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Abstract: Small Autonomous Surface/Underwater Vehicles (S‐ASUV) are gradually attracting attention from 

related  fields  due  to  their  small  size,  low  energy  consumption,  and  flexible  motion.  Existing  dynamic 

positioning(DP)  control  approaches  suffer  from  chronic  restrictions  that  hinder  adaptability  to  varying 

practical conditions, rendering performance poor. A new three‐dimensional (3D) dynamic positioning control 

method for S‐ASUV is proposed to tackle this issue. Firstly, the dynamic model for the DP control problem 

considering  the  thrust allocation  is established by deriving  from  the dynamic models of S‐ASUV. A novel 

Lyapunov‐based model predictive control (LBMPC) method is then designed. Unlike the conventional LMPC, 

this study uses multi‐variable PID as the secondary control law, improving the accuracy and rapidity of the 

control performance significantly. Both the feasibility and stability are proved rigorously. A series of digital 

experiments  using  S‐ASUV’s  model    under  diverse  conditions  demonstrate  the  proposed  methodʹs 

advantages  over  existing  controllers,  affirming  satisfactory  performances  for  3D  dynamic  positioning  in 

complex environments. 

Keywords: dynamic positioning; small autonomous surface/underwater vehicle; Lyapunov; MPC; 

PID 

 

1. Introduction 

Earth’s surface is covered by 71% of water, 97% ocean water (Perlman, 2016). Additionally, 99% 

of the ocean floor and 95% of the oceans  in the world remain uncharted (Board & Council, 2003). 

Marine  vehicles  have  garnered  increasing  attention  in  the  corporate world  and  academic  circles 

because they promise to deliver secure and economically efficient substitutes for human involvement 

in marine engineering endeavors. Dynamic positioning control of marine vehicles is widely used in 

underwater monitoring, maintenance, operation,  rescue, aquaculture,  and  scientific  investigation. 

Small Autonomous Surface/Underwater Vehicles (S‐ASUV) are gradually attracting attention from 

related fields due to their small size, low energy consumption, and flexible motion (Ahmed et al.,2023; 

Yang et al., 2024).   

The motivation for this study arises from complex challenges associated with achieving accurate 

and  fast  dynamic  positioning  for  autonomous  underwater  vehicles  (AUVs)  in  unpredictable 

underwater  environments.  The  other  inspiration  for  this  work  stems  from  addressing  the 

nonlinearities, intricate hydrodynamic coefficients, and model uncertainties inherent in AUVs (Cui et 

al.,2016).    Traditionally, DP  functionality  refers  to  a  vehicleʹs  ability  to  achieve  and maintain  a 

desired position and orientation solely through active thrusters. The recent study tends to incorporate 

all low‐speed movement in its definition. Many control methods have been proposed to tackle DP 

problems, such as classical proportional‐integral‐derivative (PID) control, modern model predictive 
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control (MPC), etc.(Cui et al.,2017; Veksler et al.,2016; Zarkasi et al.,2020). The DP control strategy 

using MPC attracts the increased attention of researchers, which integrates positioning control and 

thrust  allocation  into  a  single MPC  algorithm,  aiming  for  a  theoretically  near‐optimal  controller 

output. 

MPC is a closed‐loop optimal control strategy that offers a systematic approach to handle input 

and state constraints. These constraints, arising from physical or security restrictions, are typical in 

all control  systems. MPC stands out among control methods because  it can explicitly encompass 

constraints while undergoing the controller design process due to its optimization‐based feature in 

the time domain (Li & Shi, 2017; Mayne et al., 2000). One major challenge in MPC control design is to 

ensure closed‐loop stability, especially for nonlinear systems like AUVs. It is important to note that 

closed‐loop  system  stability  is not  solely dependent on optimality. According  to  traditional MPC 

design guidelines, additional terminal constraints and local linearization are required to create a local 

stabilizing control law for closed‐loop stability, as Shen et al. (2016) demonstrated. Consequently, this 

approach introduces significant conservatism, and only local stability can be guaranteed. According 

to a study by Zheng et al. (2020), two robust DP approaches are proposed for autonomous surface 

vessels,  addressing  scenarios  with  full  measurable  states  and  partial  states  available  with 

measurement  errors.  However,  their  reliance  on  tube‐based  MPC  may  lead  to  computational 

complexity  and  challenges  in  real‐time  implementation,  particularly  for  systems  with  three‐

dimensional state spaces and fast dynamics. Additionally, the performance of the output feedback 

robust DP  controller may  be  limited  by  the  accuracy  of  state  estimation  using  the  Luenberger 

observer, especially in scenarios with significant measurement errors.   

Besides the MPC DP method, some other approaches have been investigated recently. Li et al. 

(2022) addressed the finite‐time adaptive dynamic positioning control problem for unmanned surface 

vehicles (USVs) under challenging conditions, such as time‐varying disturbances, unknown model 

parameters, and input saturation. Using a fuzzy supervisory approach, they introduced a model‐free 

prescribed performance DP controller and a saturated‐command‐deviation‐based compensation law. 

Despite  its effectiveness  in specific scenarios, however,  it may suffer  from  limitations  in handling 

complex dynamics and uncertainties. Fu et al. (2023) presented a discrete‐time adaptive predictive 

sliding mode trajectory tracking control strategy for dynamic positioning, addressing challenges such 

as model uncertainties, environmental disturbances, and input saturation. Stability analysis confirms 

system stability, with S‐ASUV’s digital experiment results verifying  its effectiveness. However,  its 

complexity  and  reliance  on  disturbance  observers  may  pose  implementation  challenges  and 

sensitivity to model inaccuracies.   

To address the problem of ordinary MPC, some new research results involving two‐dimensional 

(2D) trajectory tracking have been achieved for AUVs. Shen et al. (2017) built a 2D dynamic model of 

trajectory tracking with position x, y, and heading  𝜓. Based on the 2D dynamic model, the study 

proposed  a  Lyapunov‐based  model  predictive  control  (LMPC)  scheme  with  a  PD  secondary 

controller. It connects the state‐of‐the‐art optimization technique and the conventional PID control 

theory, enabling a direct integration of online optimization into the control system design to improve 

control performance. Nevertheless, the proposed scheme solely utilized the PD law, not fully exerting 

PIDʹs capabilities. For the nonlinear control system model, a new LMPC strategy was developed for 

an underwater  vehicleʹs  two‐dimensional(2D)  trajectory  tracking  control  (Shen  et  al.,  2018). This 

framework  addresses  practical  constraints  such  as  actuator  saturation  and  tackles  the  thrust 

allocation  subproblem  concurrently with  controller  design.  Closed‐loop  stability  is  theoretically 

guaranteed  by  incorporating  a  nonlinear  backstepping  tracking  secondary  control  law  and  a 

contraction constraint. The above two modern control strategies were elaborately summarized in (Shi 

et al., 2023). But the use of backstepping control law is limited in practicality due to the inevitable but 

dramatic model  uncertainties  of AUVs.  The  LMPC  has  shown  its  attractive  virtue  in  trajectory 

tracking for AUVs. Unfortunately, those studies are constrained to 2D trajectory tracking.   

To sum up, on the one hand, it is well‐known that PID is a widely recognized control scheme for 

the DP problem for ships, while MPC attracts increased attention in the field of DP control because 

of  its online receding optimization and robustness. The combination of MPC and PID would be a 

very  perfect methodology  for modern  control  solutions  to  the DP  problem. On  the  other  hand, 

improving the control response’s rapidity and robustness is very significant for the DP problem of 
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marine vehicles in complex dynamic environments. However, the DP control problem in 3D space 

remains to be investigated comprehensively and becomes a challenging research topic. 

To  effectively handle  the  chronic  restrictions of  the DP  control mentioned above,  this  study 

proposes a novel LBMPC DP method to materialize both the position and pose control in 3D space. 

