM, KNN, and DT are simple yet
effective in classifying malicious and benign samples. Ensemble methods, such as RF and Gradient
Boosting, enhance the accuracy and robustness by combining multiple models. Deep learning
algorithms, including CNN and transformers, excel in processing complex, high-dimensional, and
sequential malware data. Techniques such as GAN and Transfer Learning address challenges such
as limited datasets and feature extraction. The table underscores the diversity of machine learning
methodologies in malware detection. The analysis outcomes of the table are reflected in the pie chart
shown in Figure 4, highlighting the key trends in machine learning techniques for malware detection.

Deep Learning

Traditional ML

Ensemble Learning

Figure 4. Proportion of algorithm categories in recent malware detection.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

17

Table 3. Summary of machine learning algorithms applied in various studies across diverse platforms for malware detection.

ML techniques Algorithms References

Traditional Machine Learning Algorithms

Support Vector Machines (SVM): This method employs a hyperplane to maximize the margin between SVM [64-66]

malicious and benign samples, proving effective for high-dimensional data.

K-Nearest Neighbors (KNN): This algorithm classifies samples based on the predominant class of their nearest KNN [52,67]

neighbors, utilizing feature similarity as the primary criterion.

Logistic Regression (LR): This approach classifies malware by modelling the relationship between featuresand LR [68-70]
binary outcomes (malicious or benign) utilizing a sigmoid function. The sigmoid function converts input values
toarange of 0 to 1, making it ideal for interpreting results as probabilities. It is used for binary classification

tasks, especially in logistic regression and neural networks.

Naive Bayes (NB): A probabilistic approach that assumes feature independence, which is efficient for text- NB [65,66]

based malware detection.

Decision Trees (DT): Decision trees are a supervised learning method that classify data by building a tree-like DT
model. The process identifies the most critical features and splits the data into subsets based on these [68,67]

attributes to form nodes. It recursively classifies each node until a final decision is reached as benign or

malware

Ensemble Learning Algorithms
Random Forest (RF): This approach constructs multiple decision trees and aggregates their outputs through RF [65-68,70-72]
majority voting or averaging, thereby enhancing robustness and accuracy.
Gradient Boosting (e.g., XGBoost, Light GBM): This approach sequentially constructs weak learners, Gradient Boosting [70]
specifically decision trees, to minimize errors, thereby providing high accuracy in the analysis of structured XGBoost [67,70]

malware data.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

18

AdaBoost: This approach focuses on challenging samples by modifying weights during the training process, =~ AdaBoost [66,72]

thereby combining weak classifiers into a robust one.

Bagging: The Bagging technique randomly divides the dataset into multiple subsets (bootstraps) based on in-
stances, each with unique instances, and then aggregates the results from models trained on these subsets to

enhance generalization

Deep learning technique

Convolutional Neural Networks (CNNs): This approach demonstrates efficacy in image-based malware CNN [63,68,73-89]
detection, utilizing automated extraction of spatial features from transformed malware binaries.

Recurrent Neural Networks (RNNs): This method Facilitates the analysis of sequential data, including APIcall RNN [63,88,90,91]

sequences and opcode patterns, for behavioral-based malware identification.

Long Short-Term Memory (LSTM): A variant of Recurrent Neural Network (RNN) that effectively captures LSTM [73,77,79,84,[91-100]

long-term dependencies, particularly applicable for time-series analysis of dynamic malware features.

Gated Recurrent Unit (GRU): It is a type of recurrent neural network (RNN) designed to process sequential GRU [93]
data, such as time series or text. This model is more computationally efficient than LSTMs due to fewer

parameters and the absence of a separate output gate.

Generative Adversarial Networks (GANSs): This process generates synthetic malware samples for data GAN [81]

augmentation, thereby enhancing the efficacy of detection systems with limited datasets.

Autoencoders: Autoencoders are unsupervised neural networks used for dimensionality reduction, feature VAEs, Sparse [101]
extraction, and anomaly detection. They aim to learn a compressed representation of the input data (encoding) Autoencoders etc.

and then reconstruct the input (decoding) as accurately as possible.

Transformer Models (e.g., BERT): Transformers are advanced deep learning architectures based on attention BERT (Bidirectional
mechanisms designed to handle sequential or contextual data effectively. Encoder
Representations from

Transformers)

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

19

Transfer learning (TL): This is a deep learning approach where a model pre-trained on one task or dataset is Pre-trained CNNs like [102-104]
reused and fine-tuned for a related but different task. It is particularly effective when the target dataset is small ResNet, Inception,

or lacks diversity. VGG, ResNet50 etc.

Multilayer Perceptron (MLP): It is a type of artificial neural network (ANN) consisting of multiple layers of MLP [52,66,68,71,82,86,105]

nodes. It is commonly used in supervised learning tasks such as classification and regression.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

20

Owerall Research Trends on Machine Learning Algorithms for Malware Detection Across Different
Platforms

Table 3 and the pie chart reveal that deep learning is the leading approach in malware detection
research across platforms, with CNNs and LSTMs excelling in image-based and sequential data
analysis. Traditional ML techniques such as SVM and KNN remain adequate for high-dimensional
feature-based tasks. Simultaneously, ensemble learning methods, such as Random Forest and
Gradient Boosting, show substantial accuracy and generalization through model aggregation. These
trends highlight the increasing preference for deep learning, while acknowledging the
complementary roles of traditional and ensemble models.

6. Application of Machine Learning on Malware Detection

This section reviews recent studies that have utilized the various ML algorithms discussed in
Section 5 to develop malware detection models for Windows, Linux, Android, IoT, and cloud
platforms.

6.1. PC (Personal Computers) Malware Detection

This section covers malware detection on personal computers, including Windows, Linux, and
macOS. Windows, the most widely used OS, are the primary target for malware. Despite Linux’s
robust permission-based architecture, it is facing growing threats in the server and enterprise
settings. With its increasing popularity, macOS has increased the risk of malware. Detection methods
employ static, dynamic, and hybrid analyses, which are frequently enhanced using machine learning,
to counter evolving threats.

6.1.1. Malware Detection in Windows platform

In this subsection, we provide an extensive review of machine learning-based malware detection
techniques for the Windows platform are summarized in Table 4.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024

Table 4. Summary of reviewed models for Windows-based malware detection: dataset sources, feature details, and experimental result.

doi:10.20944/,

reprints202412.0348.v1

21

Reference Data source Feature Features ML algorithms Result Limitations
category (accuracy)
Static feature-based malware detection
[63] Malimg Static Opcode sequences Deep RNN 96% It requires significant
computational resources
[73] Microsoft BIG 2015 Static Opcodes, images, byte DNN, LSTM, and 98.35% It is useless against zero-day
sequence, etc CNN. malware.
[102] BIG 2015, Malimg, MaleVis and Malicia Static 2D images DenseNet 98.23% It has high false negatives and
dataset highly imbalanced datasets
[74] Microsoft BIG 2015 Static Image-based opcode features ~ CNN 99.12% Outdated dataset
[103] Malimg dataset, Microsoft BIG 2015 Static Grayscale images from PE VGG16, VGG19, 98.92% Cannot detect advanced-
files ResNet50, and packed malware
inceptionV3
[106] Malimg Static Static signatures ATT-DNNs 98.09% Cannot detect obfuscated
malware
[75] Malware API-class Static Executable file to staticimages CNN 98.00% _
[76] VirusShare, Hybrid-Analysis Static Executable file to staticimages Xception 98.20% _
Convolutional
Neural Network
(CNN)
[107] Microsoft BIG 2015 Static Malware binary files into DNN 97.80% _
static images
Dynamic feature-based malware detection
[92] VirusShare Dynamic Sequences of API calls Bi-LSTM 97.31% Limited to execute samples in a
Windows 7 environment.
[108] Custom datasets Dynamic Sequences of API calls Markov chain 99.7% -
representation
[109] VirusTotal Dynamic API calls LSTM 95% Limited to execute samples in a
Windows 7 environment.
[93] VirusTotal Dynamic API call sequences LSTM and GRU 96.8% Highly imbalanced dataset

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

22
[64] CA Tech- Dynamic Run time behaviour MRed, ReliefF, 99.499% High computational complexity
neologises VET Zoo SVM
[94] Audit log events Dynamic Process names, action types, LSTM 91.05% High false positives and lack of
and accessed file scalability
[77] Multiclass dataset (Ember Dataset, private Dynamic loaded DLLs, registry CNN-LSTM 96.8% Susceptible to adversarial
dataset) changes, API call sequences, attacks
file changes, and
Hybrid feature-based Malware Detection Techniques
[78] VirusTotal Hybrid Combination of static and CNN 97% Failed to validate the
(Static dynamic features (PE section, robustness against adversarial
and PE import, PE AP, and PE attacks
dynamic) images)
[71] The Korea Internet & Security Agency Hybrid Size of file and RF, MLP 85.1% Extensive time is needed for
(KISA) Header, Counts of file feature extraction
sections. Entropy, File
system changes API call, DLL
loaded info, network
activities, etc.
[104] VirusShare Hybrid Image-based static and VGGl6 94.70% -
dynamic features
[110] VirusShare Hybrid Function Length Frequency SVM 97.10% Small dataset
Representation, Registry
activities, API calls, and file
operation features
[79] VirusTotal Hybrid Opcodes and system calls CNN, LSTM, and 99% Lack of diverse features.
an attention-based
LSTM
Memory-feature-based malware detection techniques.
[80] Dumpwarel0 Memory Memory images of running CNN 98% Malware processing cost is high
processes under limited resource

capabilities

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024

doi:10.20944/,

reprints202412.0348.v1

23

[81] Dumpwarel0, BIG2015 dataset Memory = Memory images of running GAN and CNN 99.86% for Only one type of data, like

processes BIG2015 bytes, is used. Need to make
dataset the dataset more diverse.

