
Review Not peer-reviewed version

A Survey on Advancements in

Scheduling Techniques for Efficient

Deep Learning Computations on GPUs

Rupinder Kaur * , Arghavan Asad , Seham Al Abdul Wahid , Farah Mohammadi

Posted Date: 3 December 2024

doi: 10.20944/preprints202412.0276.v1

Keywords: Deep Learning Algorithms; Deep-Neural Networks (DNN); Energy-efficient scheduling;

Performance optimization; Heterogeneous computing; Machine Learning (ML)

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/3629374
https://sciprofiles.com/profile/3674367
https://sciprofiles.com/profile/3659309

Review

A Survey on Advancements in Scheduling

Techniques for Efficient Deep Learning

Computations on GPUs

Rupinder Kaur 1,*, Arghavan Asad 2, Seham Al Abdul Wahid 2 and Farah Mohammadi 2

1 Electrical, Computer and Biomedical Engineering Department, Toronto Metropolitan University, 350

Victoria St, Toronto, M5B2K3, Ontario, Canada
2 School of Computer Science and Technology, Algoma University, Brampton, Ontario, Canada

* Correspondence: rupinder.kaur.ece@torontomu.ca

Abstract: This comprehensive survey explores recent advancements in scheduling techniques for efficient deep

learning computations on GPUs. The article highlights challenges related to parallel thread execution, resource

utilization, and memory latency in GPUs, which can lead to suboptimal performance. The surveyed research

focuses on novel scheduling policies to improve memory latency tolerance, exploit parallelism, and enhance

GPU resource utilization. Additionally, it explores the integration of prefetching mechanisms, fine-grained

warp scheduling, and warp switching strategies to optimize deep learning computations. Experimental

evaluations demonstrate significant improvements in throughput, memory bank parallelism, and latency

reduction. The insights gained from this survey can guide researchers, system designers, and practitioners in

developing more efficient and powerful deep learning systems on GPUs. Furthermore, potential future

research directions include advanced scheduling techniques, energy efficiency considerations, and the

integration of emerging computing technologies. By continuously advancing scheduling techniques, the full

potential of GPUs can be unlocked for a wide range of applications and domains, including GPU-accelerated

deep learning, task scheduling, resource management, memory optimization, and more.

Keywords: deep learning algorithms; deep-neural networks (DNN); energy-efficient scheduling;

performance optimization; heterogeneous computing; machine learning (ML)

1. Introduction

Deep learning has emerged as a powerful technique for solving complex problems and has

achieved remarkable success in various domains, including computer vision, natural language

processing, and autonomous systems. Graphics Processing Units (GPUs) have played a pivotal role

in accelerating deep learning computations due to their parallel processing capabilities and high

memory bandwidth. However, harnessing the full potential of GPUs for deep learning requires

efficient scheduling techniques that optimize resource utilization and minimize latency [1–5].

The efficient execution of deep learning algorithms on GPUs faces several challenges. Firstly,

deep learning computations often involve massive amounts of data and complex neural network

architectures, resulting in high computational demands. Secondly, GPUs consist of numerous

parallel processing units known as warps, which execute threads in parallel. However, inefficient

scheduling of these warps can lead to underutilization of GPU resources and suboptimal

performance. Moreover, memory latency, caused by data movement between the GPU and memory,

can significantly impact the overall system performance [10–16].

To address these challenges, researchers have been actively developing advanced scheduling

techniques specifically tailored for deep learning computations on GPUs. These techniques aim to

maximize the efficiency and throughput of deep learning algorithms by effectively managing the

execution of parallel threads, optimizing memory access patterns, and improving resource utilization

[17–20]. Scheduling techniques for deep learning on GPUs encompass various aspects, such as warp

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202412.0276.v1
http://creativecommons.org/licenses/by/4.0/

 2

scheduling policies, memory latency tolerance, memory bank parallelism, context switching

strategies, and prefetching mechanisms. Warp scheduling policies focus on efficiently assigning

threads to warps, considering factors like data dependencies and resource availability. Memory

latency tolerance techniques aim to overlap memory access and computation to minimize the impact

of memory latency on overall performance [21–25]. Memory bank parallelism techniques exploit the

parallel memory access capabilities of GPUs to enhance memory throughput. Context switching

strategies involve efficiently switching between different warps to optimize GPU resource utilization.

Additionally, prefetching mechanisms are employed to anticipate and fetch data in advance,

reducing memory access latency and improving overall performance [26–31]. Fine-grained warp

scheduling techniques consider the execution order and prioritization of individual threads within a

warp, further enhancing parallelism and reducing resource contention. Furthermore, hardware and

algorithm co-design approaches have been explored to optimize scheduling and execution for

specific types of deep learning algorithms, such as sparse neural networks and Convolutional Neural

Networks (CNNs).Cache data residency optimization techniques have also been investigated to

improve memory management and exploit cache locality. By profiling data access frequencies and

classifying applications based on access patterns, these techniques optimize data storage and enhance

cache utilization, leading to improved performance. In this article, we provide a comprehensive

survey of recent advancements in scheduling techniques for efficient deep learning computations on

GPUs [32–37]. We delve into the details of various scheduling methodologies, their underlying

principles, and their impact on system performance. Through experimental evaluations, we

demonstrate the effectiveness of these techniques in improving throughput, reducing latency, and

optimizing resource utilization. The insights gained from this survey can guide researchers, system

designers, and practitioners in developing more efficient and powerful deep learning systems on

GPUs [38–43]. Additionally, we discuss potential future directions for research, including advanced

scheduling techniques, energy efficiency considerations, and the integration of emerging computing

technologies. By continuously advancing scheduling techniques, we can unlock the full potential of

GPUs and further optimize deep learning computations for a wide range of applications and domains

[44–51].

Figure 1 illustrates the classification of scheduling techniques discussed in this survey,

categorizing them based on their application and methodology for optimizing deep learning

computations on GPUs.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 3

Figure 1. Classification of Scheduling Techniques discussed in this survey.

At the core of this survey, we explore a variety of scheduling techniques critical for optimizing

deep learning computations on GPUs. In Section II, the discussion begins with heterogeneous

computing, highlighting its promises and challenges in combining CPUs and GPUs for improved

performance and energy efficiency. Next, in section III we delve into diverse scheduling strategies,

including static, dynamic, and adaptive approaches, focusing on their ability to optimize workload

distribution and resource utilization. Dynamic load balancing techniques are examined for their real-

time adaptability, while workload partitioning strategies emphasize efficient division of tasks

between CPUs and GPUs. Memory access scheduling methods are explored to reduce latency and

enhance throughput, complemented by fine-grained warp scheduling policies that prioritize threads

to improve parallelism. Context switching strategies are discussed for their role in minimizing idle

times and optimizing resource usage. Energy-aware and task graph scheduling techniques are

presented to balance energy efficiency, manage dependencies, and improve completion times.

Additionally, hybrid scheduling approaches, power-aware and deadline-aware scheduling, and

batch job scheduling are analyzed for their ability to address complex resource management

challenges in heterogeneous systems. Pipelined scheduling strategies are reviewed for their potential

to overlap computation stages and boost throughput. This comprehensive discussion sets the stage

for the subsequent sections, offering insights into the latest advancements and future directions in

scheduling techniques for GPU-accelerated deep learning.

2. Heterogeneous Computing

2.1. Promises and Challenges

Heterogeneous computing aims to combine the strengths of both CPUs and GPUs to achieve

improved computational performance. The promises of heterogeneous computing include utilizing

the unique features of CPUs and GPUs, achieving load balancing between the processing units, and

harnessing the computational power of both to strive for exascale performance.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 4

However, there are several challenges in realizing the potential of heterogeneous computing.

The vastly different architectures and programming models of CPUs and GPUs present obstacles in

achieving collaborative computing. Optimization techniques designed for CPU-only or GPU-only

systems may not be effective in heterogeneous systems. Therefore, novel techniques are required to

optimize performance and energy efficiency by considering the characteristics of both CPUs and

GPUs.

3. Scheduling Strategies

The goal of heterogeneous computing is to leverage the unique features and strengths of both

CPUs and GPUs to achieve high-performance computing. [1] highlights the increasing utilization of

both CPUs and GPUs in a wide range of applications and emphasizes the need for collaboration

between these processing units. It discusses the challenges and promises of heterogeneous computing

and clarifies the terminology used in the field. Regarding scheduling techniques, it categorizes the

research works based on the nature of scheduling, such as dynamic or static load balancing. It

explores various approaches to workload partitioning between CPUs and GPUs, considering factors

like the division of work among processing units.

3.1. Dynamic Load Balancing

Dynamic load balancing involves dynamically redistributing the workload between CPUs and

GPUs based on their capabilities and current load. This technique aims to optimize resource

utilization and maximize overall performance by adapting to changes in workload and system

conditions in real-time. It can help ensure that both CPUs and GPUs are effectively utilized and that

the workload is distributed efficiently to achieve better performance.

[7] discusses the problem of online scheduling of task graphs on heterogeneous platforms,

specifically platforms consisting of CPUs and GPUs. The focus is on dynamic scheduling, where task

graphs are uncovered dynamically during the computation and the scheduler has limited

information about the available tasks. The objective is to minimize the total completion time of the

tasks.

1. Lower Bound Analysis: The authors prove that the competitive ratio (the ratio of makespan

achieved by the online algorithm to the optimal makespan) of any online algorithm is lower-

bounded by a certain value, which depends on the number of CPUs (m) and GPUs (k). They

investigate the influence of task graph knowledge and task flexibility on the lower bound.

2. Competitive Algorithm: The authors propose a ð2þ1Þ-competitive algorithm, called QA,

which improves upon a previous algorithm. They refine the algorithm and its analysis to

achieve better performance.