According to the authors’ knowledge, the 3D DP problem with 3D position and 3D pose control of 

AUVs, especially S‐ASUVs, was studied very little before. Unlike the mentioned LMPC techniques, 

the LBMPC method first uses the multi‐variable PID controller as the secondary  law, significantly 

refining the accuracy and rapidity of the DP control responses. The designed PID secondary law also 

introduces  the  disturbance  and model  uncertainties,  providing  a  theoretical  explanation  for  the 

ability  to  resist  disturbances  and  uncertainties.  The  proposed  strategy  uses  a  predictive model 

employing the multi‐variable PID secondary law to optimize three‐dimensional DP trajectories over 

a future time horizon into the multi‐rotor‐driven system of S‐ASUV. Another significant advantage 

of LBMPC is its capability to directly integrate the thrust distribution from the propellers into the 

optimal  3D  DP  control  problem,  eliminating  the  necessity  for  a  TA  subproblem.  3D  dynamic 

positioning control is more complex due to managing six degrees of freedom (surge, sway, heave, 

roll, pitch, yaw) compared to four DOFs (surge, sway, roll, and yaw) in 2D where one of the DOFs 

considered is mainly neglected and only three are fully utilized. Coupling effects between different 

degrees  of  freedom  are  more  pronounced,  requiring  sophisticated  algorithms.  Environmental 

disturbances,  such  as  currents,  waves,  and  wind,  affect  the  vehicle  in  multiple  directions 

simultaneously. Accurate 3D positioning also necessitates the integration of advanced sensors and 

actuators  capable of providing  thrust  in multiple directions. Additionally,  the dynamics of an S‐

ASUV operating  in 3D space are  inherently nonlinear and more challenging  to model accurately, 

making the control problem significantly more complex. 

The main contributions of this study are summarized as follows: 

1) A new 3D dynamic positioning  control methodology,  i.e., LBMPC,  is proposed  for S‐ASUV, 

providing a useful solution to the challenging problem of 3D DP control. A multi‐variable PID 

controller is first used in the secondary law and synchronously considers external disturbances 

and uncertainties, performing dramatic advantages over the current approaches, including both 

classical and modern techniques.   

2) Both the recursive feasibility of the designed LBMPC algorithm and closed‐loop system stability 

are proved rigorously. The dynamic positioning control system using LBMPC can guarantee the 

continuous stability of the required equilibrium point. 

3) A  series  of  experiments  using  S‐ASUV’s model  under  diverse  conditions  demonstrate  the 

proposed methodʹs advantages over existing controllers, affirming its robustness and rapidity 

for precise 3D dynamic positioning in complex environments. 

The remaining parts of this paper are arranged as follows. Section 2 presents the S‐ASUV system 

model used. Section  3 describes  the LBMPC  control  strategy,  examining  the LBMPC design  and 

stability analysis combined with an introduced PID secondary controller. The results are presented 

in Section 4, and the research is concluded in Section 5. 

2. S‐ASUV Modeling 

The structure of the S‐ASUV described in this paper is shown in Figure 1, which comprises a 

spherical module and six propellers. The main physical parameters of the S‐ASUV are shown in Table 

3, where 𝑚 and 𝛾 are the mass and radius, respectively, 𝑙 is the distance between the rotation axis and 

the propellers, B is the buoyancy, G is the force of gravity, (𝑥𝑔, 𝑦𝑔, 𝑧𝑔) is the coordinates of the center 
of gravity, and (𝐼𝑥, 𝐼𝑦, 𝐼𝑧) is the moment of inertia. 
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Figure 1. The structure of S‐ASUV (Ji et al., 2023). 

2.1. Frames of Reference 

The dynamic models of AUVs are widely recognized for their non‐linear, strongly coupled, time‐

varying  nature  and Multiple  Input Multiple  Output  (MIMO)  system  attributes.  These  models 

encompass  various  hydrodynamic  loads  that  are  rarely  constant  over  time.  These  loads  are 

contingent  on  factors  like  speed,  acceleration,  and  the  size  of  the  S‐ASUV  represented  through 

hydrodynamic coefficients. These coefficients, detailed in Table 1, comprise the added mass and drag 

coefficients, delineating  the vehicleʹs dynamic behavior during  acceleration  and uniform motion, 

respectively (Fossen, 2011).   

Table 1. Hydrodynamic coefficients for each DOF. 

 
Added  mass

coefficient 

Linear drag 

coefficient 

Nonlinear drag 

coefficient 

surge  𝑋௨ሶ   𝑋௨  𝑋ത௨ 

sway  𝑌௩ሶ   𝑌௩  𝑌ത௩ 

heave  𝑍௪ሶ   𝑍௪  𝑍̅௪ 

roll  𝐾௣ሶ   𝐾௣  𝐾ഥ௣ 

pitch  𝑀௤ሶ   𝑀௤  𝑀ഥ௤ 

yaw  𝑁௥ሶ   𝑁௥  𝑁ഥ௥ 

Table 2 shows the S‐ASUV ʹs force/torque, linear/angular velocity, and position/Euler angle in 

six DOFs. 

Table 2. Main kinematic parameters. 

  Force/Moment  Velocity  Position/Attitude 

surge  𝑋  𝑢  𝑥 

sway  𝑌  𝑣  𝑦 

heave  𝑍  𝑤  𝑧 

roll  𝐾  𝑝  𝜙 

pitch  𝑀  𝑞  𝜃 

yaw  𝑁  𝑟  𝜓 

To  facilitate mathematical analysis, we establish  two  frames of reference. The body reference 

frame  (BRF)  is  attached  to  the  vehicle  and  aligned with  its  center  of  gravity  (CG).  Using  this 

configuration, we  can  analyze  the  vehicleʹs movement  regarding  the  BRF  relative  to  an  inertial 

reference  frame  (IRF)  that  tracks  the vehicleʹs position and orientation globally. The  thrusters are 
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arranged in a cross shape, where the first and third propellers move clockwise with angular velocities 

of 𝜔1 and 𝜔3, generating thrusts downward. In contrast, the second and fourth propellers make the 

counterclockwise motion with angular velocities of 𝜔2 and 𝜔4, generating downward thrusts. 

 

Figure 2. S‐ASUV reference system. 

2.2. Kinematic and Dynamic Model 

The complete kinematic and dynamic model of the S‐ASUV can be seen in section 2 of Ji et al. 

(2023). 

We introduce the subsequent vectors as defined below: 

𝜂ଵ ൌ  ቈ
𝑥
𝑦
𝑧
቉,  𝜂ଶ ൌ ൥

𝜙
𝜃
𝜓
൩ , 𝜂 ൌ ቂ

𝜂ଵ
𝜂ଶ
ቃ    (1)

𝑉ଵ ൌ  ቈ
𝑢
𝑣
𝑤
቉,  𝑉ଶ ൌ ቈ

𝑝
𝑞
𝑟
቉ ,𝑉 ൌ ൤

𝑉ଵ
𝑉ଶ
൨    (2)

where 𝜂 is the vector of position  𝜂ଵ  and pose  𝜂ଶ, i.e., Euler angle, 𝑉 is the velocity vector. 
The kinematics equations of the AUV can be expressed as: 

൤
𝜂ଵ
𝜂ଶሶ
ሶ
൨ ൌ ൤

𝑅ଵሺ𝜂ଶሻ 0ଷ∗ଷ
0ଷ∗ଷ 𝑅ଶሺ𝜂ଶሻ

൨ ൤
𝑉ଵ
𝑉ଶ
൨    (3)

in which the conversion equations of the linear velocity and angular velocity are given as follows, 

where s = sin, c = cos, and t = tan 

𝜂ଵሶ ൌ 𝑅ଵሺ𝜂ଶሻ𝑉ଵ    (4)

𝑅ଵሺ𝜂ଶሻ ൌ ൥
𝑐𝜓𝑐𝜃 𝑐𝜓𝑠𝜃𝑠𝜙 െ 𝑠𝜓𝑠𝜙 𝑠𝜓𝑠𝜙 ൅ 𝑐𝜓𝑐𝜙𝑠𝜃
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜃 ൅ 𝑠𝜓𝑠𝜃𝑠𝜙 𝑠𝜃𝑠𝜓𝑐𝜙 െ 𝑐𝜓𝑠𝜙
െ𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙

൩  (5)

𝜂ଶሶ ൌ 𝑅ଶሺ𝜂ଶሻ𝑉ଶ   (6)

𝑅ଶሺ𝜂ଶሻ ൌ ൥
1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 െ𝑠𝜙
0 𝑠𝜙/𝑐𝜃 𝑐𝜙/𝑐𝜃

൩ (7)

Table 3. Main Parameters of S‐ASUV. 

