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Abstract: This comprehensive survey explores recent advancements in scheduling techniques for efficient deep
learning computations on GPUs. The article highlights challenges related to parallel thread execution, resource
utilization, and memory latency in GPUs, which can lead to suboptimal performance. The surveyed research
focuses on novel scheduling policies to improve memory latency tolerance, exploit parallelism, and enhance
GPU resource utilization. Additionally, it explores the integration of prefetching mechanisms, fine-grained
warp scheduling, and warp switching strategies to optimize deep learning computations. Experimental
evaluations demonstrate significant improvements in throughput, memory bank parallelism, and latency
reduction. The insights gained from this survey can guide researchers, system designers, and practitioners in
developing more efficient and powerful deep learning systems on GPUs. Furthermore, potential future
research directions include advanced scheduling techniques, energy efficiency considerations, and the
integration of emerging computing technologies. By continuously advancing scheduling techniques, the full
potential of GPUs can be unlocked for a wide range of applications and domains, including GPU-accelerated
deep learning, task scheduling, resource management, memory optimization, and more.
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1. Introduction

Deep learning has emerged as a powerful technique for solving complex problems and has
achieved remarkable success in various domains, including computer vision, natural language
processing, and autonomous systems. Graphics Processing Units (GPUs) have played a pivotal role
in accelerating deep learning computations due to their parallel processing capabilities and high
memory bandwidth. However, harnessing the full potential of GPUs for deep learning requires
efficient scheduling techniques that optimize resource utilization and minimize latency [1-5].

The efficient execution of deep learning algorithms on GPUs faces several challenges. Firstly,
deep learning computations often involve massive amounts of data and complex neural network
architectures, resulting in high computational demands. Secondly, GPUs consist of numerous
parallel processing units known as warps, which execute threads in parallel. However, inefficient
scheduling of these warps can lead to underutilization of GPU resources and suboptimal
performance. Moreover, memory latency, caused by data movement between the GPU and memory,
can significantly impact the overall system performance [10-16].

To address these challenges, researchers have been actively developing advanced scheduling
techniques specifically tailored for deep learning computations on GPUs. These techniques aim to
maximize the efficiency and throughput of deep learning algorithms by effectively managing the
execution of parallel threads, optimizing memory access patterns, and improving resource utilization
[17-20]. Scheduling techniques for deep learning on GPUs encompass various aspects, such as warp
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scheduling policies, memory latency tolerance, memory bank parallelism, context switching
strategies, and prefetching mechanisms. Warp scheduling policies focus on efficiently assigning
threads to warps, considering factors like data dependencies and resource availability. Memory
latency tolerance techniques aim to overlap memory access and computation to minimize the impact
of memory latency on overall performance [21-25]. Memory bank parallelism techniques exploit the
parallel memory access capabilities of GPUs to enhance memory throughput. Context switching
strategies involve efficiently switching between different warps to optimize GPU resource utilization.

Additionally, prefetching mechanisms are employed to anticipate and fetch data in advance,
reducing memory access latency and improving overall performance [26-31]. Fine-grained warp
scheduling techniques consider the execution order and prioritization of individual threads within a
warp, further enhancing parallelism and reducing resource contention. Furthermore, hardware and
algorithm co-design approaches have been explored to optimize scheduling and execution for
specific types of deep learning algorithms, such as sparse neural networks and Convolutional Neural
Networks (CNNs).Cache data residency optimization techniques have also been investigated to
improve memory management and exploit cache locality. By profiling data access frequencies and
classifying applications based on access patterns, these techniques optimize data storage and enhance
cache utilization, leading to improved performance. In this article, we provide a comprehensive
survey of recent advancements in scheduling techniques for efficient deep learning computations on
GPUs [32-37]. We delve into the details of various scheduling methodologies, their underlying
principles, and their impact on system performance. Through experimental evaluations, we
demonstrate the effectiveness of these techniques in improving throughput, reducing latency, and
optimizing resource utilization. The insights gained from this survey can guide researchers, system
designers, and practitioners in developing more efficient and powerful deep learning systems on
GPUs [38-43]. Additionally, we discuss potential future directions for research, including advanced
scheduling techniques, energy efficiency considerations, and the integration of emerging computing
technologies. By continuously advancing scheduling techniques, we can unlock the full potential of
GPUs and further optimize deep learning computations for a wide range of applications and domains
[44-51].

Figure 1 illustrates the classification of scheduling techniques discussed in this survey,
categorizing them based on their application and methodology for optimizing deep learning
computations on GPUs.
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Figure 1. Classification of Scheduling Techniques discussed in this survey.

At the core of this survey, we explore a variety of scheduling techniques critical for optimizing
deep learning computations on GPUs. In Section II, the discussion begins with heterogeneous
computing, highlighting its promises and challenges in combining CPUs and GPUs for improved
performance and energy efficiency. Next, in section III we delve into diverse scheduling strategies,
including static, dynamic, and adaptive approaches, focusing on their ability to optimize workload
distribution and resource utilization. Dynamic load balancing techniques are examined for their real-
time adaptability, while workload partitioning strategies emphasize efficient division of tasks
between CPUs and GPUs. Memory access scheduling methods are explored to reduce latency and
enhance throughput, complemented by fine-grained warp scheduling policies that prioritize threads
to improve parallelism. Context switching strategies are discussed for their role in minimizing idle
times and optimizing resource usage. Energy-aware and task graph scheduling techniques are
presented to balance energy efficiency, manage dependencies, and improve completion times.
Additionally, hybrid scheduling approaches, power-aware and deadline-aware scheduling, and
batch job scheduling are analyzed for their ability to address complex resource management
challenges in heterogeneous systems. Pipelined scheduling strategies are reviewed for their potential
to overlap computation stages and boost throughput. This comprehensive discussion sets the stage
for the subsequent sections, offering insights into the latest advancements and future directions in
scheduling techniques for GPU-accelerated deep learning.

2. Heterogeneous Computing

2.1. Promises and Challenges

Heterogeneous computing aims to combine the strengths of both CPUs and GPUs to achieve
improved computational performance. The promises of heterogeneous computing include utilizing
the unique features of CPUs and GPUs, achieving load balancing between the processing units, and
harnessing the computational power of both to strive for exascale performance.
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However, there are several challenges in realizing the potential of heterogeneous computing.
The vastly different architectures and programming models of CPUs and GPUs present obstacles in
achieving collaborative computing. Optimization techniques designed for CPU-only or GPU-only
systems may not be effective in heterogeneous systems. Therefore, novel techniques are required to
optimize performance and energy efficiency by considering the characteristics of both CPUs and
GPUs.

3. Scheduling Strategies

The goal of heterogeneous computing is to leverage the unique features and strengths of both
CPUs and GPUs to achieve high-performance computing. [1] highlights the increasing utilization of
both CPUs and GPUs in a wide range of applications and emphasizes the need for collaboration
between these processing units. It discusses the challenges and promises of heterogeneous computing
and clarifies the terminology used in the field. Regarding scheduling techniques, it categorizes the
research works based on the nature of scheduling, such as dynamic or static load balancing. It
explores various approaches to workload partitioning between CPUs and GPUs, considering factors
like the division of work among processing units.