[82] CIC-MalMem-2022 Memory = Memory images of running CNN and MLP 99.8% Training time complexity and
https://www.unb.ca/cic/datasets/malmem- processes vulnerability to adversarial
2022.html attacks

[68] CIC-MalMem-2022 Memory Multi-memory features RF, DT, LR, MLP 99.89% -
https://www.unb.ca/cic/datasets/malmem- and CNN

2022.html

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

24

Static feature-Based Malware Detection Techniques

Jeon and Moon [63] proposed a DL-based malware detection method using static opcode
sequences with dynamic RNN and CNN. A convolutional autoencoder compresses long opcode
sequences, and a recurrent neural network classifies malware using the features generated by the
autoencoder. This method achieved 96% accuracy and 95% true-positive rate. However, it requires
substantial computational resources owing to the inter-procedural control-flow analysis, making it
less suitable for resource-limited systems. Snow et al. [73] developed a multi-modal deep-learning-
based malware detection method using the Microsoft BIG 2015 dataset. Although the model achieved
a high accuracy rate of 98.35%, it proved ineffective against zero-day malware that evaded detection
with new static signatures. A previous study [102] employed a CNN-based pre-trained DenseNet
model for malware detection by converting benign and malicious binaries into 2D images.
Experiments on Malimg, BIG 2015, MaleVis, and Malicia datasets showed 98.23% accuracy on
Malimg but revealed high false negatives and used highly imbalanced datasets. Darem et al. [74]
implemented a deep CNN-based model to detect malware using opcode-level features from malware
and benign binary files converted into images for training. The model achieved a detection rate of
99.12% %on the Microsoft BIG 2015 dataset. However, outdated datasets can affect the detection of
new and unseen malware. Kumar & Janet [103] proposed an image-based deep transfer learning
model for detecting Windows malware using a pre-trained deep CNN. The model efficiently extracts
high-level features from grayscale images of Windows executables, conserving resources and time;
however, it struggles to identify advanced-packed malware. A study in [106] introduced an attention-
based deep neural network (ATT-DNN) for malware detection, extracting static features from
executable files. Despite achieving a high accuracy of 98.09%, its use is limited to malware detection
based on static signatures. The research in [75,76,107] also focused on malware detection via static
image analysis.

Dynamic Feature-Based Malware-Detection Techniques

Li et al. [92] developed a DL model for malware detection in executables using API call
sequences within a Cuckoo sandbox, achieving an Fl-score of 0.9724 and 97.31% accuracy on new
sequences. The limitations of this study include its focus on Windows 7 executables and the
potentially reduced effectiveness against zero-day malware over time. In [108], contextual analysis
of API call sequences was utilized to enhance the dynamic detection and prediction of Windows
malware, thereby improving both accuracy and adaptability to evolving threats. By employing the
Markov chain method, they achieved an average accuracy of 99.7%. Catak et al. [109] proposed an
LSTM-based malware detection method that achieved 95% accuracy and 0.83 F1 score using a
behavioral dataset of API calls. They also released a new, publicly available API call dataset for
malware detection. Aditya et al. [93] used LSTM and GRU deep learning models to classify malware
based on API call sequences and achieved 96.8% accuracy with LSTM. However, their dataset was
highly imbalanced, with only 1,035 benign samples of 8,142. In [64], a hybrid framework combining
multiple complementary filters with a wrapper feature selection method was proposed to identify
critical run-time behavioral traits of malware. The ML algorithms, including MRed, SVM, and Fisher,
achieved a detection accuracy of 99.499%. Ring et al. [94] used an LSTM-based model to detect
malware based on audit-log features. However, it suffers from high false positive rates and lacks the
evaluation of larger datasets to assess the model’s scalability. Jindal et al. [77] proposed Neurlux, a
stacked ensemble of CNN-LSTM with an attention mechanism to detect malware in Windows
systems using dynamic features effectively but is susceptible to adversarial attacks.

Hybrid-Feature-Based Malware Detection Techniques

Hybrid feature-based learning approaches have shown promise in cybersecurity, outperforming
single-type feature methods. By combining diverse feature types, such as static, dynamic, and

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

25

memory-based, these techniques enable learning from multiple semantic perspectives, leading to an
enhanced model accuracy for malware detection and classification.

The authors of article [78] created a CNN-based hybrid malware classification model for
Windows, integrating static features from the executable section, static API call imports, dynamic
API calls, and executable file images, achieving a detection accuracy of 97%. However, this method
does not validate the effectiveness of the combined feature sets against adversarial attacks. AI-HydRa
[71] represents an advanced hybrid malware classification method that combines RF and deep
learning, achieving a mean detection rate of 0.851 with a standard deviation of 0.00588 over three
tests. Huang et al. [104] introduced a hybrid method using static images and dynamic API call
sequence visualizations to classify malicious behaviors. Utilizing a CNN (VGG16) for feature
extraction, the technique attained 94.70% accuracy but had difficulty accurately identifying specific
malware types, including password-stealing (PSW) Trojans and some outdated variants. RansHunt
[110] integrated static and dynamic features for improved ransomware detection using an SVM,
achieving an accuracy of 97.10%, outperforming traditional anti-virus solutions. Darabian et al. [79]
used static and dynamic features from 1,500 cryptojacking malware samples. They used opcodes and
system calls to construct CNN, LSTM, and attention-based LSTM classification models, achieving
95% accuracy in static analysis and 99% accuracy in dynamic analysis.

Karbab et al. [111] introduced SwiftR, an approach that detects ransomware attacks by
integrating various static and dynamic features from benign and malicious executable file reports.
The proposed method achieved an F1 score of 98%.

Memory-Feature-Based Malware Detection Techniques

Malware detection using static or dynamic analysis is insufficient for advanced memory-
resident malware and obfuscated malware. Thus, contemporary research emphasizes memory
analysis methods that are effective in detecting sophisticated malware variants [41]. The study [80]
developed a CNN model was developed that uses memory images of both suspicious and benign
processes to detect malware attacks with a detection rate of 98%, leveraging features extracted from
grey-level co-occurrence matrices and local binary patterns. Another study [81] proposed a DL-based
approach that integrated GAN and CNN models, achieving 99.60% detection accuracy on unseen
samples when tested on the DumpWarelO dataset to identify advanced malware by visualizing
running processes. In addition, Naeem et al. [82] developed a high-performance stacked CNN and
MLP model using memory images that achieved an accuracy of 99.8%. However, it has limitations in
terms of the training time complexity and susceptibility to adversarial attacks. In [68], the authors
used the latest dataset, the CIC-MalMem-2022 dataset, to develop a CNN-based detection model that
detects obfuscated malware in memory.

Summary of Key Trends and Insights on Malware Detection in Windows Platforms

A summary of the malware detection methods for Windows is presented in Table 4. The table
outlines the studies with respect to their data collection source, feature type, features, ML algorithms
used, detection accuracies, and limitations. Figure 5 illustrates the distribution of the techniques,
features, and evaluation datasets used in these studies.

10 Memory-Based

. Hybrid

6

2
Static
& & & &S ¢ f-" -f‘

Number of Studies

&
S 0«"

S

<« 4

¢

&

Dynamic

Algorithms

@) (b)

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

26

56 Non-Image-Based
%6
94
92
Image-Based
%0 _—

Accuracy (%)

Static Features Dynamic Features Hybrid Features Memory-Based
Feature Type

(©)

Figure 5. Distribution of detection feature types, algorithms, accuracy by feature type, and image and
non-image features. (a) Detection algorithms (b) Proportion of detection feature type (c) Accuracy
of malware detection by feature type (d) Image-based vs non-image-based detection techniques.

Dataset evaluation: Table 4 reveals that many recent studies have relied on outdated datasets,
such as Malimg (2011) and Microsoft BIG 2015. VirusTotal and Virus Share remain the most popular
data sources for Windows malware detection systems, followed by dumpwarel0 and Hybrid
Analysis. com. In contrast, newer datasets such as CIC-MalMem-2022 provide updated benchmarks.
However, the prevalence of outdated datasets and the lack of diversity in recent studies have limited
their effectiveness against zero-day malware and emerging threats.

Detection algorithms used in the studies: The bar chart in Figure 5 (a) illustrates the distribution
of detection algorithms employed in various detection techniques, highlighting their relative
popularity among the studies. Convolutional Neural Networks (CNNs) are the most utilized
algorithms, likely because of their efficiency in handling images and spatial data. LSTM networks
also stand out and are likely to be favored because of their strength in temporal or sequential data
processing. Algorithms such as GANs and transfer learning are used less frequently and hint at
emerging or specialized applications. However, GRU, RNN, and Markov Chains appear less favored,
possibly because of their limited generalizability or lower performance in detection tasks. The chart
collectively underscores the significance of choosing algorithms that align with the nature of the
problem and the data characteristics.

Detection feature type: The chart 5 (b) highlights the distribution of feature types in malware
detection techniques. Static features lead by 33.3%, favoring their simplicity and effectiveness against
known malware. Dynamic features follow closely at 29.2%, offering strong runtime analysis
capabilities but requiring controlled execution environments. Hybrid features, at 20.8%, integrate
static and dynamic methods for comprehensive detection but involve higher computational
demands. Memory-based features, representing 16.7%, are powerful for analyzing runtime data, such
as API calls, but are less commonly used because of their resource-intensive nature.

Accuracy of malware detection techniques by feature type: The bar chart as outlined in Figure
5 (c) compares the accuracy of malware detection techniques based on four feature types: static,
dynamic, hybrid, and memory. Memory-based features achieved the highest accuracy (~99.89%),
demonstrating their effectiveness in capturing runtime behaviors, although they may require higher
computational resources. Dynamic features also perform well (~99.49%), leveraging runtime analysis,
whereas static features (~99.12%) offer robust results through code and signature analysis. Hybrid
features (~99%) combine static and dynamic methods but do not significantly outperform individual
approaches. Overall, memory-based and dynamic features demonstrated the highest potential for
accurate malware detection.

Image-based vs. non-image-based detection techniques: The pie chart in Figure 5 (d) shows a
close competition between the non-image-based (52%) and image-based (48%) detection methods.
While non-image-based methods lead slightly because of their flexibility with diverse data types,
image-based approaches are emerging as powerful tools in malware detection. By converting
malware binaries into images, image-based methods use CNNs to analyze spatial patterns and
effectively identify complex obfuscated malware. The availability of labelled malware datasets,

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

27

efficient pre-trained models, and generalization capabilities further drive their adoption, reflecting
the growing significance and scalability of image-based methods in modern malware detection.

6.1.2. Malware Detection in Linux OS

Researchers have also utilized various ML algorithms to detect malware attacks on Linux
systems. The ML-based Linux detection techniques are listed in Table 5. Xu et al. [105] developed a
graph-based Linux malware detection system called HawkEye that achieved 96.82% accuracy.
Hwang et al. [112] also demonstrated the effectiveness of deep learning for Linux threat detection,
using a large dataset of 10,000 malicious and 10,000 benign files to train and test a DNN model. Bai
et al. [72] proposed a Linux malware detection method that analyzes system calls in ELF executable
symbol tables using 756 benign and 763 malware ELF samples. They achieved up to 98% accuracy
with various classifiers, including J48, random forest, AdaBoostM1, and IBk. Landman and Nissim's
Deep-Hook [83] used CNNs to analyze VM-captured memory dumps and identify Linux malware
with up to 99.9% accuracy. Similarly, another study [43] classified malware using behavioral features
from volatile memory.