Parameters  Description 

m (kg)  4.99 

G (N)  48.902 

B (N)  50.406 

𝛾 (m)  0.0975 

l (m)  0.211 
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(𝑥𝑔, 𝑦𝑔, 𝑧𝑔) (mm)  (0, 0, 11.15) 

(𝐼𝑥, 𝐼𝑦, 𝐼𝑧) (kg m2)  [0.01426, 0.01426, 0.01426] 

2.3. Modeling of Dynamic Positioning Problem 

The  objective  of  this  paper  is  to  develop  and  implement  a  robust  LBMPC  framework  for 

achieving precise DP of the multi‐rotor dynamics of S‐ASUV in varying environmental conditions. 

The goal is to design a control system that ensures the S‐ASUV maintains its desired position and 

orientation  accurately  and  efficiently while mitigating disturbances  and uncertainties  inherent  in 

underwater operations using LMPC techniques. 

We consider  the motion of  the vehicle  in  the  local  level plane. Two mild assumptions can be 

satisfied for the low‐speed motion of S‐ASUV: (i) The vehicle has three planes of symmetry; and (ii) 

the mass distribution  is homogeneous  to simplify  the mathematical model, reduce computational 

complexity, and focus on dominant horizontal motions. As a result, for the motion control in the local 

level plane,  the system matrices presented by  Ji et al.  (2023) can be simplified. The  inertia matrix 

becomes 

𝑀 ൌ

⎣
⎢
⎢
⎢
⎢
⎡
𝑀௨ሶ 0 0 0 0 0
0 𝑀௩ሶ 0 0 0 0
0 0 𝑀௪ሶ 0 0 0
0 0 0 𝑀௣ሶ 0 0
0 0 0 0 𝑀௤ሶ 0
0 0 0 0 0 𝑀௥ሶ ⎦

⎥
⎥
⎥
⎥
⎤

  (8)

where  𝑀௨ሶ ൌ 𝑚 െ 𝑋௨ሶ ,𝑀௩ሶ ൌ 𝑚 െ 𝑌௩ሶ ,𝑀௪ሶ ൌ 𝑚 െ 𝑍௪ሶ ,𝑀௣ሶ ൌ 𝐼௫ െ 𝐾௣ሶ ,𝑀௤ሶ ൌ 𝐼௬ െ𝑀௤ሶ  𝑎𝑛𝑑 𝑀௥ሶ ൌ 𝐼௭ െ 𝑁௥ሶ     are 
the inertia terms including added mass. The restoring force is neglected  𝑔ሺ𝜂ሻ ൌ 0, and the damping 

matrix is 

𝐷ሺ𝑉ሻ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑋௨ ൅ 𝑋ത௨|𝑢| 0 0 0 0 0

0 𝑌௩ ൅ 𝑌ത௩|𝑣| 0 0 0 0
0 0 𝑍௪ ൅ 𝑍̅௪|𝑤| 0 0 0
0 0 0 𝐾௣ ൅ 𝐾ഥ௣|𝑝| 0 0

0 0 0 0 𝑀௤ ൅𝑀ഥ௤|𝑞| 0

0 0 0 0 0 𝑁௥ ൅ 𝑁ഥ௥|𝑟|⎦
⎥
⎥
⎥
⎥
⎥
⎤

  (9)

where  𝑋௨,𝑌௩,𝑍௪ ,𝐾௣,𝑀௤ 𝑎𝑛𝑑 𝑁௥   are  linear  drag  coefficients  and  𝑋ത௨,𝑌ത௩, 𝑍̅௪ ,𝐾ഥ௣,𝑀ഥ௤ 𝑎𝑛𝑑 𝑁ഥ௥   are  the 
nonlinear drag coefficients. The Coriolis and centripetal matrix become: 

𝐶ሺ𝑉ሻ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 െ𝑀௪ሶ 𝑤 𝑀௩ሶ 𝑣
0 0 0 𝑀௪ሶ 𝑤 0 െ𝑀௨ሶ 𝑢
0 0 0 െ𝑀௩ሶ 𝑣 𝑀௨ሶ 𝑢 0
0 െ𝑀௪ሶ 𝑤 𝑀௩ሶ 𝑣 0 0 െሺ𝑀௪ሶ 𝑤ଶ െ 𝑀௩ሶ 𝑣ଶሻ

𝑀௪ሶ 𝑤 0 െ𝑀௨ሶ 𝑢 0 0 ሺ𝑀௨ሶ 𝑢ଶ െ 𝑀௪ሶ 𝑤ଶሻ
െ𝑀௩ሶ 𝑣 𝑀௨ሶ 𝑢 0 െሺ𝑀௪ሶ 𝑤ଶ െ 𝑀௩ሶ 𝑣ଶሻ ሺ𝑀௪ሶ 𝑤ଶ െ 𝑀௨ሶ 𝑢ଶሻ 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

  (10)

In the local level plane, the velocity vector  𝑉 ൌ ሾ𝑢, 𝑣,𝑤,𝑝, 𝑞, 𝑟ሿ்encloses the surge, sway, and yaw 
velocities,  and  the position  and  orientation vector  𝜂 ൌ ሾ𝑥,𝑦, 𝑧,𝜙,𝜃,𝜓ሿ்   includes  the position  and 
heading of the vehicle.   

By  introducing  the disturbances  and uncertainties,  the dynamic model  of    S‐ASUV  can  be 

formulated as: 

𝑀𝑉ሶ ൅ 𝐶ሺ𝑉ሻ𝑉 ൅ 𝐷ሺ𝑉ሻ𝑉 ൅ 𝑔ሺ𝜂ሻ ൌ 𝜏  ൅𝜏ா ൅ 𝛥𝜏ு  (11)

where  𝜏 ൌ ൣ𝐴௨,𝐴௩,𝐴௪ ,𝐴௣,𝐴௤ ,𝐴௥൧
்
 denotes  the generalized  thrust  forces and moments.  𝜏ா   denotes 

the disturbance force/torque of water flow environment and  𝛥𝜏ு  denotes uncertain hydrodynamic 

forces/moments.  The  assumption  is  that  the  six  propellers,  denoted  as  𝑢 ൌ ሾ𝑢ଵ,𝑢ଶ,𝑢ଷ,𝑢ସ,𝑢ହ,𝑢଺ሿ் 
within the local horizontal plane, collectively generate the generalized thrust force. It is important to 

note that these propellers are intentionally designed to remain fixed for simplicity, resulting in the 

representation of thrust allocation  𝜏  ൌ 𝑆𝑢  in which  𝑆  represents the thrust allocation matrix. 

