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Abstract: Small Autonomous Surface/Underwater Vehicles (S-ASUV) are gradually attracting attention from
related fields due to their small size, low energy consumption, and flexible motion. Existing dynamic
positioning(DP) control approaches suffer from chronic restrictions that hinder adaptability to varying
practical conditions, rendering performance poor. A new three-dimensional (3D) dynamic positioning control
method for S-ASUV is proposed to tackle this issue. Firstly, the dynamic model for the DP control problem
considering the thrust allocation is established by deriving from the dynamic models of S-ASUV. A novel
Lyapunov-based model predictive control (LBMPC) method is then designed. Unlike the conventional LMPC,
this study uses multi-variable PID as the secondary control law, improving the accuracy and rapidity of the
control performance significantly. Both the feasibility and stability are proved rigorously. A series of digital
experiments using S-ASUV’s model under diverse conditions demonstrate the proposed method's
advantages over existing controllers, affirming satisfactory performances for 3D dynamic positioning in
complex environments.

Keywords: dynamic positioning; small autonomous surface/underwater vehicle; Lyapunov; MPC;
PID

1. Introduction

Earth’s surface is covered by 71% of water, 97% ocean water (Perlman, 2016). Additionally, 99%
of the ocean floor and 95% of the oceans in the world remain uncharted (Board & Council, 2003).
Marine vehicles have garnered increasing attention in the corporate world and academic circles
because they promise to deliver secure and economically efficient substitutes for human involvement
in marine engineering endeavors. Dynamic positioning control of marine vehicles is widely used in
underwater monitoring, maintenance, operation, rescue, aquaculture, and scientific investigation.
Small Autonomous Surface/Underwater Vehicles (S-ASUV) are gradually attracting attention from
related fields due to their small size, low energy consumption, and flexible motion (Ahmed et al.,2023;
Yang et al., 2024).

The motivation for this study arises from complex challenges associated with achieving accurate
and fast dynamic positioning for autonomous underwater vehicles (AUVs) in unpredictable
underwater environments. The other inspiration for this work stems from addressing the
nonlinearities, intricate hydrodynamic coefficients, and model uncertainties inherent in AUVs (Cui et
al.,2016). Traditionally, DP functionality refers to a vehicle's ability to achieve and maintain a
desired position and orientation solely through active thrusters. The recent study tends to incorporate
all low-speed movement in its definition. Many control methods have been proposed to tackle DP
problems, such as classical proportional-integral-derivative (PID) control, modern model predictive
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control (MPC), etc.(Cui et al.,2017; Veksler et al.,2016; Zarkasi et al.,.2020). The DP control strategy
using MPC attracts the increased attention of researchers, which integrates positioning control and
thrust allocation into a single MPC algorithm, aiming for a theoretically near-optimal controller
output.

MPC is a closed-loop optimal control strategy that offers a systematic approach to handle input
and state constraints. These constraints, arising from physical or security restrictions, are typical in
all control systems. MPC stands out among control methods because it can explicitly encompass
constraints while undergoing the controller design process due to its optimization-based feature in
the time domain (Li & Shi, 2017; Mayne et al., 2000). One major challenge in MPC control design is to
ensure closed-loop stability, especially for nonlinear systems like AUVs. It is important to note that
closed-loop system stability is not solely dependent on optimality. According to traditional MPC
design guidelines, additional terminal constraints and local linearization are required to create a local
stabilizing control law for closed-loop stability, as Shen et al. (2016) demonstrated. Consequently, this
approach introduces significant conservatism, and only local stability can be guaranteed. According
to a study by Zheng et al. (2020), two robust DP approaches are proposed for autonomous surface
vessels, addressing scenarios with full measurable states and partial states available with
measurement errors. However, their reliance on tube-based MPC may lead to computational
complexity and challenges in real-time implementation, particularly for systems with three-
dimensional state spaces and fast dynamics. Additionally, the performance of the output feedback
robust DP controller may be limited by the accuracy of state estimation using the Luenberger
observer, especially in scenarios with significant measurement errors.

Besides the MPC DP method, some other approaches have been investigated recently. Li et al.
(2022) addressed the finite-time adaptive dynamic positioning control problem for unmanned surface
vehicles (USVs) under challenging conditions, such as time-varying disturbances, unknown model
parameters, and input saturation. Using a fuzzy supervisory approach, they introduced a model-free
prescribed performance DP controller and a saturated-command-deviation-based compensation law.
Despite its effectiveness in specific scenarios, however, it may suffer from limitations in handling
complex dynamics and uncertainties. Fu et al. (2023) presented a discrete-time adaptive predictive
sliding mode trajectory tracking control strategy for dynamic positioning, addressing challenges such
as model uncertainties, environmental disturbances, and input saturation. Stability analysis confirms
system stability, with S-ASUV’s digital experiment results verifying its effectiveness. However, its
complexity and reliance on disturbance observers may pose implementation challenges and
sensitivity to model inaccuracies.