Table 5. Summary of reviewed models for Linux-based malware detection: dataset sources, feature
details, and experimental result.

Reference Data source Feature Features ML algorithms Result
category (accuracy)
[105] AndroZoo, Static Assembly MLP 96.82%
VirusShare, and instructions
clean Ubuntu (control flow
libraries. graphs)
[112] VirusShare Static Strings from binary DNN 94%
data
[72] VX heavens Dynamic System calls J48, random 98%
forest,
AdaBoostM1
(J48), and 1Bk
[83] VirusShare Memory Memory dumps CNN 99.9%
[43] VirusTotal Memory Multi-memory DNNs 98.8%
and ViruShare. features

Summary of Key Trends on Malware Detection in Linux Platform

Most current studies have focused on malware detection in Windows and Android platforms,
with few addressing advanced ML-based malware detection in Linux. According to current
literature, Linux-based malware detection has advanced through the integration of diverse machine
learning algorithms, feature types, and datasets, achieving high accuracy. Memory-based detection,
in particular, has gained popularity owing to its effectiveness in identifying sophisticated threats.
Owing to ’s widespread adoption of the Linux OSin online supercomputers and devices globally,
cybercriminals have increasingly targeted Linux-based devices. Thus, the success of deep learning in
Windows and Android indicates its potential for Linux malware detection. Additionally, exploring
hybrid models and cross-platform techniques could enhance the detection capabilities and adapt to
the evolving landscape of Linux malware.

6.1.3. Malware Detection in macOS

Despite the rising threats of OS X malware, research on its detection remains scarce, with only a
few studies focusing on malware detection on the macOS platform. For example, a study [113]
proposed OS X malware and rootkit detection by analyzing static file structures and tracing memory
activities. Pajouh et al. [114] developed an SVM model with novel library call weighting for OS X

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

28

malware detection, attaining 91% accuracy on a balanced dataset. SMOTE-enhanced datasets
increased the accuracy to 96%, with slight false alarm increases, indicating that larger synthetic
datasets enhance accuracy, but may impact false-positive rates.

Summary of Key Trends on Malware Detection in macOS Platform

The application of machine learning to OS X malware detection is underexplored, likely owing
to the scarcity of suitable datasets and the difficulty in collecting malware samples. Future research
should focus on overcoming these challenges to enhance machine learning techniques for detecting
OS X malware.

6.2. Malware Detection in Mobile Platform

The increase in mobile device usage, mainly Android, has led to increased malware threats. This
section reviews machine learning techniques for detecting malicious applications on both Android
and iOS platforms.

6.2.1. Android Malware Detection

This subsection examines ML-based Android malware detection techniques categorized by APK
file features, with the dataset details summarized in Table 6.

Table 6. Summary of reviewed models for Android-based malware detection: dataset sources, feature
details, experimental result, and limitation.

Refere Data source Featur Features ML Accur Limitatio
nce e algorit acy ns
catego hms
ry
Static feature-based Android malware detection techniques.
[115] MalGenome Static Call GCN 98.99 Lack of
graphs % represent
ative of
real-
world
scenarios.
[84] Contagio Mobile Static Opcode CNN- 9142 Unable to
sequences LSTM % manage
obfuscate
d
malware
[69] MalDroid-2020 dataset Static Opcode LR 93.56 Adversari
sequences % al attack
(histogra resistance
ms of n- and
grams) handling
evolving
malware
are not
addressed
[95] CIC-Inves2017 Static Opcode LSTM 96% Small
sequences dataset
(1,500

apps)

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024

doi:10.20944/,

29
[70] Drebin, VirusShare, AndroZoo Static Permissio Base 99.1% -
ns, Intents models
(LR,
MLP,
and
SGD),
Ensemb
le
learnin
g
[85] Drebin dataset Static Opcode CNN 99.92 lack of
sequences, % malware
Permissio diversity
ns, API and
calls scalability
Dynamic feature-based Android malware detection techniques
[65] McAfee Dyna Actions/E Base 97.8% -
mic vents models
(NB,
SL,
SVM
Linear,
SVM
RBF,
J48,
PART,
RF),
deep
learnin
g
[96] Google Play Store Dyna APIcalls Bi- 9722 High
https://play.google.com/store/ga mic LSTM % detection
mes?pli=1 time
[116] Drebin dataset Dyna Network C4.5 97.89 Small
mic traffic % dataset
Permissio
ns, Intents,
API calls
[97] MalGenome Dyna System LSTM 9923 -
mic call %.
sequences
[98] Custom dataset Dyna APIand LSTM 96.8%
mic system
call
sequences
Hybrid feature-based Android malware detection techniques
[65] McAfee Hybri Permissio Base 99.6% -
d ns, Intents, models detecti
APICalls, (NB, on
Actions/E SL,
vents SVM

Linear,

reprints202412.0348.v1

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024

doi:10.20944/,

reprints202412.0348.v1

30
SVM
RBF,
J48,
PART,
RF),
deep
learnin
&

[52] Contagio Mobile, Runtime K-NN, 96% This
http://contagiominidump.blogsp d behaviors LDC, method is
ot.com/ across QDC, susceptibl
VirusShare and Genome various MLP, eto

levels— Parzen mimicry

kernel, Classifi attacks

applicatio er and

n, user, (PARZ ineffectiv

and C) and e against

package RBF unknown
malware.

[99] VirusShare, Drebin, Permissio Bi- 95.94 Need
Droid Analytics and ns LSTM % more
CICInvesAndMal2019/2000 requests, and scalable
https://www.unb.ca/cic/datasets/ API and GNN static
invesandmal 2019.html. system analyses

call
sequences,
opcode
sequences,
and graph
structures,
including
abstract
syntax
trees,
control-
flow, and
data-flow
graphs.

[101] CICMal- Droid2020 Permissio Pseudo 98.28 -
ns, intents, -label %
system stacked
calls, auto-
composite encoder
behaviors, (PLSAE
and)
network
traffic
packets.

Memory feature-based Android malware detection techniques.

[86] AndroZoo project Memo Process Ensemb 94.3% Vulnerabl
https://androzoo.uni.lu/ ry memory le of eto

dumps MLP

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

31

and adversari
CNN al attacks

Static Feature-Based Malware Detection Techniques

A study [115] proposed GDroid, a graph convolutional neural network model for detecting
Android malware through API call patterns using static analysis. Although effective in detecting
malicious apps, its accuracy decreases in real-world Android devices.

Pektas and Acarman [84] proposed a CNN- and LSTM-based model utilizing static features,
including opcodes, API calls, and call graphs, for Android malware detection. Despite achieving
91.42% accuracy and 91.91% F-measure on unknown samples, the model’s dependence on static
features may restrict its effectiveness against obfuscated malware. Similarly, in [69], the authors
proposed H-LIME, a novel XAI method that enhances LIME by incorporating opcode-sequence
hierarchy for better Android malware detection explanations. They evaluated H-LIME using the
MalDroid-2020 dataset, and H-LIME outperformed LIME in explanation quality and efficiency, but
they faced challenges with shorter programs in real-world malware. Lakshmanarao and Shashi [95]
created an LSTM-based malware detection model using opcode sequences from Android apps,
achieving 96% accuracy, albeit on a limited dataset of 1,500 apps. Potha et al. [70] created an ensemble
model combining LR, MLP, and Stochastic Gradient Descent (SGD), demonstrating that larger,
homogeneous ensembles with feature selection outperformed smaller ones, achieving strong AUC
and accuracy on Android malware datasets. Furthermore, Aamir et al. [85] introduced the AMDDL
model, achieving a 99.92% accuracy in malware detection using CNNSs. This study highlights the
challenges related to limited malware diversity, deep learning interpretability, and scalability.

Dynamic Feature-Based Malware Detection Techniques

Ma et al. [96] proposed Droidect, a Bi-LSTM-based model for classifying malicious Android
apps, achieving 97.22% accuracy on a dataset of 11,982 benign and 9,616 malicious files. Despite its
success, this model suffers from long detection times. Wang et al. [116] presented a malware detection
technique employing network traffic analysis and the C4.5 algorithm, achieving a 97.89% detection
rate on the Drebin dataset, outperforming current methods. The study in [97] introduced MemDroid,
an LSTM-based detection method trained on Androzoo malware samples. Apps were run in a
sandbox to capture system call sequences, which were used to train the LSTM classifier, achieving
99.23% malware detection accuracy. The study in [98] used LSTM to develop classifiers for detecting
Android malware via dynamic API and system calls, achieving Fl-scores of 0.967 and 0.968,
respectively, across different datasets.

Hybrid-Feature-Based Malware Detection Techniques

Alzaylaee et al. [65] introduced DL-Droid, a deep learning-based framework for Android
malware detection using static and dynamic analysis. They achieved 97.8% detection with dynamic
features and 99.6% with combined features, taking 190 s/app on average. Saracino et al. [52]
introduced MADAM, an Android malware detection system analyzing kernel, application, user, and
package-level features. MADAM detected over 96% of malicious apps in a 2800-app test but is
susceptible to mimicry attacks and cannot identify unknown malware. Wu et al. [99] presented
DeepCatr, a hybrid learning approach for Android malware detection, which combines text mining
and call graphs with bidirectional LSTM and graph neural networks, achieving accuracies of 95.94%
and 95.83% on 18,628 samples. Mahdavifar et al. [101] created a semi-supervised deep learning model
for Android malware detection, employing a stacked auto-encoder trained on hybrid features,
obtaining a 98.28% accuracy and 1.16% false positive rate.

Memory-Feature-Based Malware Detection Techniques

Memory analysis has been utilized to develop deep learning models for detecting obfuscated
and memory-resident Android malware. A framework combining weak learners (CNNs) and a meta-

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

32

learner (MLP) to create a deep-stacked ensemble model along with an explainable Al approach for
result interpretation and validation was proposed by Naeem et al. [86]. The framework achieved an
accuracy of 94.3% using 2,375 images in an empirical evaluation.

Summary of Research Trends on Malware Detection in the Android Platform

Table 6 summarizes mobile device malware detection systems, including datasets, features,
detection algorithms, and study accuracy. Figure 6 shows the distribution of the dataset sources,
techniques, and features used in these studies.

