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Abstract: Device identification based on radio frequency fingerprinting is widely used to improve the security of

Internet of Things systems. However, noise and inconsistencies in raw radio frequency signals can reduce the

accuracy of identification, classification, and authentication algorithms. This paper investigates how preprocessing

methods affect the performance of a support vector machine classifier based on radio frequency fingerprinting.

Four preprocessing methods are evaluated, each of which is applied to the raw radio frequency signals in an

attempt to improve the consistency between signals emitted by the same Bluetooth device. Experiments conducted

on a dataset of raw Bluetooth signals from sixteen smartphone radios, provided by Uzundurukan, show that

selecting appropriate preprocessing methods can significantly improve the classification accuracy of a support

vector machine classifier.

Keywords: RF device identification; IoT Authentication; RF fingerprints; Bluetooth devices; support vector

machine

1. Introduction

As the Internet of Things (IoT) rapidly expands across all sectors, including smart homes and
industrial applications, connecting billions of devices, the need for robust and secure device identifica-
tion becomes increasingly important. However, this growth also increases vulnerability to security
threats, making reliable identification essential for securing IoT networks [1]. Limited security features
and the wireless nature of many IoT networks make devices vulnerable to cyberattacks, including
eavesdropping, spoofing, and unauthorized access, which can compromise entire networks [2,3].
Traditional security methods, including passwords and encryption, are becoming less effective in IoT
networks due to the limited resources of IoT devices and the scalability challenges posed by the rapid
growth of connected devices [4]. Fortunately, device identification algorithms based on radio frequency
fingerprinting (RFF) offer a promising solution to these challenges [5]. However, to be effective, RF
fingerprints must conform to the principle of uniqueness [6], ensuring that each device, whether
transmitting data or inactive, can be uniquely identified based on the intrinsic features of its RF signals.
These features can be derived from the inherent variations introduced during the device manufacturing
process. The key advantage of the RFF-based device identification algorithms is that they do not
require any changes to the communication protocols on the RF devices and other IoT systems involved,
nor do they require any additional hardware [6,7]. Thus, the RFF-based identification algorithms can
provide a high level of security, making it difficult for attackers to replicate or spoof the distinctive
RF fingerprint of a legitimate device. The effectiveness of these algorithms is inherently linked to the
quality of the acquired RF signals [7]. Raw RF signals are often susceptible to noise, interference, and
distortion, acquisition errors, or hardware imperfections. These factors can affect the performance of
the identification algorithms that rely on RF fingerprints to accurately classify devices. As a result,
signal preprocessing becomes an indispensable tool for improving the quality of the RF signals used
in the identification process. Signal preprocessing methods are used to standardize the input data
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ensuring that it meets the specific requirements of the classifier. Choosing the right preprocessing
method is crucial to accurate device identification [8].

RF fingerprinting is a useful technique for identifying IoT devices. For example, in 2019, Tu et
al. [9] studied four types of RF fingerprint feature extraction algorithms based on statistical features.
They used an SVM-based classifier and applied the robust principle component analysis (RPCA) to
reduce its dimensionality. Also, in 2019, Nouichi et al. [10] proposed an approach to detect emitted
wireless signals from IoT devices based on a software defined radio (SDR), considering that the
cryptography-based authentication protocols are impractical for the IoT systems. On the other hand, in
2020, Aghnaiya et al. [11] investigated the identification of WiFi devices using RF device fingerprints.
They demonstrated that intrinsic features of RF devices can be effectively used to detect and classify
them. Also, in 2020, Lin et al. [12] proposed a method based on the detection of complex and nonlinear
patterns arising in the interaction between different frequency components of RF signals to recognize
wireless devices. Similarly, in 2020, Uzundurukan et al. [2] developed an RF fingerprinting system
to identify Bluetooth devices. They demonstrated that their strategy was effective in distinguishing
between different Bluetooth devices operating in a crowded IoT system. In 2022, Morge-Tollet et al. [13]
highlighted the RF fingerprinting as a reliable option for the node authentication in IoT networks as
a non-cryptographic method. They proposed an RF eigen-fingerprinting method based on singular
value decomposition (SVD), which is inspired by face recognition studies based on the Ljung-Box
test, a statistical authentication approach. Also, in 2022, Chen et al. [14] proposed a method based
on on convolutional neural networks (CNN), combinatorial randomness, and on-chip time-varying
RF fingerprints, which have been lightweight-implemented for Bluetooth Low-Energy (BLE) systems
to achieve a fast inference of unique features in the IoT environments. In 2024, Peng et al. [15]
proposed a method based on the wavelet coefficient graph and differential spectrum to identify signal
inconsistencies in Long Term Evolution (LTE) systems.