3.1. Dynamic Load Balancing

Dynamic load balancing involves dynamically redistributing the workload between CPUs and
GPUs based on their capabilities and current load. This technique aims to optimize resource
utilization and maximize overall performance by adapting to changes in workload and system
conditions in real-time. It can help ensure that both CPUs and GPUs are effectively utilized and that
the workload is distributed efficiently to achieve better performance.

[7] discusses the problem of online scheduling of task graphs on heterogeneous platforms,
specifically platforms consisting of CPUs and GPUs. The focus is on dynamic scheduling, where task
graphs are uncovered dynamically during the computation and the scheduler has limited
information about the available tasks. The objective is to minimize the total completion time of the
tasks.

1. Lower Bound Analysis: The authors prove that the competitive ratio (the ratio of makespan
achieved by the online algorithm to the optimal makespan) of any online algorithm is lower-
bounded by a certain value, which depends on the number of CPUs (m) and GPUs (k). They
investigate the influence of task graph knowledge and task flexibility on the lower bound.

2. Competitive Algorithm: The authors propose a 62p1P-competitive algorithm, called QA,
which improves upon a previous algorithm. They refine the algorithm and its analysis to
achieve better performance.

3. Generalization to Multiple Processor Types: The authors extend their results to the case of
platforms with multiple types of processors, adapting the lower bounds and the online
algorithm accordingly.

4. Heuristic Approach: The authors propose a simple heuristic based on the QA algorithm and
the system-oriented heuristic EFT. This heuristic is both competitive and performs well in

practice.

[10] discusses a scheduling technique called READYS. The goal of READYS is to develop a
dynamic scheduling algorithm for heterogeneous computing systems using reinforcement learning.
It introduces the concept of Directed Acyclic Graphs (DAGs) as a computational model for parallel
applications. It emphasizes the importance of accurate task allocation and scheduling decisions in
parallel and distributed computing systems. The authors propose using reinforcement learning,
specifically a combination of Graph Convolutional Networks (GCN) and an Actor-Critic Algorithm
(A2C), to address the dynamic scheduling problem. The READYS algorithm aims to minimize the
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makespan, which is the total time required to complete all tasks, by learning an adaptive scheduling
strategy based on the current state of the system and the characteristics of the tasks. The use of
reinforcement learning is particularly suitable in scenarios where task durations and communication
times are stochastic. The paper focuses on task graphs derived from linear algebra factorization
kernels (such as CHOLESKY, LU, and QR) and considers heterogeneous platforms with both CPUs
and GPUs. Through simulations, the authors demonstrate that READYS achieves comparable or
superior performance to existing scheduling algorithms, particularly in environments with high
uncertainty. Furthermore, READYS is capable of generalizing its learned scheduling strategy to
different application domains and problem sizes.

[28] proposes an improved scheduling mechanism for generative Al applications in cloud-native
environments with heterogeneous resources. The scheduling technique used in this approach is
dynamic programming. The study addresses the challenge of effectively scheduling multiple
resources in such environments to enhance load balance and resource utilization. By applying the
dynamic programming approach, the proposed scheduling mechanism outperforms native GPU
scheduling strategies and the algorithm for the multidimensional knapsack problem. Experimental
results demonstrate that the load balance can be improved by up to 64.1%, and the makespan (job
completion time) can be reduced by up to 40.8%. This scheduling technique considers load balancing
as a crucial metric and aims to achieve the highest total iteration count while optimizing job
completion time. The approach effectively utilizes the available resources, including less powerful
GPU nodes, and prevents resource idleness caused by unbalanced workloads.

On the other hand, Static load balancing involves pre-determining the workload division
between CPUs and GPUs based on certain criteria or heuristics. This technique aims to distribute the
workload evenly and efficiently at the beginning of the computation. It does not adapt to runtime
changes and assumes a predetermined workload division that remains constant throughout the
execution. Static load balancing can be useful in scenarios where the workload characteristics are
known in advance or when the workload distribution is relatively stable.

3.2. Workload Partitioning

Workload partitioning focuses on dividing the workload between CPUs and GPUs in an
effective manner. This technique considers factors such as the characteristics of the workload, the
capabilities of the processing units, and the requirements of the deep learning computations. By
carefully partitioning the workload, workload partitioning aims to achieve balanced utilization of
CPUs and GPUs, optimize resource allocation, and improve overall performance.

[46] proposes a scheduling technique called the Constrained Autonomous Workload Scheduler
(CAuWS) for Cyber-Physical Systems (CPS) with heterogeneous processing units. The authors
address the challenge of finding efficient schedules that meet the physical requirements of CPS while
considering the diverse capabilities of different hardware units. CAuWS utilizes a structured and
system-agnostic approach, combining a representation language (AuWL), timed Petri nets, and
mixed-integer linear programming. It enables the representation and scheduling of various CPS
workloads, real-world constraints, and optimization criteria, resulting in optimal assignments of
processing units to tasks. The technique is demonstrated using a drone simulation under multiple
physical constraints. The scheduling technique aims to optimize resource utilization and meet the
objectives of CPS while considering the heterogeneity of the processing units.

3.3. Memory Access Scheduling

This section discusses memory latency tolerance techniques and memory bank parallelism as
part of optimizing deep learning computations on GPUs. These techniques aim to schedule memory
accesses effectively to minimize the impact of memory latency and improve overall performance.

[2] presents a memory scheduling strategy aimed at addressing the challenges faced in shared
memory environments of heterogeneous multi-core systems. It proposes a step-by-step approach to
memory scheduling, focusing on mitigating interference between memory access requests from
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different cores and improving system performance. The memory scheduling strategy consists of three

key steps:

1. Request Source Isolation: To prevent interference between CPU and GPU memory requests, a
new memory request queue is created based on the request source. This isolation ensures that
GPU requests do not interfere with CPU requests and vice versa, enhancing overall memory
access performance.

2. Dynamic Bank Partitioning: For the CPU request queue, a dynamic bank partitioning strategy
is implemented. It dynamically maps the CPU requests to different bank sets based on the
memory characteristics of the applications. By considering the access behavior and
characteristics of multiple parallel applications, this strategy eliminates memory request
interference among CPU applications without affecting bank-level parallelism.

3.  Criticality-Aware Scheduling: The GPU request queue incorporates the concept of criticality to
measure the difference in memory access latency among GPU cores. A criticality-aware
memory scheduling approach is implemented, prioritizing requests based on their criticality
level. This strategy balances the locality and criticality of application access, effectively

reducing memory access latency differences among GPU cores.

[24] proposes a scheduling technique called MixTran for efficient and fair resource allocation in
heterogeneous GPU clusters running mixed deep learning workloads. The authors address the
challenge of existing schedulers not being tailored to deep learning jobs, resulting in low resource
efficiency and job performance. MixTran abstracts heterogeneous GPU resources and distributes
them fairly to users using virtual tickets. It then formulates a global optimization model to efficiently
allocate resources based on quantified resource requests, heterogeneous node constraints, and user
fairness constraints. The technique employs a greedy resource trading mechanism to benefit multiple
users. Experimental results demonstrate that MixTran significantly reduces the total execution time
of deep learning workloads (up to 30%-50%) compared to traditional schedulers while maintaining
user fairness. The scheduling technique employed in MixTran can be categorized as a combination
of fair-share scheduling and resource trading.