. NN, ete.
CICMal-Droid2020 Pai sttt S Memory dumps
Bi-LSTM

custom MLP + CNN Ensemble Graphs (AST, CFG, stc.}
Virusshare
5.0% Call graphs
Gen 5.6% s
N
5.6%
CNN-LSTM
Drebin R 1
15.0%
MaiGenome 11.1% Opcode sequences
LR 22.2%
10.0%
Base Models
Androzeo
Mchfes

Contagle Moblle: LSTM

System call sequences

Network traffic

Actions/Events

(a) (b) (0)

Figure 6. Distribution of detection techniques, detection features, and evaluation datasets used in
mobile malware detection solutions. (a) Proportion of dataset sources (b) Detection algorithms (c)
Detection features.

Proportion of datasets used: The pie chart in Figure 6 (a) reveals a clear preference for
established datasets in Android malware detection studies. Drebin emerges as the most-used dataset
(81%), owing to its extensive malware diversity and widespread acceptance as a benchmark in the
field. Medium-utilized datasets, including MalGenome, VirusShare, and CICMal-Droid2020 (23%
each), are valued for their reliability and growing prominence in the evaluation of detection
techniques. The relatively low adoption of custom datasets highlights the focus on standardized
datasets, limiting opportunities for novel malware detection approaches tailored to evolving threats.

Detection algorithms: The pie chart in Figure 6 (b) demonstrates that base models (31%),
including Logistic Regression and Random Forest, are the most commonly used detection algorithms,
valued for their reliability, simplicity, and ease of implementation. Deep learning methods, such as
LSTM (23%) and CNN (15%), are gaining popularity owing to their ability to process complex and
large-scale malware patterns effectively. Hybrid techniques (8%), ensemble models (8%), and
exploratory approaches, such as Pseudo-label SAE and K-NN (8% each), showcase ongoing
innovations aimed at improving detection accuracy and robustness. This distribution underscores
the balance between traditional dependable methods and modern complexity-driven approaches to
malware detection.

Detection features: As shown in Figure 6 (c), the chart indicates that opcode sequences (31%)
are the most commonly used features because of their effectiveness in static analysis. Permissions,
intents, and API calls (23% each) are essential for identifying behavioral anomalies. System call
sequences (23%) and network traffic (15%) are gaining prominence in runtime analyses. Composite
behaviors and memory dumps (8% each) remain underexplored, likely due to their complexity and
resource demands

6.2.2. Malware Detection in iOS

In [117], the authors focused on identifying iOS malware using static analysis and machine
learning, achieving a high precision of 0.971 and recall of 1.0. It addresses the underexplored domain
of i0S malware detection owing to the platform'’s closed source nature. Zhou et al. [118] examine the
risks of legitimate applications being hijacked for malware communication. They presented the
ChanDet model to identify potential channel applications and proposed mitigation strategies.
Mercaldo and Santone[119]successfully classified 50,000 Android and 230 iOS malware samples
using deep learning on grayscale images of executables, tackling obfuscation and false positives.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

33

Summary of Research Trends on Malware Detection in iOs Platform

The current literature highlights advancements in iOS malware detection, leveraging machine
learning and static analysis to address the platform’s closed-source challenges. Researchers have
introduced high-precision models and deep learning techniques, such as those using executable
images, to mitigate obfuscation. Despite these advancements, challenges such as limited datasets,
lack of hybrid analysis, and insufficient attention to real-time cross-platform threats persist. Future
work should focus on expanding the datasets, utilizing transfer learning, enhancing anti-obfuscation
methods, and developing comprehensive detection frameworks.

6.3. Malware Detection in IoT Platform

This section compares the surveys on machine-learning-based malware detection in IoT, which
are summarized in Table 7.

Ali et al. [66] used machine learning algorithms on the IoT-23 dataset to detect IoT network
anomalies. The RF algorithm demonstrated the highest efficacy, achieving 99.5% accuracy. Sudheera
et al. [87] introduced Adept, a distributed framework that detects and classifies attack stages in IoT
networks through local anomaly detection, pattern mining for correlated alerts, and machine
learning-based classification. This method can identify five times more attack patterns with 99%
accuracy in classifying attack stages. Vasan et al. [88] proposed a cross-architectural malware
detection method suitable for diverse IoT processor architectures, such as MIPS, PowerPC, and
SPARC.

Researchers have used sandboxing as a dynamic method to detect malware in IoT environments.
However, existing sandboxes are inadequate for resource-limited IoT settings, lack support for
diverse CPU architectures, and do not offer library sharing options [120]. Hai-Viet et al. [89] proposed
an IoT botnet detection approach using system call graphs and a one-class CNN classifier, which
improved sandboxing to capture system behaviors and utilized graph features for robust detection,
overcoming dataset imbalance and architectural constraints, attaining 97% accuracy. Jeon et al. [100]
introduced HyMalD, a hybrid IoT malware detection method using Bi-LSTM and SPP-Net to analyze
static and dynamic features, extracting opcode and API call sequences for classification. It achieved
92.5% accuracy, surpassing the 92.09% accuracy of the static analysis. Researchers have now
converted network traffic or OpCode into 2D images for malware detection using visual methods.
Shire et al. [90] utilized visual detection techniques in IoT malware detection, transforming network
traffic into 2D images for machine learning analysis. He et al. [67] proposed an efficient and scalable
lightweight IoT intrusion detection method utilizing feature grouping, which attained over 99.5%
accuracy on three public IoT datasets while consuming fewer computational resources than baseline
methods. Jiang et al. [91] proposed FGMD, a framework that protects IoT intrusion detectors from
adversarial attacks, preserving efficacy and performance. Conversely, Zhou et al. [121] introduced
HAA, a hierarchical adversarial attack strategy for GNN-based IoT detectors, which reduces the
classification accuracy by over 30% through minor perturbations and node prioritization techniques.

https://doi.org/10.20944/preprints202412.0348.v1

Table 7. Summary of reviewed models for IoT-based malware detection: dataset sources, feature details, experimental result, and limitation.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024

doi:10.20944/preprints202412.0348.v1

34

Reference Data source Feature Features ML algorithms Accuracy

category (%)

[66] IoT-23 dataset Static Network capture files include IP address, RF, NB, MLP, SVM, and 99.5

ID of the capture, protocol, etc. AdaBoost.

[87] NSS Mirai Dataset Static Alert level (Source and Destination IP CNN 99
latest relevant, balanced data sets Addresses, C&C activities, Protocol) and
https://www.stratosphereips.org/datasets-iot23 packet level features ((IP address or port

number, packet size, etc.)

[88] ARM-based IoT Static OpCode features RNN and CNN 99.98

[89] Executable and Linkable Format (ELF) file Dynamic System call graph CNN 97
templates are executed in the QEMU sandbox.

[100] KISA-data challenge 2019-Malware.04, provided by Hybrid Opcode and API call sequences Bi-LSTM and spatial 92.09
the Korea Internet & Security Agency pyramid pooling network

(SPP-Net)

[90] Network traffic is collected from external Dynamic 2D Image-Based Network Traffic Features Neural network 91.32
repositories.

[67] Bot-IoT, MedBIoT, and MQTT-IoT-IDS2020 Dynamic Packet-level metadata of the raw PCAP file DT, RF, K-nearest 99.5 with
datasets neighbor (KNN), and RF

extreme gradient
boosting (XGB)

[91] MedBIoT dataset [122]. Dynamic PCAP files LSTM, RNN and DT, 98.71
IoTID (IoT network intrusion dataset) respectively.
http://dx.doi.org/10.21227/q70p-q449.

[121] UNSW-SOSR2019 Static Network packets (source IP, destination IP, =~ Graph neural network -

timestamp, traffic flows, etc.)

(GNN)

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

35

Summary of Research Trends on Malware Detection in IoT Platform

Table 7 summarizes IoT malware detection systems, detailing data sources, features, detection
models, and accuracies.

Dataset utilization and challenges: Table 7 shows that datasets such as IoT-23, MedBIoT, and
Bot-IoT are frequently utilized. However, issues such as dataset imbalances and limited architectural
diversity remain unclear.

Diverse feature categories: [oT malware detection employs a mix of static (e.g., network packet
features and opcode sequences) and dynamic features (e.g., system call graphs and network traffic
metadata), with some methods integrating hybrid approaches (e.g., opcode and API calls).

Machine learning algorithms: A wide range of ML algorithms, including RF, CNN, RNN, Bi-
LSTM, and GNN, has been utilized. The RF and CNN models dominate owing to their high accuracy
and adaptability to IoT-specific constraints.

Image-based detection advances in sandboxing: Image-based approaches and sandboxing
improvements, such as QEMU-based execution and system behavior capture, have addressed
limitations in resource-constrained IoT environments while enhancing the malware detection
performance.

Adversarial vulnerabilities: Many existing models are susceptible to adversarial attacks, which
reduces their real-world applicability.

6.4. Malware Detection in Cloud Platform

Malware detection in cloud platforms is becoming increasingly vital as organizations move data
and services to the cloud. Unlike traditional systems, cloud environments pose unique challenges
due to their distributed architecture, multi-tenancy, and scalability. The dynamic and large-scale
nature of the cloud enables rapid malware propagation, outpacing traditional detection methods.
Detection agents on cloud servers provide security services, allowing users to upload files and receive
malware reports.

Xiao et al. [123] proposed a cloud-based malware detection scheme utilizing Q-learning to
optimize the offloading rate for mobile devices without prior knowledge of trace generation or radio
bandwidth. They employed the Dyna architecture and post-decision state learning to enhance
performance and expedite the reinforcement learning process. Testing revealed that their scheme
improved detection accuracy by 40%, reduced delay by 15%, and increased mobile device utility by
47% with 100 devices, thereby enhancing overall performance. Additionally, Yadav R. Mahesh [61]
introduced a malware detection system for cloud environments using a novel consolidated Weighted
Fuzzy K-means clustering algorithm with an Associative Neural Network (WFCM-AANN). The
proposed classifier identified malware with a high detection precision of 92.45%, surpassing existing
classifiers.

Summary of research Trends on Malware Detection in IoT Platform

According to the studies reviewed in this work, advanced methods such as Q-learning and
Weighted Fuzzy K-means clustering combined with neural networks have shown promising results.
However, large-scale and highly variable cloud environments render malware detection challenging.
Hence, existing solutions often lack scalability to handle the rapid increases in traffic and malware
propagation. To overcome this issue, adaptive ML models that can efficiently handle the dynamic
and multi-tenant nature of cloud systems can be developed.