To address the problem of ordinary MPC, some new research results involving two-dimensional
(2D) trajectory tracking have been achieved for AUVs. Shen et al. (2017) built a 2D dynamic model of
trajectory tracking with position x, y, and heading 1. Based on the 2D dynamic model, the study
proposed a Lyapunov-based model predictive control (LMPC) scheme with a PD secondary
controller. It connects the state-of-the-art optimization technique and the conventional PID control
theory, enabling a direct integration of online optimization into the control system design to improve
control performance. Nevertheless, the proposed scheme solely utilized the PD law, not fully exerting
PID's capabilities. For the nonlinear control system model, a new LMPC strategy was developed for
an underwater vehicle's two-dimensional(2D) trajectory tracking control (Shen et al., 2018). This
framework addresses practical constraints such as actuator saturation and tackles the thrust
allocation subproblem concurrently with controller design. Closed-loop stability is theoretically
guaranteed by incorporating a nonlinear backstepping tracking secondary control law and a
contraction constraint. The above two modern control strategies were elaborately summarized in (Shi
et al., 2023). But the use of backstepping control law is limited in practicality due to the inevitable but
dramatic model uncertainties of AUVs. The LMPC has shown its attractive virtue in trajectory
tracking for AUVs. Unfortunately, those studies are constrained to 2D trajectory tracking.

To sum up, on the one hand, it is well-known that PID is a widely recognized control scheme for
the DP problem for ships, while MPC attracts increased attention in the field of DP control because
of its online receding optimization and robustness. The combination of MPC and PID would be a
very perfect methodology for modern control solutions to the DP problem. On the other hand,
improving the control response’s rapidity and robustness is very significant for the DP problem of
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marine vehicles in complex dynamic environments. However, the DP control problem in 3D space
remains to be investigated comprehensively and becomes a challenging research topic.

To effectively handle the chronic restrictions of the DP control mentioned above, this study
proposes a novel LBMPC DP method to materialize both the position and pose control in 3D space.
According to the authors’” knowledge, the 3D DP problem with 3D position and 3D pose control of
AUVs, especially S-ASUVs, was studied very little before. Unlike the mentioned LMPC techniques,
the LBMPC method first uses the multi-variable PID controller as the secondary law, significantly
refining the accuracy and rapidity of the DP control responses. The designed PID secondary law also
introduces the disturbance and model uncertainties, providing a theoretical explanation for the
ability to resist disturbances and uncertainties. The proposed strategy uses a predictive model
employing the multi-variable PID secondary law to optimize three-dimensional DP trajectories over
a future time horizon into the multi-rotor-driven system of S-ASUV. Another significant advantage
of LBMPC is its capability to directly integrate the thrust distribution from the propellers into the
optimal 3D DP control problem, eliminating the necessity for a TA subproblem. 3D dynamic
positioning control is more complex due to managing six degrees of freedom (surge, sway, heave,
roll, pitch, yaw) compared to four DOFs (surge, sway, roll, and yaw) in 2D where one of the DOFs
considered is mainly neglected and only three are fully utilized. Coupling effects between different
degrees of freedom are more pronounced, requiring sophisticated algorithms. Environmental
disturbances, such as currents, waves, and wind, affect the vehicle in multiple directions
simultaneously. Accurate 3D positioning also necessitates the integration of advanced sensors and
actuators capable of providing thrust in multiple directions. Additionally, the dynamics of an S-
ASUV operating in 3D space are inherently nonlinear and more challenging to model accurately,
making the control problem significantly more complex.

The main contributions of this study are summarized as follows:

1) A new 3D dynamic positioning control methodology, i.e., LBMPC, is proposed for S-ASUYV,
providing a useful solution to the challenging problem of 3D DP control. A multi-variable PID
controller is first used in the secondary law and synchronously considers external disturbances
and uncertainties, performing dramatic advantages over the current approaches, including both
classical and modern techniques.

2) Both the recursive feasibility of the designed LBMPC algorithm and closed-loop system stability
are proved rigorously. The dynamic positioning control system using LBMPC can guarantee the
continuous stability of the required equilibrium point.

3) A series of experiments using S-ASUV’s model under diverse conditions demonstrate the
proposed method's advantages over existing controllers, affirming its robustness and rapidity
for precise 3D dynamic positioning in complex environments.

The remaining parts of this paper are arranged as follows. Section 2 presents the S-ASUV system
model used. Section 3 describes the LBMPC control strategy, examining the LBMPC design and
stability analysis combined with an introduced PID secondary controller. The results are presented
in Section 4, and the research is concluded in Section 5.

2. S-ASUV Modeling

The structure of the S-ASUV described in this paper is shown in Figure 1, which comprises a
spherical module and six propellers. The main physical parameters of the S-ASUV are shown in Table
3, where m and y are the mass and radius, respectively, [ is the distance between the rotation axis and
the propellers, B is the buoyancy, G is the force of gravity, (xg, yg, Zg) is the coordinates of the center
of gravity, and (I, Iy, I7) is the moment of inertia.
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Figure 1. The structure of S-ASUV (Ji et al., 2023).

