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Abstract: This comprehensive survey explores recent advancements in scheduling techniques for efficient deep 

learning computations on GPUs. The article highlights challenges related to parallel thread execution, resource 

utilization, and memory latency in GPUs, which can lead to suboptimal performance. The surveyed research 

focuses on novel scheduling policies to improve memory latency tolerance, exploit parallelism, and enhance 

GPU resource utilization. Additionally, it explores the integration of prefetching mechanisms, fine-grained 

warp scheduling, and warp switching strategies to optimize deep learning computations. Experimental 

evaluations demonstrate significant improvements in throughput, memory bank parallelism, and latency 

reduction. The insights gained from this survey can guide researchers, system designers, and practitioners in 

developing more efficient and powerful deep learning systems on GPUs. Furthermore, potential future 

research directions include advanced scheduling techniques, energy efficiency considerations, and the 

integration of emerging computing technologies. By continuously advancing scheduling techniques, the full 

potential of GPUs can be unlocked for a wide range of applications and domains, including GPU-accelerated 

deep learning, task scheduling, resource management, memory optimization, and more. 

Keywords: deep learning algorithms; deep-neural networks (DNN); energy-efficient scheduling; 

performance optimization; heterogeneous computing; machine learning (ML) 

 

1. Introduction 

Deep learning has emerged as a powerful technique for solving complex problems and has 

achieved remarkable success in various domains, including computer vision, natural language 

processing, and autonomous systems. Graphics Processing Units (GPUs) have played a pivotal role 

in accelerating deep learning computations due to their parallel processing capabilities and high 

memory bandwidth. However, harnessing the full potential of GPUs for deep learning requires 

efficient scheduling techniques that optimize resource utilization and minimize latency [1–5]. 

The efficient execution of deep learning algorithms on GPUs faces several challenges. Firstly, 

deep learning computations often involve massive amounts of data and complex neural network 

architectures, resulting in high computational demands. Secondly, GPUs consist of numerous 

parallel processing units known as warps, which execute threads in parallel. However, inefficient 

scheduling of these warps can lead to underutilization of GPU resources and suboptimal 

performance. Moreover, memory latency, caused by data movement between the GPU and memory, 

can significantly impact the overall system performance [10–16]. 

To address these challenges, researchers have been actively developing advanced scheduling 

techniques specifically tailored for deep learning computations on GPUs. These techniques aim to 

maximize the efficiency and throughput of deep learning algorithms by effectively managing the 

execution of parallel threads, optimizing memory access patterns, and improving resource utilization 

[17–20]. Scheduling techniques for deep learning on GPUs encompass various aspects, such as warp 
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scheduling policies, memory latency tolerance, memory bank parallelism, context switching 

strategies, and prefetching mechanisms. Warp scheduling policies focus on efficiently assigning 

threads to warps, considering factors like data dependencies and resource availability. Memory 

latency tolerance techniques aim to overlap memory access and computation to minimize the impact 

of memory latency on overall performance [21–25]. Memory bank parallelism techniques exploit the 

parallel memory access capabilities of GPUs to enhance memory throughput. Context switching 

strategies involve efficiently switching between different warps to optimize GPU resource utilization. 

Additionally, prefetching mechanisms are employed to anticipate and fetch data in advance, 

reducing memory access latency and improving overall performance [26–31]. Fine-grained warp 

scheduling techniques consider the execution order and prioritization of individual threads within a 

warp, further enhancing parallelism and reducing resource contention. Furthermore, hardware and 

algorithm co-design approaches have been explored to optimize scheduling and execution for 

specific types of deep learning algorithms, such as sparse neural networks and Convolutional Neural 

Networks (CNNs).Cache data residency optimization techniques have also been investigated to 

improve memory management and exploit cache locality. By profiling data access frequencies and 

classifying applications based on access patterns, these techniques optimize data storage and enhance 

cache utilization, leading to improved performance. In this article, we provide a comprehensive 

survey of recent advancements in scheduling techniques for efficient deep learning computations on 

GPUs [32–37]. We delve into the details of various scheduling methodologies, their underlying 

principles, and their impact on system performance. Through experimental evaluations, we 

demonstrate the effectiveness  of these techniques in improving throughput, reducing latency, and 

optimizing resource utilization. The insights gained from this survey can guide researchers, system 

designers, and practitioners in developing more efficient and powerful deep learning systems on 

GPUs [38–43]. Additionally, we discuss potential future directions for research, including advanced 

scheduling techniques, energy efficiency considerations, and the integration of emerging computing 

technologies. By continuously advancing scheduling techniques, we can unlock the full potential of 

GPUs and further optimize deep learning computations for a wide range of applications and domains 

[44–51].              

Figure 1 illustrates the classification of scheduling techniques discussed in this survey, 

categorizing them based on their application and methodology for optimizing deep learning 

computations on GPUs. 
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Figure 1. Classification of Scheduling Techniques discussed in this survey. 

At the core of this survey, we explore a variety of scheduling techniques critical for optimizing 

deep learning computations on GPUs. In Section II, the discussion begins with heterogeneous 

computing, highlighting its promises and challenges in combining CPUs and GPUs for improved 

performance and energy efficiency. Next, in section III we delve into diverse scheduling strategies, 

including static, dynamic, and adaptive approaches, focusing on their ability to optimize workload 

distribution and resource utilization. Dynamic load balancing techniques are examined for their real-

time adaptability, while workload partitioning strategies emphasize efficient division of tasks 

between CPUs and GPUs. Memory access scheduling methods are explored to reduce latency and 

enhance throughput, complemented by fine-grained warp scheduling policies that prioritize threads 

to improve parallelism. Context switching strategies are discussed for their role in minimizing idle 

times and optimizing resource usage. Energy-aware and task graph scheduling techniques are 

presented to balance energy efficiency, manage dependencies, and improve completion times. 

Additionally, hybrid scheduling approaches, power-aware and deadline-aware scheduling, and 

batch job scheduling are analyzed for their ability to address complex resource management 

challenges in heterogeneous systems. Pipelined scheduling strategies are reviewed for their potential 

to overlap computation stages and boost throughput. This comprehensive discussion sets the stage 

for the subsequent sections, offering insights into the latest advancements and future directions in 

scheduling techniques for GPU-accelerated deep learning. 

2. Heterogeneous Computing 

2.1. Promises and Challenges 

Heterogeneous computing aims to combine the strengths of both CPUs and GPUs to achieve 

improved computational performance. The promises of heterogeneous computing include utilizing 

the unique features of CPUs and GPUs, achieving load balancing between the processing units, and 

harnessing the computational power of both to strive for exascale performance. 
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However, there are several challenges in realizing the potential of heterogeneous computing. 

The vastly different architectures and programming models of CPUs and GPUs present obstacles in 

achieving collaborative computing. Optimization techniques designed for CPU-only or GPU-only 

systems may not be effective in heterogeneous systems. Therefore, novel techniques are required to 

optimize performance and energy efficiency by considering the characteristics of both CPUs and 

GPUs. 

3. Scheduling Strategies 

The goal of heterogeneous computing is to leverage the unique features and strengths of both 

CPUs and GPUs to achieve high-performance computing. [1] highlights the increasing utilization of 

both CPUs and GPUs in a wide range of applications and emphasizes the need for collaboration 

between these processing units. It discusses the challenges and promises of heterogeneous computing 

and clarifies the terminology used in the field. Regarding scheduling techniques, it categorizes the 

research works based on the nature of scheduling, such as dynamic or static load balancing. It 

explores various approaches to workload partitioning between CPUs and GPUs, considering factors 

like the division of work among processing units.  

3.1. Dynamic Load Balancing 

Dynamic load balancing involves dynamically redistributing the workload between CPUs and 

GPUs based on their capabilities and current load. This technique aims to optimize resource 

utilization and maximize overall performance by adapting to changes in workload and system 

conditions in real-time. It can help ensure that both CPUs and GPUs are effectively utilized and that 

the workload is distributed efficiently to achieve better performance. 

[7] discusses the problem of online scheduling of task graphs on heterogeneous platforms, 

specifically platforms consisting of CPUs and GPUs. The focus is on dynamic scheduling, where task 

graphs are uncovered dynamically during the computation and the scheduler has limited 

information about the available tasks. The objective is to minimize the total completion time of the 

tasks. 