7. Challenges Associated with Platform-Specific and Cross-Platform

This section discusses platform-specific research challenges related to malware detection, such
as Windows, Linux, macOS, Android, iOS, IoT and Cloud. We also present the cross-platform
challenges in ML-based malware detection.

Windows platform-

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

36

e The use of outdated Windows versions, which no longer receive official support, exposes the
systems to unpatched vulnerabilities.

e The variety of third-party applications on Windows expands the attack surface, thereby
increasing the risk of exploitation.

o Therise of fileless malware, which primarily lives in memory, presents challenges for traditional
detection and mitigation methods.

e Inconsistent user behavior and poor adherence to security best practices increases vulnerability.

Linux platform: The primary challenges in Linux malware research include the following.

e Linux systems support diverse computer architectures, requiring analysts to create specific
malware analysis codes for each architecture, leading to high costs and operational complexity
owing to extensive code management.

. The analysis environment may lack the necessary loader for the ELF file format, thereby
preventing sample execution.

o Constructing refined datasets is difficult because of the varied devices, vendors, and
architectures of Linux systems.

e Moreover, complexity demands expert manual analysis.

macOS platform-

. As macOS gains market share, it increasingly targets malware, which requires continuous
advancements in detection techniques.

e The limited tools available for malware analysis of macOS hinder large-scale studies.

¢ Owing to the historically low prevalence of malware, MacOS users may be less vigilant about
security risks.

Android platform-

¢ Android’s dependency on multiple manufacturers slows OS updates, leaving many outdated
devices and exposed to security risks.

e Third-party Android apps elevate malware risks, thereby threatening device security and user
privacy.

e Unlike iOS, Android allows users to control permissions, potentially enabling malicious apps to
misuse the granted access.

e The variety of Android devices and OS versions complicate uniform patching and security
protocols.

e Android’s open-source framework enables adversaries to examine their code, facilitating reverse
engineering and exploitation creation.
iOS platform-

e iOS’s auto-erase feature of iOS enhances security but may cause unintended data loss following
unsuccessful login attempts.

e Despite advanced Face ID, earlier iOS versions were vulnerable to photos or masks,
compromising security.

e iOS apps use obfuscation to prevent reverse engineering; however, skilled attackers can bypass
these defenses to access sensitive data.

In summary, Android’s flexibility through open-source and diverse devices creates scalability
but risks security, whereas iOS enhances security with strict policies, thus limiting flexibility. Future
research should focus on balancing security, usability, and standardization.

IoT platform: The rapid growth and heterogeneity of IoT devices introduce significant security
challenges, especially in combating malware threats.

e Most IoT devices use the Android operating system, which is open-sourced and, unlike iOS, is
more vulnerable to exposure.

e IoT devices possess considerably less computing power than x86-architecture PCs, making them
highly vulnerable to malware due to their limited resources.

e Inmachine and deep learning, larger datasets facilitate faster model learning and improvement.
However, there is a significant shortage of valid datasets of IoT malware.

Cloud platform: The dynamic and distributed nature of cloud environments poses distinct
challenges to the malware landscape.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

37

e The interconnected nature of the cloud infrastructure increases the impact of malware.

e A shared responsibility model for cloud security can obscure responsible security tasks. This can
lead to organizations having limited visibility and control, thus hindering threat detection and
response.

e Attackers can leverage the automation and scalability features of the cloud to quickly launch
large-scale attacks.

Cross-platform issues-

e Data heterogeneity: Variations in file formats, system call sequences, and behavioral patterns
across platforms make it challenging to create generalized models.

o Lack of unified datasets: The absence of a standardized, diverse, and large-scale dataset that
incorporates samples from Windows, macOS, Linux, Android, IoT, and cloud environments.

o Inconsistent feature representations: Differences in how features like static metadata, dynamic
behavior, and memory traces are extracted and represented across platforms.

o Transferability of models: ML models trained on one platform (e.g., Windows) may not generalize
well to others (e.g., Linux or IoT) because of differences in malware characteristics.

e Performance scalability: Ensuring scalability and efficiency of detection techniques when applied
to cloud and IoT systems with resource limitations.

These challenges emphasize the need for a multi-platform approach to malware detection that
considers platform-specific constraints while addressing overarching cross-platform issues.

8. Limitations in the Existing Literature and Future Research Directions

Based on a comprehensive review, we identified some significant research gaps or limitations
and list some significant future works to enhance malware detection using machine learning
techniques

Lack of Unified Cross-Platform Detection Frameworks

Current ML models are typically designed for a single platform, limiting their ability to detect
malware across interconnected systems like PCs, mobile devices, IoT, and cloud environments. To
mitigate this issue, we can develop adaptable unified ML frameworks that may use transfer learning
and cross-platform training strategies to allow models to generalize effectively across platforms. This
approach enables a single model to adapt to different environments, reducing the need for platform-
specific datasets.

Insufficient Model Adaptability to Emerging Malware Variants

Malware continually evolves, with new variants employing polymorphic and metamorphic
techniques to evade detection, rendering static or narrowly trained ML models ineffective. Transfer
learning and continual learning strategies can be used to train models incrementally using new data
from different platforms and emerging malware types. This can help maintain model accuracy
without retraining from scratch, thereby addressing the limitations of static ML approaches in
dynamic threat landscapes.

High Computational Demands of ML Models in Resource-Constrained Environments

The IoT and mobile devices typically have limited processing power and memory, making it
challenging to implement advanced ML-based detection techniques that require substantial
computational resources. We need to develop lightweight, energy-efficient ML algorithms that are
explicitly optimized for IoT and mobile environments. Techniques such as model pruning,
quantization, and distillation can reduce the computational load, enabling robust malware detection,
even in devices with limited resources.

Limited Transparency and Interpretability of ML-Driven Detection Systems

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

38

The opacity of complex ML models’ intense learning methods hinders their adoption in security-
critical applications, where interpretability is essential for understanding detection decisions and
incident responses. Incorporate explainable AI (XAI) techniques are used in malware detection
models, making it easier for cybersecurity professionals to interpret ML-driven decisions. XAI
methods, such as Shapley Additive exPlanations) or Local Interpretable Model-agnostic Explanations
(LIME), could provide insights into model predictions, enhancing trust and transparency.

Lack of Comprehensive, Labelled Datasets for Multi-Platform Malware Detection

Effective multi-platform malware detection models require large, labelled datasets that
encompass diverse attack patterns and behaviors across PCs, mobile devices, IoT, and cloud
platforms, which are currently scarce. To mitigate this issue, foster collaborative data-sharing
frameworks among academic and industry researchers can be built to develop large and diverse
datasets that include benign and malicious samples from various platforms. Moreover, synthetic data
generation techniques such as Generative Adversarial Networks (GANSs) can also be employed to
augment existing datasets and enhance model robustness and performance.

Vulnerability to Adversarial Attacks

Adversarial examples, where attackers subtly alter input data to deceive ML models, remain a
challenge for malware detection systems, particularly in high-stakes environments, such as IoT and
cloud systems. Adversarial training techniques can be integrated to improve model robustness
against adversarial samples. Additionally, anomaly detection methods can help identify abnormal
patterns that adversarial examples might exhibit, thereby strengthening defense mechanisms.

Limited Research on Hybrid Detection Approaches Combining Static, Dynamic, and Memory Analysis

Most malware detection techniques rely on either static or dynamic analysis, omitting the
combined potential of hybrid models that use static, dynamic, and memory features for enhanced
detection. To approach this issue, hybrid models can be implemented that integrate static, dynamic,
and memory-based analysis techniques, thereby creating a more comprehensive view of malware
behaviors across platforms. This approach can improve the detection accuracy and adaptability,
especially against complex and evasive malware that may bypass single-method detection.

The proposed solutions offer a roadmap for future research aimed at enhancing the resilience,
adaptability, and effectiveness of ML-based malware detection across interconnected digital
environments.

9. Conclusion

This comprehensive review examined machine learning (ML)-based malware detection
techniques across diverse platforms, including PCs, mobile devices, IoT systems, and cloud
environments, each presenting unique security challenges owing to distinct vulnerabilities,
operational constraints, and resource limitations. ML techniques utilizing static, dynamic, memory,
and hybrid features show considerable promise for identifying malware effectively; however, they
face challenges in handling adaptive and polymorphic malware that exploit platform-specific
weaknesses. Furthermore, a significant gap persists in cross-platform detection capabilities because
most ML models are optimized for specific platforms and lack adaptability to other environments
without retraining or additional data. To address these limitations, future research should prioritize
adaptable frameworks that leverage transfer and federated learning, enhance model resilience across
platforms, and reduce the need for platform-specific labelled datasets. Additionally, advancements
in explainable Al (XAI) are critical for improving transparency in ML-driven detection systems,
particularly in complex threat scenarios. Lightweight models tailored to resource constrained IoT and
edge devices are also essential for effective deployment across increasingly interconnected
ecosystems. Ultimately, this survey underscores the necessity of developing robust, unified ML-

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

39

based malware detection systems capable of defending against sophisticated, multi-platform threats,
thus advancing cybersecurity resilience across digital environments.

References

[1] M. H. Nguyen, D. Le Nguyen, X. M. Nguyen, and T. T. Quan, “Auto-detection of sophisticated malware
using lazy-binding control flow graph and deep learning,” Comput. Secur., vol. 76, pp. 128-155, 2018, doi:
10.1016/j.cose.2018.02.006.

[2] O. Companies, “2024 Cisco Cybersecurity Readiness Index,” 2024. [Online]. Available:
https://newsroom.cisco.com/c/dam/r/newsroom/en/us/interactive/cybersecurity-readiness-
index/documents/Cisco_Cybersecurity_Readiness_Index_FINAL.pdf.

[8] N. J. Palatty, “Top Malware Attack Statistics, astra 2024. https://www.getastra.com/blog/security-
audit/malware-statistics/ (accessed October 15, 2024).

[4] Forbes, “Why Ransomware Should Be On Every Cybersecurity Team’s Radar,” 2022.
https://www forbes.com/councils/forbestechcouncil/2022/04/12/why-ransomware-should-be-on-every-
cybersecurity-teams-radar/#:~:text=According to Cybersecurity Ventures%2C victims,business up and
running again. (accessed October 15, 2024).

[5] B. Toulas, “Linux malware sees 35% growth during 2021, 2022.
https://www bleepingcomputer.com/news/security/linux-malware-sees-35-percent-growth-during-2021/
(accessed October 19, 2024).