2.1. Frames of Reference

The dynamic models of AUVs are widely recognized for their non-linear, strongly coupled, time-
varying nature and Multiple Input Multiple Output (MIMO) system attributes. These models
encompass various hydrodynamic loads that are rarely constant over time. These loads are
contingent on factors like speed, acceleration, and the size of the S-ASUV represented through
hydrodynamic coefficients. These coefficients, detailed in Table 1, comprise the added mass and drag
coefficients, delineating the vehicle's dynamic behavior during acceleration and uniform motion,
respectively (Fossen, 2011).

Table 1. Hydrodynamic coefficients for each DOF.

Added mass Linear drag Nonlinear drag
coefficient coefficient coefficient

surge Xy Xy X,

sway Y; Y, v,

heave Zy Zy 7w

roll Ky K, K,

pitch M, M, M,

yaw N; N, N,

Table 2 shows the S-ASUV 's force/torque, linear/angular velocity, and position/Euler angle in
six DOFs.

Table 2. Main kinematic parameters.

Force/Moment Velocity Position/Attitude
surge X u x
sway r v b4
heave 7 w z
roll K Y4 &
pitch M q é
yaw V4 r Y

To facilitate mathematical analysis, we establish two frames of reference. The body reference
frame (BRF) is attached to the vehicle and aligned with its center of gravity (CG). Using this
configuration, we can analyze the vehicle's movement regarding the BRF relative to an inertial
reference frame (IRF) that tracks the vehicle's position and orientation globally. The thrusters are
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arranged in a cross shape, where the first and third propellers move clockwise with angular velocities
of w1 and ws, generating thrusts downward. In contrast, the second and fourth propellers make the
counterclockwise motion with angular velocities of w2 and ws, generating downward thrusts.

Body-fixed reference frame Incrtial reference frame

Figure 2. S-ASUV reference system.

2.2. Kinematic and Dynamic Model

The complete kinematic and dynamic model of the S-ASUV can be seen in section 2 of Ji et al.

(2023).
We introduce the subsequent vectors as defined below:
X ¢
n

n = M Ny = H,n =[] (1)
z Y
u p v

n=o) v=la|v=[1] @
w r z

where 7 is the vector of position 7, and pose 7, i.e., Euler angle, V is the velocity vector.
The kinematics equations of the AUV can be expressed as:

77:1] _[Ri(m2) 033 [V1] 3)

Up 03,3  Ry(m)ILV2

in which the conversion equations of the linear velocity and angular velocity are given as follows,

where s = sin, ¢ = cos, and f = tan

1M1 = Ri(n2)Vy 4)
cpcd cPsfs¢p — sPsp  syPse + cpepso
R,(ny) = [sd;c@ cpcl + syPsOs¢p sOspcep — cz[;sd)l (5)
—s6 cOs¢ clco
12 = Ry(n2)V> (6)
1 s¢tod coto
Ry(n2) = [0 cp  —s¢ 7)
0 s¢p/c8 cop/co

Table 3. Main Parameters of S-ASUV.

Parameters Description
m (kg) 4.99
G(N) 48.902
B (N) 50.406
y(m) 0.0975

I (m) 0211
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(Xg, Y9, Zg) (mm) 0,0,11.15)
(Ix, Iy, I2) (kg m?) [0.01426, 0.01426, 0.01426]

2.3. Modeling of Dynamic Positioning Problem

The objective of this paper is to develop and implement a robust LBMPC framework for
achieving precise DP of the multi-rotor dynamics of S-ASUV in varying environmental conditions.
The goal is to design a control system that ensures the S-ASUV maintains its desired position and
orientation accurately and efficiently while mitigating disturbances and uncertainties inherent in
underwater operations using LMPC techniques.

We consider the motion of the vehicle in the local level plane. Two mild assumptions can be
satisfied for the low-speed motion of S-ASUV: (i) The vehicle has three planes of symmetry; and (ii)
the mass distribution is homogeneous to simplify the mathematical model, reduce computational
complexity, and focus on dominant horizontal motions. As a result, for the motion control in the local
level plane, the system matrices presented by Ji et al. (2023) can be simplified. The inertia matrix

becomes
M, 0 0 0 0 0
O M, 0 0 0 0
0O 0 M, 0 0 0
M=lo o o M, 0 o ®)
0 0 0 0 M, 0
O 0 0 0 0 M,

where Mu=m—Xu,M.,';=m—Y.,';,MW=m—Zw,Mp=Ix—Kﬁ,Mq=Iy—Mqande=IZ—Nf are
the inertia terms including added mass. The restoring force is neglected g(n) = 0, and the damping

matrix is
(X, + X, |ul 0 0 0 0 0
0 Y, +Y,|v| 0 0 0 0
0 0 Zy + Z,|wl 0 0 0
D) = = 9
) 0 0 0 K, +Kp|p| 0 0 ©)
0 0 0 0 M, +1\7Iq|q| 0
0 0 0 0 0 N, + N,|r|]

where X,,Y,,Z,,Kp, My and N, are linear drag coefficients and X,,Y,,Z,, Ky, M, and N, are the
nonlinear drag coefficients. The Coriolis and centripetal matrix become:

0 0 0 0 -Myw Myv
0 0 0 M,w 0 —Myu
0 0 0 —Myv Myu 0
=l o  -Mw M 0 0 —(Myw? — Myv?) (10)
M,w 0 —Muu 0 0 (Myu? — Myw?)
My M 0 —(Maw?— M) (Myw? — Myu?) 0

In the local level plane, the velocity vector V = [u, v,w, p, q,7]Tencloses the surge, sway, and yaw
velocities, and the position and orientation vector 1 = [x,y,z,¢,0,%]" includes the position and
heading of the vehicle.

By introducing the disturbances and uncertainties, the dynamic model of S-ASUV can be
formulated as:

MV+CWV)V+DWV)V+g(n) =1 +1p + Aty (11)

where 7 = [Au,A,,,AW,Ap,Aq,Ar]Tdenotes the generalized thrust forces and moments. 7z denotes
the disturbance force/torque of water flow environment and Aty denotes uncertain hydrodynamic
forces/moments. The assumption is that the six propellers, denoted as u = [uy, Uy, Us, Uy, us, ug]”
within the local horizontal plane, collectively generate the generalized thrust force. It is important to
note that these propellers are intentionally designed to remain fixed for simplicity, resulting in the
representation of thrust allocation t = Su in which S represents the thrust allocation matrix.

The kinematic equations (3) can also be simplified as follows:


https://doi.org/10.20944/preprints202412.0211.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2024 d0i:10.20944/preprints202412.0211.v1

n=Km)V (12)

cpcd —sych + cyPsfs¢p  syPsp +cypsfcp 0 0 0O

sypcl  cpcl + syPsOs¢p  —cypsp +syPsBcgp 0 0 0

where K(n,) = _89 cegqb CGOC(p (1) 8 g
0 0 0 01 0

0 1

o

Define the sys’?em state as AO= [7",VT]" and thg generalized control input as 7. The generalized
control input 7 is the resulting force of the thrusters. For S-ASUV, the experimental platform, six
thrusters are effective in the local level plane. From (3) and (11), the dynamic model for the 3D DP
problem with the position and pose control is established as below:

KV _
M~ (Su—Cc(V)V —D(V)V — g(n)] =/ (13)

where the state vector 1 = [x,y,z,¢,0,¥,u,v,w,p,q,r]7. The DP model in (13) of S-ASUV reveals the

dynamics from the thrusters to the position and pose in 3D space, facilitating the 3D DP control using

LBMPC. The hydrodynamic coefficients for S-ASUV in (13) are summarized in Table 4.
For the model (13), the following essential properties can be easily explored and will be exploited

in the controller design:

e  P-1: The inertia matrix is positive definite and upper bounded: 0 < M = MT <ml< .

e  P-2: The Coriolis and centripetal matrix is skew-symmetric: C(V) = -C7(V).

e P-3: The inverse of rotation matrix satisfies:K ~* (1) = K7 (), and it preserves length

o NKTGH o= Hlz.

®  P-4: The damping matrix is positive definite: D(V) > 0.

¢ P-5: The input matrix satisfies that SST is nonsingular.

®  P-6: The restoring force g(n) is bounded: | g(n) o< g

e While we initially assumed g(n) =0 in section 2.2 for simplicity, we recognize and
acknowledge in subsequent sections (P-6 and Assumption 2) that g(n) exists within defined
bounds. This acknowledgment ensures that our model accounts for the bounded and modest
influence of the restoring force, aligning with physical constraints and operational scenarios.

A=

Table 4. Hydrodynamic coefficient summary.

Inertia term Linear drag Nonlinear drag
M, = 3.0003kg X, =—0.7318 kg/s X, =3.006 kg/m
M; = 3.0003kg Y, =—0.7318kg/s Y, =3.006 kg/m
M,, = 1.8563kg Zy, =03747kg/s Z,, = 36.35kg/m

My = 0.087kg m? K, = 0.001359kg m?/s K, = 0.000012 kg m?
M, = 0.087kg m? M, = 0.001359 kg m?/s M, = 0.000012 kg m?
M; = 01553kg m? N, = 0.006736 kg m?/s N, = 0.008206 kg m?

This research focuses on achieving precise three-dimensional dynamic positioning for S-ASUV
while maintaining robustness in complex underwater environments. To this end, this work integrates
the multivariable PID into the LMPC scheme with Lyapunov stability analysis, enhancing control
performance and stability. The study conducts rigorous feasibility and stability analyses, ensuring
robustness to external disturbances and model uncertainties.