3. Generalization to Multiple Processor Types: The authors extend their results to the case of

platforms with multiple types of processors, adapting the lower bounds and the online

algorithm accordingly.

4. Heuristic Approach: The authors propose a simple heuristic based on the QA algorithm and

the system-oriented heuristic EFT. This heuristic is both competitive and performs well in

practice.

[10] discusses a scheduling technique called READYS. The goal of READYS is to develop a

dynamic scheduling algorithm for heterogeneous computing systems using reinforcement learning.

It introduces the concept of Directed Acyclic Graphs (DAGs) as a computational model for parallel

applications. It emphasizes the importance of accurate task allocation and scheduling decisions in

parallel and distributed computing systems. The authors propose using reinforcement learning,

specifically a combination of Graph Convolutional Networks (GCN) and an Actor-Critic Algorithm

(A2C), to address the dynamic scheduling problem. The READYS algorithm aims to minimize the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 5

makespan, which is the total time required to complete all tasks, by learning an adaptive scheduling

strategy based on the current state of the system and the characteristics of the tasks. The use of

reinforcement learning is particularly suitable in scenarios where task durations and communication

times are stochastic. The paper focuses on task graphs derived from linear algebra factorization

kernels (such as CHOLESKY, LU, and QR) and considers heterogeneous platforms with both CPUs

and GPUs. Through simulations, the authors demonstrate that READYS achieves comparable or

superior performance to existing scheduling algorithms, particularly in environments with high

uncertainty. Furthermore, READYS is capable of generalizing its learned scheduling strategy to

different application domains and problem sizes.

[28] proposes an improved scheduling mechanism for generative AI applications in cloud-native

environments with heterogeneous resources. The scheduling technique used in this approach is

dynamic programming. The study addresses the challenge of effectively scheduling multiple

resources in such environments to enhance load balance and resource utilization. By applying the

dynamic programming approach, the proposed scheduling mechanism outperforms native GPU

scheduling strategies and the algorithm for the multidimensional knapsack problem. Experimental

results demonstrate that the load balance can be improved by up to 64.1%, and the makespan (job

completion time) can be reduced by up to 40.8%. This scheduling technique considers load balancing

as a crucial metric and aims to achieve the highest total iteration count while optimizing job

completion time. The approach effectively utilizes the available resources, including less powerful

GPU nodes, and prevents resource idleness caused by unbalanced workloads.

On the other hand, Static load balancing involves pre-determining the workload division

between CPUs and GPUs based on certain criteria or heuristics. This technique aims to distribute the

workload evenly and efficiently at the beginning of the computation. It does not adapt to runtime

changes and assumes a predetermined workload division that remains constant throughout the

execution. Static load balancing can be useful in scenarios where the workload characteristics are

known in advance or when the workload distribution is relatively stable.

3.2. Workload Partitioning

Workload partitioning focuses on dividing the workload between CPUs and GPUs in an

effective manner. This technique considers factors such as the characteristics of the workload, the

capabilities of the processing units, and the requirements of the deep learning computations. By

carefully partitioning the workload, workload partitioning aims to achieve balanced utilization of

CPUs and GPUs, optimize resource allocation, and improve overall performance.

[46] proposes a scheduling technique called the Constrained Autonomous Workload Scheduler

(CAuWS) for Cyber-Physical Systems (CPS) with heterogeneous processing units. The authors

address the challenge of finding efficient schedules that meet the physical requirements of CPS while

considering the diverse capabilities of different hardware units. CAuWS utilizes a structured and

system-agnostic approach, combining a representation language (AuWL), timed Petri nets, and

mixed-integer linear programming. It enables the representation and scheduling of various CPS

workloads, real-world constraints, and optimization criteria, resulting in optimal assignments of

processing units to tasks. The technique is demonstrated using a drone simulation under multiple

physical constraints. The scheduling technique aims to optimize resource utilization and meet the

objectives of CPS while considering the heterogeneity of the processing units.

3.3. Memory Access Scheduling

This section discusses memory latency tolerance techniques and memory bank parallelism as

part of optimizing deep learning computations on GPUs. These techniques aim to schedule memory

accesses effectively to minimize the impact of memory latency and improve overall performance.

[2] presents a memory scheduling strategy aimed at addressing the challenges faced in shared

memory environments of heterogeneous multi-core systems. It proposes a step-by-step approach to

memory scheduling, focusing on mitigating interference between memory access requests from

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 6

different cores and improving system performance. The memory scheduling strategy consists of three

key steps:

1. Request Source Isolation: To prevent interference between CPU and GPU memory requests, a

new memory request queue is created based on the request source. This isolation ensures that

GPU requests do not interfere with CPU requests and vice versa, enhancing overall memory

access performance.

2. Dynamic Bank Partitioning: For the CPU request queue, a dynamic bank partitioning strategy

is implemented. It dynamically maps the CPU requests to different bank sets based on the

memory characteristics of the applications. By considering the access behavior and

characteristics of multiple parallel applications, this strategy eliminates memory request

interference among CPU applications without affecting bank-level parallelism.

3. Criticality-Aware Scheduling: The GPU request queue incorporates the concept of criticality to

measure the difference in memory access latency among GPU cores. A criticality-aware

memory scheduling approach is implemented, prioritizing requests based on their criticality

level. This strategy balances the locality and criticality of application access, effectively

reducing memory access latency differences among GPU cores.

[24] proposes a scheduling technique called MixTran for efficient and fair resource allocation in

heterogeneous GPU clusters running mixed deep learning workloads. The authors address the

challenge of existing schedulers not being tailored to deep learning jobs, resulting in low resource

efficiency and job performance. MixTran abstracts heterogeneous GPU resources and distributes

them fairly to users using virtual tickets. It then formulates a global optimization model to efficiently

allocate resources based on quantified resource requests, heterogeneous node constraints, and user

fairness constraints. The technique employs a greedy resource trading mechanism to benefit multiple

users. Experimental results demonstrate that MixTran significantly reduces the total execution time

of deep learning workloads (up to 30%–50%) compared to traditional schedulers while maintaining

user fairness. The scheduling technique employed in MixTran can be categorized as a combination

of fair-share scheduling and resource trading.

3.4. Hardware and Algorithm Co-Design

[2] explores hardware and algorithm co-design approaches to optimize scheduling and

execution for specific types of deep learning algorithms, such as sparse neural networks and

Convolutional Neural Networks (CNNs). It also mentions cache data residency optimization

techniques for improving memory management and cache utilization, which indirectly relate to

scheduling considerations.

3.5. Prefetching Mechanisms

[2] mentions the integration of prefetching mechanisms to anticipate and fetch data in advance.

This technique aims to reduce memory access latency and improve overall performance by

overlapping data movement with computation.

3.6. Fine-Grained Warp Scheduling

[2] discusses fine-grained warp scheduling techniques, which consider the execution order and

prioritization of individual threads within a warp. This technique enhances parallelism and reduces

resource contention, leading to improved performance.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 7

3.7. Context Switching Strategies

[2] explores warp switching strategies as part of optimizing deep learning computations on

GPUs. These strategies involve efficiently switching between different warps to optimize GPU

resource utilization and enhance performance.

3.8. Energy-Aware Job Scheduling Techniques

[3] discusses scheduling techniques for optimizing energy consumption in heterogeneous

computing systems. The main objective is to address the challenges posed by energy consumption,

dynamic variability of CPU-GPU utilization, and job scheduling in large-scale systems. It proposes a

CPU-GPU utilization aware and energy-efficient heuristic greedy strategy (UEJS) as well as a hybrid

particle swarm optimization algorithm (H-PSO) to solve the job scheduling problem. The proposed

UEJS algorithm incorporates the CPU-GPU utilization awareness and energy efficiency

considerations to schedule jobs. To enhance the algorithm's global optimization ability, it introduces

the H-PSO algorithm, which combines the heuristic greedy strategy with a bio-inspired search

optimization technique. Experimental results demonstrate that the H-PSO algorithm outperforms the

heuristic greedy strategy, Max-EAMin, and Genetic Algorithm in terms of average energy

consumption of jobs and system job rejection rate. Specifically, H-PSO achieves a 36.5% improvement

over UEJS, a 36.3% improvement over Max-EAMin, and a 46.7% improvement over GA in terms of

job average energy consumption for heterogeneous systems with high workload.

[5] discusses the importance of energy consumption optimization in computing devices,

particularly in embedded systems. The authors propose an offline scheduling algorithm that aims to

minimize overall energy consumption while ensuring timing constraints on heterogeneous

platforms. The scheduling strategy is based on Forward List Scheduling and takes into account

Dynamic Voltage and Frequency Scaling (DVFS). The algorithm selects the most energy-efficient

version for each task, considering different energy/time trade-offs offered by architecture-specific

binary blocks. It also enables applications to dynamically adapt voltage and frequency during

runtime. Additionally, the proposed heuristic is compared against an optimal solution derived by an

Integer Linear Programming (ILP) formulation, with a deviation of only 1.6% on average. Overall, [5]

emphasizes the need for energy-aware scheduling strategies on heterogeneous real-time systems and

presents a scheduling algorithm that effectively reduces energy consumption while meeting timing

constraints. The proposed approach considers multi-version tasks, DVFS, and heterogeneous

platforms, resulting in significant energy savings compared to existing scheduling algorithms.