1. Lower Bound Analysis: The authors prove that the competitive ratio (the ratio of makespan 

achieved by the online algorithm to the optimal makespan) of any online algorithm is lower-

bounded by a certain value, which depends on the number of CPUs (m) and GPUs (k). They 

investigate the influence of task graph knowledge and task flexibility on the lower bound. 

2. Competitive Algorithm: The authors propose a ð2þ1Þ-competitive algorithm, called QA, 

which improves upon a previous algorithm. They refine the algorithm and its analysis to 

achieve better performance. 

3. Generalization to Multiple Processor Types: The authors extend their results to the case of 

platforms with multiple types of processors, adapting the lower bounds and the online 

algorithm accordingly. 

4. Heuristic Approach: The authors propose a simple heuristic based on the QA algorithm and 

the system-oriented heuristic EFT. This heuristic is both competitive and performs well in 

practice. 

[10] discusses a scheduling technique called READYS. The goal of READYS is to develop a 

dynamic scheduling algorithm for heterogeneous computing systems using reinforcement learning. 

It introduces the concept of Directed Acyclic Graphs (DAGs) as a computational model for parallel 

applications. It emphasizes the importance of accurate task allocation and scheduling decisions in 

parallel and distributed computing systems. The authors propose using reinforcement learning, 

specifically a combination of Graph Convolutional Networks (GCN) and an Actor-Critic Algorithm 

(A2C), to address the dynamic scheduling problem. The READYS algorithm aims to minimize the 
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makespan, which is the total time required to complete all tasks, by learning an adaptive scheduling 

strategy based on the current state of the system and the characteristics of the tasks. The use of 

reinforcement learning is particularly suitable in scenarios where task durations and communication 

times are stochastic. The paper focuses on task graphs derived from linear algebra factorization 

kernels (such as CHOLESKY, LU, and QR) and considers heterogeneous platforms with both CPUs 

and GPUs. Through simulations, the authors demonstrate that READYS achieves comparable or 

superior performance to existing scheduling algorithms, particularly in environments with high 

uncertainty. Furthermore, READYS is capable of generalizing its learned scheduling strategy to 

different application domains and problem sizes. 

[28] proposes an improved scheduling mechanism for generative AI applications in cloud-native 

environments with heterogeneous resources. The scheduling technique used in this approach is 

dynamic programming. The study addresses the challenge of effectively scheduling multiple 

resources in such environments to enhance load balance and resource utilization. By applying the 

dynamic programming approach, the proposed scheduling mechanism outperforms native GPU 

scheduling strategies and the algorithm for the multidimensional knapsack problem. Experimental 

results demonstrate that the load balance can be improved by up to 64.1%, and the makespan (job 

completion time) can be reduced by up to 40.8%. This scheduling technique considers load balancing 

as a crucial metric and aims to achieve the highest total iteration count while optimizing job 

completion time. The approach effectively utilizes the available resources, including less powerful 

GPU nodes, and prevents resource idleness caused by unbalanced workloads. 

On the other hand, Static load balancing involves pre-determining the workload division 

between CPUs and GPUs based on certain criteria or heuristics. This technique aims to distribute the 

workload evenly and efficiently at the beginning of the computation. It does not adapt to runtime 

changes and assumes a predetermined workload division that remains constant throughout the 

execution. Static load balancing can be useful in scenarios where the workload characteristics are 

known in advance or when the workload distribution is relatively stable. 

3.2. Workload Partitioning 

Workload partitioning focuses on dividing the workload between CPUs and GPUs in an 

effective manner. This technique considers factors such as the characteristics of the workload, the 

capabilities of the processing units, and the requirements of the deep learning computations. By 

carefully partitioning the workload, workload partitioning aims to achieve balanced utilization of 

CPUs and GPUs, optimize resource allocation, and improve overall performance. 

[46] proposes a scheduling technique called the Constrained Autonomous Workload Scheduler 

(CAuWS) for Cyber-Physical Systems (CPS) with heterogeneous processing units. The authors 

address the challenge of finding efficient schedules that meet the physical requirements of CPS while 

considering the diverse capabilities of different hardware units. CAuWS utilizes a structured and 

system-agnostic approach, combining a representation language (AuWL), timed Petri nets, and 

mixed-integer linear programming. It enables the representation and scheduling of various CPS 

workloads, real-world constraints, and optimization criteria, resulting in optimal assignments of 

processing units to tasks. The technique is demonstrated using a drone simulation under multiple 

physical constraints. The scheduling technique aims to optimize resource utilization and meet the 

objectives of CPS while considering the heterogeneity of the processing units. 

3.3. Memory Access Scheduling 

This section discusses memory latency tolerance techniques and memory bank parallelism as 

part of optimizing deep learning computations on GPUs. These techniques aim to schedule memory 

accesses effectively to minimize the impact of memory latency and improve overall performance. 

[2] presents a memory scheduling strategy aimed at addressing the challenges faced in shared 

memory environments of heterogeneous multi-core systems. It proposes a step-by-step approach to 

memory scheduling, focusing on mitigating interference between memory access requests from 
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different cores and improving system performance. The memory scheduling strategy consists of three 

key steps: 

1. Request Source Isolation: To prevent interference between CPU and GPU memory requests, a 

new memory request queue is created based on the request source. This isolation ensures that 

GPU requests do not interfere with CPU requests and vice versa, enhancing overall memory 

access performance. 

2. Dynamic Bank Partitioning: For the CPU request queue, a dynamic bank partitioning strategy 

is implemented. It dynamically maps the CPU requests to different bank sets based on the 

memory characteristics of the applications. By considering the access behavior and 

characteristics of multiple parallel applications, this strategy eliminates memory request 

interference among CPU applications without affecting bank-level parallelism. 

3. Criticality-Aware Scheduling: The GPU request queue incorporates the concept of criticality to 

measure the difference in memory access latency among GPU cores. A criticality-aware 

memory scheduling approach is implemented, prioritizing requests based on their criticality 

level. This strategy balances the locality and criticality of application access, effectively 

reducing memory access latency differences among GPU cores. 

[24] proposes a scheduling technique called MixTran for efficient and fair resource allocation in 

heterogeneous GPU clusters running mixed deep learning workloads. The authors address the 

challenge of existing schedulers not being tailored to deep learning jobs, resulting in low resource 

efficiency and job performance. MixTran abstracts heterogeneous GPU resources and distributes 

them fairly to users using virtual tickets. It then formulates a global optimization model to efficiently 

allocate resources based on quantified resource requests, heterogeneous node constraints, and user 

fairness constraints. The technique employs a greedy resource trading mechanism to benefit multiple 

users. Experimental results demonstrate that MixTran significantly reduces the total execution time 

of deep learning workloads (up to 30%–50%) compared to traditional schedulers while maintaining 

user fairness. The scheduling technique employed in MixTran can be categorized as a combination 

of fair-share scheduling and resource trading. 

3.4. Hardware and Algorithm Co-Design 

[2] explores hardware and algorithm co-design approaches to optimize scheduling and 

execution for specific types of deep learning algorithms, such as sparse neural networks and 

Convolutional Neural Networks (CNNs). It also mentions cache data residency optimization 

techniques for improving memory management and cache utilization, which indirectly relate to 

scheduling considerations. 

3.5. Prefetching Mechanisms 

[2] mentions the integration of prefetching mechanisms to anticipate and fetch data in advance. 

This technique aims to reduce memory access latency and improve overall performance by 

overlapping data movement with computation. 

3.6. Fine-Grained Warp Scheduling 

[2] discusses fine-grained warp scheduling techniques, which consider the execution order and 

prioritization of individual threads within a warp. This technique enhances parallelism and reduces 

resource contention, leading to improved performance. 
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3.7. Context Switching Strategies 

[2] explores warp switching strategies as part of optimizing deep learning computations on 

GPUs. These strategies involve efficiently switching between different warps to optimize GPU 

resource utilization and enhance performance. 