3. Dynamic Positioning Based on LBMPC

3.1. Formulation of Optimization Problem

DP control refers to the implementation of feedback control techniques in S-ASUV, and the goal
is to maintain a desired position and orientation through the adjustment of propeller thrust alone.
Numerous existing DP controllers have been devised using the Lyapunov direct method, boosting
global stability attributes. Explicitly incorporating these controllers allows us to formulate the LMPC
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problem for DP control (Shi et al.,2023). Considering the preferred location and orientation indicated
by g = [X4, Yar Za, Pa, 04, Pa]”, the nonlinear optimization problem(P,) of DP for S-ASUV can be
formulated as :

amin ] = [{(1 205) 1 +1 () 1)ds+1 A7) 13 (14)
st A(s) = £ (A(s), a(s)), (15)
A(0) = Alto), (16)
[2(s)| < Umax 17)

w . w . A
571 A,2(0) < 27 FA0), w (20))) (18)

where A(s) stands for the planned trajectory of the AUV's state, using the system’s model to evolve;
1 = col(#f, V) represents the error state where #j = —n4; G(u) represents a collection of piece-wise
constant functions based on the sampling period u. T = Ny indicates the forecasting horizon, X, Y,
and Z, represent the weighting matrices and are guaranteed to maintain positive definiteness. It is
noted that w (-) conventionally denotes the PD controller, while herein, for LBMPC, we propose the
PID secondary controller, which is demonstrated in Subsection 3.2. At the same time, W (-) signifies
the corresponding Lyapunov function.

3.2. PID Secondary Control Law

Unlike the modern LMPC techniques (Shen et al., 2017; Shi et al., 2023), which employ a PD
secondary control law, the multi-variable PID controller is used as the secondary law, enhancing
the rapidity and accuracy of the DP control. For the theoretical explanation, the designed PID
secondary law also introduces the disturbance and model uncertainties, playing a role in resisting
disturbances and uncertainties. The used multi-variable PID control law is considered as:

(D) =gMm) — 1 — Aty — KT(TIz)TPID (19)
Tpip = Kpf] + Ky + KA} (20)

where A7 = fOtK (n,)Vds, then one can easily obtain (Aﬁ) = K(n,)V. The user defines the control
gain matrices K, and K; and K; which should be diagonal and positive definite. It is important to
note that 7y and Aty were not directly implemented in the control algorithm. Instead, they were
adjusted through parameters in the digital experiments to represent real-life disturbances. This
unconventional approach was adopted to evaluate the robustness and performance of the PID control
law under various disturbance scenarios.

The proposed choice for the Lyapunov function is the following;:

1 1 1
w= EVTMV + EﬁTKpﬁ +5 (AT K; A (21)

When computing the time derivative of W along the trajectory of the closed-loop system, Using
the product rule and noting that M, K, and, K; are constant matrices, we differentiate each term
separately. Combining these results, we obtain:

W =VTMV + 07K, + (AT K,Afj (22)
Substituting (11, (12), (19), and (20) into (22) yields
W =—-vT[c(V) + D(V) + K;(m]IV (23)
where K;j = R (n,)K4R(n,). Considering VTC(V)V =0 for all V, we have
W=-VT[DWV)+K;mIV<0 (24)

d0i:10.20944/preprints202412.0211.v1
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the gain parameter K;() > 0 is positive. Following Khalil (1996), LaSalle’s theorem indicates
that the closed-loop system, influenced by the nonlinear PID controller, exhibits global asymptotic
stability relative to the equilibrium point [#,V] = [0, 0].

The comprehensive description of the contraction constraint (18) associated with the use of
nonlinear PID control follows:

70" (2(0) - ¢ (7)) 7(0) = D (7(0)) 7(0) - g(1(0)) + B" (#(0)) K1 (0)
< -7(0)"[D (V(0)) + K4(7(0)17(0)

To ensure recursive feasibility, it is worth noting that the PID controller, w(1) remains viable
for the LBMPC (14), (15), (16), (17) ,and (18) as long as we can satisfy the condition |w(4)| < Upay-

The following uses several logical and realistic assumptions to simplify calculations.
Assumption 1: The maximum capacity of the propellers is the same, i.e., |u;| < Upq, - Note that
Assumption 1 is plausible and frequently accurate in real-world situations.

The proposition that follows is then;
Proposition 1: Consider the Moore-Penrose pseudoinverse implementation when allocating thrust,
that is,

(25)

u=ST(SSHr=S*r (26)

and signify the highest generalized thrust force possible by Tpax =Il Tmax lw With Ty, =
[Aumax: Avmaxs Awmasx, Ap maxs Aq‘max,Ar_max]T. if this relationship holds:

u
e < (27)

where j* =|l S* |, then it is always possible to allocate the thrust., thatis, | ¥ llo< Upmay-

Proof: If we take the infinity norm on either side of (26) we get

U o= S*T NS " I T o< T Trmax (28)
In light of (27) and Assumption 1, (28) results in
hullo< j+Tmax =< Umax (29)

Assumption 2: The restoring force g(n) is limited in magnitude and relatively modest, such that

g o< g < Trax (30)

where g denotes the input bound.