The kinematic equations (3) can also be simplified as follows: 
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𝜂ሶ ൌ 𝐾ሺ𝜂ଶሻ𝑉  (12)

where  𝐾ሺ𝜂ଶሻ ൌ

⎣
⎢
⎢
⎢
⎢
⎡
𝑐𝜓𝑐𝜃 െ𝑠𝜓𝑐𝜃 ൅ 𝑐𝜓𝑠𝜃𝑠𝜙 𝑠𝜓𝑠𝜙 ൅ 𝑐𝜓𝑠𝜃𝑐𝜙 0 0 0
𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜃 ൅ 𝑠𝜓𝑠𝜃𝑠𝜙 െ𝑐𝜓𝑠𝜙 ൅ 𝑠𝜓𝑠𝜃𝑐𝜙 0 0 0
െ𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

Define the system state as  𝜆 ൌ ሾ𝜂்,𝑉்ሿ்  and the generalized control input as  𝜏. The generalized 
control  input  𝜏  is  the resulting  force of the  thrusters. For S‐ASUV,  the experimental platform, six 

thrusters are effective in the local level plane. From (3) and (11), the dynamic model for the 3D DP 

problem with the position and pose control is established as below: 

𝜆ሶ ൌ ൤
𝐾ሺ𝜂ଶሻ𝑉

𝑀ିଵሺ𝑆𝑢 െ 𝐶ሺ𝑉ሻ𝑉 െ 𝐷ሺ𝑉ሻ𝑉 െ 𝑔ሺ𝜂ሻ
൨ ൌ 𝑓ሺ𝜆,𝑢ሻ  (13)

where the state vector  𝜆 ൌ ሾ𝑥,𝑦, 𝑧,𝜙,𝜃,𝜓,𝑢, 𝑣,𝑤,𝑝, 𝑞, 𝑟ሿ். The DP model in (13) of S‐ASUV reveals the 

dynamics from the thrusters to the position and pose in 3D space, facilitating the 3D DP control using 

LBMPC. The hydrodynamic coefficients for S‐ASUV in (13) are summarized in Table 4.   

For the model (13), the following essential properties can be easily explored and will be exploited 

in the controller design:     

• P‐1: The inertia matrix is positive definite and upper bounded: 0 < M = MT ≤𝑚ഥ𝐼< ∞.   
• P‐2: The Coriolis and centripetal matrix is skew‐symmetric: C(V) = −CT(V).   

• P‐3: The inverse of rotation matrix satisfies:𝐾ିଵሺ𝜓ሻ ൌ 𝐾்ሺ𝜓ሻ, and it preserves length 
 ∥ 𝐾்ሺ𝜓ሻ𝜂ሶ ∥ଶൌ∥ 𝜂ሶ ∥ଶ.   
• P‐4: The damping matrix is positive definite: D(V) > 0.   

• P‐5: The input matrix satisfies that SST is nonsingular.   

• P‐6: The restoring force g(η) is bounded:  ∥ 𝑔ሺ𝜂ሻ ∥ஶ൑ 𝑔̅ 
• While  we  initially  assumed  𝑔ሺ𝜂ሻ ൌ 0    in  section  2.2  for  simplicity,  we  recognize  and 

acknowledge  in subsequent sections  (P‐6 and Assumption 2)  that  𝑔ሺ𝜂ሻ  exists within defined 

bounds. This acknowledgment ensures that our model accounts for the bounded and modest 

influence of the restoring force, aligning with physical constraints and operational scenarios. 

Table 4. Hydrodynamic coefficient summary. 

Inertia term  Linear drag  Nonlinear drag 

𝑀௨ሶ ൌ 3.0003𝑘𝑔  𝑋௨ ൌ െ0.7318 𝑘𝑔/𝑠  𝑋ത௨ ൌ 3.006 𝑘𝑔/𝑚 

𝑀௩ሶ ൌ 3.0003𝑘𝑔  𝑌௩ ൌ െ0.7318 𝑘𝑔/𝑠  𝑌ത௩ ൌ 3.006 𝑘𝑔/𝑚 

𝑀௪ሶ ൌ 1.8563𝑘𝑔  𝑍௪ ൌ 0.3747 𝑘𝑔/𝑠  𝑍̅௪ ൌ 36.35𝑘𝑔/𝑚 

𝑀௣ሶ ൌ 0.087𝑘𝑔 𝑚ଶ  𝐾௣ ൌ 0.001359𝑘𝑔 𝑚ଶ/𝑠  𝐾ഥ௣ ൌ 0.000012 𝑘𝑔 𝑚ଶ 

𝑀௤ሶ ൌ 0.087𝑘𝑔 𝑚ଶ  𝑀௤ ൌ 0.001359 𝑘𝑔 𝑚ଶ/𝑠  𝑀ഥ௤ ൌ 0.000012 𝑘𝑔 𝑚ଶ 

𝑀௥ሶ ൌ 01553𝑘𝑔 𝑚ଶ  𝑁௥ ൌ 0.006736 𝑘𝑔 𝑚ଶ/𝑠  𝑁ഥ௥ ൌ 0.008206 𝑘𝑔 𝑚ଶ 

This research focuses on achieving precise three‐dimensional dynamic positioning for S‐ASUV 

while maintaining robustness in complex underwater environments. To this end, this work integrates 

the multivariable PID  into  the LMPC scheme with Lyapunov stability analysis, enhancing control 

performance and stability. The study conducts rigorous feasibility and stability analyses, ensuring 

robustness to external disturbances and model uncertainties.     

3. Dynamic Positioning Based on LBMPC 

3.1. Formulation of Optimization Problem 

DP control refers to the implementation of feedback control techniques in S‐ASUV, and the goal 

is to maintain a desired position and orientation through the adjustment of propeller thrust alone. 

Numerous existing DP controllers have been devised using the Lyapunov direct method, boosting 

global stability attributes. Explicitly incorporating these controllers allows us to formulate the LMPC 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 December 2024 doi:10.20944/preprints202412.0211.v1

https://doi.org/10.20944/preprints202412.0211.v1


  8 

 

problem for DP control (Shi et al.,2023). Considering the preferred location and orientation indicated 

by  𝜂ௗ ൌ ሾ𝑥ௗ ,𝑦ௗ , 𝑧ௗ ,𝜙ௗ ,𝜃ௗ ,𝜓ௗሿ் ,  the nonlinear optimization problem(𝑃଴ ) of DP  for S‐ASUV  can be 
formulated as : 

min
௨ෝ∈ீሺఓሻ

𝐽 ൌ ׬ ൫∥ 𝜆ሚሺ𝑠ሻ ∥௑
ଶ ൅∥ 𝑢ොሺ𝑠ሻ ∥௒

ଶ൯𝑑𝑠൅∥ 𝜆ሚሺ𝑇ሻ ∥௓
ଶ்

଴
    (14)

s.t. 𝜆ሶሺ𝑠ሻ ൌ 𝑓 ቀ𝜆መሺ𝑠ሻ,𝑢ොሺ𝑠ሻቁ,  (15)

𝜆መሺ0ሻ ൌ 𝜆ሺ𝑡଴ሻ,    (16)

|𝑢ොሺ𝑠ሻ| ൑ 𝑢௠௔௫ (17)

𝜕𝑊
𝜕𝜆

𝑓ሺ𝜆መሺ0ሻ,𝑢ොሺ0ሻሻ ൑
𝜕𝑊
𝜕𝜆

𝑓ሺ𝜆መሺ0ሻ,𝜔 ቀ𝜆መሺ0ሻቁሻ (18)

where  𝜆መሺ𝑠ሻ  stands for the planned trajectory of the AUVʹs state, using the system’s model to evolve; 

𝜆ሚ ൌ colሺ𝜂,෥ 𝑉෠ሻ  represents the error state where  𝜂෤ ൌ 𝜂̂ െ 𝜂ௗ;  𝐺ሺ𝜇ሻ represents a collection of piece‐wise 

constant functions based on the sampling period  𝜇.  𝑇 ൌ  𝑁𝜇  indicates the forecasting horizon, X, Y, 
and Z, represent the weighting matrices and are guaranteed to maintain positive definiteness. It is 

noted that  𝜔  (·) conventionally denotes the PD controller, while herein, for LBMPC, we propose the 

PID secondary controller, which is demonstrated in Subsection 3.2. At the same time, W (·) signifies 

the corresponding Lyapunov function.   