3.8. Energy-Aware Job Scheduling Techniques 

[3] discusses scheduling techniques for optimizing energy consumption in heterogeneous 

computing systems. The main objective is to address the challenges posed by energy consumption, 

dynamic variability of CPU-GPU utilization, and job scheduling in large-scale systems. It proposes a 

CPU-GPU utilization aware and energy-efficient heuristic greedy strategy (UEJS) as well as a hybrid 

particle swarm optimization algorithm (H-PSO) to solve the job scheduling problem. The proposed 

UEJS algorithm incorporates the CPU-GPU utilization awareness and energy efficiency 

considerations to schedule jobs. To enhance the algorithm's global optimization ability, it introduces 

the H-PSO algorithm, which combines the heuristic greedy strategy with a bio-inspired search 

optimization technique. Experimental results demonstrate that the H-PSO algorithm outperforms the 

heuristic greedy strategy, Max-EAMin, and Genetic Algorithm in terms of average energy 

consumption of jobs and system job rejection rate. Specifically, H-PSO achieves a 36.5% improvement 

over UEJS, a 36.3% improvement over Max-EAMin, and a 46.7% improvement over GA in terms of 

job average energy consumption for heterogeneous systems with high workload. 

[5] discusses the importance of energy consumption optimization in computing devices, 

particularly in embedded systems. The authors propose an offline scheduling algorithm that aims to 

minimize overall energy consumption while ensuring timing constraints on heterogeneous 

platforms. The scheduling strategy is based on Forward List Scheduling and takes into account 

Dynamic Voltage and Frequency Scaling (DVFS). The algorithm selects the most energy-efficient 

version for each task, considering different energy/time trade-offs offered by architecture-specific 

binary blocks. It also enables applications to dynamically adapt voltage and frequency during 

runtime. Additionally, the proposed heuristic is compared against an optimal solution derived by an 

Integer Linear Programming (ILP) formulation, with a deviation of only 1.6% on average. Overall, [5] 

emphasizes the need for energy-aware scheduling strategies on heterogeneous real-time systems and 

presents a scheduling algorithm that effectively reduces energy consumption while meeting timing 

constraints. The proposed approach considers multi-version tasks, DVFS, and heterogeneous 

platforms, resulting in significant energy savings compared to existing scheduling algorithms. 

[11] proposes scheduling techniques to address the challenges faced by edge platforms 

processing multiple machine learning (ML) models concurrently. These platforms, equipped with 

heterogeneous computing processors, have limited computational and energy budgets compared to 

data center servers. The proposed scheduler uses pre-profiled behavior of ML models and routes 

requests to the most suitable processors, considering the regularity of computation in common ML 

tasks. It aims to reduce energy consumption while meeting the service-level objective (SLO) 

requirement for bounded response latency. To handle the inflexible pre-emption capability of GPUs 

and DSPs, the scheduler decomposes large ML tasks into sub-tasks based on the layers of the DNN 

model. The scheduling policies are evaluated on an edge platform with CPU, GPU, and DSP. Results 

show significant performance improvements and reduced SLO violations compared to naive 

scheduling. By considering the heterogeneity of ML models and computing processors, the proposed 

techniques optimize performance, reduce energy consumption, and meet SLO requirements in edge 

computing environments. 

3.9. Memory Latency Tolerance 

[4] discusses the challenges and proposed solutions for improving the performance of integrated 

CPU/GPU platforms, focusing on the latency associated with data initialization. The authors in this 

work highlight the importance of these platforms in autonomous driving and edge intelligence 

applications and the limitations posed by the shared physical memory. It introduces the concept of 
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unified memory (UM) model in GPU programming, which simplifies memory management and 

allocation. However, the conventional copy-then-execute model used in UM programming leads to 

significant initialization latency and hampers kernel execution. To address this issue, the authors 

propose a framework that enables latency-aware data initialization. The framework includes three 

data initialization modes: CPU initialization, GPU initialization, and hybrid initialization. It also 

incorporates an affinity estimation model that considers application characteristics and platform 

features to determine the most suitable initialization mode. The goal is to optimize the initialization 

latency performance of the application. 

3.10. Dynamic Task Scheduling  

[6] discusses task scheduling strategies for CPU-GPU heterogeneous computing systems. It 

proposes two scheduling techniques: a load-aware strategy for the single task model and a genetic 

algorithm-based strategy for the multi-task model. 

1. Load-Aware Scheduling Strategy: 

This strategy focuses on addressing load balancing issues in CPU-GPU heterogeneous 

computing systems. It aims to allocate computing tasks to the CPU and GPU based on their 

computing power and a perception ratio. The strategy uses a bidirectional queue to store tasks, 

reducing additional overhead caused by scheduling. By assigning parallel computing tasks to both 

CPUs and GPUs, this strategy enhances performance, reduces load imbalances, and minimizes idle 

time. 

2. Genetic Algorithm-Based Scheduling Strategy: 

This strategy targets improving the overall operating efficiency of CPU-GPU heterogeneous 

computing systems in multi-task scenarios. It uses a genetic algorithm to determine the execution 

relationship between different types of tasks and heterogeneous processing cores. The strategy aims 

to optimize the allocation of computing resources and fully utilize the collaborative computing 

capabilities of CPUs and GPUs. 

Experimental evaluations demonstrate that this strategy outperforms traditional scheduling 

algorithms, static and dynamic scheduling algorithms, and hybrid scheduling algorithms, resulting 

in higher system performance. 

These scheduling techniques contribute to tapping into the performance potential of CPU-GPU 

heterogeneous computing systems, achieving load balance, reducing idle time, and improving 

system efficiency. 

[18] proposes a scheduling technique to minimize energy consumption in a CPU-GPU cloud 

computing platform while handling intermittent real-time tasks. The technique formulates the 

problem as an integer nonlinear programming problem and utilizes a dynamic programming 

approach inspired by the 0-1 knapsack problem. By dividing the hardware computing resource into 

virtual CPUs, the technique dynamically adjusts the task schedule based on the solution. 

Experimental results demonstrate that the proposed algorithm effectively reduces energy 

consumption and outperforms other greedy methods in terms of computation time. The scheduling 

technique contributes to optimizing system performance in cloud computing environments. 

[26] presents a programming and execution model called SHMT (Simultaneous and 

Heterogeneous Multithreading) that enables parallel processing using heterogeneous processing 

units. The paper focuses on the scheduling technique used in SHMT to coordinate the execution on 

different hardware components efficiently. SHMT introduces a low-overhead scheduling policy that 

considers both results and performance. It utilizes a set of virtual operations (VOPs) and High-Level 

Operations (HLOPs) as an intermediate layer between programming languages and hardware 

instructions. This intermediate layer facilitates task matching and distribution, allowing SHMT to 

divide equivalent operations and data on different computing resources. The scheduling technique 

employed in SHMT can be categorized as a dynamic scheduling policy. It dynamically adjusts 

workloads on various hardware units to maximize hardware efficiency while providing flexibility in 

scheduling policies. By effectively coordinating the execution on heterogeneous hardware, SHMT 
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achieves significant speedup and energy reduction compared to GPU baseline, as demonstrated in 

evaluations on an embedded system platform. Overall, the paper emphasizes the importance of 

scheduling techniques in enabling parallel execution across heterogeneous processing units, and 

SHMT's dynamic scheduling policy plays a crucial role in achieving efficient utilization of hardware 

resources. 

[37] proposes a resource scheduling system called FILL to improve the performance of 

GROMACS simulations by effectively utilizing heterogeneous hardware resources. The scheduling 

technique used in FILL is space partitioning technology, which allows for precise allocation of 

resources between CPU and GPU devices.The article highlights that previous research focused 

mainly on co-running multiple GROMACS simulations using time-slice technology, which 

introduced context-switching overhead and neglected collaborative scheduling of CPU and GPU 

devices. FILL addresses this limitation by leveraging hardware partitioning technologies and 

optimizing the allocation of resources for multiple GROMACS jobs. Experimental results 

demonstrate significant improvements in system throughput using FILL on both NVIDIA and AMD 

GPU servers compared to baseline approaches and state-of-the-art alternatives. FILL achieved an 

impressive improvement of up to 167% on NVIDIA GPU servers and demonstrated significant 

enhancements of 459% on AMD GPU servers. Overall, FILL's space partitioning-based scheduling 

technique enhances resource utilization and improves system throughput for multiple GROMACS 

simulations. The FILL mechanism, as shown in Figure 2, effectively addresses the challenge of 

resource utilization in heterogeneous computing by employing space partitioning technology to 

optimize CPU and GPU allocation for GROMACS simulations 

 

Figure 2. FILL mechanism presented in [37]. 