3.4. Hardware and Algorithm Co-Design

[2] explores hardware and algorithm co-design approaches to optimize scheduling and
execution for specific types of deep learning algorithms, such as sparse neural networks and
Convolutional Neural Networks (CNNs). It also mentions cache data residency optimization
techniques for improving memory management and cache utilization, which indirectly relate to
scheduling considerations.

3.5. Prefetching Mechanisms

[2] mentions the integration of prefetching mechanisms to anticipate and fetch data in advance.
This technique aims to reduce memory access latency and improve overall performance by
overlapping data movement with computation.

3.6. Fine-Grained Warp Scheduling

[2] discusses fine-grained warp scheduling techniques, which consider the execution order and
prioritization of individual threads within a warp. This technique enhances parallelism and reduces
resource contention, leading to improved performance.
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3.7. Context Switching Strategies

[2] explores warp switching strategies as part of optimizing deep learning computations on
GPUs. These strategies involve efficiently switching between different warps to optimize GPU
resource utilization and enhance performance.

3.8. Energy-Aware Job Scheduling Techniques

[3] discusses scheduling techniques for optimizing energy consumption in heterogeneous
computing systems. The main objective is to address the challenges posed by energy consumption,
dynamic variability of CPU-GPU utilization, and job scheduling in large-scale systems. It proposes a
CPU-GPU utilization aware and energy-efficient heuristic greedy strategy (UEJS) as well as a hybrid
particle swarm optimization algorithm (H-PSO) to solve the job scheduling problem. The proposed
UEJS algorithm incorporates the CPU-GPU utilization awareness and energy efficiency
considerations to schedule jobs. To enhance the algorithm's global optimization ability, it introduces
the H-PSO algorithm, which combines the heuristic greedy strategy with a bio-inspired search
optimization technique. Experimental results demonstrate that the H-PSO algorithm outperforms the
heuristic greedy strategy, Max-EAMin, and Genetic Algorithm in terms of average energy
consumption of jobs and system job rejection rate. Specifically, H-PSO achieves a 36.5% improvement
over UEJS, a 36.3% improvement over Max-EAMin, and a 46.7% improvement over GA in terms of
job average energy consumption for heterogeneous systems with high workload.

[5] discusses the importance of energy consumption optimization in computing devices,
particularly in embedded systems. The authors propose an offline scheduling algorithm that aims to
minimize overall energy consumption while ensuring timing constraints on heterogeneous
platforms. The scheduling strategy is based on Forward List Scheduling and takes into account
Dynamic Voltage and Frequency Scaling (DVFS). The algorithm selects the most energy-efficient
version for each task, considering different energy/time trade-offs offered by architecture-specific
binary blocks. It also enables applications to dynamically adapt voltage and frequency during
runtime. Additionally, the proposed heuristic is compared against an optimal solution derived by an
Integer Linear Programming (ILP) formulation, with a deviation of only 1.6% on average. Overall, [5]
emphasizes the need for energy-aware scheduling strategies on heterogeneous real-time systems and
presents a scheduling algorithm that effectively reduces energy consumption while meeting timing
constraints. The proposed approach considers multi-version tasks, DVFS, and heterogeneous
platforms, resulting in significant energy savings compared to existing scheduling algorithms.

[11] proposes scheduling techniques to address the challenges faced by edge platforms
processing multiple machine learning (ML) models concurrently. These platforms, equipped with
heterogeneous computing processors, have limited computational and energy budgets compared to
data center servers. The proposed scheduler uses pre-profiled behavior of ML models and routes
requests to the most suitable processors, considering the regularity of computation in common ML
tasks. It aims to reduce energy consumption while meeting the service-level objective (SLO)
requirement for bounded response latency. To handle the inflexible pre-emption capability of GPUs
and DSPs, the scheduler decomposes large ML tasks into sub-tasks based on the layers of the DNN
model. The scheduling policies are evaluated on an edge platform with CPU, GPU, and DSP. Results
show significant performance improvements and reduced SLO violations compared to naive
scheduling. By considering the heterogeneity of ML models and computing processors, the proposed
techniques optimize performance, reduce energy consumption, and meet SLO requirements in edge
computing environments.

3.9. Memory Latency Tolerance

[4] discusses the challenges and proposed solutions for improving the performance of integrated
CPU/GPU platforms, focusing on the latency associated with data initialization. The authors in this
work highlight the importance of these platforms in autonomous driving and edge intelligence
applications and the limitations posed by the shared physical memory. It introduces the concept of
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unified memory (UM) model in GPU programming, which simplifies memory management and
allocation. However, the conventional copy-then-execute model used in UM programming leads to
significant initialization latency and hampers kernel execution. To address this issue, the authors
propose a framework that enables latency-aware data initialization. The framework includes three
data initialization modes: CPU initialization, GPU initialization, and hybrid initialization. It also
incorporates an affinity estimation model that considers application characteristics and platform
features to determine the most suitable initialization mode. The goal is to optimize the initialization
latency performance of the application.

3.10. Dynamic Task Scheduling

[6] discusses task scheduling strategies for CPU-GPU heterogeneous computing systems. It
proposes two scheduling techniques: a load-aware strategy for the single task model and a genetic
algorithm-based strategy for the multi-task model.

1. Load-Aware Scheduling Strategy:

This strategy focuses on addressing load balancing issues in CPU-GPU heterogeneous
computing systems. It aims to allocate computing tasks to the CPU and GPU based on their
computing power and a perception ratio. The strategy uses a bidirectional queue to store tasks,
reducing additional overhead caused by scheduling. By assigning parallel computing tasks to both
CPUs and GPUs, this strategy enhances performance, reduces load imbalances, and minimizes idle
time.

2. Genetic Algorithm-Based Scheduling Strategy:

This strategy targets improving the overall operating efficiency of CPU-GPU heterogeneous
computing systems in multi-task scenarios. It uses a genetic algorithm to determine the execution
relationship between different types of tasks and heterogeneous processing cores. The strategy aims
to optimize the allocation of computing resources and fully utilize the collaborative computing
capabilities of CPUs and GPUs.

Experimental evaluations demonstrate that this strategy outperforms traditional scheduling
algorithms, static and dynamic scheduling algorithms, and hybrid scheduling algorithms, resulting
in higher system performance.

These scheduling techniques contribute to tapping into the performance potential of CPU-GPU
heterogeneous computing systems, achieving load balance, reducing idle time, and improving
system efficiency.

[18] proposes a scheduling technique to minimize energy consumption in a CPU-GPU cloud
computing platform while handling intermittent real-time tasks. The technique formulates the
problem as an integer nonlinear programming problem and utilizes a dynamic programming
approach inspired by the 0-1 knapsack problem. By dividing the hardware computing resource into
virtual CPUs, the technique dynamically adjusts the task schedule based on the solution.
Experimental results demonstrate that the proposed algorithm effectively reduces energy
consumption and outperforms other greedy methods in terms of computation time. The scheduling
technique contributes to optimizing system performance in cloud computing environments.