[6] V. GANDH, “2023 ThreatLabz Report Indicates 400% Growth in IoT Malware Attacks,” 2023.
https://www .zscaler.com/blogs/security-research/2023-threatlabz-report-indicates-400-growth-iot-
malware-attacks (accessed October 15, 2024).

[7] J.Singh and J. Singh, “A survey on machine learning-based malware detection in executable files,” J. Syst.
Archit., vol. 112, no. March 2020, p. 101861, 2021, doi: 10.1016/j.sysarc.2020.101861.

[8] S. Sibi Chakkaravarthy, D. Sangeetha, and V. Vaidehi, “A Survey on malware analysis and mitigation
techniques,” Comput. Sci. Rev., vol. 32, pp. 1-23, 2019, doi: 10.1016/j.cosrev.2019.01.002.

[9] U.-H. Tayyab, F. B. Khan and M. H. Durad, A. Khan, and Y. S. Lee, “A Survey of the Recent Trends in Deep
Learning Based Malware Detection,” J. Cybersecurity Priv., vol. 2, no. 4, pp. 800-829, 2022, doi:
10.3390/jcp2040041.

[10] Q. Wu, X. Zhu, and B. Liu, “A Survey of Android Malware Static Detection Technology Based on Machine
Learning,” Mob. Inf. Syst., vol. 2021, 2021, doi: 10.1155/2021/8896013.

[11] D.Gibert, C. Mateu, and]. Planes, “The rise of machine learning for detection and classification of malware:
Research developments, trends and challenges,” J. Netw. Comput. Appl., vol. 153, p. 102526, March 2020,
doi: 10.1016/].J]NCA.2019.102526.

[12] Y. Liu, C. Tantithamthavorn, L.; Li, Y. Liu, “Deep Learning for Android Malware Defenses: A Systematic
Literature Review,” ACM Comput. Surv., vol. 55, no. 8, pp. 1-36, 2023, doi: 10.1145/3544968.

[13] Z.Wang, Q.Liu, and Y. Chi, “Review of Android malware detection based on deep learning,” IEEE Access,
vol. 8, pp. 181102-181126, 2020, doi: 10.1109/ACCESS.2020.3028370.

[14] P. Victor, A. Habibi, L. Rongxing, L. Tinshu, S. Pulei, and X. Shahrear, IoT malware : An attribute - based
taxonomy , detection mechanisms and challenges. Springer US, 2023.

[15] C. Alex, G. Creado, W. Almobaideen, O. A. Alghanam, and M. Saadeh, “A Comprehensive Survey for IoT
Security Datasets Taxonomy , Classification and Machine Learning Mechanisms,” Comput. Secur., p.
103283, 2023, doi: 10.1016/j.cose.2023.103283.

[16] A. Gaurav, B. B., Gupta, and P. K. Panigrahi, “A comprehensive survey on machine learning approaches
for malware detection in IoT-based enterprise information system,” Enterp. Inf. Syst., vol. 17, no. 3, 2023,
doi: 10.1080/17517575.2021.2023764.

[17] P.Maniriho, A. N. Mahmood, and M. J. M. Chowdhury, “A Survey of Recent Advances in Deep Learning
Models for Detecting Malware in Desktop and Mobile Platforms,” ACM Comput. Surv., vol. 56, no. 6, 2024,
doi: 10.1145/3638240.

[18] S. Abijah Roseline and S. Geetha, “A comprehensive survey of tools and techniques mitigating computer
and mobile malware attacks,” Comput. Electr. Eng., vol. 92, no. October 2020, p. 107143, 2021, doi:
10.1016/j.compeleceng.2021.107143.

[19] M. M. Belal and D. M. Sundaram, “Comprehensive review on intelligent security defences in cloud:
Taxonomy, security issues, ML/DL techniques, challenges and future trends,” J. King Saud Univ. - Comput.
Inf. Sci., vol. 34, no. 10, pp. 9102-9131, 2022, doi: 10.1016/j.jksuci.2022.08.035.

[20] O. Aslan, M. Ozkan-Okay, and D. Gupta, “Intelligent Behavior-Based Malware Detection System on Cloud
Computing Environment,” IEEE Access, vol. 9, pp. 83252-83271, 2021, doi: 10.1109/ACCESS.2021.3087316.

[21] M. Gopinath and S. C. Sethuraman, “A comprehensive survey on deep learning-based malware detection
techniques,” Comput. Sci. Rev., vol. 47, p. 100529, 2023, doi: 10.1016/j.cosrev.2022.100529.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

40

[22] O.Sanda, M. and Pavlidis, N. Polatidis, “A deep learning approach for host-based cryptojacking malware
detection,” Evol. Syst., vol. 15, no. 1, pp. 41-56, 2024, doi: 10.1007/s12530-023-09534-9.

[23] J. Ferdous et al., “Malware-Resistant Data Protection in Hyper-connected Networks : A Survey,”
https://arxiv.org/pdf/2307.13164, 2023, [Online]. Available: https://arxiv.org/abs/2307.13164.

[24] A. Mitchell, “Current Malware Trends: 5 Most Common Types of Malware in 2024,” lumifi, 2024.
https://www lumificyber.com/blog/current-malware-trends-5-most-common-types-of-malware-in-2024/
(accessed October 23, 2024).

[25] J.Ferdous, R. Islam, A. Mahboubi, and M. Z. Islam, “A Review of State-of-the-Art Malware Attack Trends
and Defense Mechanisms,” IEEE Access, vol. 11, no. October, pp. 121118-121141, 2023, doi:
10.1109/access.2023.3328351.

[26] M. BURGESS, “Conti’s Attack Against Costa Rica Sparks a New Ransomware Era,” WIRED, 2022.
https://www.wired.com/story/costa-rica-ransomware-conti/ (accessed October 23, 2024).

[27] B. Toulas, “REvil ransomware member extradited to the U.S. to stand trial for Kaseya attack,” BLEEPING
COMPUTER, 2022. https://www.bleepingcomputer.com/news/security/revil-ransomware-member-
extradited-to-us-to-stand-trial-for-kaseya-attack/ (accessed October 23, 2024).

[28] M. S. and N. Perlroth, “DarkSide, Blamed for gas pipeline attack, Says It Is Shutting Down. New York
Times 2021. https://www.nytimes.com/2021/05/14/business/darkside-pipeline-hack.html (accessed
October 23, 2024).

[29] S. Gatlan, “Accenture confirms data breach after August ransomware attack,” BLEEPING COMPUTER,
2021. https://www.bleepingcomputer.com/news/security/accenture-confirms-data-breach-after-august-
ransomware-attack/ (accessed October 23, 2024).

[30] E. Kost, “What is an Advanced Persistent Threat (APT)?” UpGuard, 2024.
https://www.upguard.com/blog/what-is-an-advanced-persistent-threat (accessed October 23, 2024).

[31] A. Sharma, B. B. Gupta, A. K. Singh and V. K. Saraswat, “Orchestration of APT malware evasive
manoeuvers employed for eluding anti-virus and sandbox defense,” Comput. Secur., vol. 115, p. 102627,
2022, doi: 10.1016/j.cose.2022.102627.

[32] Z.Masood, R. Samar, and M. A. Z. Raja, “Design of a mathematical model for the Stuxnet virus in a network
of critical control infrastructure,” Comput. Secur., vol. 87, p. 101565, 2019, doi: 10.1016/j.cose.2019.07.002.

[33] A. Jain, “Decoding cryptojacking: What is it and how can you protect yourself,” Crypto.news, 2024.
https://crypto.news/what-is-cryptojacking-how-does-it-work/ (accessed October 24, 2024).

[34] FORTINET, “Cryptojacking (learns how cryptojacking works and gains access to and abuses computer
resources).,” FORTINET, 2024.
https://www fortinet.com/resources/cyberglossary/cryptojacking#:~:text=Cryptojacking is also referred
to,overall health of your network. (Accessed October 24, 2024).

[35] R. Stevens, “Crypto mining botnet found on Defense Department web server,” 2020.
https://decrypt.co/18738/cry pto-mining-botnet-found-on-defense-department-web-server (accessed
October 24, 2024).

[36] R. Stevens, “Man fined $7,000 for using Russian supercomputer to mine Bitcoin,” Decrypt, 2019.
https://decrypt.co/9751/man-fined-for-using-russian-supercomputer-to-mine-crypto (accessed October 24,
2024).

[37] A. Wolf, “13 Types of Malware Attacks — and How You Can Defend Against Them,” 2024.
https://arcticwolf.com/resources/blog/8-types-of-malware/ (accessed October 24, 2024).

[38] K. Baker, “The 12 Most Common Types of Malwares,” CROWDSTRIKE, 2023.
https://www.crowdstrike.com/en-us/cybersecurity-101/malware/types-of-malware/ (accessed October 24,
2024).

[39] P.Maniriho, A. N. Mahmood, and M. J. M. Chowdhury, “A study on malicious software behaviour analysis
and detection techniques: Taxonomy, current trends and challenges,” Futur. Gener. Comput. Syst., vol.
130, pp. 1-18, 2022, doi: 10.1016/j.future.2021.11.030.

[40] J. Ferdous, R. Islam, A. Mahboubi, and M. Z. Islam, “Al-based Ransomware Detection: A Comprehensive
Review,” IEEE Access, vol. 12, no. September 2024, doi: 10.1109/ACCESS.2024.3461965.

[41] 1. Kara, “Fileless malware threats: Recent advances, analysis approach through memory forensics and
research challenges,” Expert Syst. Appl, vol. 214, no. April 2022, p. 119133, 2023, doi:
10.1016/j.eswa.2022.119133.

[42] R. Kumar, X. Zhang, W. Wang, R. U. Khan, J. Kumar, and A. Sharif, “A Multi-modal Malware Detection
Technique for Android IoT Devices Using Various Features,” IEEE Access, vol. 7, pp. 64411-64430, 2019,
doi: 10.1109/ACCESS.2019.2916886.

[43] T. Panker and N. Nissim, “Leveraging malicious behavior traces from volatile memory using machine
learning methods for trusted unknown malware detection in Linux cloud environments,” Knowledge-
Based Syst., vol. 226, August 2021, doi: 10.1016/j.knosys.2021.107095.