In this context, it is also worth reviewing the survey prepared in 2023 by Xie et al. [16], where they
considered the following signal preprocessing stages in the identification process: i) RF fingerprint
extraction, ii) further processing, and iii) RF fingerprint identification. They also summarized the
carrier frequency offset estimation, denoising, and channel cancellation. Finally, they highlighted the
major challenges of the RF fingerprint identification and some future research trends.

In any case, the RFF methods face significant implementation and security challenges when
intended for IoT scenarios. Techniques like time synchronization and frequency correction require
significant computational resources, which can slow down processing, especially for large datasets or
in real-time applications [15]. Similarly, feature extraction methods are resource-intensive, requiring
significant memory and processing power, which can make them impractical for resource-constrained
IoT devices [12]. The sequential nature of preprocessing can introduce latency, affecting the system’s
ability to perform real-time identification in dynamic environments [14]. In addition, early stages
of preprocessing are often sensitive to noise, leading to potential errors in pattern recognition and
feature extraction [12]. While dimensionality reduction optimizes the feature set, it may inadvertently
discard important details, affecting classification accuracy [14]. Implementing and fine-tuning these
preprocessing steps also requires specialized expertise, and even small errors in configuration can
affect system performance. Furthermore, the effectiveness of preprocessing is highly dependent on the
quality of the signal acquisition hardware; inconsistent or low-quality hardware can degrade the entire
process, reducing the reliability of RFF systems [15].

On the other hand, the supervised learning algorithms have been widely used for RFF-based
classification systems. Support vector machine (SVM), random forest, and neural network (NN) are
strategies that have demonstrated significant potential for detecting the intrinsic RF signals of IoT
devices. For example, in 2018, Jafari et al. [17] proposed a wireless device identification platform based
on RF device features to improve the security of IoT networks by using deep learning techniques.
They used deep, convolutional, and recurrent NN to identify the wireless devices, including whether
the devices are from the same manufacturer. On the other hand, in 2019, Yu et al. [18] used the
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RFF approach in an SVM-based classifier to identify ZigBee devices, achieving a suitable level of
classification accuracy. Also, in 2019, Ali et al. [19] compared the performance of machine learning
models and found that SVM-based identification algorithms provide an optimal balance between
computational efficiency and classification performance for resource-constrained environments, such
as those found in IoT systems. In 2022, Huang et al. [20] proposed a classification RFF-based method
to improve the effectiveness of a classifier based on ensemble learning and a CNN. Also, in 2022, Yang
et al. [21] proposed a CNN&RFF-based model to implement a lightweight classifier. It is also worth
reviewing the survey prepared in 2022 by Jagannath et al. [22] presented a survey of RF fingerprinting
approaches considering from a traditional view to the latest deep learning-based algorithms.

To address these challenges, this paper contributes by evaluating four signal preprocessing
methods based on the normalization, mean, maximum, and minimum of the raw signals to improve
data consistency and enhance classification accuracy. These methods were selected because they
address common issues in raw RF signals, such as variability in signal strength and noise, which
can negatively affect the performance of classification algorithms. By scaling the signal peaks, these
preprocessing methods aim to standardize the input data, ensuring that key signal features are more
effectively captured and utilized by the classifier. An SVM classifier, known for its effectiveness in
binary and multi-class tasks, is used to assess the impact of these preprocessing methods, building
on the work of [2]. The findings show that RFF requires careful extraction of a device’s unique signal
characteristics to effectively distinguish between classes.