[26] presents a programming and execution model called SHMT (Simultaneous and
Heterogeneous Multithreading) that enables parallel processing using heterogeneous processing
units. The paper focuses on the scheduling technique used in SHMT to coordinate the execution on
different hardware components efficiently. SHMT introduces a low-overhead scheduling policy that
considers both results and performance. It utilizes a set of virtual operations (VOPs) and High-Level
Operations (HLOPs) as an intermediate layer between programming languages and hardware
instructions. This intermediate layer facilitates task matching and distribution, allowing SHMT to
divide equivalent operations and data on different computing resources. The scheduling technique
employed in SHMT can be categorized as a dynamic scheduling policy. It dynamically adjusts
workloads on various hardware units to maximize hardware efficiency while providing flexibility in
scheduling policies. By effectively coordinating the execution on heterogeneous hardware, SHMT
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achieves significant speedup and energy reduction compared to GPU baseline, as demonstrated in
evaluations on an embedded system platform. Overall, the paper emphasizes the importance of
scheduling techniques in enabling parallel execution across heterogeneous processing units, and
SHMT's dynamic scheduling policy plays a crucial role in achieving efficient utilization of hardware
resources.

[37] proposes a resource scheduling system called FILL to improve the performance of
GROMACS simulations by effectively utilizing heterogeneous hardware resources. The scheduling
technique used in FILL is space partitioning technology, which allows for precise allocation of
resources between CPU and GPU devices.The article highlights that previous research focused
mainly on co-running multiple GROMACS simulations using time-slice technology, which
introduced context-switching overhead and neglected collaborative scheduling of CPU and GPU
devices. FILL addresses this limitation by leveraging hardware partitioning technologies and
optimizing the allocation of resources for multiple GROMACS jobs. Experimental results
demonstrate significant improvements in system throughput using FILL on both NVIDIA and AMD
GPU servers compared to baseline approaches and state-of-the-art alternatives. FILL achieved an
impressive improvement of up to 167% on NVIDIA GPU servers and demonstrated significant
enhancements of 459% on AMD GPU servers. Overall, FILL's space partitioning-based scheduling
technique enhances resource utilization and improves system throughput for multiple GROMACS
simulations. The FILL mechanism, as shown in Figure 2, effectively addresses the challenge of
resource utilization in heterogeneous computing by employing space partitioning technology to
optimize CPU and GPU allocation for GROMACS simulations

Acquiring a
Fetchi batch of jobs vCPU VGPU
asa‘i:talt?ti devices Ri Wi - 4-6 34,7
GROMACS Runtime R Incek [ 79 347
Parser (§1V) 7Y oz i
Run jobs with L ] 5-7 2-4
limited resource on Precise Resource Resource Range
specific hardware (configuration) Re(down, up] vCPU VGPU
v R=x v = -
Hardware Optimal Resource : 2 T
Analyzer (§V) . - -
o 7 3

Figure 2. FILL mechanism presented in [37].

[39] introduces a novel scheduling technique called GPARS for efficient resource allocation in
heterogeneous graphics processing unit (GPU) clusters. The scheduling technique leverages
spatiotemporal correlations among jobs and utilizes graph attention networks (GANSs) for precise job
duration prediction. The GPARS algorithm addresses the limitations of prior research by considering
the performance variations among different GPU types within heterogeneous clusters and the
presence of spatiotemporal correlations among jobs. It predicts job durations using GANs and
dynamically allocates suitable GPU types for newly submitted jobs based on the prediction results.
The effectiveness of GPARS is evaluated using real traces from Alibaba and Philly, demonstrating a
significant reduction in waiting time (10.29%) and an average improvement in resource utilization
(7.47%) compared to the original scheduling method. Overall, GPARS is a prediction-based
scheduling technique that efficiently schedules resources in heterogeneous GPU clusters, considering
the unique characteristics and variations among different GPU types.

[45] introduces a scheduling technique called RSCHED for managing the concurrent execution
of task-based applications on heterogeneous computing environments. The authors address the
challenge of efficiently utilizing modern parallel architectures with complex memory hierarchies and
heterogeneous processors. They propose RSCHED as a framework to minimize overall makespan
and maximize resource utilization. The scheduling technique aims to improve the execution of task-
based applications by dynamically distributing resources and orchestrating their execution. The
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authors implemented RSCHED using the StarPU runtime system and evaluated its performance on
real applications. The results showed that RSCHED significantly reduced the overall makespan
compared to consecutive execution, with an average speedup factor of 10x. It also demonstrated the
potential to increase resource utilization. RSCHED is a dynamic resource allocation strategy that
enhances the scheduling of task-based applications on heterogeneous systems.

3.11. Adaptive Scheduling

[8] discusses efficiency and productivity in decision making on low-power heterogeneous
CPU+GPU SoCs. It specifically focuses on the evaluation of scheduling strategies for executing value
iteration, a core procedure in decision-making methods, on a low-power CPU+GPU SoC. It compares
off-line-tuned static and dynamic scheduling strategies with adaptive heterogeneous scheduling
strategies. The experiments show that using CPU+GPU heterogeneous strategies significantly reduce
computation time and energy requirements. The CPU+GPU strategies can be up to 54% faster and
57% more energy-efficient compared to multicore or GPU-only implementations. Additionally, It
explores the impact of increasing the abstraction level of the programming model to ease
programming efforts. The comparison between TBB+OpenCL and TBB+oneAPI implementations of
heterogeneous schedulers shows that the oneAPI versions result in up to 5 times less programming
effort with only 3-8% overhead if the scheduling strategy is selected carefully.

The discussed strategies in [8] are:

1. Off-line-Tuned Static and Dynamic Scheduling Strategies:

This study evaluates off-line-tuned static and dynamic scheduling strategies for executing value
iteration, a core procedure in decision-making methods, on a low-power CPU+GPU System-on-Chip
(S0C). The comparison is made between different scheduling strategies to determine their impact on
computation time and energy requirements.

2. Adaptive Heterogeneous Scheduling Strategies:

The study also explores adaptive heterogeneous scheduling strategies for decision-making on a
low-power CPU+GPU SoC. These strategies aim to dynamically allocate tasks between the CPU and
GPU, taking advantage of their respective capabilities. The experiments demonstrate that using
CPU+GPU heterogeneous strategies significantly reduce computation time and energy requirements
compared to multicore or GPU-only implementations.

3. Increasing Abstraction Level of the Programming Model:

The article explores the impact of increasing the abstraction level of the programming model to
ease programming efforts. Specifically, it compares the TBB+OpenCL and TBB+oneAPI
implementations of heterogeneous schedulers. The results show that the oneAPI versions can result
in up to 5 times less programming effort with only 3-8% overhead if the scheduling strategy is
selected carefully.