The second assumption is likewise a valid one. Sine and cosine function combinations are
included in the comprehensive definition of g(n). Therefore, we can ensure that the restoring force
remains within certain bounds. Moreover, it is worth noting that the upper bound g is considerably
smaller in magnitude compared to the maximum allowable thrust force 7,q4,. Failing to meet this
condition would render the feedback control, which is not considered in this study, infeasible.

3.3. Stability Analysis

In this subsection, the feasibility and stability of the proposed LBMPC are both proved
rigorously, guaranteeing the closed-loop stability of the DP control system.
Theorem 1: Assume that the control gains Kp K;andK; are each equal to
diag{k,}, diag{ky;} and diag{k;} . Let k, =max{k,} ,  kq=max{ky} and k; = max {k;}
represent the greatest elements in K, K; and K;, respectively, and suppose assumptions one and two
can hold and define w(A) = S*t(A). If the relationship shown below can hold:

— - = Toax — 9
ky +V2kg + k) < 72— 31
( 4 a L) \/E (31)
where 1(0) denotes the initial error and ., adheres to equation (27), the LBMPC problem (P,)
recognizes recursive feasibility. In other words, |w (2(t))| S Upgy forallt = 0 where Upgy = Umaxl.

Proof: By applying the infinity norm to both sides of equation (19), we obtain:
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I T llw=Il g() — & — Aty — RT@W)Tpip oIl g lloo +11 RT W) llooll Tpip o< g + V2 32)
Il Tpip oo
Since || RT () llo= max{cosy — siny, sin + cosyp, 1} < /2
From (12) and (20), we have
I Tpip o=l Kpfi + Kat) + Kibfj o=l Kpfj + KZRWIV + KAf 1< Ky Il 7 oo+ V2ky (33)

IV oot Ky 1l 71z Moo (Rpp + V2Kg +Fei) 11 Al

As (18) is fulfilled, it allows for V < 0. Consequently, we can conclude that [ 1 l,<Il 2(0) II,.
Considering |l A< Il A 1l,, we arrive at;

I 2pip oo (kp + V2ka + ki) 112(0) ll,. (34)
Together with (32), we have
I T llw< g +V2(k, +V2ky + k) 1| (0) Il (35)
If we can meet condition (31), then the subsequent relationship is valid.
I 7l g+ V2(k, + V2ky + k) 11 2(0) 1. < Tpax (36)

With (27), we can guarantee that || @(A(t)) lle< Upmqy remains satisfied consistently, thereby
concluding the proof.

We observe that it is straightforward to fulfill condition (31) by assigning k, ks and k; as
arbitrarily small positive values. The size of the region of attraction can be flexible as the assurance of
closed-loop stability is provided through recursive feasibility.

Theorem 2: Suppose that both Assumptions 1 and 2 are met. In that case, the LBMPC dynamic
positioning control will ensure the continuous stability of the required equilibrium point [7,V] =
[0,0] . Additionally, by employing sufficiently small control gains k,, ksand k; the region of
attraction can be significantly expanded.

Proof: The proof first shows that the equilibrium is asymptotically stable and then demonstrates that
you can adjust the size of the region where the system's trajectories will converge to the equilibrium
as needed. Applying the reverse Lyapunov theorem (Khalil, 1996), given that we have already
identified a continuously differentiable and unbounded Lyapunov function W(1) in (21),
continuously differentiable and radically unbounded by converse Lyapunov theorems (31), there
exist functions such asp;(+), i = 1, 2,3 belonging to the class y. satisfy the subsequent inequalities:

BUAN =WQ) < B1A 1D (37)

Z—V:b(l,h(l)) Ry AW (38)

Considering (18) and the fact that each sampling period will only use the first component of
x (1), we obtain

ow ow
—b(A{u@) < —b(1hD) < —Bz1 A1) (39)

oA oA
We affirm that employing common Lyapunov arguments, the closed-loop system under LBMPC
u(d) is asymptotically stable and possesses a region of attraction using common Lyapunov

arguments (such as Theorem 4.8 in Khalil (1996)).

— — — ~ T -
= (L& R\ (R, + V2R, + ) 1 A1 2y (40)

where 1 = col(#},V) represents the error state.
We choose the control gains K, > 0,K; > 0 and K; > 0 meeting the arbitrary big initial error
condition ], therefore satisfying
(&, +VZhy + k) < mex — 9 1)
Y TP TS

d0i:10.20944/preprints202412.0211.v1
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Therefore, the closed-loop system exhibits stability, affirming the solvability of the LBMPC

problem. The extent of the region of attraction can be adjusted as needed as long as there are sufficient
small control gains to satisfy (41) because there are no other restrictions on k,, k; and k;.
Remark 1: The magnitude of the control gains impacts the PID controller's control performance,
despite the fact that asymptotic stability relies solely on the control gain matrices K, K; and K; being
positively definite. A slower rate of convergence will result from smaller control gains. Nevertheless,
although significantly small control gains are chosen to attain a broad region of attraction in the
proposed LBMPC DP control, the optimization procedure allows the system to effectively leverage
its thrust capability to achieve optimal control performance consistent with the objective function
(14).