The paper is divided into five sections. Section 2 provides a comprehensive overview of the
dataset, which consists of Bluetooth signals from multiple devices. It provides the definition and
characteristics of these signals, and it details the preprocessing methods. In addition, this section
describes the configuration of the SVM classifier, including the selection of the kernel, and the ex-
perimental setup for training and testing. Section 3 presents the classification performance for each
preprocessing approach, using confusion matrices and accuracy metrics to evaluate the effectiveness
of the SVM-based classifier. This section demonstrates how different preprocessing methods influence
classification accuracy across various device classes. Section 4 offers an in-depth analysis of the results,
highlighting the strengths and weaknesses of each preprocessing method. It examines the causes of
misclassifications and discusses the balance between improving accuracy and maintaining compu-
tational efficiency. This section also identifies potential areas for optimization, such as improving
the model robustness to noise and its ability to generalize across different datasets. Lastly, Section 5
summarizes the key findings, emphasizing the importance of preprocessing in enhancing the effec-
tiveness of RFF-based device identification. It discusses the broader implications for IoT security and
proposes future research directions, including advanced feature extraction, real-world validations, and
the exploration of alternative machine learning models to further enhance classification performance.

2. Materials and Methods

2.1. Dataset Description

The dataset used in this work was extracted from the RF signal dataset created by Uzundurukan
et al. [3]. They captured RF signals from 27 smartphones, representing six different manufacturers, and
it serves as a comprehensive resource for RFF. For each Bluetooth, they captured 150 RF signals, for a
total of 12,900 signal recordings. They collected the RF signals under controlled laboratory conditions
to minimize external interference and to ensure high data quality and consistency. In the Uzundurukan
dataset includes RF signals recorded at 5 Gsps, 10 Gsps, and 20 Gsps using a Tektronix TDS7404
oscilloscope. In addition, lower-frequency signals were acquired at 250 Msps using a modular RF
front-end system connected to the oscilloscope. For this work, 16 smartphone radios were selected
and paired as twins, representing eight different brands. Each smartphone was assigned to a specific
class, where devices within the same pair (or twin) belong to the same model but are treated as
different classes. For instance, as shown in Table 1, Class 1 corresponds to "iPhone 5 - 1," while Class 2
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corresponds to its twin, "iPhone 5 - 2." Similarly, this pattern continues for other models, ensuring that
each twin device is categorized into its unique class.

Table 1. Smartphone classes and models in the case study.

Class Smartphone name

1 iPhone 5 - 1
2 iPhone 5 - 2
3 iPhone 6 - 1
4 iPhone 6 - 2
5 iPhone 5s - 1
6 iPhone 5s - 2
7 iPhone 6s - 1
8 iPhone 6s - 2
9 LG G4 - 1
10 LG G4 - 2
11 Samsung Note3 - 1
12 Samsung Note3 - 2
13 Samsung S5 - 1
14 Samsung S5 - 2
15 Sony Xperia M5 - 1
16 Sony Xperia M5 - 2

Understanding the distinctions between these classes is critical for evaluating RFF performance,
as subtle variations between twin devices test the robustness of the classification algorithm. These
class distinctions are further explored in the next section, where the definition and characteristics of
raw Bluetooth signals are discussed in detail. This provides the foundation for analyzing how these
signals can be used to uniquely identify devices within and across classes.

2.2. Definition and Characteristics of Raw Bluetooth Signals

Each Bluetooth signal carries intrinsic features that form the basis of RFF, which allows devices
to be identified based on their unique characteristics. As the signals transition through three distinct
states, these features become more apparent. Figure 1a shows how the complete Bluetooth signal as
detected by the receiver, while Figure 1b highlights the envelope of the signal, making it easier to
observe the transitions between these states.
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Figure 1. Identification of signal states in Bluetooth RF signals: (a) Raw Bluetooth signals acquired
from smartphone devices, illustrating the three distinct signal states: initial state, transient state, and
steady state; (b) Signal envelopes derived from (a), providing a clearer visualization of the transitions
between these states.

The first state, known as the initial state, captures only the internal noise generated by the Bluetooth
receiver. At this stage, the transmitter has not yet started sending signals, and the noise from the
receiver serves as a baseline for further analysis. Once the transmitter is activated, the signal enters the
transient state. During this phase, the receiver begins to detect the intrinsic noise from the transmitter
in addition to its own noise. This state reflects the transition as the Bluetooth transmitter ramps up,
providing valuable insight into the device’s unique signal behavior. Finally, the signal reaches the
steady state, where both the intrinsic noise of the transmitter and the receiver are combined. This phase
represents the full interaction between the two devices and captures the overall noise profile of the
communication system.