3.2. PID Secondary Control Law   

Unlike  the modern LMPC  techniques  (Shen et al., 2017; Shi et al., 2023), which employ a PD 

secondary control law,    the multi‐variable PID controller is used as the secondary law, enhancing 

the  rapidity  and  accuracy  of  the DP  control.  For  the  theoretical  explanation,  the  designed  PID 

secondary law also introduces the disturbance and model uncertainties, playing a role in resisting 

disturbances and uncertainties. The used multi‐variable PID control law is considered as: 

𝜏ሺ𝜆ሻ ൌ 𝑔ሺ𝜂ሻ െ 𝜏୉ െ Δ𝜏ୌ െ 𝐾்ሺ𝜂ଶሻ𝜏௉ூ஽     (19)

𝜏௉ூ஽ ൌ 𝐾௣𝜂෤ ൅ 𝐾ௗ𝜂ሶ ൅ 𝐾௜Δ𝜂෤  (20)

where  Δ𝜂෤ ൌ ׬ 𝐾ሺ𝜂ଶሻ𝑉𝑑𝑠 
௧
଴

 ,  then one can easily obtain  ሺ∆𝜂෤ሻሶ ൌ 𝐾ሺ𝜂ଶሻ𝑉 . The user defines  the control 
gain matrices  𝐾௣ 𝑎𝑛𝑑 𝐾ௗ 𝑎𝑛𝑑 𝐾௜  which should be diagonal and positive definite. It  is  important to 

note  that  𝜏E and Δ𝜏H   were not directly  implemented  in  the  control algorithm.  Instead,  they were 

adjusted  through  parameters  in  the  digital  experiments  to  represent  real‐life  disturbances.  This 

unconventional approach was adopted to evaluate the robustness and performance of the PID control 

law under various disturbance scenarios. 

The proposed choice for the Lyapunov function is the following: 

𝑊 ൌ
1
2
𝑉்𝑀𝑉 ൅

1
2
𝜂෤்𝐾௣𝜂෤ ൅

1
2
ሺ∆𝜂෤ሻ்𝐾௜∆𝜂෤  (21)

When computing the time derivative of W along the trajectory of the closed‐loop system, Using 

the product  rule  and  noting  that  𝑀,𝐾௣ 𝑎𝑛𝑑,𝐾௜  are  constant matrices, we differentiate  each  term 

separately. Combining these results, we obtain: 

𝑊ሶ ൌ 𝑉்𝑀𝑉ሶ ൅ 𝜂ሶ்𝐾௣𝜂෤ ൅ ሺ∆𝜂෤ሻሶ ்𝐾௜∆𝜂෤  (22)

Substituting (11), (12), (19), and (20) into (22) yields 

𝑊ሶ ൌ െ𝑉்ሾ𝐶ሺ𝑉ሻ ൅ 𝐷ሺ𝑉ሻ ൅ 𝐾ௗ
∗ሺ𝜂ሻሿ𝑉  (23)

where  𝐾ௗ
∗ ൌ 𝑅்ሺ𝜂ଶሻ𝐾ௗ𝑅ሺ𝜂ଶሻ. Considering  𝑉்𝐶ሺ𝑉ሻ𝑉 ൌ 0  for all V, we have 

𝑊ሶ ൌ െ𝑉்ሾ𝐷ሺ𝑉ሻ ൅ 𝐾ௗ
∗ሺ𝜂ሻሿ𝑉 ൑ 0  (24)
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the gain parameter  𝐾ௗ
∗ሺ𝜂ሻ ൐ 0  is positive. Following Khalil (1996), LaSalle’s theorem indicates 

that the closed‐loop system, influenced by the nonlinear PID controller, exhibits global asymptotic 

stability relative to the equilibrium point    ሾ𝜂෤,𝑉ሿ ൌ ሾ0, 0ሿ. 
The  comprehensive description  of  the  contraction  constraint  (18)  associated with  the use  of 

nonlinear PID control follows: 

𝑉෠ሺ0ሻ் ൬𝑢ොሺ𝛰ሻ െ 𝐶 ቀ𝑉෠ሺΟሻቁ𝑉෠ሺ𝛰ሻ െ 𝐷 ቀ𝑉෠ሺ𝛰ሻቁ𝑉෠ሺ𝛰ሻ െ 𝑔൫𝜂̂ሺ𝛰ሻ൯ ൅ 𝑅் ቀ𝜓෠ሺ𝛰ሻቁ𝐾௣𝜂෤ሺ𝛰ሻ൰

൑ െ𝑉෠ሺ𝛰ሻ்ሾ𝐷 ቀ𝑉෠ሺ𝛰ሻቁ ൅ 𝐾ௗ
∗൫𝜂̂ሺ𝛰ሻ൯ሿ𝑉෠ሺ𝛰ሻ 

(25)

To ensure recursive feasibility, it is worth noting that the PID controller,  𝜔ሺ𝜆መሻ  remains viable 

for the LBMPC (14), (15), (16), (17) ,and (18) as long as we can satisfy the condition  |𝜔ሺ𝜆መሻ| ൑ 𝑢௠௔௫.     
The following uses several logical and realistic assumptions to simplify calculations.   

Assumption 1: The maximum capacity of  the propellers  is  the same,  i.e.,  |𝑢௜| ൑ 𝑈௠௔௫  . Note  that 

Assumption 1 is plausible and frequently accurate in real‐world situations. 

The proposition that follows is then; 

Proposition 1: Consider the Moore‐Penrose pseudoinverse implementation when allocating thrust, 

that is, 

𝑢 ൌ 𝑆்ሺ𝑆𝑆்ሻିଵ𝜏 ൌ 𝑆ା𝜏  (26)

and  signify  the  highest  generalized  thrust  force  possible  by  𝜏௠௔௫ ൌ∥ 𝜏௠௔௫ ∥ஶ   with  𝜏௠௔௫ ൌ

ൣ𝐴௨,௠௔௫,𝐴௩,௠௔௫,𝐴௪,௠௔௫,  𝐴௣,௠௔௫,𝐴௤,௠௔௫,𝐴௥,௠௔௫൧
்
. if this relationship holds: 

𝜏௠௔௫ ൑
𝑢௠௔௫
𝚥ା̅
  (27)

where  𝚥ା̅ ൌ∥ 𝑆ା ∥ஶ, then it is always possible to allocate the thrust., that is,  ∥ 𝑢 ∥ஶ൑ 𝑢௠௔௫. 
Proof: If we take the infinity norm on either side of (26) we get 

∥ 𝑢 ∥ஶൌ∥ 𝑆ା𝜏 ∥ஶ൑ 𝚥ା̅ ∥ 𝜏 ∥ஶ൑ 𝚥ା̅𝜏௠௔௫  (28)

In light of (27) and Assumption 1, (28) results in 

∥ 𝑢 ∥ஶ൑ 𝚥ା̅𝜏௠௔௫ ൑ 𝑢௠௔௫  (29)

Assumption 2: The restoring force  𝑔ሺ𝜂ሻ  is limited in magnitude and relatively modest, such that 

∥ 𝑔ሺ𝜂ሻ ∥ஶ൑ 𝑔̅ ൏ 𝜏௠௔௫  (30)

where  𝑔̅  denotes the input bound. 
The  second  assumption  is  likewise  a  valid  one.  Sine  and  cosine  function  combinations  are 

included in the comprehensive definition of  𝑔ሺ𝜂ሻ. Therefore, we can ensure that the restoring force 

remains within certain bounds. Moreover, it is worth noting that the upper bound  𝑔̅  is considerably 
smaller in magnitude compared to the maximum allowable thrust force  𝜏௠௔௫. Failing to meet this 

condition would render the feedback control, which is not considered in this study, infeasible.   