[11] proposes scheduling techniques to address the challenges faced by edge platforms

processing multiple machine learning (ML) models concurrently. These platforms, equipped with

heterogeneous computing processors, have limited computational and energy budgets compared to

data center servers. The proposed scheduler uses pre-profiled behavior of ML models and routes

requests to the most suitable processors, considering the regularity of computation in common ML

tasks. It aims to reduce energy consumption while meeting the service-level objective (SLO)

requirement for bounded response latency. To handle the inflexible pre-emption capability of GPUs

and DSPs, the scheduler decomposes large ML tasks into sub-tasks based on the layers of the DNN

model. The scheduling policies are evaluated on an edge platform with CPU, GPU, and DSP. Results

show significant performance improvements and reduced SLO violations compared to naive

scheduling. By considering the heterogeneity of ML models and computing processors, the proposed

techniques optimize performance, reduce energy consumption, and meet SLO requirements in edge

computing environments.

3.9. Memory Latency Tolerance

[4] discusses the challenges and proposed solutions for improving the performance of integrated

CPU/GPU platforms, focusing on the latency associated with data initialization. The authors in this

work highlight the importance of these platforms in autonomous driving and edge intelligence

applications and the limitations posed by the shared physical memory. It introduces the concept of

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 8

unified memory (UM) model in GPU programming, which simplifies memory management and

allocation. However, the conventional copy-then-execute model used in UM programming leads to

significant initialization latency and hampers kernel execution. To address this issue, the authors

propose a framework that enables latency-aware data initialization. The framework includes three

data initialization modes: CPU initialization, GPU initialization, and hybrid initialization. It also

incorporates an affinity estimation model that considers application characteristics and platform

features to determine the most suitable initialization mode. The goal is to optimize the initialization

latency performance of the application.

3.10. Dynamic Task Scheduling

[6] discusses task scheduling strategies for CPU-GPU heterogeneous computing systems. It

proposes two scheduling techniques: a load-aware strategy for the single task model and a genetic

algorithm-based strategy for the multi-task model.

1. Load-Aware Scheduling Strategy:

This strategy focuses on addressing load balancing issues in CPU-GPU heterogeneous

computing systems. It aims to allocate computing tasks to the CPU and GPU based on their

computing power and a perception ratio. The strategy uses a bidirectional queue to store tasks,

reducing additional overhead caused by scheduling. By assigning parallel computing tasks to both

CPUs and GPUs, this strategy enhances performance, reduces load imbalances, and minimizes idle

time.

2. Genetic Algorithm-Based Scheduling Strategy:

This strategy targets improving the overall operating efficiency of CPU-GPU heterogeneous

computing systems in multi-task scenarios. It uses a genetic algorithm to determine the execution

relationship between different types of tasks and heterogeneous processing cores. The strategy aims

to optimize the allocation of computing resources and fully utilize the collaborative computing

capabilities of CPUs and GPUs.

Experimental evaluations demonstrate that this strategy outperforms traditional scheduling

algorithms, static and dynamic scheduling algorithms, and hybrid scheduling algorithms, resulting

in higher system performance.

These scheduling techniques contribute to tapping into the performance potential of CPU-GPU

heterogeneous computing systems, achieving load balance, reducing idle time, and improving

system efficiency.

[18] proposes a scheduling technique to minimize energy consumption in a CPU-GPU cloud

computing platform while handling intermittent real-time tasks. The technique formulates the

problem as an integer nonlinear programming problem and utilizes a dynamic programming

approach inspired by the 0-1 knapsack problem. By dividing the hardware computing resource into

virtual CPUs, the technique dynamically adjusts the task schedule based on the solution.

Experimental results demonstrate that the proposed algorithm effectively reduces energy

consumption and outperforms other greedy methods in terms of computation time. The scheduling

technique contributes to optimizing system performance in cloud computing environments.

[26] presents a programming and execution model called SHMT (Simultaneous and

Heterogeneous Multithreading) that enables parallel processing using heterogeneous processing

units. The paper focuses on the scheduling technique used in SHMT to coordinate the execution on

different hardware components efficiently. SHMT introduces a low-overhead scheduling policy that

considers both results and performance. It utilizes a set of virtual operations (VOPs) and High-Level

Operations (HLOPs) as an intermediate layer between programming languages and hardware

instructions. This intermediate layer facilitates task matching and distribution, allowing SHMT to

divide equivalent operations and data on different computing resources. The scheduling technique

employed in SHMT can be categorized as a dynamic scheduling policy. It dynamically adjusts

workloads on various hardware units to maximize hardware efficiency while providing flexibility in

scheduling policies. By effectively coordinating the execution on heterogeneous hardware, SHMT

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 9

achieves significant speedup and energy reduction compared to GPU baseline, as demonstrated in

evaluations on an embedded system platform. Overall, the paper emphasizes the importance of

scheduling techniques in enabling parallel execution across heterogeneous processing units, and

SHMT's dynamic scheduling policy plays a crucial role in achieving efficient utilization of hardware

resources.

[37] proposes a resource scheduling system called FILL to improve the performance of

GROMACS simulations by effectively utilizing heterogeneous hardware resources. The scheduling

technique used in FILL is space partitioning technology, which allows for precise allocation of

resources between CPU and GPU devices.The article highlights that previous research focused

mainly on co-running multiple GROMACS simulations using time-slice technology, which

introduced context-switching overhead and neglected collaborative scheduling of CPU and GPU

devices. FILL addresses this limitation by leveraging hardware partitioning technologies and

optimizing the allocation of resources for multiple GROMACS jobs. Experimental results

demonstrate significant improvements in system throughput using FILL on both NVIDIA and AMD

GPU servers compared to baseline approaches and state-of-the-art alternatives. FILL achieved an

impressive improvement of up to 167% on NVIDIA GPU servers and demonstrated significant

enhancements of 459% on AMD GPU servers. Overall, FILL's space partitioning-based scheduling

technique enhances resource utilization and improves system throughput for multiple GROMACS

simulations. The FILL mechanism, as shown in Figure 2, effectively addresses the challenge of

resource utilization in heterogeneous computing by employing space partitioning technology to

optimize CPU and GPU allocation for GROMACS simulations

Figure 2. FILL mechanism presented in [37].

[39] introduces a novel scheduling technique called GPARS for efficient resource allocation in

heterogeneous graphics processing unit (GPU) clusters. The scheduling technique leverages

spatiotemporal correlations among jobs and utilizes graph attention networks (GANs) for precise job

duration prediction. The GPARS algorithm addresses the limitations of prior research by considering

the performance variations among different GPU types within heterogeneous clusters and the

presence of spatiotemporal correlations among jobs. It predicts job durations using GANs and

dynamically allocates suitable GPU types for newly submitted jobs based on the prediction results.

The effectiveness of GPARS is evaluated using real traces from Alibaba and Philly, demonstrating a

significant reduction in waiting time (10.29%) and an average improvement in resource utilization

(7.47%) compared to the original scheduling method. Overall, GPARS is a prediction-based

scheduling technique that efficiently schedules resources in heterogeneous GPU clusters, considering

the unique characteristics and variations among different GPU types.

[45] introduces a scheduling technique called RSCHED for managing the concurrent execution

of task-based applications on heterogeneous computing environments. The authors address the

challenge of efficiently utilizing modern parallel architectures with complex memory hierarchies and

heterogeneous processors. They propose RSCHED as a framework to minimize overall makespan

and maximize resource utilization. The scheduling technique aims to improve the execution of task-

based applications by dynamically distributing resources and orchestrating their execution. The

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 10

authors implemented RSCHED using the StarPU runtime system and evaluated its performance on

real applications. The results showed that RSCHED significantly reduced the overall makespan

compared to consecutive execution, with an average speedup factor of 10x. It also demonstrated the

potential to increase resource utilization. RSCHED is a dynamic resource allocation strategy that

enhances the scheduling of task-based applications on heterogeneous systems.

3.11. Adaptive Scheduling

[8] discusses efficiency and productivity in decision making on low-power heterogeneous

CPU+GPU SoCs. It specifically focuses on the evaluation of scheduling strategies for executing value

iteration, a core procedure in decision-making methods, on a low-power CPU+GPU SoC. It compares

off-line-tuned static and dynamic scheduling strategies with adaptive heterogeneous scheduling

strategies. The experiments show that using CPU+GPU heterogeneous strategies significantly reduce

computation time and energy requirements. The CPU+GPU strategies can be up to 54% faster and

57% more energy-efficient compared to multicore or GPU-only implementations. Additionally, It

explores the impact of increasing the abstraction level of the programming model to ease

programming efforts. The comparison between TBB+OpenCL and TBB+oneAPI implementations of

heterogeneous schedulers shows that the oneAPI versions result in up to 5 times less programming

effort with only 3-8% overhead if the scheduling strategy is selected carefully.

The discussed strategies in [8] are:

1. Off-line-Tuned Static and Dynamic Scheduling Strategies:

This study evaluates off-line-tuned static and dynamic scheduling strategies for executing value

iteration, a core procedure in decision-making methods, on a low-power CPU+GPU System-on-Chip

(SoC). The comparison is made between different scheduling strategies to determine their impact on

computation time and energy requirements.

2. Adaptive Heterogeneous Scheduling Strategies:

The study also explores adaptive heterogeneous scheduling strategies for decision-making on a

low-power CPU+GPU SoC. These strategies aim to dynamically allocate tasks between the CPU and

GPU, taking advantage of their respective capabilities. The experiments demonstrate that using

CPU+GPU heterogeneous strategies significantly reduce computation time and energy requirements

compared to multicore or GPU-only implementations.

3. Increasing Abstraction Level of the Programming Model:

The article explores the impact of increasing the abstraction level of the programming model to

ease programming efforts. Specifically, it compares the TBB+OpenCL and TBB+oneAPI

implementations of heterogeneous schedulers. The results show that the oneAPI versions can result

in up to 5 times less programming effort with only 3-8% overhead if the scheduling strategy is

selected carefully.