On the other hand, Figure 2 illustrates the frequency spectrum of a Bluetooth signal, highlighting
the presence of unwanted frequencies combined with noise, which includes the environmental electro-
magnetic interference and the system noise. This feature highlights the importance of implementing a
bandpass filter to improve the signal fidelity. The bandpass filter extracts the signal in the range from
2.40 GHz to 2.48 GHz. The shaded gray area in Figure 2 highlights the effect of the bandpass filter.
This process ensures that the raw signal provided to subsequent preprocessing methods is cleaner,
allowing for more accurate analysis and classification in RFF tasks. Therefore, the raw Bluetooth signal
represents the unprocessed transmission captured directly from the target device. This signal contains
intrinsic features derived from the device hardware, specifically from the transmitter. These features
make the raw signal a rich source of information that can be used as a radio frequency fingerprint
because they reflect unique device-specific attributes.
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Figure 2. Frequency spectrum of Bluetooth signal Before and after bandpass filtering.

However, the raw signal also has a wide range of frequencies, often containing unwanted fre-
quencies and noise that can obscure the critical features needed for accurate classification. Without
preprocessing, such as filtering or scaling, the quality of the raw signal can be degraded, resulting in
reduced performance of machine learning models. Therefore, preprocessing methods such as bandpass
filtering are essential to isolate the primary signal components and ensure that the raw signal is suitable
for further analysis.

2.3. Preprocessing Methods

The preprocessing methods must standardize the signals used in an analysis to ensure that the
signal features can be interpreted by the classifier. Figure 3 shows the envelopes of the three radio
frequency signals acquired from the same Bluetooth device, which have some differences.
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Figure 3. Envelops of the three Bluetooth signals acquired from iPhone 5-1.
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Therefore, in this study, four preprocessing methods are defined to adjust the amplitude of the raw
Bluetooth signals. These methods are defined as follows and are designed to improve data consistency
and improve the classification accuracy by emphasizing key features of the raw Bluetooth signals and
improving the performance of a classification algorithm.

Definition 1 (Scaled signals). The signal pi(t), given in Eq. 1, is the scaled variant of the Bluetooth signal si(t),
assuming that α/Apeak

i is the scaling factor, Apeak
i = max|si(t)| represents the maximum magnitude reached

by si(t), and α is a dynamic term for adjusting the scaling factor that depends on the selected preprocessing
method.

pi(t) =
α

Apeak
i

· si(t) , (1)

where i = 1, 2, 3, ... N.

Definition 1 ensures that the raw Bluetooth signals are dynamically adjusted based on Apeak
i and

α, preserving their time-varying features and avoiding the significant differences in amplitude of a
variety of Bluetooth signals produced by the same device.

Definition 2 (Normalized raw signals). pi(t) is the normalized variant of si(t) when α = 1, meaning that
si(t) is scaled by its maximum value, without any other scaling adjustment.

The envelopes of the normalized variants computed for the Bluetooth signals in Figure 3 are
shown in Figure 4.
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Figure 4. Envelopes of the normalized raw signal peaks corresponding to Figure 2.

Definition 3 (Mean-normalized raw signals). pi(t) is the mean-normalized variant of si(t) when α is
computed using Eq. 2 and N Bluetooth signals from the same Bluetooth device are considered.

α =
1
N

N

∑
i=1

Apeak
i . (2)

It should be noted that this approach reduces the signal variability by applying a global scaling
factor. Figure 5 illustrates the envelopes of the mean-normalized raw signals for the three Bluetooth
signals of Figure 2. Typically, N = 150.
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Figure 5. Envelopes of the mean-normalized raw signals for signals shown in Figure 2.

Definition 4 (Max-normalized raw signals). pi(t) is the max-normalized variant of si(t) when α is computed
using Eq. 3 and N Bluetooth signals from the same Bluetooth device are considered.

α = max
(

Apeak
i

)
. (3)

This approach uses the global maximum in the set of Bluetooth signals from same device. Figure 6
illustrates the envelopes of the max-normalized raw signals for the three Bluetooth signals of Figure 2.
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Figure 6. Envelopes of the max-normalized raw signals for signals shown in Figure 2.

Definition 5 (Min-normalized raw signals). pi(t) is the min-normalized variant of si(t) when α is computed
using Eq. 4 and N Bluetooth signals from the same Bluetooth device are considered.

α = min
(

Apeak
i

)
. (4)

This approach minimizes the influence of high peaks in the set of Bluetooth signals from the same
device, emphasizing lower signal components. Figure 7 illustrates the envelopes of the min-normalized
raw signals for the three Bluetooth signals of Figure 2.
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Figure 7. Envelopes of the min-normalized raw signals for signals shown in Figure 2.