3.3. Stability Analysis 

In  this  subsection,  the  feasibility  and  stability  of  the  proposed  LBMPC  are  both  proved 

rigorously, guaranteeing the closed‐loop stability of the DP control system. 

Theorem  1:  Assume  that  the  control  gains  𝐾௉,𝐾ௗ 𝑎𝑛𝑑 𝐾௜    are  each  equal  to 

𝑑𝑖𝑎𝑔൛𝑘௣௜ൟ,𝑑𝑖𝑎𝑔ሼ𝑘ௗ௜ሽ 𝑎𝑛𝑑 𝑑𝑖𝑎𝑔ሼ𝑘௜௜ሽ  .  Let  𝑘ത௣ ൌ max ሼ𝑘௣௜ሽ  ,    𝑘തௗ ൌ max ሼ𝑘ௗ௜ሽ  and  𝑘ത௜ ൌ max ሼ𝑘௜௜ሽ 
represent the greatest elements in  𝐾௣,𝐾ௗ 𝑎𝑛𝑑 𝐾௜, respectively, and suppose assumptions one and two 

can hold and    define  𝜔ሺ𝜆ሻ ൌ 𝑆ା𝜏ሺ𝜆ሻ. If the relationship shown below can hold: 

൫𝑘ത௣ ൅ √2𝑘തௗ ൅ 𝑘ത௜൯ ൑
𝜏௠௔௫ െ 𝑔̅

√2
  (31)

where  𝜆ሚሺ0ሻ  denotes the  initial error and  𝜏௠௔௫  adheres to equation (27), the LBMPC problem (𝑃଴) 

recognizes recursive feasibility. In other words,  ቚ𝜔 ቀ𝜆መሺ𝑡ሻቁቚ ൑ 𝑢௠௔௫ 𝑓𝑜𝑟 all 𝑡 ൒ 0 𝑤ℎ𝑒𝑟𝑒 𝑢௠௔௫ ൌ 𝑢௠௔௫1. 

Proof: By applying the infinity norm to both sides of equation (19), we obtain: 
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∥ 𝜏 ∥ஶൌ∥ 𝑔ሺ𝜂ሻ െ τ୉ െ Δτୌ െ 𝑅்ሺ𝜓ሻ𝜏௉ூ஽ ∥ஶ൑∥ 𝑔ሺ𝜂ሻ ∥ஶ ൅∥ 𝑅்ሺ𝜓ሻ ∥ஶ∥ 𝜏௉ூ஽ ∥ஶ൑ 𝑔̅ ൅ √2
∥ 𝜏௉ூ஽ ∥ஶ 

(32)

Since  ∥ 𝑅்ሺ𝜓ሻ ∥ஶൌ maxሼ𝑐𝑜𝑠𝜓 െ 𝑠𝑖𝑛𝜓, 𝑠𝑖𝑛𝜓 ൅ 𝑐𝑜𝑠𝜓, 1ሽ ൑ √2 
From (12) and (20), we have 

∥ 𝜏௉ூ஽ ∥ஶൌ∥ 𝐾௣𝜂෤ ൅ 𝐾ௗ𝜂ሶ ൅  𝐾௜∆𝜂෤ ∥ஶൌ∥ 𝐾௣𝜂෤ ൅ 𝐾ௗ𝑅ሺ𝜓ሻ𝑉 ൅  𝐾௜∆𝜂෤ ∥ஶ൑ 𝑘ത௣ ∥ 𝜂෤ ∥ஶ൅ √2𝑘തௗ
∥ 𝑉 ∥ஶ൅  𝑘ത௜ ∥ 𝜂෤ଶ ∥ஶ൑ ሺ𝑘ത௣ ൅ √2𝑘തௗ ൅ 𝑘ത௜ሻ ∥ 𝜆ሚ ∥ஶ 

(33)

As  (18)  is  fulfilled,  it allows  for  𝑉ሶ ൑ 0. Consequently, we can conclude  that  ∥ 𝜆ሚ ∥ଶ൑∥ 𝜆ሚሺ0ሻ ∥ଶ. 
Considering  ∥ 𝜆ሚ ∥ஶ൑  ∥ 𝜆ሚ ∥ଶ, we arrive at; 

∥ 𝜏௉ூ஽ ∥ஶ൑ ൫𝑘ത௣ ൅ √2𝑘തௗ ൅ 𝑘ത௜൯ ∥ 𝜆ሚሺ0ሻ ∥ଶ.  (34)

Together with (32), we have 

∥ 𝜏 ∥ஶ൑ 𝑔̅ ൅ √2ሺ𝑘ത௣ ൅ √2𝑘തௗ ൅ 𝑘ത௜ሻ ∥ 𝜆ሚሺΟሻ ∥ଶ.  (35)

If we can meet condition (31), then the subsequent relationship is valid. 

∥ 𝜏 ∥ஶ൑ 𝑔̅ ൅ √2൫𝑘ത௣ ൅ √2𝑘തௗ ൅ 𝑘ത௜൯ ∥ 𝜆ሚሺ0ሻ ∥ଶ.൑ 𝜏௠௔௫  (36)

With  (27), we  can guarantee  that  ∥ 𝜔ሺ𝜆መሺ𝑡ሻሻ ∥ஶ൑ 𝑢௠௔௫   remains  satisfied  consistently,  thereby 

concluding the proof. 

We  observe  that  it  is  straightforward  to  fulfill  condition  (31)  by  assigning  𝑘ത௣, 𝑘തௗ  𝑎𝑛𝑑 𝑘ത௜   as 
arbitrarily small positive values. The size of the region of attraction can be flexible as the assurance of 

closed‐loop stability is provided through recursive feasibility. 

Theorem  2:  Suppose  that  both Assumptions  1  and  2  are met.  In  that  case,  the LBMPC dynamic 

positioning control will ensure  the continuous stability of  the required equilibrium point  ሾ𝜂෤,𝑉ሿ ൌ
ሾ0, 0ሿ .  Additionally,  by  employing  sufficiently  small  control  gains  𝑘ത௣, 𝑘തௗ𝑎𝑛𝑑 𝑘ത௜   the  region  of 
attraction can be significantly expanded.   

Proof: The proof first shows that the equilibrium is asymptotically stable and then demonstrates that 

you can adjust the size of the region where the systemʹs trajectories will converge to the equilibrium 

as  needed. Applying  the  reverse  Lyapunov  theorem  (Khalil,  1996),  given  that we  have  already 

identified  a  continuously  differentiable  and  unbounded  Lyapunov  function  𝑊ሺ𝜆ሻ     in  (21), 
continuously differentiable and  radically unbounded by  converse Lyapunov  theorems  (31),  there 

exist functions such as𝛽௜ሺ∙ሻ, 𝑖 ൌ 1, 2, 3  belonging to the class  𝜒ஶ  satisfy the subsequent inequalities: 

𝛽ଵሺ∥ 𝜆 ∥ሻ ൑ 𝑊ሺ𝜆ሻ ൑ 𝛽ଶሺ∥ 𝜆 ∥ሻ  (37)

𝜕𝑊
𝜕𝜆

𝑏൫𝜆,ℎሺ𝜆ሻ൯ ൑ െ𝛽ଷሺ∥ 𝜆 ∥ሻ  (38)

Considering (18) and  the fact  that each sampling period will only use  the first component of 

𝜒ሺ𝜆ሻ, we obtain 

𝜕𝑊
𝜕𝜆

𝑏൫𝜆,𝑢ሺ𝜆ሻ൯ ൑
𝜕𝑊
𝜕𝜆

𝑏൫𝜆,ℎሺ𝜆ሻ൯ ൑ െ𝛽ଷሺ∥ 𝜆 ∥ሻ  (39)

We affirm that employing common Lyapunov arguments, the closed‐loop system under LBMPC 

𝑢ሺ𝜆ሻ   is  asymptotically  stable  and  possesses  a  region  of  attraction  using  common  Lyapunov 

arguments (such as Theorem 4.8 in Khalil (1996)). 