[16] proposes a scheduling technique called SCHEDTUNE to address the challenges of

managing and scheduling heterogeneous GPU resources in cluster management systems like

Kubernetes. The existing resource schedulers in these systems do not effectively differentiate between

different types of GPUs or support GPU sharing, resulting in low GPU utilization, queuing delays,

and increased application makespan. SCHEDTUNE is a machine-learning-based scheduler that aims

to improve GPU memory utilization, reduce out-of-memory (OOM) failures, and enhance overall

makespan. It achieves this by profiling and analyzing deep learning (DL) jobs on heterogeneous

GPUs to understand interference caused by collocating jobs and predict GPU memory demand and

job completion times. By leveraging this information, SCHEDTUNE optimizes resource allocation

and GPU sharing, resulting in higher GPU utilization and improved performance compared to the

default Kubernetes scheduler. The proposed technique fills the gap between the capabilities of

container orchestrators and the complex requirements of DL applications, providing a management-

level solution that learns system behavior and efficiently manages GPU resources in a heterogeneity-

aware manner.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 11

[17] presents a CPU–GPU heterogeneous computation offloading and resource allocation

scheme for the Industrial Internet of Things (IIoT). With the increasing complexity of IIoT tasks and

the demand for delay-sensitive and computing-intensive applications, heterogeneous platforms

integrating CPUs and GPUs have become essential. However, the three-stage heterogeneous

computing process, including task preprocessing, hybrid computing, and result aggregation, poses

challenges for task offloading and resource allocation. The proposed scheme introduces a three-stage

heterogeneous computing model and formulates the joint task offloading and heterogeneous

resource allocation problem. The authors employ the Lyapunov optimization method and propose

the multihead proximal policy optimization (MH-PPO)-based algorithm to minimize the average

task delay. Simulation results demonstrate the effectiveness of the scheme in reducing task delays.

The study contributes to the development of efficient scheduling techniques in CPU–GPU

heterogeneous computing environments for IoT applications. Figure 3 depicts the three-stage

heterogeneous computing model designed for task offloading and resource allocation in Industrial

Internet of Things (IIoT) systems, demonstrating the sequential steps of preprocessing, hybrid

computing, and result aggregation.

Figure 3. Three stage Heterogeneous Computing Model depicted in [17].

[40] proposes a novel scheduling technique for distributed deep learning (DDL) workloads in

GPU clusters. The primary focus of the scheduling technique is to minimize communication overhead

and reduce training times by consolidating jobs on physically close GPUs. The scheduling technique

consists of three major components: a classical delay scheduling algorithm for job placement and

consolidation, a network-sensitive job preemption strategy, and an auto-tuner mechanism to

optimize delay timers. By considering the anticipated communication-network delays and the

sensitivities of DDL jobs to these delays, the scheduler intelligently places and consolidates jobs based

on their network requirements. The proposed technique takes into account the performance

characteristics of different network tiers, leveraging modern networking hardware advancements. It

dynamically adjusts consolidation based on the network sensitivity of individual jobs, aiming to

minimize queueing delays and overall training times. The evaluation results demonstrate significant

improvements in end-to-end makespan, job completion time, and communication overhead

compared to existing consolidation-based scheduling methods. It presents a network-sensitive

scheduling technique that optimizes GPU cluster scheduling for DDL workloads, considering

communication overhead and job consolidation based on network sensitivities. Scheduling

techniques tailored for distributed deep learning workloads are summarized in Figure 4,

emphasizing strategies that minimize communication overhead and improve job placement within

GPU clusters

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 12

Figure 4. Scheduling Techniques proposed in [40].

3.12. Task Graph Scheduling

[9] discusses scheduling techniques for efficient task mapping on heterogeneous CPU/GPU

platforms. The paper presents a theoretical framework and three practical mapping algorithms with

low time complexity to minimize completion time in GPU-based embedded systems. The challenges

in task mapping arise from the large size of the policy space and the need to consider factors such as

performance characteristics, task dependencies, and data transfer costs. The proposed mapping

algorithms address these challenges and outperform state-of-the-art techniques. Experimental results

demonstrate up to 30% faster completion time across different workloads. This work in [9] extends

the algorithms to enhance runtime performance in resource-limited infrastructure and evaluates

them using a benchmark testing suite for simulating real-world runtime neural networks. The

extended algorithm achieves significantly faster completion time (averaging 30% to 37%

improvement) compared to existing techniques. Figure 5 presents the scheduler application

framework designed to enhance task mapping on heterogeneous CPU/GPU platforms, ensuring

efficient resource utilization and reduced completion times.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 13

Figure 5. Scheduler Application prsented in [9].

[12] focuses on scheduling techniques in heterogeneous computing environments, specifically

within the context of Kubernetes. The paper addresses the challenge of efficiently utilizing multiple

CPUs and GPUs in cloud-based deployments by proposing the KubeSC-RTP scheduler. KubeSC-RTP

stands for "Kubernetes Scheduler based on RunTime Prediction" and employs machine learning

algorithms for runtime estimation of deployed applications. By accurately predicting the execution

time of applications, the scheduler aims to optimize resource consumption and improve overall

system performance. The article outlines the steps involved in implementing the KubeSC-RTP

scheduler and highlights its intelligent scheduling approach based on machine learning techniques.

It emphasizes the importance of selecting the appropriate device (CPU or GPU) for each application

to minimize execution time and maximize resource utilization. The proposed scheduling technique

offers potential benefits for cloud service providers, including reduced processing time, increased

customer satisfaction, and improved resource management. The article concludes by discussing the

experimental results and providing insights into the strengths and limitations of the KubeSC-RTP

scheduler, as well as suggesting avenues for future research and enhancements in this field.

The FastGR framework in [18] employs a heterogeneous task graph scheduler as its scheduling

technique. This scheduler efficiently distributes tasks between the CPU and GPU components of the

system, ensuring workload balancing and resource utilization optimization. By leveraging the

processing power of both CPU and GPU, FastGR achieves significant improvements in performance

and solution quality for global routing. The task graph scheduler plays a crucial role in coordinating

the execution of tasks, managing dependencies, and allocating resources effectively. It dynamically

assigns tasks to the most suitable processing unit, taking into account the computational capabilities

and workload distribution across the system. This approach enables FastGR to harness the massive

parallelism offered by GPUs while effectively utilizing the CPU's capabilities. Through balanced task

scheduling, FastGR maximizes the utilization of available resources, minimizes idle time, and

enhances the overall efficiency of the global routing process. The overall workflow of the FastGR

global routing framework is shown in Figure 6, highlighting the role of a heterogeneous task graph

scheduler in balancing workloads across CPU and GPU components.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 14

Figure 6. Overall flow of Fast GR presented in [18].

[27] proposes a temperature-aware scheduling technique for heterogeneous computing in edge

scenarios. The authors address the challenge of jointly processing inference tasks using CPU, GPU,

and NPU while considering the impact of ambient temperature on edge devices. They establish a

temperature perception model based on the ambient temperature and introduce a TAS (temperature-

aware schedule) algorithm to control the running speed of the heterogeneous device. Additionally,

they propose a task scheduling algorithm called TASTS (TAS-based task schedule) and utilize a

Hungarian matching algorithm to optimize the final results. The article demonstrates that the

proposed technique improves performance by 20-50% compared to conventional methods under

temperature constraints. The scheduling technique used in this study is the TAS (temperature-aware

schedule) algorithm.

[38] proposes a GPU scheduling technique called GCAPS for real-time GPU task execution. The

scheduling technique addresses the challenges of prioritization and preemption in GPU tasks, aiming

to ensure timely execution and meet stringent timing requirements. GCAPS operates at the device

driver level and enables control over GPU context scheduling by adding one-line macros to GPU

segment boundaries. It allows preemption of GPU execution based on task priorities, improving

schedulability and response time. The approach requires minimal modifications to the user-level

GPU access code and provides fine-grained and efficient control of the GPU. Through empirical

evaluations, the proposed approach demonstrates significant improvements over prior work,

achieving up to 40% higher schedulability. GCAPS utilizes a preemptive scheduling technique for

GPU tasks in real-time systems.

[47] provides a comprehensive overview of scheduling techniques used for optimizing energy

consumption in cloud computing. The authors discuss state-of-the-art algorithms for scheduling

workflow tasks to cloud resources, with a specific focus on reducing energy consumption. The article

categorizes different workflow scheduling algorithms based on the scheduling approaches used and

provides an analytical discussion of the covered algorithms. Additionally, the authors classify

various energy-efficient strategies employed by cloud service providers (CSPs) for energy saving in

data centers. The article also highlights popular real-world workflow applications and identifies

emerging trends and open issues in cloud computing for future research directions.

[48] proposes a scheduling technique to alleviate resource contention in heterogeneous systems.

The article addresses the challenge of shared resource utilization between CPUs and GPUs in

network-on-chip (NoC) architectures. It introduces the concept of LLC/MC CENTER architecture and

analyzes the impact of different placement methods on system performance. To optimize the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 15

network's performance, the article presents a task-based routing algorithm that plans the path based

on different tasks and a Task-Based-Partition (TBP) routing algorithm that allocates routing

algorithms of different tasks into separate virtual channels. The proposed scheduling technique aims

to improve system performance by enhancing resource allocation and reducing network latency.

Overall, the article focuses on task-based scheduling techniques for managing resources in

heterogeneous CPU-GPU architectures within a network-on-chip framework.