[39] introduces a novel scheduling technique called GPARS for efficient resource allocation in 

heterogeneous graphics processing unit (GPU) clusters. The scheduling technique leverages 

spatiotemporal correlations among jobs and utilizes graph attention networks (GANs) for precise job 

duration prediction. The GPARS algorithm addresses the limitations of prior research by considering 

the performance variations among different GPU types within heterogeneous clusters and the 

presence of spatiotemporal correlations among jobs. It predicts job durations using GANs and 

dynamically allocates suitable GPU types for newly submitted jobs based on the prediction results. 

The effectiveness of GPARS is evaluated using real traces from Alibaba and Philly, demonstrating a 

significant reduction in waiting time (10.29%) and an average improvement in resource utilization 

(7.47%) compared to the original scheduling method. Overall, GPARS is a prediction-based 

scheduling technique that efficiently schedules resources in heterogeneous GPU clusters, considering 

the unique characteristics and variations among different GPU types. 

[45] introduces a scheduling technique called RSCHED for managing the concurrent execution 

of task-based applications on heterogeneous computing environments. The authors address the 

challenge of efficiently utilizing modern parallel architectures with complex memory hierarchies and 

heterogeneous processors. They propose RSCHED as a framework to minimize overall makespan 

and maximize resource utilization. The scheduling technique aims to improve the execution of task-

based applications by dynamically distributing resources and orchestrating their execution. The 
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authors implemented RSCHED using the StarPU runtime system and evaluated its performance on 

real applications. The results showed that RSCHED significantly reduced the overall makespan 

compared to consecutive execution, with an average speedup factor of 10x. It also demonstrated the 

potential to increase resource utilization. RSCHED is a dynamic resource allocation strategy that 

enhances the scheduling of task-based applications on heterogeneous systems. 

3.11. Adaptive Scheduling  

[8] discusses efficiency and productivity in decision making on low-power heterogeneous 

CPU+GPU SoCs. It specifically focuses on the evaluation of scheduling strategies for executing value 

iteration, a core procedure in decision-making methods, on a low-power CPU+GPU SoC. It compares 

off-line-tuned static and dynamic scheduling strategies with adaptive heterogeneous scheduling 

strategies. The experiments show that using CPU+GPU heterogeneous strategies significantly reduce 

computation time and energy requirements. The CPU+GPU strategies can be up to 54% faster and 

57% more energy-efficient compared to multicore or GPU-only implementations. Additionally, It 

explores the impact of increasing the abstraction level of the programming model to ease 

programming efforts. The comparison between TBB+OpenCL and TBB+oneAPI implementations of 

heterogeneous schedulers shows that the oneAPI versions result in up to 5 times less programming 

effort with only 3-8% overhead if the scheduling strategy is selected carefully. 

The discussed strategies in [8] are: 

1. Off-line-Tuned Static and Dynamic Scheduling Strategies: 

This study evaluates off-line-tuned static and dynamic scheduling strategies for executing value 

iteration, a core procedure in decision-making methods, on a low-power CPU+GPU System-on-Chip 

(SoC). The comparison is made between different scheduling strategies to determine their impact on 

computation time and energy requirements. 

2. Adaptive Heterogeneous Scheduling Strategies: 

The study also explores adaptive heterogeneous scheduling strategies for decision-making on a 

low-power CPU+GPU SoC. These strategies aim to dynamically allocate tasks between the CPU and 

GPU, taking advantage of their respective capabilities. The experiments demonstrate that using 

CPU+GPU heterogeneous strategies significantly reduce computation time and energy requirements 

compared to multicore or GPU-only implementations. 

3. Increasing Abstraction Level of the Programming Model: 

The article explores the impact of increasing the abstraction level of the programming model to 

ease programming efforts. Specifically, it compares the TBB+OpenCL and TBB+oneAPI 

implementations of heterogeneous schedulers. The results show that the oneAPI versions can result 

in up to 5 times less programming effort with only 3-8% overhead if the scheduling strategy is 

selected carefully. 

[16] proposes a scheduling technique called SCHEDTUNE to address the challenges of 

managing and scheduling heterogeneous GPU resources in cluster management systems like 

Kubernetes. The existing resource schedulers in these systems do not effectively differentiate between 

different types of GPUs or support GPU sharing, resulting in low GPU utilization, queuing delays, 

and increased application makespan. SCHEDTUNE is a machine-learning-based scheduler that aims 

to improve GPU memory utilization, reduce out-of-memory (OOM) failures, and enhance overall 

makespan. It achieves this by profiling and analyzing deep learning (DL) jobs on heterogeneous 

GPUs to understand interference caused by collocating jobs and predict GPU memory demand and 

job completion times. By leveraging this information, SCHEDTUNE optimizes resource allocation 

and GPU sharing, resulting in higher GPU utilization and improved performance compared to the 

default Kubernetes scheduler. The proposed technique fills the gap between the capabilities of 

container orchestrators and the complex requirements of DL applications, providing a management-

level solution that learns system behavior and efficiently manages GPU resources in a heterogeneity-

aware manner. 
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[17] presents a CPU–GPU heterogeneous computation offloading and resource allocation 

scheme for the Industrial Internet of Things (IIoT). With the increasing complexity of IIoT tasks and 

the demand for delay-sensitive and computing-intensive applications, heterogeneous platforms 

integrating CPUs and GPUs have become essential. However, the three-stage heterogeneous 

computing process, including task preprocessing, hybrid computing, and result aggregation, poses 

challenges for task offloading and resource allocation. The proposed scheme introduces a three-stage 

heterogeneous computing model and formulates the joint task offloading and heterogeneous 

resource allocation problem. The authors employ the Lyapunov optimization method and propose 

the multihead proximal policy optimization (MH-PPO)-based algorithm to minimize the average 

task delay. Simulation results demonstrate the effectiveness of the scheme in reducing task delays. 

The study contributes to the development of efficient scheduling techniques in CPU–GPU 

heterogeneous computing environments for IoT applications. Figure 3 depicts the three-stage 

heterogeneous computing model designed for task offloading and resource allocation in Industrial 

Internet of Things (IIoT) systems, demonstrating the sequential steps of preprocessing, hybrid 

computing, and result aggregation. 

 

Figure 3. Three stage Heterogeneous Computing Model depicted in [17]. 

[40] proposes a novel scheduling technique for distributed deep learning (DDL) workloads in 

GPU clusters. The primary focus of the scheduling technique is to minimize communication overhead 

and reduce training times by consolidating jobs on physically close GPUs. The scheduling technique 

consists of three major components: a classical delay scheduling algorithm for job placement and 

consolidation, a network-sensitive job preemption strategy, and an auto-tuner mechanism to 

optimize delay timers. By considering the anticipated communication-network delays and the 

sensitivities of DDL jobs to these delays, the scheduler intelligently places and consolidates jobs based 

on their network requirements. The proposed technique takes into account the performance 

characteristics of different network tiers, leveraging modern networking hardware advancements. It 

dynamically adjusts consolidation based on the network sensitivity of individual jobs, aiming to 

minimize queueing delays and overall training times. The evaluation results demonstrate significant 

improvements in end-to-end makespan, job completion time, and communication overhead 

compared to existing consolidation-based scheduling methods. It presents a network-sensitive 

scheduling technique that optimizes GPU cluster scheduling for DDL workloads, considering 

communication overhead and job consolidation based on network sensitivities. Scheduling 

techniques tailored for distributed deep learning workloads are summarized in Figure 4, 

emphasizing strategies that minimize communication overhead and improve job placement within 

GPU clusters 
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Figure 4. Scheduling Techniques proposed in [40]. 

3.12. Task Graph Scheduling  

[9] discusses scheduling techniques for efficient task mapping on heterogeneous CPU/GPU 

platforms. The paper presents a theoretical framework and three practical mapping algorithms with 

low time complexity to minimize completion time in GPU-based embedded systems. The challenges 

in task mapping arise from the large size of the policy space and the need to consider factors such as 

performance characteristics, task dependencies, and data transfer costs. The proposed mapping 

algorithms address these challenges and outperform state-of-the-art techniques. Experimental results 

demonstrate up to 30% faster completion time across different workloads. This work in [9] extends 

the algorithms to enhance runtime performance in resource-limited infrastructure and evaluates 

them using a benchmark testing suite for simulating real-world runtime neural networks. The 

extended algorithm achieves significantly faster completion time (averaging 30% to 37% 

improvement) compared to existing techniques. Figure 5 presents the scheduler application 

framework designed to enhance task mapping on heterogeneous CPU/GPU platforms, ensuring 

efficient resource utilization and reduced completion times.   