[16] proposes a scheduling technique called SCHEDTUNE to address the challenges of
managing and scheduling heterogeneous GPU resources in cluster management systems like
Kubernetes. The existing resource schedulers in these systems do not effectively differentiate between
different types of GPUs or support GPU sharing, resulting in low GPU utilization, queuing delays,
and increased application makespan. SCHEDTUNE is a machine-learning-based scheduler that aims
to improve GPU memory utilization, reduce out-of-memory (OOM) failures, and enhance overall
makespan. It achieves this by profiling and analyzing deep learning (DL) jobs on heterogeneous
GPUs to understand interference caused by collocating jobs and predict GPU memory demand and
job completion times. By leveraging this information, SCHEDTUNE optimizes resource allocation
and GPU sharing, resulting in higher GPU utilization and improved performance compared to the
default Kubernetes scheduler. The proposed technique fills the gap between the capabilities of
container orchestrators and the complex requirements of DL applications, providing a management-
level solution that learns system behavior and efficiently manages GPU resources in a heterogeneity-
aware manner.
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[17] presents a CPU-GPU heterogeneous computation offloading and resource allocation
scheme for the Industrial Internet of Things (IloT). With the increasing complexity of IIoT tasks and
the demand for delay-sensitive and computing-intensive applications, heterogeneous platforms
integrating CPUs and GPUs have become essential. However, the three-stage heterogeneous
computing process, including task preprocessing, hybrid computing, and result aggregation, poses
challenges for task offloading and resource allocation. The proposed scheme introduces a three-stage
heterogeneous computing model and formulates the joint task offloading and heterogeneous
resource allocation problem. The authors employ the Lyapunov optimization method and propose
the multihead proximal policy optimization (MH-PPO)-based algorithm to minimize the average
task delay. Simulation results demonstrate the effectiveness of the scheme in reducing task delays.
The study contributes to the development of efficient scheduling techniques in CPU-GPU
heterogeneous computing environments for IoT applications. Figure 3 depicts the three-stage
heterogeneous computing model designed for task offloading and resource allocation in Industrial
Internet of Things (IloT) systems, demonstrating the sequential steps of preprocessing, hybrid
computing, and result aggregation.

Serial Serial
_=="| SubTask Result
Original ’ Results Aggregation
Task
R ~ o Parallel Parallel  |.-" N
SubTask Results
Hybrid s Rc"ults ...........
Computing Processing Aggregation
GPU CPU )
Computing Computing

Figure 3. Three stage Heterogeneous Computing Model depicted in [17].

[40] proposes a novel scheduling technique for distributed deep learning (DDL) workloads in
GPU clusters. The primary focus of the scheduling technique is to minimize communication overhead
and reduce training times by consolidating jobs on physically close GPUs. The scheduling technique
consists of three major components: a classical delay scheduling algorithm for job placement and
consolidation, a network-sensitive job preemption strategy, and an auto-tuner mechanism to
optimize delay timers. By considering the anticipated communication-network delays and the
sensitivities of DDL jobs to these delays, the scheduler intelligently places and consolidates jobs based
on their network requirements. The proposed technique takes into account the performance
characteristics of different network tiers, leveraging modern networking hardware advancements. It
dynamically adjusts consolidation based on the network sensitivity of individual jobs, aiming to
minimize queueing delays and overall training times. The evaluation results demonstrate significant
improvements in end-to-end makespan, job completion time, and communication overhead
compared to existing consolidation-based scheduling methods. It presents a network-sensitive
scheduling technique that optimizes GPU cluster scheduling for DDL workloads, considering
communication overhead and job consolidation based on network sensitivities. Scheduling
techniques tailored for distributed deep learning workloads are summarized in Figure 4,
emphasizing strategies that minimize communication overhead and improve job placement within
GPU clusters
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Figure 4. Scheduling Techniques proposed in [40].

3.12. Task Graph Scheduling

[9] discusses scheduling techniques for efficient task mapping on heterogeneous CPU/GPU
platforms. The paper presents a theoretical framework and three practical mapping algorithms with
low time complexity to minimize completion time in GPU-based embedded systems. The challenges
in task mapping arise from the large size of the policy space and the need to consider factors such as
performance characteristics, task dependencies, and data transfer costs. The proposed mapping
algorithms address these challenges and outperform state-of-the-art techniques. Experimental results
demonstrate up to 30% faster completion time across different workloads. This work in [9] extends
the algorithms to enhance runtime performance in resource-limited infrastructure and evaluates
them using a benchmark testing suite for simulating real-world runtime neural networks. The
extended algorithm achieves significantly faster completion time (averaging 30% to 37%
improvement) compared to existing techniques. Figure 5 presents the scheduler application
framework designed to enhance task mapping on heterogeneous CPU/GPU platforms, ensuring
efficient resource utilization and reduced completion times.
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[12] focuses on scheduling techniques in heterogeneous computing environments, specifically
within the context of Kubernetes. The paper addresses the challenge of efficiently utilizing multiple
CPUs and GPUs in cloud-based deployments by proposing the KubeSC-RTP scheduler. KubeSC-RTP
stands for "Kubernetes Scheduler based on RunTime Prediction" and employs machine learning
algorithms for runtime estimation of deployed applications. By accurately predicting the execution
time of applications, the scheduler aims to optimize resource consumption and improve overall
system performance. The article outlines the steps involved in implementing the KubeSC-RTP
scheduler and highlights its intelligent scheduling approach based on machine learning techniques.
It emphasizes the importance of selecting the appropriate device (CPU or GPU) for each application
to minimize execution time and maximize resource utilization. The proposed scheduling technique
offers potential benefits for cloud service providers, including reduced processing time, increased
customer satisfaction, and improved resource management. The article concludes by discussing the
experimental results and providing insights into the strengths and limitations of the KubeSC-RTP
scheduler, as well as suggesting avenues for future research and enhancements in this field.

The FastGR framework in [18] employs a heterogeneous task graph scheduler as its scheduling
technique. This scheduler efficiently distributes tasks between the CPU and GPU components of the
system, ensuring workload balancing and resource utilization optimization. By leveraging the
processing power of both CPU and GPU, FastGR achieves significant improvements in performance
and solution quality for global routing. The task graph scheduler plays a crucial role in coordinating
the execution of tasks, managing dependencies, and allocating resources effectively. It dynamically
assigns tasks to the most suitable processing unit, taking into account the computational capabilities
and workload distribution across the system. This approach enables FastGR to harness the massive
parallelism offered by GPUs while effectively utilizing the CPU's capabilities. Through balanced task
scheduling, FastGR maximizes the utilization of available resources, minimizes idle time, and
enhances the overall efficiency of the global routing process. The overall workflow of the FastGR
global routing framework is shown in Figure 6, highlighting the role of a heterogeneous task graph
scheduler in balancing workloads across CPU and GPU components.
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Figure 6. Overall flow of Fast GR presented in [18].

[27] proposes a temperature-aware scheduling technique for heterogeneous computing in edge
scenarios. The authors address the challenge of jointly processing inference tasks using CPU, GPU,
and NPU while considering the impact of ambient temperature on edge devices. They establish a
temperature perception model based on the ambient temperature and introduce a TAS (temperature-
aware schedule) algorithm to control the running speed of the heterogeneous device. Additionally,
they propose a task scheduling algorithm called TASTS (TAS-based task schedule) and utilize a
Hungarian matching algorithm to optimize the final results. The article demonstrates that the
proposed technique improves performance by 20-50% compared to conventional methods under
temperature constraints. The scheduling technique used in this study is the TAS (temperature-aware
schedule) algorithm.

[38] proposes a GPU scheduling technique called GCAPS for real-time GPU task execution. The
scheduling technique addresses the challenges of prioritization and preemption in GPU tasks, aiming
to ensure timely execution and meet stringent timing requirements. GCAPS operates at the device
driver level and enables control over GPU context scheduling by adding one-line macros to GPU
segment boundaries. It allows preemption of GPU execution based on task priorities, improving
schedulability and response time. The approach requires minimal modifications to the user-level
GPU access code and provides fine-grained and efficient control of the GPU. Through empirical
evaluations, the proposed approach demonstrates significant improvements over prior work,
achieving up to 40% higher schedulability. GCAPS utilizes a preemptive scheduling technique for
GPU tasks in real-time systems.