The framework allows a computational kernel to span across multiple devices on a node and

enables multiple applications to be scheduled on the same node. It dynamically migrates kernels

between devices, expands or contracts the kernel to utilize more or fewer devices, and optimizes

scheduling decisions based on different objectives such as job throughput and job priorities. The

authors evaluate the framework on a CPU+GPU+FPGA platform and demonstrate speedups of 2.26X

over different applications and up to 1.25X for co-scheduled workloads over baselines. The major

contribution lies in the ease of programmability with a single code base across different execution

devices. Overall, the proposed framework provides an efficient scheduling technique for maximizing

the utilization of heterogeneous devices in cloud and HPC environments.

3.13. Hybrid Scheduling

[14] focuses on addressing the challenges faced by heterogeneous systems consisting of CPUs

and GPUs. The authors propose resource scheduling strategies to improve the utilization and

efficiency of heterogeneous cores, thereby optimizing system performance. Two main strategies are

presented: a combination strategy for single-task scheduling and a multi-task scheduling strategy.

The combination strategy involves optimizing task execution efficiency on GPUs by modifying

thread organization structures and developing workload balancing schemes for efficient core

utilization. The multi-task scheduling strategy utilizes task samples to gather information about the

execution efficiency of heterogeneous cores and global task information. An improved ant colony

algorithm is then employed to quickly allocate tasks to the most suitable cores, taking advantage of

the characteristics of heterogeneous cores. Experimental results demonstrate that the combination

strategy reduces task execution time by an average of 29.13%, while the multi-task scheduling

strategy reduces execution time by up to 23.38% compared to the combined strategy. These strategies

effectively utilize the resources of heterogeneous systems and significantly improve task execution

times.

[42] presents a task scheduling technique called HSAS for optimizing the processing efficiency

of deep neural network models on heterogeneous systolic array accelerator clusters. The authors

address the challenge of significant differences among models and layers by proposing a

heterogeneous architecture that consists of systolic arrays with different scales. HSAS considers

factors such as task priority, prediction, preemption, load balance, and layer-level scheduling. The

scheduling technique employs a task decomposition algorithm and a subtask priority management

table to enable fine-grained subtask-level scheduling. The authors validate the performance and

energy models for systolic arrays and demonstrate their accuracy. Experimental results show that

HSAS outperforms classic and state-of-the-art methods in terms of average normalized turnaround

time, system throughput, and fairness, achieving improvements of over 80% with task-level

scheduling and 18% to 63% with subtask-level scheduling. HSAS is a sophisticated scheduling

technique that optimizes the utilization of heterogeneous systolic array architectures for processing

deep neural network models, leading to significant performance improvements.

[44] presents a comprehensive analysis of task scheduling techniques in heterogeneous

computing environments. The study evaluates the performance of four scheduling algorithms: First-

Come, First-Served (FCFS), FCFS with No Queuing (FCFS-NQ), Minimum Expected Completion

Time (MECT), and Minimum Expected Execution Time (MEET). The goal is to optimize resource

utilization and minimize task completion times. Three workload scenarios representing different

computational demands are considered: low, medium, and high. Through rigorous experimentation,

the authors assess the effectiveness of each algorithm in terms of total completion percentage, energy

consumption, wasted energy, and energy per completion. The findings highlight the strengths and

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 16

limitations of each algorithm. MECT and MEET emerge as strong contenders, dynamically

prioritizing tasks based on comprehensive estimates of completion and execution times. These

algorithms exhibit superior energy efficiency compared to FCFS and FCFS-NQ, making them

suitable for resource-constrained environments. The study provides valuable insights into task

scheduling algorithms, enabling informed decision-making for enhancing resource allocation,

minimizing task completion times, and improving energy efficiency. CPU scheduling techniques are

visually summarized in Figure 7, providing insights into strategies for optimizing task execution in

resource-constrained environments.

Figure 7. Different CPU Scheduling presented in [44].

3.14. Pipelined Scheduling

[19] introduces a platform that aims to simplify the implementation of computationally

demanding algorithms in a heterogeneous computing environment. The platform utilizes a

scheduling technique to distribute tasks across different computing devices, including CPUs, GPUs,

and FPGAs, in order to achieve algorithm acceleration. By leveraging the OpenCL framework, the

platform offers generality and flexibility, allowing non-experts in heterogeneous computing to

deploy and run algorithms without extensive knowledge of specific implementation frameworks.

The platform automatically generates parallel code by analyzing algorithms implemented in C,

adapting it to target the available computing devices. Experimental results using the Polybench/C

suite demonstrate the effectiveness of the proposed platform, achieving accelerations of up to 270×

for parallel-friendly algorithms. The scheduling technique used in the platform is not explicitly

mentioned in the provided summary.

[20] presents a distributed framework called HeterPS, which employs a reinforcement learning

(RL)-based scheduling method to optimize the training process of deep neural network (DNN)

models in heterogeneous computing environments. The scheduling technique used in HeterPS is

based on RL and utilizes an LSTM model. The framework addresses the challenge of effectively

utilizing diverse computing resources, such as CPUs and GPUs, for training large-scale DNN models.

HeterPS schedules each layer of the DNN model to the appropriate computing resource to minimize

costs and satisfy throughput constraints. It also manages data storage and communication among

distributed computing resources. Experimental results demonstrate that HeterPS outperforms

existing approaches in terms of throughput, achieving a 14.5 times higher throughput, and monetary

cost, resulting in a 312.3% reduction in cost. Figure 8 outlines the HeterPS framework, showcasing its

reinforcement learning-based scheduling approach to optimize deep learning model training across

diverse computing resources.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 17

Figure 8. HeterPS framework presented in [20].

[25] introduces a scheduling technique called RTGPU for efficiently scheduling multiple GPU

applications with hard real-time guarantees. The article addresses the challenge of scheduling highly

parallel applications on graphics processing units (GPUs) while meeting stringent timing constraints.

RTGPU combines fine-grain GPU partitioning with a novel scheduling algorithm based on federated

scheduling and grid search with uniprocessor fixed-priority scheduling. The proposed technique

leverages persistent threads and interleaved execution to improve GPU partitioning and

performance. It provides real-time guarantees to meet hard deadlines and achieves significant

improvements in system throughput (over 11%) and schedulability (up to 57%) compared to previous

approaches. The RTGPU scheduling technique is validated and evaluated on NVIDIA GPU systems.

It can be applied to mainstream GPUs and general heterogeneous computing platforms with similar

task execution patterns. This technique contributes to enabling the efficient execution of computation-

intensive parallel tasks on GPUs within real-time constraints.

[32] proposes a performance model for estimating the performance of the heterogeneous

implementation and providing guidance for computer architecture design. They apply the CPU-GPU

heterogeneous computing to a CFD test case and compare its performance with a pure GPU

implementation. By assigning proper workload ratios to the CPU and GPU workers, the

heterogeneous version outperforms the pure GPU version by up to 23%. The authors leverage MPI

(Message Passing Interface) and OpenACC to facilitate the CPU-GPU heterogeneous computing

workflow in the CFD solver. These frameworks are commonly used for parallel computing and task

distribution in heterogeneous systems.

3.15. Power Aware/Deadline Aware Scheduling

[23] Hydra, a scheduling technique designed for deep learning (DL) jobs running on

heterogeneous GPUs. The primary goal of Hydra is to efficiently schedule DL jobs while considering

deadline requirements and reducing job completion time (JCT). Existing approaches focusing on

efficiency or deadline requirements alone are inadequate for this task. Hydra introduces a novel

quantitative cost comparison approach that incorporates total JCT and a dynamic penalty based on

tardiness, i.e., the delay in meeting deadlines. It leverages a sampling approach to estimate job

execution times accurately on heterogeneous GPUs and utilizes an efficient branch-and-bound

algorithm to find the optimal job-GPU combinations. Evaluation experiments using Alibaba traces

demonstrate that Hydra significantly reduces total tardiness by 85.8% while minimizing JCT

compared to state-of-the-art efforts. The technique used in Hydra can be categorized as deadline-

aware scheduling for deep learning jobs on heterogeneous GPUs.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 18

[41] introduces a scheduling technique for optimizing the deployment of time-sensitive

applications, specifically focusing on Intrusion Detection Systems (IDS), in a serverless edge

computing environment. The proposed technique addresses the challenges of reducing initialization

delays, minimizing communication delays, and leveraging heterogeneous resources to satisfy

variable Quality of Service (QoS) requirements. The scheduling technique incorporates a storage-

aware allocation and scheduling policy that aims to minimize task placement costs for service

providers while optimizing QoS for IDS users. It includes a caching and consolidation strategy to

minimize cold starts and inter-function communication delays. By leveraging the capabilities of

heterogeneous edge resources, the strategy achieves better QoS performance and reduces the number

of edge nodes required for application deployment. The article presents a simulation-based

evaluation comparing the proposed technique with a vanilla Knative orchestrator and a storage-

agnostic policy. The results demonstrate that the proposed strategy achieves 18% fewer QoS penalties

and consolidates applications across 80% fewer edge nodes. Overall, the scheduling technique

contributes to cost-effective deployment of IDS and other time-sensitive applications on unreserved

edge resources, leveraging serverless computing paradigms.

[43] presents a novel approach to instruction scheduling for GPUs using a parallelized Ant

Colony Optimization (ACO) algorithm. The authors address the register-pressure-aware instruction

scheduling problem, which involves optimizing the balance between schedule length and register

pressure on a GPU target. They demonstrate that parallelizing the ACO algorithm on the GPU

significantly improves scheduling performance compared to sequential CPU-based scheduling. The

ACO algorithm, inspired by nature, utilizes a pheromone-based search technique to find optimal

instruction orders. The authors propose several techniques to efficiently parallelize the ACO

algorithm for the complex multi-objective optimization problem of register-pressure-aware

scheduling on the GPU. Experimental results show that parallel ACO-based scheduling on the GPU

achieves up to 27 times faster execution compared to sequential CPU-based scheduling, resulting in

a 21% reduction in total compile time and up to 74% improvement in execution speed compared to

AMD's production scheduler.