𝜅 ൌ ሼ𝜆 ∈ ℝ௡|ሺ𝑘ത௣ ൅ √2𝑘തௗ ൅ 𝑘ത௜ሻ ∥ 𝜆ሚ ∥ଶ൑
𝜏௠௔௫ െ 𝑔̅

√2
ሽ  (40)

where  𝜆ሚ ൌ 𝑐𝑜𝑙ሺ𝜂෤,𝑉ሻ  represents the error state.   
We choose  the control gains  𝐾௣ ൐ 0,𝐾ௗ ൐ 0 𝑎𝑛𝑑 𝐾௜ ൐ 0  meeting  the arbitrary big  initial error 

condition  𝜆ሚ, therefore satisfying 

ሺ𝑘ത௣ ൅ √2𝑘തௗ ൅ 𝑘ത௜ሻ ൑
𝜏௠௔௫ െ 𝑔̅

√2 ∥ 𝜆ሚ ∥ଶ
  (41)
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Therefore,  the  closed‐loop  system  exhibits  stability,  affirming  the  solvability  of  the  LBMPC 

problem. The extent of the region of attraction can be adjusted as needed as long as there are sufficient 

small control gains to satisfy (41) because there are no other restrictions on  𝑘ത௣,𝑘തௗ  𝑎𝑛𝑑 𝑘ത௜. 
Remark 1:    The magnitude of  the control gains  impacts  the PID controllerʹs control performance, 

despite the fact that asymptotic stability relies solely on the control gain matrices  𝐾௣,𝐾ௗ 𝑎𝑛𝑑 𝐾௜  being 
positively definite. A slower rate of convergence will result from smaller control gains. Nevertheless, 

although  significantly  small  control gains are  chosen  to attain a broad  region of attraction  in  the 

proposed LBMPC DP control, the optimization procedure allows the system to effectively leverage 

its  thrust capability  to achieve optimal control performance consistent with  the objective  function 

(14). 

3.4. LBMPC DP Control Algorithm 

The LBMPC DP  control  algorithm  can  be  followed  by  a  list  of  steps  that describe  how  the 

algorithm will be executed below:   

(i) At the current sampling  instant t0, taking  into account the systemʹs present state  𝜆ሺ𝑡଴ሻ, we 

address the optimal control problem (P0); let  𝜉ሺ𝑠ሻ  represent the sub‐optimal solution; 

  (ii) the S‐ASUV applies  𝜉ሺ𝑠ሻ  for just a single sampling interval:  𝑢ሺ𝑡ሻ ൌ 𝜉ሺ𝑠ሻ𝑓𝑜𝑟 𝑠 ∈ ሾ0, 𝜇ሿ; 
  (iii) At  the  subsequent  sampling  instant  𝑡଴ ൅  𝜇 ,  a  fresh measurement  of  the  systemʹs  state 

𝜆ሺ𝑡଴ ൅ 𝜇ሻ  is  incorporated as feedback, then, (P0) is solved once more, starting anew with the fresh 

initial condition  𝜆ሺ𝑡଴ ൅ 𝜇ሻ. The process iterates, recommencing from step (i). 

4. Experiments and Discussion 

In  this  section,  the  primary  purpose  lies  in  validating  and  verifying  the  peformance  of  the 

proposed  method,  ensuring  accuracy  and  effectiveness.  The  dynamic  model  of  the  S‐ASUV, 

established using the data in Ji et al. (2023) is employed in this part. To testify the advantages of the 

proposed method, the classical PD (Bayusari et al., 2021), modern controllers including MPC (Beklan 

et al., 2023) and LMPC  (Shi et al., 2023) were used  in a  series of experiments  for  comprehensive 

comparison.   

4.1. Selection of Parameters 

We have set the target position, represented by,  𝜂ௗ ൌ ሾ0,0,0,0,0,0ሿ், to be situated at the origin 
of  the  IRF, and  this decision was made  to maintain  simplicity without  compromising generality. 

According to experimental data in (Ji et al., 2019), the actual maximum force output for each propeller 

is  8N.  In  order  to  tackle  the  LBMPC  problem  formulated  in  equation  (14)  to  (18), we  utilize  a 

discretization strategy coupled with Sequential Quadratic Programming (SQP) to obtain a solution. 

This can be followed by a list of the variables that were chosen. 

Sampling period  𝜇 ൌ 0.02 ሾ𝑠𝑒𝑐ሿ,   
Prediction horizon  𝑇 ൌ 5𝜇,   
Weighting matrices:   

𝑋 ൌ 𝑑𝑖𝑎𝑔ሺ10ସ, 10ସ, 10ଷ, 10ଶ, 10ଶ, 10ଶ, 10ିଶ, 10ିଶ, 10ିଶ, 10ିଶ, 10ିଶ, 10ିଶሻ, 
𝑌 ൌ 𝑑𝑖𝑎𝑔ሺ10ିଶ, 10ିଶ, 10ିଶ, 10ିଶ, 10ିଶ, 10ିଶ, 10ଷ, 10ଶ, 10ଶ, 10,10,10ሻ, 
𝑍 ൌ 𝑑𝑖𝑎𝑔ሺ10,10,10,10,10,10,10,10,10,10,10,10ሻ, 
Control gains for nonlinear PID control:  𝐾௣ ൌ 𝐾ௗ ൌ 𝐾௜ ൌ 𝑑𝑖𝑎𝑔ሺ8,8,8,8,8,8ሻ, 

Starting state :𝜆ሺ0ሻ ൌ ቂ5, 5,െ
గ

ଶ
, 0, 0, 0,0,0,0,0,0,0ቃ

்
, 

 𝑈௠௔௫ ൌ 8 for each propeller, 
𝑈௠௜௡ ൌ െ8 for each propeller, 
The thrust allocation matrix 

𝑆 ൌ
ተ

ተ

0.07974 008643 0.08127 0.08270 0 0
0.06032 0.05029 െ0.05824 െ0.05610 0 0
0.02945 െ0.03302 െ0.02847 0.03505 0 0

0 0 0 0 0.02945 െ0.03302
0 0 0 0 െ0.03302 െ0.02847
0 0 0 0 െ0.02847 0.03505

ተ

ተ
. 
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4.2. Performance Comparison and Analysis 

(1) Performance without Disturbances and Uncertainties 

The  first  experiment  is  conducted  without  disturbances  and  uncertainties  to  observe  the 

behavior of the proposed controller under ideal conditions. The trajectories towards the origin of the 

S‐ASUV  in  2D(left)  and  3D(right)  are  shown  in  Figure  3,  and  Figure  4  illustrates  the  responses 

involving the position x ,y ,z and, pose  𝜙,𝜃,𝜓  of the vehicle. The corresponding linear and angular 
velocities  𝑢, 𝑣,𝑤,𝑝, 𝑞, 𝑟    are given in Figure 5. As shown in Figure 6, which displays the thrust forces 

generated by individual propellers, it is confirmed that each control input stays within the designated 

permissible range as intended. 