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1


 13 

 

 

Figure 5. Scheduler Application prsented in [9]. 

[12] focuses on scheduling techniques in heterogeneous computing environments, specifically 

within the context of Kubernetes. The paper addresses the challenge of efficiently utilizing multiple 

CPUs and GPUs in cloud-based deployments by proposing the KubeSC-RTP scheduler. KubeSC-RTP 

stands for "Kubernetes Scheduler based on RunTime Prediction" and employs machine learning 

algorithms for runtime estimation of deployed applications. By accurately predicting the execution 

time of applications, the scheduler aims to optimize resource consumption and improve overall 

system performance. The article outlines the steps involved in implementing the KubeSC-RTP 

scheduler and highlights its intelligent scheduling approach based on machine learning techniques. 

It emphasizes the importance of selecting the appropriate device (CPU or GPU) for each application 

to minimize execution time and maximize resource utilization. The proposed scheduling technique 

offers potential benefits for cloud service providers, including reduced processing time, increased 

customer satisfaction, and improved resource management. The article concludes by discussing the 

experimental results and providing insights into the strengths and limitations of the KubeSC-RTP 

scheduler, as well as suggesting avenues for future research and enhancements in this field. 

The FastGR framework in [18] employs a heterogeneous task graph scheduler as its scheduling 

technique. This scheduler efficiently distributes tasks between the CPU and GPU components of the 

system, ensuring workload balancing and resource utilization optimization. By leveraging the 

processing power of both CPU and GPU, FastGR achieves significant improvements in performance 

and solution quality for global routing. The task graph scheduler plays a crucial role in coordinating 

the execution of tasks, managing dependencies, and allocating resources effectively. It dynamically 

assigns tasks to the most suitable processing unit, taking into account the computational capabilities 

and workload distribution across the system. This approach enables FastGR to harness the massive 

parallelism offered by GPUs while effectively utilizing the CPU's capabilities. Through balanced task 

scheduling, FastGR maximizes the utilization of available resources, minimizes idle time, and 

enhances the overall efficiency of the global routing process. The overall workflow of the FastGR 

global routing framework is shown in Figure 6, highlighting the role of a heterogeneous task graph 

scheduler in balancing workloads across CPU and GPU components. 
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Figure 6. Overall flow of Fast GR presented in [18]. 

[27] proposes a temperature-aware scheduling technique for heterogeneous computing in edge 

scenarios. The authors address the challenge of jointly processing inference tasks using CPU, GPU, 

and NPU while considering the impact of ambient temperature on edge devices. They establish a 

temperature perception model based on the ambient temperature and introduce a TAS (temperature-

aware schedule) algorithm to control the running speed of the heterogeneous device. Additionally, 

they propose a task scheduling algorithm called TASTS (TAS-based task schedule) and utilize a 

Hungarian matching algorithm to optimize the final results. The article demonstrates that the 

proposed technique improves performance by 20-50% compared to conventional methods under 

temperature constraints. The scheduling technique used in this study is the TAS (temperature-aware 

schedule) algorithm. 

[38] proposes a GPU scheduling technique called GCAPS for real-time GPU task execution. The 

scheduling technique addresses the challenges of prioritization and preemption in GPU tasks, aiming 

to ensure timely execution and meet stringent timing requirements. GCAPS operates at the device 

driver level and enables control over GPU context scheduling by adding one-line macros to GPU 

segment boundaries. It allows preemption of GPU execution based on task priorities, improving 

schedulability and response time. The approach requires minimal modifications to the user-level 

GPU access code and provides fine-grained and efficient control of the GPU. Through empirical 

evaluations, the proposed approach demonstrates significant improvements over prior work, 

achieving up to 40% higher schedulability. GCAPS utilizes a preemptive scheduling technique for 

GPU tasks in real-time systems. 

[47] provides a comprehensive overview of scheduling techniques used for optimizing energy 

consumption in cloud computing. The authors discuss state-of-the-art algorithms for scheduling 

workflow tasks to cloud resources, with a specific focus on reducing energy consumption. The article 

categorizes different workflow scheduling algorithms based on the scheduling approaches used and 

provides an analytical discussion of the covered algorithms. Additionally, the authors classify 

various energy-efficient strategies employed by cloud service providers (CSPs) for energy saving in 

data centers. The article also highlights popular real-world workflow applications and identifies 

emerging trends and open issues in cloud computing for future research directions. 

[48] proposes a scheduling technique to alleviate resource contention in heterogeneous systems. 

The article addresses the challenge of shared resource utilization between CPUs and GPUs in 

network-on-chip (NoC) architectures. It introduces the concept of LLC/MC CENTER architecture and 

analyzes the impact of different placement methods on system performance. To optimize the 
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network's performance, the article presents a task-based routing algorithm that plans the path based 

on different tasks and a Task-Based-Partition (TBP) routing algorithm that allocates routing 

algorithms of different tasks into separate virtual channels. The proposed scheduling technique aims 

to improve system performance by enhancing resource allocation and reducing network latency. 

Overall, the article focuses on task-based scheduling techniques for managing resources in 

heterogeneous CPU-GPU architectures within a network-on-chip framework. 

The framework allows a computational kernel to span across multiple devices on a node and 

enables multiple applications to be scheduled on the same node. It dynamically migrates kernels 

between devices, expands or contracts the kernel to utilize more or fewer devices, and optimizes 

scheduling decisions based on different objectives such as job throughput and job priorities. The 

authors evaluate the framework on a CPU+GPU+FPGA platform and demonstrate speedups of 2.26X 

over different applications and up to 1.25X for co-scheduled workloads over baselines. The major 

contribution lies in the ease of programmability with a single code base across different execution 

devices. Overall, the proposed framework provides an efficient scheduling technique for maximizing 

the utilization of heterogeneous devices in cloud and HPC environments. 

3.13. Hybrid Scheduling  

[14] focuses on addressing the challenges faced by heterogeneous systems consisting of CPUs 

and GPUs. The authors propose resource scheduling strategies to improve the utilization and 

efficiency of heterogeneous cores, thereby optimizing system performance. Two main strategies are 

presented: a combination strategy for single-task scheduling and a multi-task scheduling strategy. 

The combination strategy involves optimizing task execution efficiency on GPUs by modifying 

thread organization structures and developing workload balancing schemes for efficient core 

utilization. The multi-task scheduling strategy utilizes task samples to gather information about the 

execution efficiency of heterogeneous cores and global task information. An improved ant colony 

algorithm is then employed to quickly allocate tasks to the most suitable cores, taking advantage of 

the characteristics of heterogeneous cores. Experimental results demonstrate that the combination 

strategy reduces task execution time by an average of 29.13%, while the multi-task scheduling 

strategy reduces execution time by up to 23.38% compared to the combined strategy. These strategies 

effectively utilize the resources of heterogeneous systems and significantly improve task execution 

times. 

[42] presents a task scheduling technique called HSAS for optimizing the processing efficiency 

of deep neural network models on heterogeneous systolic array accelerator clusters. The authors 

address the challenge of significant differences among models and layers by proposing a 

heterogeneous architecture that consists of systolic arrays with different scales. HSAS considers 

factors such as task priority, prediction, preemption, load balance, and layer-level scheduling. The 

scheduling technique employs a task decomposition algorithm and a subtask priority management 

table to enable fine-grained subtask-level scheduling. The authors validate the performance and 

energy models for systolic arrays and demonstrate their accuracy. Experimental results show that 

HSAS outperforms classic and state-of-the-art methods in terms of average normalized turnaround 

time, system throughput, and fairness, achieving improvements of over 80% with task-level 

scheduling and 18% to 63% with subtask-level scheduling. HSAS is a sophisticated scheduling 

technique that optimizes the utilization of heterogeneous systolic array architectures for processing 

deep neural network models, leading to significant performance improvements. 