2.4. Classifier Description and Experimental Setup

The SVM classifier was parameterized in accordance with the methodology outlined in [2], utiliz-
ing a quadratic polynomial kernel to effectively handle complex, non-linear relationships in Bluetooth
signal data. The data split was conducted randomly to ensure robust and unbiased evaluation, while
feature extraction focused on higher-order statistics (HOS) derived from transient Bluetooth signals,
providing a rich set of attributes for classification.

The implementation was performed using MATLAB, facilitating efficient data processing and
experimentation. The computational setup for this study included a device with the following
specifications: AMD Ryzen 5 2500U with Radeon Vega Mobile Graphics at 2.00 GHz, 32 GB of RAM
(30.9 GB usable), and a 64-bit operating system. This hardware configuration ensured smooth execution
of the computationally intensive tasks associated with SVM training and testing. The results highlight
the classifier’s potential as a powerful tool for RFFs, particularly when optimized for transient signal
characteristics.

The SVM-based classifier procedure is illustrated step-by-step in the Algorithm 1. It begins with
loading the parameters and the RF dataset, which includes preparing the data for analysis. The dataset
preparation involves creating separate storage for training and testing data, followed by iterating
through each device to extract 150 signal samples. For each device, 30 samples are reserved for testing
while the remaining 120 are used for training.

Afterward, the training and test sets are concatenated and shuffled to ensure a randomized
distribution of data. The data is then split into features and labels for the training and test sets, using
xtrain and ytrain for the training data and xtest and ytest for testing. The algorithm proceeds
by training an SVM model using a polynomial kernel with an order of 4, ensuring that the data is
standardized to improve training consistency. Once the model is trained, it is evaluated on the test set,
with predictions being generated for the test samples. To assess the model’s performance, a confusion
matrix is computed, and the accuracy is calculated by comparing the predicted labels to the true
labels. The procedure concludes by outputting the overall classification accuracy, which provides
insight into the model’s effectiveness. The flowchart in Figure 8 captures the entire process, ensuring
a comprehensive overview of the algorithm’s workflow from data loading to final evaluation, this
process aligns with the algorithm detailed in Algorithm 1.
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Algorithm 1 SVM-based classifier
function [accuracy]← SVM_Classification(α)

1: Define the acquisition parameters and RF signal dataset
2: root← Dataset path
3: fs ← 5 GHz
4: N ← 150
5: D ← 16
6: K ← 30
7: Devices← GetDir(root)
8: database← GetDataBase(root, fs) {Load RF signal data}
9:

10: Dataset preparation
11: Initialize empty arrays dataframeTrain and dataframeTest
12: for i← 1 to D do

13: subdata← extract N samples from database for device i
14: r← randperm(N)
15: for j ∈ r do

16: if count ≤ K then

17: dataframeTest← dataframeTest ∪ subdata(j)
18: else

19: dataframeTrain← dataframeTrain ∪ subdata(j)
20: end if
21: count← count + 1
22: end for
23: Update indices: dima← dima + N, dim← dim + N
24: end for
25: dataframe← dataframeTrain ∪ dataframeTest {Concatenate and shuffle}
26:
27: Build training and testing sets
28: xtrain, ytrain← features and labels for training set (120 Bluetooth signals/device)
29: xtest, ytest← features and labels for test set (30 Bluetooth signals/device)
30:
31: Classifier training
32: t← templateSVM(Standardize=True, Kernel=‘polynomial’, Order=4)
33: SVMModel← fitcecoc(xtrain, ytrain, Learners=t)
34:
35: Classifier evaluation
36: testpredict← predict(SVMModel, xtest)
37:
38: Compute the confusion matrix and classifier accuracy
39: ConfMat← confusionmat(testpredict, ytest) / K
40: accuracy← sum(diag(ConfMat)) / D
41:
42: return accuracy

end
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Begin

Define the acquisition param-
eters and RF signal dataset

Dataset preparation.
For each device, extract 150 samples of
Bluetooth signals and scrambling them.

Build training and testing sets.
For each device, use 30 Bluettoh sig-
nals for testing and 120 for training

Classifier training

Classifier evaluation

Compute the confusion ma-
trix and classifier accuracy

End

Figure 8. Flowchart of the SVM-based classifier.