3.4. LBMPC DP Control Algorithm

The LBMPC DP control algorithm can be followed by a list of steps that describe how the
algorithm will be executed below:
(i) At the current sampling instant to, taking into account the system's present state A(t,), we
address the optimal control problem (Po); let (s) represent the sub-optimal solution;
(ii) the S-ASUV applies &(s) for just a single sampling interval: u(t) = {(s)fors € [0, u];
(iii) At the subsequent sampling instant t, + u, a fresh measurement of the system's state
A(to + ) is incorporated as feedback, then, (Po) is solved once more, starting anew with the fresh
initial condition A(t, + ). The process iterates, recommencing from step (i).

4. Experiments and Discussion

In this section, the primary purpose lies in validating and verifying the peformance of the
proposed method, ensuring accuracy and effectiveness. The dynamic model of the S-ASUYV,
established using the data in Ji et al. (2023) is employed in this part. To testify the advantages of the
proposed method, the classical PD (Bayusari et al., 2021), modern controllers including MPC (Beklan
et al., 2023) and LMPC (Shi et al., 2023) were used in a series of experiments for comprehensive
comparison.

4.1. Selection of Parameters

We have set the target position, represented by, 14 = [0,0,0,0,0,0]7, to be situated at the origin
of the IRF, and this decision was made to maintain simplicity without compromising generality.
According to experimental data in (Ji et al., 2019), the actual maximum force output for each propeller
is 8N. In order to tackle the LBMPC problem formulated in equation (14) to (18), we utilize a
discretization strategy coupled with Sequential Quadratic Programming (SQP) to obtain a solution.
This can be followed by a list of the variables that were chosen.

Sampling period u = 0.02 [sec],

Prediction horizon T = 5y,

Weighting matrices:

X = diag(10*,10% 103, 102,10% 10%,1072,107%,107%,107%4,107%,1072),

Y = diag(107%,107%,107%,107%,107%,107%, 103, 10%, 102, 10,10,10),

Z = diag(10,10,10,10,10,10,10,10,10,10,10,10),

Control gains for nonlinear PID control: K,=Kqs=K;= diag(8,8,8,8,8,8),

T
Starting state :1(0) = [5, 5,-2,0,0, 0,0,0,0,0,0,0] ,
Unax = 8 for each propeller,

Upin = —8 for each propeller,
The thrust allocation matrix
0.07974 008643 0.08127  0.08270 0 0
0.06032  0.05029 —0.05824 —0.05610 0 0
S = 0.02945 -0.03302 -—0.02847 0.03505 0 0
0 0 0 0 0.02945 —0.03302|
0 0 0 0 —0.03302 —-0.02847

0 0 0 0 —0.02847 0.03505
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4.2. Performance Comparison and Analysis

(1) Performance without Disturbances and Uncertainties

The first experiment is conducted without disturbances and uncertainties to observe the
behavior of the proposed controller under ideal conditions. The trajectories towards the origin of the
S-ASUV in 2D(left) and 3D(right) are shown in Figure 3, and Figure 4 illustrates the responses
involving the position x ,y ,z and, pose ¢, 8,1 of the vehicle. The corresponding linear and angular
velocities u,v,w,p,q,r are given in Figure 5. As shown in Figure 6, which displays the thrust forces
generated by individual propellers, it is confirmed that each control input stays within the designated
permissible range as intended.

As shown in Figure 4 and Figure 5, it is clear that the LBMPC controller achieves a stable DP
within the first 30 seconds, significantly quicker than the PD, MPC controller, and LMPC controller,
which typically takes around 45 to 55 seconds on average. The experiment results vividly
demonstrate how real-time optimization has improved the performance of DP control. The results
show that incorporating multi-variable PID secondary law has led to a considerable enhancement in
the convergence rate for DP control when utilizing the LBMPC method. This improvement is
noticeable throughout a broad range of attractions.
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Figure 3. Trajectory towards the origin of the S-ASUV in 2D(left) and 3D(right).
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Figure 5. Trajectories towards the origin of the system states (linear and angular velocities).
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Figure 6. Control input signals.

(2) Performance with Moderate Disturbances and Uncertainties

In the second experiment, depicted in Figure 7 to 10, this study aimed to enhance the robustness
of LBMPC. To emulate an irrotational ocean current, which exerts a consistent force on the vehicle,
we introduced a disturbance index with a magnitude of [2;2;2;0;0; 0]”. Moreover, we included a
20% system model error to further assess the controller’s ability to cope with such intricate situations.