[47] provides a comprehensive overview of scheduling techniques used for optimizing energy
consumption in cloud computing. The authors discuss state-of-the-art algorithms for scheduling
workflow tasks to cloud resources, with a specific focus on reducing energy consumption. The article
categorizes different workflow scheduling algorithms based on the scheduling approaches used and
provides an analytical discussion of the covered algorithms. Additionally, the authors classify
various energy-efficient strategies employed by cloud service providers (CSPs) for energy saving in
data centers. The article also highlights popular real-world workflow applications and identifies
emerging trends and open issues in cloud computing for future research directions.

[48] proposes a scheduling technique to alleviate resource contention in heterogeneous systems.
The article addresses the challenge of shared resource utilization between CPUs and GPUs in
network-on-chip (NoC) architectures. It introduces the concept of LLC/MC CENTER architecture and
analyzes the impact of different placement methods on system performance. To optimize the
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network's performance, the article presents a task-based routing algorithm that plans the path based
on different tasks and a Task-Based-Partition (TBP) routing algorithm that allocates routing
algorithms of different tasks into separate virtual channels. The proposed scheduling technique aims
to improve system performance by enhancing resource allocation and reducing network latency.
Overall, the article focuses on task-based scheduling techniques for managing resources in
heterogeneous CPU-GPU architectures within a network-on-chip framework.

The framework allows a computational kernel to span across multiple devices on a node and
enables multiple applications to be scheduled on the same node. It dynamically migrates kernels
between devices, expands or contracts the kernel to utilize more or fewer devices, and optimizes
scheduling decisions based on different objectives such as job throughput and job priorities. The
authors evaluate the framework on a CPU+GPU+FPGA platform and demonstrate speedups of 2.26X
over different applications and up to 1.25X for co-scheduled workloads over baselines. The major
contribution lies in the ease of programmability with a single code base across different execution
devices. Overall, the proposed framework provides an efficient scheduling technique for maximizing
the utilization of heterogeneous devices in cloud and HPC environments.

3.13. Hybrid Scheduling

[14] focuses on addressing the challenges faced by heterogeneous systems consisting of CPUs
and GPUs. The authors propose resource scheduling strategies to improve the utilization and
efficiency of heterogeneous cores, thereby optimizing system performance. Two main strategies are
presented: a combination strategy for single-task scheduling and a multi-task scheduling strategy.
The combination strategy involves optimizing task execution efficiency on GPUs by modifying
thread organization structures and developing workload balancing schemes for efficient core
utilization. The multi-task scheduling strategy utilizes task samples to gather information about the
execution efficiency of heterogeneous cores and global task information. An improved ant colony
algorithm is then employed to quickly allocate tasks to the most suitable cores, taking advantage of
the characteristics of heterogeneous cores. Experimental results demonstrate that the combination
strategy reduces task execution time by an average of 29.13%, while the multi-task scheduling
strategy reduces execution time by up to 23.38% compared to the combined strategy. These strategies
effectively utilize the resources of heterogeneous systems and significantly improve task execution
times.

[42] presents a task scheduling technique called HSAS for optimizing the processing efficiency
of deep neural network models on heterogeneous systolic array accelerator clusters. The authors
address the challenge of significant differences among models and layers by proposing a
heterogeneous architecture that consists of systolic arrays with different scales. HSAS considers
factors such as task priority, prediction, preemption, load balance, and layer-level scheduling. The
scheduling technique employs a task decomposition algorithm and a subtask priority management
table to enable fine-grained subtask-level scheduling. The authors validate the performance and
energy models for systolic arrays and demonstrate their accuracy. Experimental results show that
HSAS outperforms classic and state-of-the-art methods in terms of average normalized turnaround
time, system throughput, and fairness, achieving improvements of over 80% with task-level
scheduling and 18% to 63% with subtask-level scheduling. HSAS is a sophisticated scheduling
technique that optimizes the utilization of heterogeneous systolic array architectures for processing
deep neural network models, leading to significant performance improvements.

[44] presents a comprehensive analysis of task scheduling techniques in heterogeneous
computing environments. The study evaluates the performance of four scheduling algorithms: First-
Come, First-Served (FCFS), FCFS with No Queuing (FCFS-NQ), Minimum Expected Completion
Time (MECT), and Minimum Expected Execution Time (MEET). The goal is to optimize resource
utilization and minimize task completion times. Three workload scenarios representing different
computational demands are considered: low, medium, and high. Through rigorous experimentation,
the authors assess the effectiveness of each algorithm in terms of total completion percentage, energy
consumption, wasted energy, and energy per completion. The findings highlight the strengths and
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limitations of each algorithm. MECT and MEET emerge as strong contenders, dynamically
prioritizing tasks based on comprehensive estimates of completion and execution times. These
algorithms exhibit superior energy efficiency compared to FCFS and FCFS-NQ, making them
suitable for resource-constrained environments. The study provides valuable insights into task
scheduling algorithms, enabling informed decision-making for enhancing resource allocation,
minimizing task completion times, and improving energy efficiency. CPU scheduling techniques are
visually summarized in Figure 7, providing insights into strategies for optimizing task execution in
resource-constrained environments.
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Figure 7. Different CPU Scheduling presented in [44].

3.14. Pipelined Scheduling

[19] introduces a platform that aims to simplify the implementation of computationally
demanding algorithms in a heterogeneous computing environment. The platform utilizes a
scheduling technique to distribute tasks across different computing devices, including CPUs, GPUs,
and FPGAs, in order to achieve algorithm acceleration. By leveraging the OpenCL framework, the
platform offers generality and flexibility, allowing non-experts in heterogeneous computing to
deploy and run algorithms without extensive knowledge of specific implementation frameworks.
The platform automatically generates parallel code by analyzing algorithms implemented in C,
adapting it to target the available computing devices. Experimental results using the Polybench/C
suite demonstrate the effectiveness of the proposed platform, achieving accelerations of up to 270x
for parallel-friendly algorithms. The scheduling technique used in the platform is not explicitly
mentioned in the provided summary.

[20] presents a distributed framework called HeterPS, which employs a reinforcement learning
(RL)-based scheduling method to optimize the training process of deep neural network (DNN)
models in heterogeneous computing environments. The scheduling technique used in HeterPS is
based on RL and utilizes an LSTM model. The framework addresses the challenge of effectively
utilizing diverse computing resources, such as CPUs and GPUs, for training large-scale DNN models.
HeterPS schedules each layer of the DNN model to the appropriate computing resource to minimize
costs and satisfy throughput constraints. It also manages data storage and communication among
distributed computing resources. Experimental results demonstrate that HeterPS outperforms
existing approaches in terms of throughput, achieving a 14.5 times higher throughput, and monetary
cost, resulting in a 312.3% reduction in cost. Figure 8 outlines the HeterPS framework, showcasing its
reinforcement learning-based scheduling approach to optimize deep learning model training across
diverse computing resources.
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Figure 8. HeterPS framework presented in [20].