[44] presents a comprehensive analysis of task scheduling techniques in heterogeneous 

computing environments. The study evaluates the performance of four scheduling algorithms: First-

Come, First-Served (FCFS), FCFS with No Queuing (FCFS-NQ), Minimum Expected Completion 

Time (MECT), and Minimum Expected Execution Time (MEET). The goal is to optimize resource 

utilization and minimize task completion times. Three workload scenarios representing different 

computational demands are considered: low, medium, and high. Through rigorous experimentation, 

the authors assess the effectiveness of each algorithm in terms of total completion percentage, energy 

consumption, wasted energy, and energy per completion. The findings highlight the strengths and 
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limitations of each algorithm. MECT and MEET emerge as strong contenders, dynamically 

prioritizing tasks based on comprehensive estimates of completion and execution times. These 

algorithms exhibit superior energy efficiency compared  to FCFS and FCFS-NQ, making them 

suitable for resource-constrained environments. The study provides valuable insights into task 

scheduling algorithms, enabling informed decision-making for enhancing resource allocation, 

minimizing task completion times, and improving energy efficiency. CPU scheduling techniques are 

visually summarized in Figure 7, providing insights into strategies for optimizing task execution in 

resource-constrained environments. 

 

Figure 7. Different CPU Scheduling presented in [44]. 

3.14. Pipelined Scheduling 

[19] introduces a platform that aims to simplify the implementation of computationally 

demanding algorithms in a heterogeneous computing environment. The platform utilizes a 

scheduling technique to distribute tasks across different computing devices, including CPUs, GPUs, 

and FPGAs, in order to achieve algorithm acceleration. By leveraging the OpenCL framework, the 

platform offers generality and flexibility, allowing non-experts in heterogeneous computing to 

deploy and run algorithms without extensive knowledge of specific implementation frameworks. 

The platform automatically generates parallel code by analyzing algorithms implemented in C, 

adapting it to target the available computing devices. Experimental results using the Polybench/C 

suite demonstrate the effectiveness of the proposed platform, achieving accelerations of up to 270× 

for parallel-friendly algorithms. The scheduling technique used in the platform is not explicitly 

mentioned in the provided summary. 

[20] presents a distributed framework called HeterPS, which employs a reinforcement learning 

(RL)-based scheduling method to optimize the training process of deep neural network (DNN) 

models in heterogeneous computing environments. The scheduling technique used in HeterPS is 

based on RL and utilizes an LSTM model. The framework addresses the challenge of effectively 

utilizing diverse computing resources, such as CPUs and GPUs, for training large-scale DNN models. 

HeterPS schedules each layer of the DNN model to the appropriate computing resource to minimize 

costs and satisfy throughput constraints. It also manages data storage and communication among 

distributed computing resources. Experimental results demonstrate that HeterPS outperforms 

existing approaches in terms of throughput, achieving a 14.5 times higher throughput, and monetary 

cost, resulting in a 312.3% reduction in cost. Figure 8 outlines the HeterPS framework, showcasing its 

reinforcement learning-based scheduling approach to optimize deep learning model training across 

diverse computing resources. 
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Figure 8. HeterPS framework presented in [20]. 

[25] introduces a scheduling technique called RTGPU for efficiently scheduling multiple GPU 

applications with hard real-time guarantees. The article addresses the challenge of scheduling highly 

parallel applications on graphics processing units (GPUs) while meeting stringent timing constraints. 

RTGPU combines fine-grain GPU partitioning with a novel scheduling algorithm based on federated 

scheduling and grid search with uniprocessor fixed-priority scheduling. The proposed technique 

leverages persistent threads and interleaved execution to improve GPU partitioning and 

performance. It provides real-time guarantees to meet hard deadlines and achieves significant 

improvements in system throughput (over 11%) and schedulability (up to 57%) compared to previous 

approaches. The RTGPU scheduling technique is validated and evaluated on NVIDIA GPU systems. 

It can be applied to mainstream GPUs and general heterogeneous computing platforms with similar 

task execution patterns. This technique contributes to enabling the efficient execution of computation-

intensive parallel tasks on GPUs within real-time constraints. 

[32] proposes a performance model for estimating the performance of the heterogeneous 

implementation and providing guidance for computer architecture design. They apply the CPU-GPU 

heterogeneous computing to a CFD test case and compare its performance with a pure GPU 

implementation. By assigning proper workload ratios to the CPU and GPU workers, the 

heterogeneous version outperforms the pure GPU version by up to 23%. The authors leverage MPI 

(Message Passing Interface) and OpenACC to facilitate the CPU-GPU heterogeneous computing 

workflow in the CFD solver. These frameworks are commonly used for parallel computing and task 

distribution in heterogeneous systems. 

3.15. Power Aware/Deadline Aware Scheduling  

[23] Hydra, a scheduling technique designed for deep learning (DL) jobs running on 

heterogeneous GPUs. The primary goal of Hydra is to efficiently schedule DL jobs while considering 

deadline requirements and reducing job completion time (JCT). Existing approaches focusing on 

efficiency or deadline requirements alone are inadequate for this task. Hydra introduces a novel 

quantitative cost comparison approach that incorporates total JCT and a dynamic penalty based on 

tardiness, i.e., the delay in meeting deadlines. It leverages a sampling approach to estimate job 

execution times accurately on heterogeneous GPUs and utilizes an efficient branch-and-bound 

algorithm to find the optimal job-GPU combinations. Evaluation experiments using Alibaba traces 

demonstrate that Hydra significantly reduces total tardiness by 85.8% while minimizing JCT 

compared to state-of-the-art efforts. The technique used in Hydra can be categorized as deadline-

aware scheduling for deep learning jobs on heterogeneous GPUs. 
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[41] introduces a scheduling technique for optimizing the deployment of time-sensitive 

applications, specifically focusing on Intrusion Detection Systems (IDS), in a serverless edge 

computing environment. The proposed technique addresses the challenges of reducing initialization 

delays, minimizing communication delays, and leveraging heterogeneous resources to satisfy 

variable Quality of Service (QoS) requirements. The scheduling technique incorporates a storage-

aware allocation and scheduling policy that aims to minimize task placement costs for service 

providers while optimizing QoS for IDS users. It includes a caching and consolidation strategy to 

minimize cold starts and inter-function communication delays. By leveraging the capabilities of 

heterogeneous edge resources, the strategy achieves better QoS performance and reduces the number 

of edge nodes required for application deployment. The article presents a simulation-based 

evaluation comparing the proposed technique with a vanilla Knative orchestrator and a storage-

agnostic policy. The results demonstrate that the proposed strategy achieves 18% fewer QoS penalties 

and consolidates applications across 80% fewer edge nodes. Overall, the scheduling technique 

contributes to cost-effective deployment of IDS and other time-sensitive applications on unreserved 

edge resources, leveraging serverless computing paradigms. 

[43] presents a novel approach to instruction scheduling for GPUs using a parallelized Ant 

Colony Optimization (ACO) algorithm. The authors address the register-pressure-aware instruction 

scheduling problem, which involves optimizing the balance between schedule length and register 

pressure on a GPU target. They demonstrate that parallelizing the ACO algorithm on the GPU 

significantly improves scheduling performance compared to sequential CPU-based scheduling. The 

ACO algorithm, inspired by nature, utilizes a pheromone-based search technique to find optimal 

instruction orders. The authors propose several techniques to efficiently parallelize the ACO 

algorithm for the complex multi-objective optimization problem of register-pressure-aware 

scheduling on the GPU. Experimental results show that parallel ACO-based scheduling on the GPU 

achieves up to 27 times faster execution compared to sequential CPU-based scheduling, resulting in 

a 21% reduction in total compile time and up to 74% improvement in execution speed compared to 

AMD's production scheduler. 

3.16. Batch Job Scheduling  

[29] focuses on a programming model Allo for efficient spatial accelerator architectures. One of 

the key aspects of Allo is its scheduling technique, which enables the construction of modular 

hardware accelerators through the composition of customized kernels and external IPs. The 

scheduling technique used in Allo is called composable schedules. This technique allows users to 

incrementally add customizations to kernels while validating the correctness of each submodule. 

Multiple schedules are progressively integrated into a complete design using the .compose() 

primitive. The composable schedules approach enhances productivity and debuggability, enabling 

the creation of high-performance designs. Allo also introduces a hierarchical dataflow graph to 

support the composition of multiple kernels within a complex design while maintaining function 

boundaries. By modeling the interface unification problem as a type inference problem and 

leveraging the hierarchical dataflow graph, Allo optimizes the scheduling of dataflow operations. 

Overall, Allo's composable scheduling technique provides a flexible and modular approach to 

designing high-performance spatial accelerators. 

[30] focuses on the analysis of scheduling algorithms used in heterogeneous computing systems. 