3. Results

This section presents the evaluation of the performance of an SVM-based classifier when dif-
ferent preprocessing methods are applied to RF signals extracted from the dataset B developed by
Uzundurukan et a. [2]. The evaluation focuses on assessing the effectiveness of the classifier using
two different performance metrics. The first metric, referred to as the diagnostic accuracy, is defined as
the mean value of the diagonal elements of the confusion matrix. This metric quantifies the overall
effectiveness of the SVM-based classifier by encompassing all classes and representing the percentage
of correct classifications over the entire dataset when the evaluator has previously confirmed which
is the Bluetooth device of the RF signal being analyzed. It provides a comprehensive measure of
the overall performance of the SVM-based classifier in accurately identifying devices. In contrast,
the second metric, effective accuracy, delves into the mean effectiveness of the SVM-based classifier
considering the class assignment criterion determined by the maximum values in each column of the
confusion matrix. Since each column in the confusion matrix sums to one, the SVM-based classifier
assigns each instance to the class based on the maximum value in its respective column. To compute
this metric, the frequency with which the classifier correctly assigns instances to their actual classes is
determined by identifying the maximum values in each column and verifying their correspondence to
the correct class. Each correct assignment is equally weighted in the final effectiveness of the classifier,
reflecting the total number of hits divided by the number of classes.

3.1. SVM-Based Classifier with Raw Signals

The performance of the SVM-based classifier on raw Bluetooth signals was evaluated using the
confusion matrix shown in Table 2. Some classes are effectively classified due to the presence of
well-defined maximum values on the diagonal of the matrix. For example, classes 7, 8, 12, 14, 15,
and 16 have maximum values of 0.87, 0.97, 0.33, 0.40, 0.93, and 0.97, respectively, indicating that
the classifier was able to detect them. However, this is not the case for other classes, which leads to
confusion. Note that in several columns, the maximum value is not on the diagonal. To illustrate
this condition, the highest value for class 6 is in row 9, indicating classification errors. A similar
phenomenon is observed for classes 1, 2, and 3, where the values are scattered across multiple rows,
making the accurate assignment difficult. The uneven distribution of values also affects the accuracy of
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the model, which is relatively low, with a diagnostic accuracy of 35.42% and an effective accuracy of 37.5%.
This is due to the fact that the decision criterion favors classes with high values in several columns,
even though they do not correspond to the actual class.

Table 2. Confusion matrix of raw signals.

True class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.10 0.13̄ 0.13̄ 0.00 0.00 0.03̄ 0.00 0.00 0.13̄ 0.07 0.00 0.03̄ 0.03̄ 0.00 0.00 0.00
2 0.17 0.10 0.13̄ 0.13̄ 0.17 0.20 0.00 0.00 0.03̄ 0.10 0.03̄ 0.00 0.10 0.00 0.00 0.00
3 0.03̄ 0.03̄ 0.03̄ 0.03̄ 0.00 0.03̄ 0.00 0.00 0.00 0.07 0.00 0.00 0.10 0.03̄ 0.00 0.00
4 0.03̄ 0.07 0.10 0.10 0.03̄ 0.03̄ 0.03̄ 0.00 0.03̄ 0.20 0.03̄ 0.00 0.13̄ 0.00 0.03̄ 0.00
5 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.20 0.27 0.17 0.17 0.23̄ 0.13̄ 0.00 0.00 0.10 0.10 0.07 0.07 0.00 0.00 0.00 0.00
7 0.10 0.07 0.03̄ 0.10 0.00 0.03̄ 0.87 0.00 0.03̄ 0.00 0.00 0.00 0.07 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.10 0.13̄ 0.13̄ 0.07 0.20 0.27 0.00 0.00 0.13̄ 0.07 0.03̄ 0.10 0.03̄ 0.03̄ 0.00 0.03̄
10 0.00 0.07 0.03̄ 0.03̄ 0.03̄ 0.03̄ 0.00 0.03̄ 0.03̄ 0.17 0.00 0.00 0.13̄ 0.03̄ 0.00 0.00
11 0.03̄ 0.00 0.03̄ 0.03̄ 0.00 0.00 0.07 0.00 0.07 0.00 0.33̄ 0.20 0.10 0.13̄ 0.00 0.00
12 0.10 0.10 0.17 0.23̄ 0.13̄ 0.17 0.03̄ 0.00 0.27 0.07 0.50 0.33̄ 0.10 0.37 0.00 0.00
13 0.00 0.00 0.03̄ 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.07 0.00 0.00 0.00
14 0.13̄ 0.03̄ 0.00 0.07 0.17 0.07 0.00 0.00 0.17 0.13̄ 0.00 0.27 0.13̄ 0.40 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00
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16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.97