[44] H.Ogz, A. Aris, A. Levi, and A. S. Uluagac, “A Survey on Ransomware: Evolution, Taxonomy, and Defense
Solutions,” ACM Comput. Surv., vol. 1, no. 1, 2022, doi: 10.1145/3514229.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

41

[45] T.A.Unit, “VMware Threat Report — Exposing Malware in Linux-Based Multi-Cloud Environments,” 2022.
https://blogs.vmware.com/security/2022/02/2022-vmware-threat-report-exposing-malware-in-linux-
based-multi-cloud-environments.html (accessed November 04, 2024).

[46] R. Walsh, “Linux Malware Stats and Facts for 2024,” 2024. https://www.comparitech.com/blog/vpn-
privacy/linux-malware-stats-and-facts/ (accessed November 04, 2024).

[47] Y. E. T. M. Meshi, “Battling macOS Malware with Cortex AL” 2023.
https://www .paloaltonetworks.com/blog/security-operations/battling-macos-malware-with-cortex-ai/
(accessed November 04, 2024).

[48] B. Report, “macOS Threat Landscape Report,” 2023.

[49] Ani Petrosyan, “Number of detected malicious installation packages on mobile devices worldwide from
4th quarter 2015 to 3rd quarter 2023,” Statista, 2024. https://www.statista.com/statistics/653680/volume-of-
detected-mobile-malware-packages/ (accessed October 27, 2024).

[50] A. Sherif, “Market share of mobile operating systems worldwide from 2009 to 2024, by quarter,” Statista,
2024. https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-
since-2009/ (accessed November 01, 2024).

[51] H.Haidros Rahima Manzil and S. Manohar Naik, “Detection approaches for android malware: Taxonomy
and review analysis,” Expert Syst. Appl., vol. 238, no. PF, p. 122255, 2024, doi: 10.1016/j.eswa.2023.122255.

[52] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM: Effective and Efficient Behavior-based
Android Malware Detection and Prevention,” IEEE Trans. Dependable Secur. Comput., vol. 15, no. 1, pp.
83-97, 2018, doi: 10.1109/TDSC.2016.2536605.

[53] S. Garg and N. Baliyan, “Comparative analysis of Android and iOS from a security viewpoint,” Comput.
Sci. Rev., vol. 40, p. 100372, 2021, doi: 10.1016/j.cosrev.2021.100372.

[54] Y. Shen and H. Wuhan, “Enhancing data security of iOS client by encryption algorithm,” IEEE 2nd Adv.
Inf. Technol. Electron. Autom. Control Conf., pp. 366-370, 2017.

[55] M. Lutaaya, “Rethinking app permissions on iOS,” Conf. Hum. Factors Comput. Syst. - Proc., vol. 2018-
April, pp. 1-6, 2018, doi: 10.1145/3170427.3180284.

[56] J. Phungglan, “Most common viruses on iPhone,” 2023. https://macpaw.com/how-to/most-common-
iphone-viruses (accessed November 03, 2024).

[57] R. Walsh, “iOS Malware Stats and Facts for 2024,” 2024. https://www.comparitech.com/blog/vpn-
privacy/ios-malware-stats-and-facts/ (accessed November 03, 2024).

[58] K. O’Flaherty, “New ‘Dangerous’ iPhone Spyware Attack Warning Issued To iOS Users,” 2024.
https://www forbes.com/sites/kateoflahertyuk/2024/04/19/new-dangerous-iphone-spyware-attack-
warning-issued-to-ios-users/ (accessed November 03, 2024).

[59] L. S. Vailshery, “Number of Internet of Things (IoT) connections worldwide from 2022 to 2023, with
forecasts from 2024 to 2033,” Statista, 2024. https://www.statista.com/statistics/1183457/iot-connected-
devices-worldwide/ (accessed November 05, 2024).

[60] C. San Jose, “Zscaler ThreatLabz Finds a 400% Increase in IoT and OT Malware Attacks Year-over-Year,
Underscoring Need for Better Zero Trust Security to Protect Critical Infrastructures,” Zscaler, 2023.
https://www.zscaler.com/press/zscaler-threatlabz-finds-400-increase-iot-and-ot-malware-attacks-year-
over-year-underscoring (accessed November 05, 2024).

[61] R. M. Yadav, “Effective analysis of malware detection in cloud computing,” Comput. Secur., vol. 83, pp.
14-21, 2019, doi: 10.1016/j.cose.2018.12.005.

[62] F. Kilonzi, “Cloud Malware: Types of Attacks and How to Defend Against Them,” 2023.
https://thenewstack.io/cloud-malware-types-of-attacks-and-how-to-defend-against-them/ (accessed
November 25, 2024).

[63] S.]Jeon and J. Moon, “Malware-Detection Method with a Convolutional Recurrent Neural Network Using
Opcode Sequences,” Inf. Sci. (Ny)., vol. 535, pp. 1-15, 2020, doi: 10.1016/j.ins.2020.05.026.

[64] S.Huda, R. Islam, J. Abawajy, J. Yearwood, M. M. Hassan, and G. Fortino, “A hybrid-multi filter-wrapper
framework to identify run-time behaviour for fast malware detection,” Futur. Gener. Comput. Syst., vol.
83, pp. 193-207, June 2018, doi: 10.1016/j.future.2017.12.037.

[65] M. K. Alzaylaee, S. Y. Yerima, S. Sezer, “DL-Droid : Deep learning based android malware detection using
real devices,” vol. 89, 2020, doi: 10.1016/j.cose.2019.101663.

[66] N. A. Stoian, “Machine Learning for Anomaly Detection in IoT networks: Malware analysis on the IoT-23
Data set,” Univ. Twente, 2020.

[67] M. He, Y. Huang, X. Wang, P. Wei, and X. Wang, “A Lightweight and Efficient IoT Intrusion Detection
Method Based on Feature Grouping,” IEEE Internet Things J., vol. 11, no. 2, pp. 2935-2949, 2024, doi:
10.1109/JI10T.2023.3294259.

[68] A. Mezina and R. Burget, “Obfuscated malware detection using dilated convolutional network,” Int.
Congr. Ultra Mod. Telecommun. Control Syst. Work., vol. 2022-Octob, pp. 110-115, 2022, doi:
10.1109/ICUMT57764.2022.9943443.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

42

[69] J. Mitchell, N. McLaughlin, and J. Martinez-del-Rincon, “Generating sparse explanations for malicious
Android opcode sequences using hierarchical LIME,” Comput. Secur., vol. 137, no. July 2023, p. 103637,
2024, doi: 10.1016/j.cose.2023.103637.

[70] N. Potha, V. Kouliaridis, G. Kambourakis, “An extrinsic random-based ensemble approach for android
malware detection,” Conn. Sci., vol. 33, no. 4, pp. 1077-1093, 2021, doi: 10.1080/09540091.2020.1853056.

[71] S. Yoo, S. Kim, S. Kim, and B. B. Kang, “Al-HydRa: Advanced hybrid approach using random forest and
deep learning for malware classification,” Inf. Sci. (Ny)., vol. 546, pp. 420-435, 2021, doi:
10.1016/j.ins.2020.08.082.

[72] “No Title.”

[73] E.Snow, M. Alam, A. Glandon, and K. Iftekharuddin, “End-to-end Multimodel Deep Learning for Malware
Classification,” Proc. Int. Jt. Conf. Neural Networks, 2020, doi: 10.1109/I]JCNN48605.2020.9207120.

[74] A. Darem,]. Abawajy, A. Makkar, A. Alhashmi, and S. Alanazi, “Visualization and deep-learning-based
malware variant detection using OpCode-level features,” Futur. Gener. Comput. Syst., vol. 125, pp. 314—
323, 2021, doi: 10.1016/j.future.2021.06.032.

[75] E.O. Catak, J. Ahmed, K. Sahinbas, and Z. H. Khand, “Data Augmentation based Malware Detection Using
Convolutional Neural Networks,” Peer] Comput. Sci., vol. 7, pp. 1-26, 2021, doi: 10.7717/PEER]-CS.346.

[76] C. C. Moreira, D. C. Moreira, C., de S. d. Sales, “Improving ransomware detection based on portable
executable header using Xception convolutional neural network,” Comput. Secur., vol. 130, p. 103265, 2023,
doi: 10.1016/j.cose.2023.103265.

[77] C.Jindal, C. Salls, H. Aghakhani, K. Long, C. Kruegel, and G. Vigna, “Neurlux: Dynamic malware analysis
without feature engineering,” ACM Int. Conf. Proceeding Ser., pp. 444-455, 2019, doi:
10.1145/3359789.3359835.

[78] R. Chaganti, V. Ravi, T. D. Pham, “A multi-view feature fusion approach for effective malware
classification using Deep Learning,” J. Inf. Secur. Appl., vol. 72, no. December 2022, p. 103402, 2023, doi:
10.1016/j.jisa.2022.103402.

[79] H. Darabian et al., “Detecting Cryptomining Malware: a Deep Learning Approach for Static and Dynamic
Analysis,” J. Grid Comput., vol. 18, no. 2, pp. 293-303, 2020, doi: 10.1007/s10723-020-09510-6.

[80] M. R. Naeem et al., “A Malware Detection Scheme via Smart Memory Forensics for Windows Devices,”
Mob. Inf. Syst., vol. 2022, 2022, doi: 10.1155/2022/9156514.

[81] A. Tekerek and M. M. Yapici, “A novel malware classification and augmentation model based on
convolutional neural network,” Comput. Secur., vol. 112, p. 102515, 2022, doi: 10.1016/j.cose.2021.102515.

[82] H. Naeem, S. Dong, O. J. Falana, and F. Ullah, “Development of a deep stacked ensemble with process
based volatile memory forensics for platform independent malware detection and classification,” Expert
Syst. Appl., vol. 223, no. February, p. 119952, 2023, doi: 10.1016/j.eswa.2023.119952.

[83] T.Landman and N. Nissim, “Deep-Hook: A trusted deep learning-based framework for unknown malware
detection and classification in Linux cloud environments,” Neural Networks, vol. 144, pp. 648-685, 2021,
doi: 10.1016/j.neunet.2021.09.019.

[84] A.Pektasand T. Acarman, “Learning to detect Android malware via opcode sequences,” Neurocomputing,
vol. 396, pp. 599-608, 2020, doi: 10.1016/j.neucom.2018.09.102.

[85] M. Aamir et al., “/AMDDLmodel : Android smartphones malware detection using deep learning model,”
pp- 1-16, 2024, doi: 10.1371/journal.pone.0296722.

[86] H. Naeem, S. Dong, O. J. Falana, and F. Ullah, “Development of a deep stacked ensemble with process
based volatile memory forensics for platform independent malware detection and classification,” Expert
Syst. Appl., vol. 223, no. October 2022, p. 119952, 2023, doi: 10.1016/j.eswa.2023.119952.