The article reviews various list-based workflow scheduling algorithms over the past two decades and 

categorizes them based on their scheduling objectives. The main scheduling technique discussed in 

the article is list-based scheduling, specifically list scheduling with static priorities (LSSP). List-based 

scheduling algorithms are known for their efficiency in generating schedules for complex workflow 

applications in heterogeneous computing environments. These algorithms aim to minimize 

makespan, energy consumption, and maximize resource utilization and reliability. The article 

compares different list-based scheduling algorithms based on their objectives, merits, comparison 

metrics, workload type, experimental scale, experimental environment, and results. Additionally, the 
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article conducts experimental analysis of seven state-of-the-art algorithms on randomly generated 

workflows to understand their working. 

[31] explores the challenges and advancements in GPU virtualization, specifically focusing on 

the scheduling technique used in the Intel Graphics Virtualization Technology—Grid generation 

(GVT-g). The authors present a novel performance analysis framework that utilizes host-based 

tracing combined with the Linux Trace Toolkit Next Generation (LTTng) to collect performance data 

efficiently and with minimal overhead. The scheduling technique employed in GVT-g allows for the 

allocation and sharing of GPU resources among virtual machines. The framework incorporates a 

unified, stateful model for filtering and organizing trace data, enabling the computation of various 

performance metrics. The analysis is performed using Trace Compass, an open-source performance 

analyzer, which provides synchronized graphical views to aid in understanding GVT-g's internal 

mechanisms and diagnosing performance issues related to virtual GPU usage. This article provides 

valuable insights into GPU virtualization and offers a practical approach to performance analysis in 

virtualized environments using the GVT-g scheduling technique. 

[33] provides a comprehensive overview of scheduling techniques for deep learning (DL) 

workloads in GPU datacenters. The article emphasizes the importance of efficient scheduling to 

reduce operational costs and improve resource utilization in DL model development. Traditional 

scheduling approaches designed for big data or high-performance computing workloads are 

inadequate for fully utilizing GPU resources in DL workloads. The survey examines existing research 

efforts for both training and inference workloads, categorizing them based on scheduling objectives 

and resource utilization. It discusses the challenges in designing satisfactory schedulers for DL 

workloads and identifies the common strategies employed by existing solutions.  

[35] presents a scheduling technique called Energy Efficient Successor Tree Consistent Earliest 

Deadline First (EESEDF) for Periodic Conditional Task Graphs (PCTGs) on Multiprocessor System-

on-Chips (MPSoCs) with shared memory. The goal is to minimize energy usage by considering 

dynamic and static power models. The EESEDF approach maximizes the worst-case processor 

utilization by assigning tasks to processors and arranging them using the earliest successor tree 

consistent deadline-first strategy. To further minimize energy consumption, the technique solves a 

convex Non-Linear Program (NLP) to determine optimal task speeds. Additionally, an online 

Dynamic Voltage Scaling (DVS) heuristic is introduced, which dynamically adjusts task speeds in 

real-time. Experimental results demonstrate that EESEDF+Online-DVS outperforms existing 

techniques, achieving notable energy efficiency improvements over LESA and NCM. The proposed 

scheduling technique achieves significant energy efficiency gains compared to IOETCS-Heuristic, 

BESS, and CAP-Online. In summary, the article focuses on the EESEDF scheduling technique, which 

combines successor tree consistency, earliest deadline first strategy, and dynamic voltage scaling to 

optimize energy usage in scheduling PCTGs on MPSoCs with shared memory. 

[36] addresses the scheduling challenges faced in multi-tenant cloud systems with 

heterogeneous GPUs when running various machine learning workloads. The authors propose a 

novel scheduling approach that utilizes a genetic optimization technique implemented within a 

process-oriented discrete-event simulation framework. The scheduling technique employed in the 

study is a genetic optimization technique, which involves using genetic algorithms to find optimal 

solutions for scheduling machine learning tasks on GPUs. The approach aims to improve GPU 

utilization in complex environments by effectively orchestrating the scheduling of machine learning 

workloads. Through extensive simulations using workload traces from Alibaba's MLaaS cluster, 

which consists of over 6000 heterogeneous GPUs, the proposed scheduling approach demonstrates a 

12.8% improvement in GPU utilization compared to Round-Robin scheduling. The results highlight 

the effectiveness of the genetic optimization technique in optimizing GPU scheduling in cloud-based 

environments. It focuses on enhancing the scheduling of AI applications in multi-tenant cloud 

systems by employing a genetic optimization technique, which improves GPU utilization and 

optimizes resource allocation for machine learning workloads. Table 1 recaps the significant features 

of various scheduling techniques discussed in this survey focussing on their advanatges and 

challenges. 
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Table 1. Significant features of various Scheduling Techniques. 

Paper 
Scheduling 

Technique 
Description Focus Flexibility Advantages Challenges 

[2] 
Fine-grained warp 

scheduling 

Prioritizes 

individual threads 

within a warp to 

enhance 

parallelism. 

Thread execution 

optimization 
High 

Enhanced 

parallelism, 

reduced resource 

contention 

Increased 

complexity, 

potential overhead 

[4] 
Memory latency 

tolerance 

Overlaps memory 

access with 

computation to 

minimize 

performance 

impact. 

Memory access 

optimization 
Medium 

Reduced memory 

latency impact 

Complexity in 

implementation 

[2,24] 
Memory bank 

parallelism 

Exploits GPU 

memory access 

capabilities to 

increase 

throughput. 

Memory 

throughput 

optimization 

Medium 
Improved memory 

access patterns 

Potential conflicts 

in memory banks 

[2] Context switching 

Efficiently 

switches between 

warps to optimize 

GPU resource 

usage. 

Resource 

utilization 

optimization 

High 

Reduced idle 

times, better 

utilization 

Overhead and 

potential 

synchronization 

issues 

[2] 
Prefetching 

mechanisms 

Anticipates and 

fetches data in 

advance to reduce 

memory access 

latency. 

Data access 

optimization 
Low 

Reduced latency, 

improved data 

availability 

Prediction 

overhead, 

redundancy risk 

[7,10] 
Dynamic load 

balancing 

Redistributes 

workload in real 

time based on 

system conditions. 

Workload 

distribution 
High 

Improved 

responsiveness, 

balanced resources 

Potential runtime 

overhead 

[6,39] 
Dynamic task 

scheduling 

Real-time 

adaptation of task 

execution 

priorities to 

maximize system 

efficiency. 

Task execution 

optimization 
High 

Adaptability to 

workload changes 

Higher runtime 

complexity 

[16,17] Adaptive scheduling 

Adjusts policies 

dynamically based 

on workload and 

system state. 

Workload 

adaptation 
High 

Better resource 

utilization 

May incur frequent 

adjustments 

[14,42] Hybrid scheduling 

Combines static 

and dynamic 

approaches for 

optimized task 

execution. 

Mixed scheduling 

strategies 
Medium 

Flexibility, 

efficiency in 

diverse workloads 

Requires careful 

design 

[23] 
Power-aware 

scheduling 

Manages energy 

consumption 

while maintaining 

performance. 

Energy efficiency Medium 
Reduced power 

usage 

May compromise 

speed 

[25,38] 
Real-time GPU 

scheduling 

Focuses on 

guaranteeing 

deadlines for 

GPU-based tasks. 

Timing-critical 

applications 
Medium 

Ensures 

predictable 

performance 

Limited to real-time 

systems 

[33,36] Batch job scheduling 

Processes multiple 

tasks in batches to 

optimize resource 

usage. 

Resource 

optimization 
Medium High throughput 

May cause latency 

for smaller tasks 

       

[20] 

Reinforcement 

learning-based 

scheduling 

Utilizes RL to 

dynamically 

allocate tasks 

across 

Intelligent task 

allocation 
High 

Optimized 

scheduling in 

uncertain 

environments 

Training overhead, 

scalability 
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heterogeneous 

resources. 

[29] 
Composable 

schedules 

Incrementally 

builds custom 

schedules for 

modular hardware 

designs. 

Hardware 

optimization 
High 

Flexibility in 

hardware design 

Limited 

generalizability 

[31,37] Resource partitioning 

Divides resources 

between tasks to 

improve 

throughput and 

reduce conflicts. 

Resource allocation Medium 
Improved resource 

utilization 

May require 

significant tuning 

[41] 
Storage-aware 

scheduling 

Optimizes storage 

placement and 

access to reduce 

overhead in 

serverless edge 

computing. 