3.16. Batch Job Scheduling

[29] focuses on a programming model Allo for efficient spatial accelerator architectures. One of

the key aspects of Allo is its scheduling technique, which enables the construction of modular

hardware accelerators through the composition of customized kernels and external IPs. The

scheduling technique used in Allo is called composable schedules. This technique allows users to

incrementally add customizations to kernels while validating the correctness of each submodule.

Multiple schedules are progressively integrated into a complete design using the .compose()

primitive. The composable schedules approach enhances productivity and debuggability, enabling

the creation of high-performance designs. Allo also introduces a hierarchical dataflow graph to

support the composition of multiple kernels within a complex design while maintaining function

boundaries. By modeling the interface unification problem as a type inference problem and

leveraging the hierarchical dataflow graph, Allo optimizes the scheduling of dataflow operations.

Overall, Allo's composable scheduling technique provides a flexible and modular approach to

designing high-performance spatial accelerators.

[30] focuses on the analysis of scheduling algorithms used in heterogeneous computing systems.

The article reviews various list-based workflow scheduling algorithms over the past two decades and

categorizes them based on their scheduling objectives. The main scheduling technique discussed in

the article is list-based scheduling, specifically list scheduling with static priorities (LSSP). List-based

scheduling algorithms are known for their efficiency in generating schedules for complex workflow

applications in heterogeneous computing environments. These algorithms aim to minimize

makespan, energy consumption, and maximize resource utilization and reliability. The article

compares different list-based scheduling algorithms based on their objectives, merits, comparison

metrics, workload type, experimental scale, experimental environment, and results. Additionally, the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 19

article conducts experimental analysis of seven state-of-the-art algorithms on randomly generated

workflows to understand their working.

[31] explores the challenges and advancements in GPU virtualization, specifically focusing on

the scheduling technique used in the Intel Graphics Virtualization Technology—Grid generation

(GVT-g). The authors present a novel performance analysis framework that utilizes host-based

tracing combined with the Linux Trace Toolkit Next Generation (LTTng) to collect performance data

efficiently and with minimal overhead. The scheduling technique employed in GVT-g allows for the

allocation and sharing of GPU resources among virtual machines. The framework incorporates a

unified, stateful model for filtering and organizing trace data, enabling the computation of various

performance metrics. The analysis is performed using Trace Compass, an open-source performance

analyzer, which provides synchronized graphical views to aid in understanding GVT-g's internal

mechanisms and diagnosing performance issues related to virtual GPU usage. This article provides

valuable insights into GPU virtualization and offers a practical approach to performance analysis in

virtualized environments using the GVT-g scheduling technique.

[33] provides a comprehensive overview of scheduling techniques for deep learning (DL)

workloads in GPU datacenters. The article emphasizes the importance of efficient scheduling to

reduce operational costs and improve resource utilization in DL model development. Traditional

scheduling approaches designed for big data or high-performance computing workloads are

inadequate for fully utilizing GPU resources in DL workloads. The survey examines existing research

efforts for both training and inference workloads, categorizing them based on scheduling objectives

and resource utilization. It discusses the challenges in designing satisfactory schedulers for DL

workloads and identifies the common strategies employed by existing solutions.

[35] presents a scheduling technique called Energy Efficient Successor Tree Consistent Earliest

Deadline First (EESEDF) for Periodic Conditional Task Graphs (PCTGs) on Multiprocessor System-

on-Chips (MPSoCs) with shared memory. The goal is to minimize energy usage by considering

dynamic and static power models. The EESEDF approach maximizes the worst-case processor

utilization by assigning tasks to processors and arranging them using the earliest successor tree

consistent deadline-first strategy. To further minimize energy consumption, the technique solves a

convex Non-Linear Program (NLP) to determine optimal task speeds. Additionally, an online

Dynamic Voltage Scaling (DVS) heuristic is introduced, which dynamically adjusts task speeds in

real-time. Experimental results demonstrate that EESEDF+Online-DVS outperforms existing

techniques, achieving notable energy efficiency improvements over LESA and NCM. The proposed

scheduling technique achieves significant energy efficiency gains compared to IOETCS-Heuristic,

BESS, and CAP-Online. In summary, the article focuses on the EESEDF scheduling technique, which

combines successor tree consistency, earliest deadline first strategy, and dynamic voltage scaling to

optimize energy usage in scheduling PCTGs on MPSoCs with shared memory.

[36] addresses the scheduling challenges faced in multi-tenant cloud systems with

heterogeneous GPUs when running various machine learning workloads. The authors propose a

novel scheduling approach that utilizes a genetic optimization technique implemented within a

process-oriented discrete-event simulation framework. The scheduling technique employed in the

study is a genetic optimization technique, which involves using genetic algorithms to find optimal

solutions for scheduling machine learning tasks on GPUs. The approach aims to improve GPU

utilization in complex environments by effectively orchestrating the scheduling of machine learning

workloads. Through extensive simulations using workload traces from Alibaba's MLaaS cluster,

which consists of over 6000 heterogeneous GPUs, the proposed scheduling approach demonstrates a

12.8% improvement in GPU utilization compared to Round-Robin scheduling. The results highlight

the effectiveness of the genetic optimization technique in optimizing GPU scheduling in cloud-based

environments. It focuses on enhancing the scheduling of AI applications in multi-tenant cloud

systems by employing a genetic optimization technique, which improves GPU utilization and

optimizes resource allocation for machine learning workloads. Table 1 recaps the significant features

of various scheduling techniques discussed in this survey focussing on their advanatges and

challenges.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 20

Table 1. Significant features of various Scheduling Techniques.

Paper
Scheduling

Technique
Description Focus Flexibility Advantages Challenges

[2]
Fine-grained warp

scheduling

Prioritizes

individual threads

within a warp to

enhance

parallelism.

Thread execution

optimization
High

Enhanced

parallelism,

reduced resource

contention

Increased

complexity,

potential overhead

[4]
Memory latency

tolerance

Overlaps memory

access with

computation to

minimize

performance

impact.

Memory access

optimization
Medium

Reduced memory

latency impact

Complexity in

implementation

[2,24]
Memory bank

parallelism

Exploits GPU

memory access

capabilities to

increase

throughput.

Memory

throughput

optimization

Medium
Improved memory

access patterns

Potential conflicts

in memory banks

[2] Context switching

Efficiently

switches between

warps to optimize

GPU resource

usage.

Resource

utilization

optimization

High

Reduced idle

times, better

utilization

Overhead and

potential

synchronization

issues

[2]
Prefetching

mechanisms

Anticipates and

fetches data in

advance to reduce

memory access

latency.

Data access

optimization
Low

Reduced latency,

improved data

availability

Prediction

overhead,

redundancy risk

[7,10]
Dynamic load

balancing

Redistributes

workload in real

time based on

system conditions.

Workload

distribution
High

Improved

responsiveness,

balanced resources

Potential runtime

overhead

[6,39]
Dynamic task

scheduling

Real-time

adaptation of task

execution

priorities to

maximize system

efficiency.

Task execution

optimization
High

Adaptability to

workload changes

Higher runtime

complexity

[16,17] Adaptive scheduling

Adjusts policies

dynamically based

on workload and

system state.

Workload

adaptation
High

Better resource

utilization

May incur frequent

adjustments

[14,42] Hybrid scheduling

Combines static

and dynamic

approaches for

optimized task

execution.

Mixed scheduling

strategies
Medium

Flexibility,

efficiency in

diverse workloads

Requires careful

design

[23]
Power-aware

scheduling

Manages energy

consumption

while maintaining

performance.

Energy efficiency Medium
Reduced power

usage

May compromise

speed

[25,38]
Real-time GPU

scheduling

Focuses on

guaranteeing

deadlines for

GPU-based tasks.

Timing-critical

applications
Medium

Ensures

predictable

performance

Limited to real-time

systems

[33,36] Batch job scheduling

Processes multiple

tasks in batches to

optimize resource

usage.

Resource

optimization
Medium High throughput

May cause latency

for smaller tasks

[20]

Reinforcement

learning-based

scheduling

Utilizes RL to

dynamically

allocate tasks

across

Intelligent task

allocation
High

Optimized

scheduling in

uncertain

environments

Training overhead,

scalability

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 21

heterogeneous

resources.

[29]
Composable

schedules

Incrementally

builds custom

schedules for

modular hardware

designs.

Hardware

optimization
High

Flexibility in

hardware design

Limited

generalizability

[31,37] Resource partitioning

Divides resources

between tasks to

improve

throughput and

reduce conflicts.

Resource allocation Medium
Improved resource

utilization

May require

significant tuning

[41]
Storage-aware

scheduling

Optimizes storage

placement and

access to reduce

overhead in

serverless edge

computing.

Storage and task

placement
Medium

Better QoS and

reduced cold starts

Relies on caching

performance

[8,27]
Temperature-aware

scheduling

Adapts task

schedules to

maintain system

performance

under temperature

constraints.

Thermal

optimization
Medium

Prolonged

hardware lifespan,

performance

stability

Overhead of

temperature

monitoring

[40]
Network-sensitive

scheduling

Minimizes

communication

delays for

distributed deep

learning

workloads by

consolidating jobs.

Communication

overhead

optimization

Medium

Reduced

communication

delays, faster

completion

Complex job

placement

algorithms

[43]
Register-pressure-

aware scheduling

Balances schedule

length and register

usage to optimize

GPU task

execution.