As shown in Figure 4 and Figure 5, it is clear that the LBMPC controller achieves a stable DP 

within the first 30 seconds, significantly quicker than the PD, MPC controller, and LMPC controller, 

which  typically  takes  around  45  to  55  seconds  on  average.  The  experiment  results  vividly 

demonstrate how real‐time optimization has improved the performance of DP control. The results 

show that incorporating multi‐variable PID secondary law has led to a considerable enhancement in 

the  convergence  rate  for  DP  control when  utilizing  the  LBMPC method.  This  improvement  is 

noticeable throughout a broad range of attractions.   

 

Figure 3. Trajectory towards the origin of the S‐ASUV in 2D(left) and 3D(right). 

   

 

 

Figure 4. Trajectories towards the origin of the system states. 
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Figure 5. Trajectories towards the origin of the system states (linear and angular velocities). 

   

   

Figure 6. Control input signals. 

(2) Performance with Moderate Disturbances and Uncertainties 

In the second experiment, depicted in Figure 7 to 10, this study aimed to enhance the robustness 

of    LBMPC. To emulate an irrotational ocean current, which exerts a consistent force on the vehicle, 

we introduced a disturbance index with a magnitude of  ሾ2; 2; 2; 0; 0; 0ሿ். Moreover, we included a 

20% system model error to further assess the controller’s ability to cope with such intricate situations. 

As shown in Figure 7 to 10, which depict the outcomes under moderate disturbances and model 

uncertainties,  the  LBMPC  controller maintains  the  robustness.  In  Figure  7,  using  the  proposed 

method reaches the origin in the shortest route, while using the other controllers need longer way. 

Looking at Figures 8 and 9,  the proposed method performs  even better, achieving DP within 40 

seconds, surpassing the PD, MPC and LMPC controllers, which take much more time to accomplish 

this  task. The overall deviation of using LBMPC  towards  the origin along  the  time  is  the smallest 

among the methods. It becomes clear that the LBMPC DP control not only achieves convergence to 

the desired target location but also improves the overall perfromances including robustness, accuracy 

and rapidity of the DP control system. 
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Figure 7. Trajectory towards the origin of S‐ASUV in 2D(left) and 3D(right), considering the presence 

of disturbance. 

   

   

 

Figure 8. Trajectories  towards  the origin of  the system states while considering  the  influence of a 

disturbance. 

   

   

   

Figure 9. Trajectories  towards  the origin of  the system states while considering  the  influence of a 

disturbance (linear and angular velocity). 
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Figure 10. Control inputs signal, considering the presence of disturbance. 

(3) Performance with Heavy Disturbances and Uncertainties 

In the last experiment depicted in Figure 11 to 14, this work sought to reaffirm the robustness of 

the proposed controller. Introducing a heavy disturbance index of  ሾ4; 4; 4; 0; 0; 0ሿ் magnitude, we 

deliberately incorporated a +20% system model error and a ‐20% variation in the damping matrix to 

replicate the most demanding scenario. This was undertaken to assess the controllerʹs effectiveness 

in managing the heavy scenarios and complex situations. 

In  the  trajectory  responses  shown  in Figure 11,  the proposed  controller LBMPC  consistently 

outperforms other controllers by reaching convergence  in  the shortest route. This  trend  is  further 

highlighted in Figure 12, where the proposed controller achieves DP significantly fastest within 30 

seconds. Additionally, control inputs depicted in Figure 14 remain within the designated permissible 

range. Comparing the first two experiments, it is evident that the proposed control method performs 

best among the three different conditions. 

   

Figure 11. Trajectory towards the origin of the S‐ASUV in    2D(left) and 3D(right)    in the heavy‐case 

DP scenario. 

   

   

   

Figure 12. Trajectories towards the origin of the system states in the heavy‐case scenario. 
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Figure 13. Trajectories towards the systemʹs origin states in heavy‐case scenarios (linear and angular 

velocities). 

   

 

   

Figure 14. Control inputs signal in heavy‐case scenario. 

5. Discussion 

This  inherent robustness  is a notable advantage of LMPC and renders  it an attractive option, 

particularly in marine control systems (Pannocchia et al., 2011). In the experiment results, the LBMPC 

controller demonstrates sustained robustness. It not only achieves convergence to the desired target 

location but also enhances  the overall  robustness of  the DP control  system, even under  the most 

challenging  scenarios. As mentioned  earlier,  the dynamic  response’s  rapidity  and  robustness  are 

significant for the DP problem of marine vehicles. By incorporating the designed PID feedback into 

the closed‐loop system, the proposed LBMPC improves the accuracy and rapidity of the DP control 

responses significantly compared to both the conventional LMPC and commonly used approaches, 

improving the DP control performance of marine vehicles, including S‐ASUV in complex dynamic 

environments.   

Beyond validation,  the experiments using S‐ASUV’s model    offers cost and  time efficiencies, 

allowing extensive testing and scenario exploration in a virtual environment, thereby mitigating risks 

associated with actual operations.  It enables  iterative refinement of  the proposed control method, 

rapidly  incorporating  improvements  to  enhance  the  S‐ASUV’s  performance  while  collecting 

comprehensive  data  for  in‐depth  analysis  of  system  behavior  and  informed  decision‐making. 

Ultimately, the series of experiments serve as a vital tool, optimizing and validating the proposed 

LBMPC framework, critical for precise motion control in complex underwater environments. 

This  study acknowledges  several  limitations  that need  to be addressed  for a  comprehensive 

understanding  and  application  of  the  proposed methods.  Firstly,  the  digital  experiments were 
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conducted  under  idealized  conditions  that  may  not  fully  replicate  real‐world  environments, 

necessitating future testing in more varied and challenging scenarios to validate the robustness of the 

control  strategies. Hydrodynamic modeling  relies  on  specific  assumptions  about  environmental 

forces and vehicle dynamics, which may not hold  true  in all operational contexts and potentially 

affect  control  system performance. The practicality  of  the proposed  control  law  is  limited  by  its 

inclusion of terms for environmental disturbances and uncertain hydrodynamic forces, which are not 

directly  measurable  in  real‐world  applications,  indicating  a  need  for  additional  estimation  or 

compensation methods. While the digital experiment results are promising, they do not substitute 

for  field  tests;  actual  deployment  on  autonomous  underwater  vehicles  in  various  operational 

conditions is necessary to evaluate the systemʹs effectiveness and reliability thoroughly. Additionally, 

the control systemʹs performance may be sensitive to the tuning of specific parameters, requiring a 

systematic study of parameter sensitivity and the development of robust tuning methods to ensure 

consistent performance. Lastly, the study does not address the long‐term stability and adaptability 

of the control system in dynamic and unpredictable environments, highlighting the need for future 

work on adaptive control mechanisms that can adjust to changing conditions over extended periods.   

6. Conclusions 

In the research, a novel LBMPC method tailored specifically is introduced for the DP challenge 

faced  by  the  S‐ASUV,  providing  a  useful  solution  to  the  3D  DP  control  problem.  The  three 

dimensional DP control problem is established with an MPC formulation. To effectively handle the 

chronic restrictions of the current DP control approaches, this study proposes a novel LBMPC DP 

method.    The multi‐variable PID control and  the contraction constraint are  incorporated  into  the 

LBMPC  problem.  The  designed  PID  secondary  law  also  introduces  the  disturbance  and model 

uncertainties. The feasibility and stability are both proved rigorously. A series of S‐ASUV’s digital 

experiments under diverse conditions demonstrate  the proposed methodʹs superior performances 

over existing controllers, affirming the position and pose control in the 3D space in complex dynamic 

environments. The proposed LBMPC helps control performance in terms of accuracy and rapidity, 

which is suitable for S‐ASUVs and other marine vehicles like deep sea autonomous remoted vehicles 

(ARV),  providing  a  balanced  perspective  on  its  contributions  and  outline  directions  for  future 

research. 
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