Storage and task 

placement 
Medium 

Better QoS and 

reduced cold starts 

Relies on caching 

performance 

[8,27] 
Temperature-aware 

scheduling 

Adapts task 

schedules to 

maintain system 

performance 

under temperature 

constraints. 

Thermal 

optimization 
Medium 

Prolonged 

hardware lifespan, 

performance 

stability 

Overhead of 

temperature 

monitoring 

[40] 
Network-sensitive 

scheduling 

Minimizes 

communication 

delays for 

distributed deep 

learning 

workloads by 

consolidating jobs. 

Communication 

overhead 

optimization 

Medium 

Reduced 

communication 

delays, faster 

completion 

Complex job 

placement 

algorithms 

[43] 
Register-pressure-

aware scheduling 

Balances schedule 

length and register 

usage to optimize 

GPU task 

execution. 

Instruction 

scheduling 
Medium 

Improved GPU 

instruction 

performance 

Algorithm 

complexity 

[18,44] 
Task graph 

scheduling 

Optimizes 

execution of task 

dependencies 

across 

heterogeneous 

platforms. 

Dependency 

management 
Medium 

Reduced 

completion times 

High complexity 

for large workloads 

[19,32] 
Pipelined task 

scheduling 

Overlaps task 

execution stages to 

improve efficiency 

and system 

throughput. 

Staged execution 

optimization 
High 

Faster task 

completion 

Increased task 

management 

complexity 

[35] 
Energy-efficient 

scheduling 

Uses successor tree 

consistency and 

DVS to minimize 

power 

consumption in 

heterogeneous 

systems. 

Power 

optimization 
Medium 

Reduced energy 

usage 

May impact real-

time performance 

[45,48] Task-based routing 

Plans routes and 

allocates resources 

dynamically in 

heterogeneous 

NoC architectures. 

Network-on-Chip 

scheduling 
Medium 

Optimized 

resource 

allocation, reduced 

latency 

High 

computational 

requirements 

4. Summary of the Review 

The review provides a comprehensive survey of recent developments in scheduling techniques 

aimed at maximizing the efficiency of deep learning computations on GPUs. It highlights the 

challenges associated with parallel thread execution and resource utilization on GPUs, which can 
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result in suboptimal performance. The surveyed research focuses on novel scheduling policies that 

improve memory latency tolerance, exploit parallelism, and enhance GPU resource utilization. 

The review explores various aspects of scheduling techniques for deep learning on GPUs, 

including warp scheduling policies, memory latency tolerance, memory bank parallelism, context 

switching strategies, and prefetching mechanisms. These techniques aim to effectively manage the 

execution of parallel threads, optimize memory access patterns, and improve resource utilization. 

The integration of fine-grained warp scheduling, warp switching strategies, and prefetching 

mechanisms is also discussed to optimize deep learning computations on GPUs. 

Experimental evaluations demonstrate significant performance improvements in terms of 

throughput, memory bank parallelism, and latency reduction. The insights gained from this survey 

can guide researchers, system designers, and practitioners in developing more efficient and powerful 

deep learning systems on GPUs. The review also discusses potential future directions for research, 

such as advanced scheduling techniques, energy efficiency considerations, and the integration of 

emerging computing technologies. 

Overall, the review provides a comprehensive overview of recent advancements in scheduling 

techniques for efficient deep learning computations on GPUs, highlighting their impact on system 

performance and suggesting future research directions. Table 2 summarizes various scheduling 

techniques, focusing on their strategies, key features, and applications, emphasizing advancements 

in optimizing GPU-based deep learning computations. 

Table 2. Summary Table on Scheduling Techniques. 

Ref No. Scheduling Technique Focus Area Strategy Type Key Features 

[2] Warp Scheduling 
Thread assignment to 

warps 
Dynamic 

Efficient resource allocation and 

thread management 

[2] 
Memory Latency 

Tolerance 

Minimizing memory 

latency 
Dynamic 

Overlapping memory access and 

computation 

[2,24] 
Memory Bank 

Parallelism 

Enhancing memory 

throughput 
Dynamic 

Exploiting parallel memory 

access capabilities 

[2] Context Switching 
Optimizing resource 

usage 
Dynamic 

Efficient warp switching for 

resource optimization 

[2] Prefetching Mechanisms 
Data access 

optimization 
Dynamic 

Anticipating and fetching data in 

advance 

[2] Fine-grained Scheduling 
Individual thread 

prioritization 
Dynamic 

Enhancing parallelism and 

reducing contention 

[46] Workload Partitioning 
CPU-GPU workload 

division 
Static/Dynamic 

Effective distribution based on 

workload and system conditions 

[2,24] 
Memory Access 

Scheduling 

Memory latency 

optimization 
Dynamic 

Effective scheduling to reduce 

memory latency 

[9,12,18,27,38,47,48] Task Graph Scheduling 
Task graph 

optimization 
Dynamic 

Dynamic redistribution based on 

task graph characteristics 

[7,10],28] 
Dynamic Load 

Balancing 

Workload 

redistribution 
Dynamic 

Adapting workload distribution 

in 

 real-time 

 

[2] 
Hardware-Algorithm 

Co-design 

Optimization for 

specific algorithms 
Dynamic 

Co-design approaches for 

algorithm and hardware 

optimization 

[6,18,26,37,39,45] 
Dynamic Task 

Scheduling 

Real-time task 

optimization 
Dynamic 

Adapting task priorities based 

on system load 

[8,16,17,40] 
Adaptive Scheduling 

Policies 

Dynamic scheduling 

adjustments 
Dynamic 

Real-time policy changes based 

on workload and system state 

[19,20,25,32] 
Pipelined Task 

Scheduling 

Task execution 

pipelining 
Dynamic 

Overlapping task execution 

stages for improved efficiency 

[14,42,44] 
Hybrid Scheduling 

Strategies 

Combined scheduling 

approaches 
Mixed 

Utilizing a mix of static and 

dynamic scheduling techniques 

[29–31,33,35,36] Batch Job Scheduling 
Job processing 

optimization 
Static/Dynamic 

Scheduling multiple jobs for 

optimized resource usage 

[23,41,43] 
Power-aware 

Scheduling 

Energy-efficient task 

management 
Dynamic 

Adjusting scheduling based on 

power consumption 

considerations 
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5. Conclusions and Future Scope 

In conclusion, this review article provides a comprehensive survey of recent advancements in 

scheduling techniques aimed at maximizing the efficiency of deep learning computations on GPUs. 

The challenges associated with parallel thread execution, resource utilization, and memory latency 

in GPUs are highlighted, along with the need for efficient scheduling techniques to optimize 

performance. 

The surveyed research focuses on novel scheduling policies that improve memory latency 

tolerance, exploit parallelism, and enhance GPU resource utilization. Various techniques such as 

prefetching mechanisms, fine-grained warp scheduling, and warp switching strategies are explored 

to optimize deep learning computations on GPUs. Experimental evaluations demonstrate significant 

performance improvements in terms of throughput, memory bank parallelism, and latency 

reduction. 

The insights gained from this survey can guide researchers, system designers, and practitioners 

in developing more efficient and powerful deep learning systems on GPUs. Furthermore, potential 

future directions are discussed, including advanced scheduling techniques, energy efficiency 

considerations, and the integration of emerging computing technologies, inspiring further research 

in this domain. 

Future research in this domain can focus on several key areas to further optimize scheduling 

techniques for GPUs. First, the integration of energy-efficient algorithms with real-time scheduling 

methods could address the growing demand for sustainable computing. Second, exploring machine 

learning-based predictive models for dynamic scheduling can enhance adaptability and resource 

utilization in diverse workloads. Third, the convergence of scheduling strategies with emerging 

hardware technologies such as neuromorphic computing and quantum processors could unlock new 

possibilities for deep learning computations. Additionally, developing standardized frameworks to 

support heterogeneous systems and improve interoperability across platforms would be beneficial. 

Finally, addressing challenges in security-aware and fault-tolerant scheduling will ensure robustness 

in critical applications, opening avenues for deployment in industrial and edge computing 

environments. These advancements will continue to push the boundaries of deep learning and 

heterogeneous computing optimization. 

Overall, the advancements in scheduling techniques presented in review offer valuable 

contributions to maximizing the efficiency of deep learning computations on GPUs, paving the way 

for improved performance and resource utilization in a wide range of applications and domains. 
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