As shown in Figure 7 to 10, which depict the outcomes under moderate disturbances and model
uncertainties, the LBMPC controller maintains the robustness. In Figure 7, using the proposed
method reaches the origin in the shortest route, while using the other controllers need longer way.
Looking at Figures 8 and 9, the proposed method performs even better, achieving DP within 40
seconds, surpassing the PD, MPC and LMPC controllers, which take much more time to accomplish
this task. The overall deviation of using LBMPC towards the origin along the time is the smallest
among the methods. It becomes clear that the LBMPC DP control not only achieves convergence to
the desired target location but also improves the overall perfromances including robustness, accuracy
and rapidity of the DP control system.
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Figure 7. Trajectory towards the origin of S-ASUV in 2D(left) and 3D(right), considering the presence
of disturbance.
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Figure 8. Trajectories towards the origin of the system states while considering the influence of a
disturbance.
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(3) Performance with Heavy Disturbances and Uncertainties

In the last experiment depicted in Figure 11 to 14, this work sought to reaffirm the robustness of
the proposed controller. Introducing a heavy disturbance index of [4; 4;4;0;0; 0] magnitude, we
deliberately incorporated a +20% system model error and a -20% variation in the damping matrix to
replicate the most demanding scenario. This was undertaken to assess the controller's effectiveness
in managing the heavy scenarios and complex situations.

In the trajectory responses shown in Figure 11, the proposed controller LBMPC consistently
outperforms other controllers by reaching convergence in the shortest route. This trend is further
highlighted in Figure 12, where the proposed controller achieves DP significantly fastest within 30
seconds. Additionally, control inputs depicted in Figure 14 remain within the designated permissible
range. Comparing the first two experiments, it is evident that the proposed control method performs
best among the three different conditions.
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5. Discussion

This inherent robustness is a notable advantage of LMPC and renders it an attractive option,
particularly in marine control systems (Pannocchia et al., 2011). In the experiment results, the LBMPC
controller demonstrates sustained robustness. It not only achieves convergence to the desired target
location but also enhances the overall robustness of the DP control system, even under the most
challenging scenarios. As mentioned earlier, the dynamic response’s rapidity and robustness are
significant for the DP problem of marine vehicles. By incorporating the designed PID feedback into
the closed-loop system, the proposed LBMPC improves the accuracy and rapidity of the DP control
responses significantly compared to both the conventional LMPC and commonly used approaches,
improving the DP control performance of marine vehicles, including S-ASUV in complex dynamic
environments.

Beyond validation, the experiments using S-ASUV’s model offers cost and time efficiencies,
allowing extensive testing and scenario exploration in a virtual environment, thereby mitigating risks
associated with actual operations. It enables iterative refinement of the proposed control method,
rapidly incorporating improvements to enhance the S-ASUV’s performance while collecting
comprehensive data for in-depth analysis of system behavior and informed decision-making.
Ultimately, the series of experiments serve as a vital tool, optimizing and validating the proposed
LBMPC framework, critical for precise motion control in complex underwater environments.

This study acknowledges several limitations that need to be addressed for a comprehensive
understanding and application of the proposed methods. Firstly, the digital experiments were
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conducted under idealized conditions that may not fully replicate real-world environments,
necessitating future testing in more varied and challenging scenarios to validate the robustness of the
control strategies. Hydrodynamic modeling relies on specific assumptions about environmental
forces and vehicle dynamics, which may not hold true in all operational contexts and potentially
affect control system performance. The practicality of the proposed control law is limited by its
inclusion of terms for environmental disturbances and uncertain hydrodynamic forces, which are not
directly measurable in real-world applications, indicating a need for additional estimation or
compensation methods. While the digital experiment results are promising, they do not substitute
for field tests; actual deployment on autonomous underwater vehicles in various operational
conditions is necessary to evaluate the system's effectiveness and reliability thoroughly. Additionally,
the control system's performance may be sensitive to the tuning of specific parameters, requiring a
systematic study of parameter sensitivity and the development of robust tuning methods to ensure
consistent performance. Lastly, the study does not address the long-term stability and adaptability
of the control system in dynamic and unpredictable environments, highlighting the need for future
work on adaptive control mechanisms that can adjust to changing conditions over extended periods.

6. Conclusions

In the research, a novel LBMPC method tailored specifically is introduced for the DP challenge
faced by the S-ASUV, providing a useful solution to the 3D DP control problem. The three
dimensional DP control problem is established with an MPC formulation. To effectively handle the
chronic restrictions of the current DP control approaches, this study proposes a novel LBMPC DP
method. The multi-variable PID control and the contraction constraint are incorporated into the
LBMPC problem. The designed PID secondary law also introduces the disturbance and model
uncertainties. The feasibility and stability are both proved rigorously. A series of S-ASUV’s digital
experiments under diverse conditions demonstrate the proposed method's superior performances
over existing controllers, affirming the position and pose control in the 3D space in complex dynamic
environments. The proposed LBMPC helps control performance in terms of accuracy and rapidity,
which is suitable for S-~ASUVs and other marine vehicles like deep sea autonomous remoted vehicles
(ARV), providing a balanced perspective on its contributions and outline directions for future
research.
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