[25] introduces a scheduling technique called RTGPU for efficiently scheduling multiple GPU
applications with hard real-time guarantees. The article addresses the challenge of scheduling highly
parallel applications on graphics processing units (GPUs) while meeting stringent timing constraints.
RTGPU combines fine-grain GPU partitioning with a novel scheduling algorithm based on federated
scheduling and grid search with uniprocessor fixed-priority scheduling. The proposed technique
leverages persistent threads and interleaved execution to improve GPU partitioning and
performance. It provides real-time guarantees to meet hard deadlines and achieves significant
improvements in system throughput (over 11%) and schedulability (up to 57%) compared to previous
approaches. The RTGPU scheduling technique is validated and evaluated on NVIDIA GPU systems.
It can be applied to mainstream GPUs and general heterogeneous computing platforms with similar
task execution patterns. This technique contributes to enabling the efficient execution of computation-
intensive parallel tasks on GPUs within real-time constraints.

[32] proposes a performance model for estimating the performance of the heterogeneous
implementation and providing guidance for computer architecture design. They apply the CPU-GPU
heterogeneous computing to a CFD test case and compare its performance with a pure GPU
implementation. By assigning proper workload ratios to the CPU and GPU workers, the
heterogeneous version outperforms the pure GPU version by up to 23%. The authors leverage MPI
(Message Passing Interface) and OpenACC to facilitate the CPU-GPU heterogeneous computing
workflow in the CFD solver. These frameworks are commonly used for parallel computing and task
distribution in heterogeneous systems.

3.15. Power Aware/Deadline Aware Scheduling

[23] Hydra, a scheduling technique designed for deep learning (DL) jobs running on
heterogeneous GPUs. The primary goal of Hydra is to efficiently schedule DL jobs while considering
deadline requirements and reducing job completion time (JCT). Existing approaches focusing on
efficiency or deadline requirements alone are inadequate for this task. Hydra introduces a novel
quantitative cost comparison approach that incorporates total JCT and a dynamic penalty based on
tardiness, i.e., the delay in meeting deadlines. It leverages a sampling approach to estimate job
execution times accurately on heterogeneous GPUs and utilizes an efficient branch-and-bound
algorithm to find the optimal job-GPU combinations. Evaluation experiments using Alibaba traces
demonstrate that Hydra significantly reduces total tardiness by 85.8% while minimizing JCT
compared to state-of-the-art efforts. The technique used in Hydra can be categorized as deadline-
aware scheduling for deep learning jobs on heterogeneous GPUs.
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[41] introduces a scheduling technique for optimizing the deployment of time-sensitive
applications, specifically focusing on Intrusion Detection Systems (IDS), in a serverless edge
computing environment. The proposed technique addresses the challenges of reducing initialization
delays, minimizing communication delays, and leveraging heterogeneous resources to satisfy
variable Quality of Service (QoS) requirements. The scheduling technique incorporates a storage-
aware allocation and scheduling policy that aims to minimize task placement costs for service
providers while optimizing QoS for IDS users. It includes a caching and consolidation strategy to
minimize cold starts and inter-function communication delays. By leveraging the capabilities of
heterogeneous edge resources, the strategy achieves better QoS performance and reduces the number
of edge nodes required for application deployment. The article presents a simulation-based
evaluation comparing the proposed technique with a vanilla Knative orchestrator and a storage-
agnostic policy. The results demonstrate that the proposed strategy achieves 18% fewer QoS penalties
and consolidates applications across 80% fewer edge nodes. Overall, the scheduling technique
contributes to cost-effective deployment of IDS and other time-sensitive applications on unreserved
edge resources, leveraging serverless computing paradigms.

[43] presents a novel approach to instruction scheduling for GPUs using a parallelized Ant
Colony Optimization (ACO) algorithm. The authors address the register-pressure-aware instruction
scheduling problem, which involves optimizing the balance between schedule length and register
pressure on a GPU target. They demonstrate that parallelizing the ACO algorithm on the GPU
significantly improves scheduling performance compared to sequential CPU-based scheduling. The
ACO algorithm, inspired by nature, utilizes a pheromone-based search technique to find optimal
instruction orders. The authors propose several techniques to efficiently parallelize the ACO
algorithm for the complex multi-objective optimization problem of register-pressure-aware
scheduling on the GPU. Experimental results show that parallel ACO-based scheduling on the GPU
achieves up to 27 times faster execution compared to sequential CPU-based scheduling, resulting in
a 21% reduction in total compile time and up to 74% improvement in execution speed compared to
AMD's production scheduler.

3.16. Batch Job Scheduling

[29] focuses on a programming model Allo for efficient spatial accelerator architectures. One of
the key aspects of Allo is its scheduling technique, which enables the construction of modular
hardware accelerators through the composition of customized kernels and external IPs. The
scheduling technique used in Allo is called composable schedules. This technique allows users to
incrementally add customizations to kernels while validating the correctness of each submodule.
Multiple schedules are progressively integrated into a complete design using the .compose()
primitive. The composable schedules approach enhances productivity and debuggability, enabling
the creation of high-performance designs. Allo also introduces a hierarchical dataflow graph to
support the composition of multiple kernels within a complex design while maintaining function
boundaries. By modeling the interface unification problem as a type inference problem and
leveraging the hierarchical dataflow graph, Allo optimizes the scheduling of dataflow operations.
Overall, Allo's composable scheduling technique provides a flexible and modular approach to
designing high-performance spatial accelerators.

[30] focuses on the analysis of scheduling algorithms used in heterogeneous computing systems.
The article reviews various list-based workflow scheduling algorithms over the past two decades and
categorizes them based on their scheduling objectives. The main scheduling technique discussed in
the article is list-based scheduling, specifically list scheduling with static priorities (LSSP). List-based
scheduling algorithms are known for their efficiency in generating schedules for complex workflow
applications in heterogeneous computing environments. These algorithms aim to minimize
makespan, energy consumption, and maximize resource utilization and reliability. The article
compares different list-based scheduling algorithms based on their objectives, merits, comparison
metrics, workload type, experimental scale, experimental environment, and results. Additionally, the
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article conducts experimental analysis of seven state-of-the-art algorithms on randomly generated
workflows to understand their working.

[31] explores the challenges and advancements in GPU virtualization, specifically focusing on
the scheduling technique used in the Intel Graphics Virtualization Technology —Grid generation
(GVT-g). The authors present a novel performance analysis framework that utilizes host-based
tracing combined with the Linux Trace Toolkit Next Generation (LTTng) to collect performance data
efficiently and with minimal overhead. The scheduling technique employed in GVT-g allows for the
allocation and sharing of GPU resources among virtual machines. The framework incorporates a
unified, stateful model for filtering and organizing trace data, enabling the computation of various
performance metrics. The analysis is performed using Trace Compass, an open-source performance
analyzer, which provides synchronized graphical views to aid in understanding GVT-g's internal
mechanisms and diagnosing performance issues related to virtual GPU usage. This article provides
valuable insights into GPU virtualization and offers a practical approach to performance analysis in
virtualized environments using the GVT-g scheduling technique.

[33] provides a comprehensive overview of scheduling techniques for deep learning (DL)
workloads in GPU datacenters. The article emphasizes the importance of efficient scheduling to
reduce operational costs and improve resource utilization in DL model development. Traditional
scheduling approaches designed for big data or high-performance computing workloads are
inadequate for fully utilizing GPU resources in DL workloads. The survey examines existing research
efforts for both training and inference workloads, categorizing them based on scheduling objectives
and resource utilization. It discusses the challenges in designing satisfactory schedulers for DL
workloads and identifies the common strategies employed by existing solutions.