[87] K.L.K. Sudheera, D. M. Divakaran, R. P. Singh, and M. Gurusamy, “ADEPT: Detection and Identification
of Correlated Attack Stages in IoT Networks,” IEEE Internet Things J., vol. 8, no. 8, pp. 6591-6607, 2021,
doi: 10.1109/JI0T.2021.3055937.

[88] D. Vasan, M. Alazab, S. Venkatraman, J. Akram, and Z. Qin, “MTHAEL: Cross-architecture iot malware
detection based on neural network advanced ensemble learning,” IEEE Trans. Comput., vol. 69, no. 11, pp.
1654-1667, 2020, doi: 10.1109/TC.2020.3015584.

[89] H. V. Le, Q. D. Ngo, and V. H. Le, “Iot botnet detection using system call graphs and one-class CNN
classification,” Int. J. Innov. Technol. Explor. Eng. vol. 8, no. 10, pp. 937-942, 2019, doi:
10.35940/ijitee.]J9091.0881019.

[90] R. Shire, S. Shiaeles, K. Bendiab, B. Ghita, and N. Kolokotronis, Malware Squid: A Novel IoT Malware
Traffic Analysis Framework Using Convolutional Neural Network and Binary Visualisation, vol. 11660
LNCS. Springer International Publishing, 2019.

[91] H.]Jiang, J. Lin, and H. Kang, “FGMD: A robust detector against adversarial attacks in the IoT network,”
Futur. Gener. Comput. Syst., vol. 132, pp. 194-210, 2022, doi: 10.1016/j.future.2022.02.019.

[92] C.Li, Q.Lv,N.Li, Y. Wang, D. Sun, and Y. Qiao, “A novel deep framework for dynamic malware detection
based on API sequence intrinsic features,” Comput. Secur., vol. 116, 2022, doi: 10.1016/j.cose.2022.102686.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

43

[93] W. R. Aditya, Girinoto, R. B. Hadiprakoso, and A. Waluyo, “Deep Learning for Malware Classification
Platform using Windows API Call Sequence,” Proc. - 3rd Int. Conf. Informatics; Multimedia; Cyber; Inf.
Syst. ICIMCIS 2021, pp. 25-29, 2021, doi: 10.1109/ICIMCIS53775.2021.9699248.

[94] M. Ring, D. Schldr, S. Wunderlich, D. Landes, and A. Hotho, “Malware detection on windows audit logs
using LSTMs,” Comput. Secur., vol. 109, p. 102389, 2021, doi: 10.1016/j.cose.2021.102389.

[95] M. S. A Lakshmanarao, “Android Malware Detection with Deep Learning using RNN from Opcode
Sequences.,” Int. J. Interact. Mob. Technol., vol. 16, 2022.

[96] H.Ge, Z. Wang, Y. Liu, and X. Liu, “D ROIDETEC: Android Malware Detection and Malicious Code,” pp.
1-13.

[97] S. K. Sasidharan and C. Thomas, “MemDroid - LSTM based Malware Detection Framework for Android
Devices,” 2021 IEEE Pune Sect. Int. Conf., pp. 1-6, 2021, doi: 10.1109/PuneCon52575.2021.9686531.

[98] E. Amer and S. El-sappagh, “Robust deep learning early alarm prediction model based on the behavioral
smell for Android malware,” Comput. Secur., vol. 116, p. 102670, 2022, doi: 10.1016/j.cose.2022.102670.

[99] Y. Wu,]. Shi, P. Wang, D. Zeng, and C. Sun, “Android malware detection,” No. January 2022, pp. 118-130,
2023, doi: 10.1049/ise2.12082.

[100]]. Jeon, B. Jeong, S. Baek and Y. S. Jeong, “Hybrid Malware Detection Based on Bi-LSTM and SPP-Net for
Smart IoT,” IEEE Trans. Ind. Informatics, vol. 18, no. 7, pp. 4830-4837, 2022, doi: 10.1109/T11.2021.3119778.

[101]S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, Effective and Efficient Hybrid Android Malware
Classification Using Pseudo - Label Stacked Auto - Encoder, vol. 30, no. 1. Springer US, 2022.

[102]]. Hemalatha, S. A. Roseline, S. Geetha, S. Kadry, and R. Damasevicius, “An efficient densenet-based deep
learning model for malware detection,” Entropy, vol. 23, no. 3, pp. 1-23, 2021, doi: 10.3390/e23030344.
[103]S. Kumar and B. Janet, “DTMIC: Deep transfer learning for malware image classification,” J. Inf. Secur.

Appl., vol. 64, no. December 2021, p. 103063, 2022, doi: 10.1016/j.jisa.2021.103063.

[104] X. Huang, L. Ma, W. Yang, and Y. Zhong, “A Method for Windows Malware Detection Based on Deep
Learning,” J. Signal Process. Syst., vol. 93, no. 2-3, pp. 265-273, 2021, doi: 10.1007/s11265-020-01588-1.
[105]P. Xu, Y. Zhang, C. Eckert, and A. Zarras, HawkEye: Cross-Platform Malware Detection with

Representation Learning on Graphs, vol. 12893 LNCS. Springer International Publishing, 2021.

[106]S. K.]J. Rizvi, W. Aslam, M. Shahzad, S. Saleem, and M. M. Fraz, “PROUD-MAL: static analysis-based
progressive framework for deep unsupervised malware classification of windows portable executable,”
Complex Intell. Syst., vol. 8, no. 1, pp. 673-685, 2022, doi: 10.1007/s40747-021-00560-1.

[107]M. Khan, D. Baig, U. S. Khan, and A. Karim, “Malware Classification Framework using Convolutional
Neural Network,” 1st Annu. Int. Conf. Cyber Warf. Secur. ICCWS 2020 - Proc., 2020, doi:
10.1109/ICCWS48432.2020.9292384.

[108]E. Amer and L Zelinka, “A dynamic Windows malware detection and prediction method based on
contextual understanding of API call sequence,” Comput. Secur. vol. 92, p. 101760, 2020, doi:
10.1016/j.cose.2020.101760.

[109]F. O. Catak, A. F. Yazi, O. Elezaj, and J. Ahmed, “Deep learning based Sequential model for malware
analysis using Windows exe API Calls,” Peer] Comput. Sci., vol. 6, pp. 1-23, 2020, doi: 10.7717/PEER]-
CS.285.

[110]M. M. Hasan and M. M. Rahman, “RansHunt: A support vector machines based ransomware analysis
framework with integrated feature set,” 20th Int. Conf. Comput. Inf. Technol. ICCIT 2017, vol. 2018-Janua,
pp- 1-7, 2018, doi: 10.1109/ICCITECHN.2017.8281835.

[111]E. M. B. Karbab, M. Debbabi, and A. Derhab, “SwiftR: Cross-platform ransomware fingerprinting using
hierarchical neural networks on hybrid features,” Expert Syst. Appl., vol. 225, no. March, p. 120017, 2023,
doi: 10.1016/j.eswa.2023.120017.

[112] C. Hwang, J. Hwang,]. Kwak, and T. Lee, “Platform-independent malware analysis applicable to windows
and linux environments,” Electron., vol. 9, no. 5, 2020, doi: 10.3390/electronics9050793.

[113] T. Set and T. Set, “Mac Malware Detection via Static File Structure Analysis,” pp. 1-5.

[114] H. H. Pajouh, A. and Dehghantanha, R. Khayami, and K. K. R. Choo, “Intelligent OS X malware threat
detection with code inspection,” J. Comput. Virol. Hacking Tech., vol. 14, no. 3, pp. 213-223, 2018, doi:
10.1007/s11416-017-0307-5.

[115] H. Gao, S. Cheng, and W. Zhang, “GDroid : Android malware detection and classification with graph
convolutional network,” Comput. Secur., vol. 106, p. 102264, 2021, doi: 10.1016/j.cose.2021.102264.

[116] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, and Z. Jia, “ A mobile malware detection method using behavior
features in network traffic,” J. Netw. Comput. Appl., vol. 133, no. December 2018, pp. 15-25, 2019, doi:
10.1016/j.jnca.2018.12.014.

[117] A. Cimitile, F. Martinelli, and F. Mercaldo, “Machine learning meets ios malware: Identifying malicious
applications on apple environment,” ICISSP 2017 - Proc. 3rd Int. Conf. Inf. Syst. Secur. Priv., vol. 2017-
Janua, no. Icissp, pp. 487-492, 2017, doi: 10.5220/0006217304870492.

[118] G. Zhou, M. Duan, Q. Xi, and H. Wu, “ChanDet: Detection Model for Potential Channel of iOS
Applications,” J. Phys. Conf. Ser., vol. 1187, no. 4, 2019, doi: 10.1088/1742-6596/1187/4/042045.

https://doi.org/10.20944/preprints202412.0348.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2024 d0i:10.20944/preprints202412.0348.v1

44

[119] F. Mercaldo and A. Santone, “Deep learning for image-based mobile malware detection,” J. Comput. Virol.
Hacking Tech., vol. 16, no. 2, pp. 157-171, 2020, doi: 10.1007/s11416-019-00346-7.

[120] H. V. Le and Q. D. Ngo, “V-Sandbox for Dynamic Analysis IoT Botnet,” IEEE Access, vol. 8, pp. 145768—
145786, 2020, doi: 10.1109/ACCESS.2020.3014891.

[121] X. Zhou, W. Liang, W. Li, K. Yan, S. Shimizu, and K. I. K. Wang, “Hierarchical Adversarial Attacks Against
Graph-Neural-Network-Based IoT Network Intrusion Detection System,” IEEE Internet Things J., vol. 9,
no. 12, pp. 9310-9319, 2022, doi: 10.1109/JI0T.2021.3130434.

[122] A. Guerra-Manzanares, J. Medina-Galindo, H. Bahsi, and S. Nomm, “MedBIoT: Generation of an IoT Botnet
Dataset in a Medium-sized IoT Network,” Int. Conf. Inf. Syst. Secur. Priv., no. Icissp 2020, pp. 207-218,
2020, doi: 10.5220/0009187802070218.

[123]L. Xiao, Y. Li, X. Huang, and X. Du, “Cloud-based malware detection game for mobile devices with
offloading,” IEEE Trans. Mob. Comput, vol. 16, no. 10, pp. 2742-2750, 2017, doi:
10.1109/TMC.2017.2687918.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202412.0348.v1