3.2. SVM-Based Classifier with Normalized Raw Signals

The confusion matrix in Table 3 illustrates the performance of the SVM-based classifier when
applied to normalized raw Bluetooth signals. This is confirmed by both accuracy metrics, which reach
61.25% for diagnostic accuracy and 81.23% for effective accuracy and indicating superior performance
compared to previous scenarios. The classes that were correctly classified had clear maximum values
on the diagonal of the matrix. For instance, class 7 had a value of 0.93, while class 8 reached 0.97.
Similarly, classes 15 and 16 had maximum diagonal values of 0.87 and 0.97, respectively, confirming
their status as well-resolved cases. Nevertheless, some confusion remains in certain classes, where the
maximum values were not located on the diagonal. For instance, class 4 had a maximum of 0.30 in the
row corresponding to class 3, indicating a notable degree of confusion between these two categories.
Similarly, although class 9 had a maximum value of 0.30 on its own row, it also had notable values on
other rows, such as 0.13, indicating some dispersion in the predictions. In contrast, Class 10 reached
a maximum of 0.47 on the diagonal, but also had a notable value of 0.33 on the row corresponding
to Class 2, indicating of significant confusion. Overall, the distribution of values in the matrix is is
more uniform as a result of the normalization process. However, some classes still showed difficulty in
correctly assigning predictions. This behavior is particularly evident in classes 4, 5, and 12, where the
scatter of values affects the accuracy of the model.
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Table 3. Confusion matrix with normalized raw signals.

True class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.60 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.13̄ 0.00 0.00 0.00 0.00 0.00 0.00 0.03̄
2 0.00 0.90 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.03̄ 0.33̄ 0.00 0.00 0.03̄ 0.00 0.00 0.00
3 0.00 0.00 0.73 0.30 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.07 0.17 0.00 0.03̄ 0.00 0.00 0.00 0.07 0.00 0.00 0.13̄ 0.00 0.00 0.00
5 0.03̄ 0.00 0.00 0.03̄ 0.20 0.03̄ 0.00 0.00 0.03̄ 0.00 0.00 0.10 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.03̄ 0.03̄ 0.77 0.00 0.03̄ 0.00 0.00 0.13̄ 0.03̄ 0.00 0.07 0.00 0.00
7 0.13̄ 0.00 0.00 0.00 0.03̄ 0.03̄ 0.93 0.00 0.03̄ 0.00 0.03̄ 0.00 0.00 0.03̄ 0.07 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.97 0.07 0.00 0.03̄ 0.00 0.00 0.00 0.07 0.00
9 0.13̄ 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00
10 0.00 0.10 0.03̄ 0.23̄ 0.00 0.00 0.00 0.00 0.03̄ 0.47 0.00 0.00 0.13̄ 0.00 0.00 0.00
11 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.40 0.23̄ 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.13̄ 0.00 0.33̄ 0.30 0.00 0.33̄ 0.00 0.00
13 0.00 0.00 0.17 0.20 0.00 0.00 0.00 0.00 0.00 0.13̄ 0.00 0.00 0.70 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.03̄ 0.00 0.07 0.33̄ 0.00 0.53 0.00 0.00
15 0.03̄ 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.87 0.00
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16 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97

3.3. SVM-Based Classifier with Mean-Normalized Raw Signals

The confusion matrix in Table 4 shows the performance of the SVM-based classifier when using
mean raw signals. The results were 78.96% for the diagnostic accuracy and 93.75% for the effective
accuracy. This is evidence of significant improvement in the signal classification. In this case, the
confusion matrix showed a remarkable degree of consistency along the main diagonal, with values
approaching 1 for a significant number of classes. For example, classes 2 and 3 showed optimal
performance, with values of 1.00 on the diagonal, indicating that these categories were classified
with higher accuracy. Similarly, classes 8, 15 and 16 also showed a value of 1.00, confirming their
status as fully accurate cases. Some classes, although mostly correctly classified, showed minor cases
of confusion. Class 9, for example, had a maximum value on the diagonal of 0.87, but also had
relatively low values in other categories, such as 0.07 and 0.03. This suggests some scatter in the
predictions. A similar phenomenon was observed in the case of class 10, which had a value of 0.83 on
the diagonal but also had values of 0.03 in other rows. Classes 11 and 12, on the other hand, showed
some confusion with each other, having significant values in their respective columns outside the
diagonal. For instance, class 11 had a value of 0.60 on the diagonal and 0.37 in the row corresponding
to class 12. This behavior can be attributed to similarities in the signal characteristics of these classes.
In addition, some cases present particular challenges, such as class 5, which had a low value of 0.07 on
the diagonal, suggesting issues in its identification.