Instruction

scheduling
Medium

Improved GPU

instruction

performance

Algorithm

complexity

[18,44]
Task graph

scheduling

Optimizes

execution of task

dependencies

across

heterogeneous

platforms.

Dependency

management
Medium

Reduced

completion times

High complexity

for large workloads

[19,32]
Pipelined task

scheduling

Overlaps task

execution stages to

improve efficiency

and system

throughput.

Staged execution

optimization
High

Faster task

completion

Increased task

management

complexity

[35]
Energy-efficient

scheduling

Uses successor tree

consistency and

DVS to minimize

power

consumption in

heterogeneous

systems.

Power

optimization
Medium

Reduced energy

usage

May impact real-

time performance

[45,48] Task-based routing

Plans routes and

allocates resources

dynamically in

heterogeneous

NoC architectures.

Network-on-Chip

scheduling
Medium

Optimized

resource

allocation, reduced

latency

High

computational

requirements

4. Summary of the Review

The review provides a comprehensive survey of recent developments in scheduling techniques

aimed at maximizing the efficiency of deep learning computations on GPUs. It highlights the

challenges associated with parallel thread execution and resource utilization on GPUs, which can

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 22

result in suboptimal performance. The surveyed research focuses on novel scheduling policies that

improve memory latency tolerance, exploit parallelism, and enhance GPU resource utilization.

The review explores various aspects of scheduling techniques for deep learning on GPUs,

including warp scheduling policies, memory latency tolerance, memory bank parallelism, context

switching strategies, and prefetching mechanisms. These techniques aim to effectively manage the

execution of parallel threads, optimize memory access patterns, and improve resource utilization.

The integration of fine-grained warp scheduling, warp switching strategies, and prefetching

mechanisms is also discussed to optimize deep learning computations on GPUs.

Experimental evaluations demonstrate significant performance improvements in terms of

throughput, memory bank parallelism, and latency reduction. The insights gained from this survey

can guide researchers, system designers, and practitioners in developing more efficient and powerful

deep learning systems on GPUs. The review also discusses potential future directions for research,

such as advanced scheduling techniques, energy efficiency considerations, and the integration of

emerging computing technologies.

Overall, the review provides a comprehensive overview of recent advancements in scheduling

techniques for efficient deep learning computations on GPUs, highlighting their impact on system

performance and suggesting future research directions. Table 2 summarizes various scheduling

techniques, focusing on their strategies, key features, and applications, emphasizing advancements

in optimizing GPU-based deep learning computations.

Table 2. Summary Table on Scheduling Techniques.

Ref No. Scheduling Technique Focus Area Strategy Type Key Features

[2] Warp Scheduling
Thread assignment to

warps
Dynamic

Efficient resource allocation and

thread management

[2]
Memory Latency

Tolerance

Minimizing memory

latency
Dynamic

Overlapping memory access and

computation

[2,24]
Memory Bank

Parallelism

Enhancing memory

throughput
Dynamic

Exploiting parallel memory

access capabilities

[2] Context Switching
Optimizing resource

usage
Dynamic

Efficient warp switching for

resource optimization

[2] Prefetching Mechanisms
Data access

optimization
Dynamic

Anticipating and fetching data in

advance

[2] Fine-grained Scheduling
Individual thread

prioritization
Dynamic

Enhancing parallelism and

reducing contention

[46] Workload Partitioning
CPU-GPU workload

division
Static/Dynamic

Effective distribution based on

workload and system conditions

[2,24]
Memory Access

Scheduling

Memory latency

optimization
Dynamic

Effective scheduling to reduce

memory latency

[9,12,18,27,38,47,48] Task Graph Scheduling
Task graph

optimization
Dynamic

Dynamic redistribution based on

task graph characteristics

[7,10],28]
Dynamic Load

Balancing

Workload

redistribution
Dynamic

Adapting workload distribution

in

 real-time

[2]
Hardware-Algorithm

Co-design

Optimization for

specific algorithms
Dynamic

Co-design approaches for

algorithm and hardware

optimization

[6,18,26,37,39,45]
Dynamic Task

Scheduling

Real-time task

optimization
Dynamic

Adapting task priorities based

on system load

[8,16,17,40]
Adaptive Scheduling

Policies

Dynamic scheduling

adjustments
Dynamic

Real-time policy changes based

on workload and system state

[19,20,25,32]
Pipelined Task

Scheduling

Task execution

pipelining
Dynamic

Overlapping task execution

stages for improved efficiency

[14,42,44]
Hybrid Scheduling

Strategies

Combined scheduling

approaches
Mixed

Utilizing a mix of static and

dynamic scheduling techniques

[29–31,33,35,36] Batch Job Scheduling
Job processing

optimization
Static/Dynamic

Scheduling multiple jobs for

optimized resource usage

[23,41,43]
Power-aware

Scheduling

Energy-efficient task

management
Dynamic

Adjusting scheduling based on

power consumption

considerations

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 23

5. Conclusions and Future Scope

In conclusion, this review article provides a comprehensive survey of recent advancements in

scheduling techniques aimed at maximizing the efficiency of deep learning computations on GPUs.

The challenges associated with parallel thread execution, resource utilization, and memory latency

in GPUs are highlighted, along with the need for efficient scheduling techniques to optimize

performance.

The surveyed research focuses on novel scheduling policies that improve memory latency

tolerance, exploit parallelism, and enhance GPU resource utilization. Various techniques such as

prefetching mechanisms, fine-grained warp scheduling, and warp switching strategies are explored

to optimize deep learning computations on GPUs. Experimental evaluations demonstrate significant

performance improvements in terms of throughput, memory bank parallelism, and latency

reduction.

The insights gained from this survey can guide researchers, system designers, and practitioners

in developing more efficient and powerful deep learning systems on GPUs. Furthermore, potential

future directions are discussed, including advanced scheduling techniques, energy efficiency

considerations, and the integration of emerging computing technologies, inspiring further research

in this domain.

Future research in this domain can focus on several key areas to further optimize scheduling

techniques for GPUs. First, the integration of energy-efficient algorithms with real-time scheduling

methods could address the growing demand for sustainable computing. Second, exploring machine

learning-based predictive models for dynamic scheduling can enhance adaptability and resource

utilization in diverse workloads. Third, the convergence of scheduling strategies with emerging

hardware technologies such as neuromorphic computing and quantum processors could unlock new

possibilities for deep learning computations. Additionally, developing standardized frameworks to

support heterogeneous systems and improve interoperability across platforms would be beneficial.

Finally, addressing challenges in security-aware and fault-tolerant scheduling will ensure robustness

in critical applications, opening avenues for deployment in industrial and edge computing

environments. These advancements will continue to push the boundaries of deep learning and

heterogeneous computing optimization.

Overall, the advancements in scheduling techniques presented in review offer valuable

contributions to maximizing the efficiency of deep learning computations on GPUs, paving the way

for improved performance and resource utilization in a wide range of applications and domains.

References

1. Mittal, S.; Vetter, J.S. A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Comput. Surv.

2015, 47, 1-35.

2. Fang, J.; Wang, M.; Wei, Z. A Memory Scheduling Strategy for Eliminating Memory Access Interference in

Heterogeneous System. J. Supercomput. 2020, 76, 3129-3154.

3. Tang, X.; Fu, Z. CPU-GPU Utilization Aware Energy-Efficient Scheduling Algorithm on Heterogeneous

Computing Systems. IEEE Access 2020, 8, 58948-58958.

4. Wang, Z.; et al. Enabling Latency-Aware Data Initialization for Integrated CPU/GPU Heterogeneous

Platform. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 3433-3444.

5. Roeder, J.; Rouxel, B.; Altmeyer, S.; Grelck, C. Energy-aware Scheduling of Multi-version Tasks on

Heterogeneous Real-time Systems. In Proceedings of the 36th Annual ACM Symposium on Applied

Computing, March 2021; pp. 501-510.

6. Fang, J.; Zhang, J.; Lu, S.; Zhao, H. Exploration on task scheduling strategy for CPU-GPU heterogeneous

computing system. In Proceedings of the 2020 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), 306-311, IEEE, 2020.

7. Canon, L.-C.; Marchal, L.; Simon, B.; Vivien, F. Online scheduling of task graphs on heterogeneous

platforms. IEEE Trans. Parallel Distrib. Syst. 2019, 31, 721-732.

8. Constantinescu, D.-A.; Navarro, A.; Corbera, F.; Fernández-Madrigal, J.-A.; Asenjo, R. Efficiency and

Productivity for Decision Making on Low-Power Heterogeneous CPU+GPU SoCs. J. Supercomput. 2021,

77, 44-65.

9. Li, Z.; et al. Efficient Algorithms for Task Mapping on Heterogeneous CPU/GPU Platforms for Fast

Completion Time. J. Syst. Archit. 2021, 114, 101936.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 24

10. Grinsztajn, N.; et al. Readys: A Reinforcement Learning Based Strategy for Heterogeneous Dynamic

Scheduling. In Proceedings of the 2021 IEEE International Conference on Cluster Computing (CLUSTER);

IEEE, 2021.

11. Seo, W.; et al. SLO-aware Inference Scheduler for Heterogeneous Processors in Edge Platforms. ACM

Trans. Archit. Code Optim. 2021, 18, 1-26.

12. Harichane, I.; Makhlouf, S.A.; Belalem, G. KubeSC-RTP: Smart Scheduler for Kubernetes Platform on CPU-

GPU Heterogeneous Systems. Concurrency Comput. Pract. Exp. 2022, 34, e7108.