[35] presents a scheduling technique called Energy Efficient Successor Tree Consistent Earliest
Deadline First (EESEDF) for Periodic Conditional Task Graphs (PCTGs) on Multiprocessor System-
on-Chips (MPSoCs) with shared memory. The goal is to minimize energy usage by considering
dynamic and static power models. The EESEDF approach maximizes the worst-case processor
utilization by assigning tasks to processors and arranging them using the earliest successor tree
consistent deadline-first strategy. To further minimize energy consumption, the technique solves a
convex Non-Linear Program (NLP) to determine optimal task speeds. Additionally, an online
Dynamic Voltage Scaling (DVS) heuristic is introduced, which dynamically adjusts task speeds in
real-time. Experimental results demonstrate that EESEDF+Online-DVS outperforms existing
techniques, achieving notable energy efficiency improvements over LESA and NCM. The proposed
scheduling technique achieves significant energy efficiency gains compared to IOETCS-Heuristic,
BESS, and CAP-Online. In summary, the article focuses on the EESEDF scheduling technique, which
combines successor tree consistency, earliest deadline first strategy, and dynamic voltage scaling to
optimize energy usage in scheduling PCTGs on MPSoCs with shared memory.

[36] addresses the scheduling challenges faced in multi-tenant cloud systems with
heterogeneous GPUs when running various machine learning workloads. The authors propose a
novel scheduling approach that utilizes a genetic optimization technique implemented within a
process-oriented discrete-event simulation framework. The scheduling technique employed in the
study is a genetic optimization technique, which involves using genetic algorithms to find optimal
solutions for scheduling machine learning tasks on GPUs. The approach aims to improve GPU
utilization in complex environments by effectively orchestrating the scheduling of machine learning
workloads. Through extensive simulations using workload traces from Alibaba's MLaaS cluster,
which consists of over 6000 heterogeneous GPUs, the proposed scheduling approach demonstrates a
12.8% improvement in GPU utilization compared to Round-Robin scheduling. The results highlight
the effectiveness of the genetic optimization technique in optimizing GPU scheduling in cloud-based
environments. It focuses on enhancing the scheduling of Al applications in multi-tenant cloud
systems by employing a genetic optimization technique, which improves GPU utilization and
optimizes resource allocation for machine learning workloads. Table 1 recaps the significant features
of various scheduling techniques discussed in this survey focussing on their advanatges and
challenges.
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Table 1. Significant features of various Scheduling Techniques.
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4. Summary of the Review
The review provides a comprehensive survey of recent developments in scheduling techniques

aimed at maximizing the efficiency of deep learning computations on GPUs. It highlights the
challenges associated with parallel thread execution and resource utilization on GPUs, which can
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result in suboptimal performance. The surveyed research focuses on novel scheduling policies that
improve memory latency tolerance, exploit parallelism, and enhance GPU resource utilization.

The review explores various aspects of scheduling techniques for deep learning on GPUs,
including warp scheduling policies, memory latency tolerance, memory bank parallelism, context
switching strategies, and prefetching mechanisms. These techniques aim to effectively manage the
execution of parallel threads, optimize memory access patterns, and improve resource utilization.
The integration of fine-grained warp scheduling, warp switching strategies, and prefetching
mechanisms is also discussed to optimize deep learning computations on GPUs.

Experimental evaluations demonstrate significant performance improvements in terms of
throughput, memory bank parallelism, and latency reduction. The insights gained from this survey
can guide researchers, system designers, and practitioners in developing more efficient and powerful
deep learning systems on GPUs. The review also discusses potential future directions for research,
such as advanced scheduling techniques, energy efficiency considerations, and the integration of
emerging computing technologies.

Overall, the review provides a comprehensive overview of recent advancements in scheduling
techniques for efficient deep learning computations on GPUs, highlighting their impact on system
performance and suggesting future research directions. Table 2 summarizes various scheduling
techniques, focusing on their strategies, key features, and applications, emphasizing advancements
in optimizing GPU-based deep learning computations.

Table 2. Summary Table on Scheduling Techniques.

Ref No. Scheduling Technique Focus Area Strategy Type Key Features
Th i t Effici llocati
2] Warp Scheduling read assignment to Dynamic icient resource allocation and
warps thread management
Memory Latency Minimizing memory . Overlapping memory access and
(2] Tolerance latency Dynamic computation
Memory Bank Enhancing memory . Exploiting parallel memory
[2,24] Parallelism throughput Dynamic access capabilities
o Optimizing resource . Efficient warp switching for
[2] Context Switching Dynamic L
usage resource optimization
Dat Anticipati d fetching data i
[2] Prefetching Mechanisms a'a access Dynamic nticipating and fetching data n
optimization advance
2] Fine-grained Scheduling Indl"lld}lfil tI.’lread Dynamic Enhancm.g parallehs.m and
prioritization reducing contention
CPU-GPU workload Effective distribution based on
4 kload Partitioni i i
[46] Workload Partitioning division Static/Dynamic workload and system conditions
[2,24] Memory Access Memory latency Dvnamic Effective scheduling to reduce
’ Scheduling optimization yna memory latency
[9,12,18,27,38,47,48] Task Graph Scheduling 2K 8T4Ph Dynamic Dynamic redistribution based on
optimization task graph characteristics
Adapting workload distribution
Dynamic Load Workload . in
7,10],2 D
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Co-design specific algorithms o
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5. Conclusions and Future Scope

In conclusion, this review article provides a comprehensive survey of recent advancements in
scheduling techniques aimed at maximizing the efficiency of deep learning computations on GPUs.
The challenges associated with parallel thread execution, resource utilization, and memory latency
in GPUs are highlighted, along with the need for efficient scheduling techniques to optimize
performance.

The surveyed research focuses on novel scheduling policies that improve memory latency
tolerance, exploit parallelism, and enhance GPU resource utilization. Various techniques such as
prefetching mechanisms, fine-grained warp scheduling, and warp switching strategies are explored
to optimize deep learning computations on GPUs. Experimental evaluations demonstrate significant
performance improvements in terms of throughput, memory bank parallelism, and latency
reduction.

The insights gained from this survey can guide researchers, system designers, and practitioners
in developing more efficient and powerful deep learning systems on GPUs. Furthermore, potential
future directions are discussed, including advanced scheduling techniques, energy efficiency
considerations, and the integration of emerging computing technologies, inspiring further research
in this domain.

Future research in this domain can focus on several key areas to further optimize scheduling
techniques for GPUs. First, the integration of energy-efficient algorithms with real-time scheduling
methods could address the growing demand for sustainable computing. Second, exploring machine
learning-based predictive models for dynamic scheduling can enhance adaptability and resource
utilization in diverse workloads. Third, the convergence of scheduling strategies with emerging
hardware technologies such as neuromorphic computing and quantum processors could unlock new
possibilities for deep learning computations. Additionally, developing standardized frameworks to
support heterogeneous systems and improve interoperability across platforms would be beneficial.
Finally, addressing challenges in security-aware and fault-tolerant scheduling will ensure robustness
in critical applications, opening avenues for deployment in industrial and edge computing
environments. These advancements will continue to push the boundaries of deep learning and
heterogeneous computing optimization.

Overall, the advancements in scheduling techniques presented in review offer valuable
contributions to maximizing the efficiency of deep learning computations on GPUs, paving the way
for improved performance and resource utilization in a wide range of applications and domains.
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