13. Asad, A.; Kaur, R.; Mohammadi, F. A Survey on Memory Subsystems for Deep Neural Network

Accelerators. Future Internet 2022, 14, 146. https://doi.org/10.3390/fi14050146

14. Fang, J.; et al. Resource Scheduling Strategy for Performance Optimization Based on Heterogeneous CPU-

GPU Platform. 2022.

15. Kaur, R.; Mohammadi, F. Power Estimation and Comparison of Heterogeneous CPU-GPU Processors. In

Proceedings of the 2023 IEEE 25th Electronics Packaging Technology Conference (EPTC), 5 December 2023;

pp. 948-951. IEEE.

16. Albahar, H.; et al. SchedTune: A Heterogeneity-Aware GPU Scheduler for Deep Learning. In Proceedings

of the 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid);

IEEE, 2022.

17. He, Z.; Sun, Y.; Wang, B.; Li, S.; Zhang, B. CPU-GPU Heterogeneous Computation Offloading and Resource

Allocation Scheme for Industrial Internet of Things. IEEE Internet of Things J. 2023.

18. Hu, B.; Yang, X.; Zhao, M. Energy-Minimized Scheduling of Intermittent Real-Time Tasks in a CPU-GPU

Cloud Computing Platform. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 2391-2402.

19. Garcia-Hernandez, J.J.; Morales-Sandoval, M.; Elizondo-Rodríguez, E. A Flexible and General-Purpose

Platform for Heterogeneous Computing. Computation 2023, 11, 97.

20. Liu, J.; Wu, Z.; Feng, D.; Zhang, M.; Wu, X.; Yao, X.; Yu, D.; Ma, Y.; Zhao, F.; Dou, D. Heterps: Distributed

deep learning with reinforcement learning based scheduling in heterogeneous environments. Future

Gener. Comput. Syst. 2023, 148, 106-117.

21. Kaur, R.; Mohammadi, F. Comparative Analysis of Power Efficiency in Heterogeneous CPU-GPU

Processors. In Proceedings of the 2023 Congress in Computer Science, Computer Engineering, & Applied

Computing (CSCE), 24 July 2023; pp. 756-758. IEEE.

22. Kaur, R.; Saluja, N. Comparative Analysis of 1-bit Memory Cell in CMOS and QCA Technology. In

Proceedings of the 2018 International Flexible Electronics Technology Conference (IFETC), Ottawa, ON,

Canada, 2018, pp. 1-3. doi: 10.1109/IFETC.2018.8584033.

23. Yang, Z.; Wu, H.; Xu, Y.; Wu, Y.; Zhong, H.; Zhang, W. Hydra: Deadline-aware and efficiency-oriented

scheduling for deep learning jobs on heterogeneous GPUs. IEEE Trans. Comput. 2023, 72, 2224-2236.

24. Zhang, X. Mixtran: an efficient and fair scheduler for mixed deep learning workloads in heterogeneous

GPU environments. Cluster Comput. 2024, 27, 2775-2784.

25. A. Zou, J. Li, C. D. Gill, and X. Zhang, "RTGPU: Real-time GPU scheduling of hard deadline parallel tasks

with fine-grain utilization," IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 5, pp. 1450-1465, 2023.

26. Hsu, K.-C.; Tseng, H.-W. Simultaneous and Heterogeneous Multithreading. In Proceedings of the 56th

Annual IEEE/ACM International Symposium on Microarchitecture, 2023.

27. Gao, X. TAS: A Temperature-Aware Scheduling for Heterogeneous Computing. IEEE Access 2023, 11,

54773-54781.

28. Chun, C.-K.; Lai, K.-C. A Load Balance Scheduling Approach for Generative AI on Cloud-Native

Environments with Heterogeneous Resources. In Proceedings of the 2024 10th International Conference on

Applied System Innovation (ICASI); IEEE, 2024

29. Chen, H.; Zhang, N.; Xiang, S.; Zeng, Z.; Dai, M.; Zhang, Z. Allo: A Programming Model for Composable

Accelerator Design. Proc. ACM Program. Lang. 2024, 8, PLDI, 593-620.

30. Ahmad, W.; Gautam, G.; Alam, B.; Bhati, B. S. An Analytical Review and Performance Measures of State-

of-Art Scheduling Algorithms in Heterogeneous Computing Environment. Arch. Comput. Methods Eng.

2024, 1-23.

31. Belkhiri, A.; Dagenais, M. Analyzing GPU Performance in Virtualized Environments: A Case Study. Future

Internet 2024, 16, 72.

32. Xue, W.; Wang, H.; Roy, C.J. CPU-GPU heterogeneous code acceleration of a finite volume Computational

Fluid Dynamics solver. Future Gener. Comput. Syst. 2024, 158, 367-377.

33. Ye, Z.; Gao, W.; Hu, Q.; Sun, P.; Wang, X.; Luo, Y.; Zhang, T.; Wen, Y. Deep Learning Workload Scheduling

in GPU Datacenters: A Survey. ACM Comput. Surv. 2024, 56, 1-38.

34. Tayeb, H.; Bramas, B.; Faverge, M.; Guermouche, A. Dynamic Tasks Scheduling with Multiple Priorities

on Heterogeneous Computing Systems.2024.

35. Tariq, U.U.; Ali, H.; Nadeem, M.S.; Jan, S.R.; Sabrina, F.; Grandhi, S.; Wang, Z.; Liu, L. Energy-aware

Successor Tree Consistent EDF Scheduling for PCTGs on MPSoCs. IEEE Access 2024.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

 25

36. Kwon, S.; Bahn, H. Enhanced Scheduling of AI Applications in Multi-Tenant Cloud Using Genetic

Optimizations. Appl. Sci. 2024, 14, 4697.

37. Zhou, Y.; Ren, Z.; Shao, E.; Ma, L.; Hu, Q.; Wang, L.; Tan, G. FILL: a heterogeneous resource scheduling

system addressing the low throughput problem in GROMACS. CCF Trans. High Perform. Comput. 2024,

6, 17-31.

38. Wang, Y.; Liu, C.; Wong, D.; Kim, H. GCAPS: GPU Context-Aware Preemptive Priority-based Scheduling

for Real-Time Tasks. arXiv preprint arXiv:2406.05221, 2024.

39. Wang, S.; Chen, S.; Shi, Y. GPARS: Graph predictive algorithm for efficient resource scheduling in

heterogeneous GPU clusters. Future Gener. Comput. Syst. 2024, 152, 127-137.

40. Sharma, A.; Bhasi, V.M.; Singh, S.; Kesidis, G.; Kandemir, M.T.; Das, C.R. GPU Cluster Scheduling for

Network-Sensitive Deep Learning. arXiv preprint arXiv:2401.16492, 2024.

41. Lannurien, V.; Slimani, C.; d'Orazio, L.; Barais, O.; Paquelet, S.; Boukhobza, J. HeROcache: Storage-Aware

Scheduling in Heterogeneous Serverless Edge-The Case of IDS. In Proceedings of the 24th IEEE/ACM

International Symposium on Cluster, Cloud and Internet Computing, 2024.

42. Yan, K.; Song, Y.; Liu, T.; Tan, J.; Wei, X.; Fu, X. HSAS: Efficient task scheduling for large scale

heterogeneous systolic array accelerator cluster. Future Gener. Comput. Syst. 2024, 154, 440-450.

43. Shobaki, G.; Muyan-Özçelik, P.; Hutton, J.; Linck, B.; Malyshenko, V.; Kerbow, A.; Ramirez-Ortega, R.;

Gordon, V.S. Instruction Scheduling for the GPU on the GPU. In Proceedings of the 2024 IEEE/ACM

International Symposium on Code Generation and Optimization (CGO), 435-447, IEEE, 2024.

44. Mohammadjafari, A.; Khajouie, P. Optimizing Task Scheduling in Heterogeneous Computing

Environments: A Comparative Analysis of CPU, GPU, and ASIC Platforms Using E2C Simulator. arXiv

preprint arXiv:2405.08187, 2024.

45. Ndamlabin, E.; Bramas, B. RSCHED: An effective heterogeneous resources management for simultaneous

execution of task-based applications. 2024.

46. McGowen, J.; Dagli, I.; Dantam, N.T.; Belviranli, M.E. Scheduling for Cyber-Physical Systems with

Heterogeneous Processing Units under Real-World Constraints. In Proceedings of the 38th ACM

International Conference on Supercomputing, 298-311, 2024.

47. Verma, P.; Maurya, A.K.; Yadav, R.S. A survey on energy-efficient workflow scheduling algorithms in

cloud computing. Softw. Pract. Exp. 2024, 54, 637-682.

48. Fang, J.; Wei, Z.; Liu, Y.; Hou, Y. TB-TBP: a task-based adaptive routing algorithm for network-on-chip in

heterogeneous CPU-GPU architectures. J. Supercomput. 2024, 80, 6311-6335.

49. Al Abdul Wahid, S.; Asad, A.; Mohammadi, F. A Survey on Neuromorphic Architectures for Running

Artificial Intelligence Algorithms. Electronics 2024, 13, 2963. https://doi.org/10.3390/electronics13152963.

50. Asad, A.; Kaur, R.; Mohammadi, F. Noise Suppression Using Gated Recurrent Units and Nearest Neighbor

Filtering. In Proceedings of the 2022 International Conference on Computational Science and

Computational Intelligence (CSCI), Las Vegas, NV, USA, 2022, pp. 368-372. doi:

10.1109/CSCI58124.2022.00072.

51. Kaur, R.; Asad, A.; Mohammadi, F. A Comprehensive Review of Processing-in-Memory Architectures for

Deep Neural Networks. Computers 2024, 13, 174. https://doi.org/10.3390/computers13070174.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 doi:10.20944/preprints202412.0276.v1

https://doi.org/10.20944/preprints202412.0276.v1