Table 4. Confusion matrix with mean-normalized raw signals.

True Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.77 0.03̄ 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.03̄ 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.03̄ 0.00 0.47 0.00 0.00 0.03̄ 0.00 0.03̄ 0.00 0.00 0.10 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.10 0.83 0.00 0.00 0.00 0.03̄ 0.03̄ 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.10 0.00 0.00 0.00 0.03̄ 0.03̄ 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.83 0.00 0.00 0.03̄ 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.10 0.03̄ 0.07 0.00 0.00 0.00 0.60 0.37 0.00 0.13̄ 0.00 0.00
12 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.03̄ 0.03̄ 0.07 0.60 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.93 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.67 0.37 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.77 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
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16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
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3.4. SVM-Based Classifier with Max-Normalized Raw Signals

The confusion matrix in Table 5 shows the classification performance of the SVM-based classifier
when using the maximum raw signals. Note that in this case, 81.46% was obtained for diagnostic
accuracy and 100.00% for effective accuracy. Overall, the performance of several classes can be considered
exemplary. For example, classes 8, 15, and 16 scored 1.00 on the main diagonal, indicating that all
cases in these classes were correctly classified. Similarly, other classes, such as Class 9, showed a high
degree of accuracy, with 0.93 on the diagonal and minimal confusion with Class 6 (0.03). However,
there were still some confusing factors remain in the system. For example, Class 5 showed 0.53 on the
diagonal, but had some confusion with class 14 (0.27), as well as minor deviations with classes 4, 11,
and 12. Such confusion can be attributed to similarities in the intrinsic characteristics of the signals.
It is noteworthy that certain classes showed more pronounced internal inconsistencies. For instance,
class 12 showed a value of 0.53 on the diagonal, but also showed a significant value of 0.37 for class 11,
indicating that the classifier had difficulty distinguishing these two classes. A similar phenomenon
was observed between class 13 and class 4, where the confusion directly affected the performance of
the classification.

Table 5. Confusion matrix with max-normalized raw signals.

True Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.97 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.17 0.90 0.03̄ 0.03̄ 0.00 0.00 0.03̄ 0.00 0.00 0.00 0.23̄ 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.53 0.07 0.03̄ 0.00 0.00 0.00 0.07 0.00 0.00 0.10 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.07 0.07 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.10 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.03̄ 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.03̄ 0.00 0.00 0.00 0.00
11 0.03̄ 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.53 0.37 0.00 0.13̄ 0.00 0.00
12 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.07 0.53 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.77 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.27 0.10 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.73 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
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16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.00 1.00

3.5. SVM-Based Classifier with Min-Normalized Raw Signals

The confusion matrix in Table 6 shows the performance of the SVM-based classifier when using
the minimum raw signals, with 79.58% for diagnostic accuracy and 93.75% for effective accuracy. In
particular, classes 3, 8, and 16 showed exceptional performance, with perfect classification (1.00)
and no prediction errors. Similarly, classes 11 and 12 showed significant performance with values
of 0.7, showing minimal confusion with other classes. This indicates that the classifier was able to
accurately distinguish the majority of the signals within these classes, thus reinforcing the reliability
of the method used. However, there was still an area for improvement, particularly in the classes
that showed significant confusion. For instance, class 5, which had a moderate performance of 0.17,
showed a significant degree of confusion towards class 14. These results highlight the need to adjust
the classifier parameters or implement additional preprocessing strategies in order to mitigate these
confusions and improve the classifier’s discriminative capacity. Despite these constraints, this case
demonstrates its effectiveness as a tool for signal classification, with considerable promise for analogous
applications.
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Table 6. Confusion matrix with min-normalized raw signals.

True Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.13̄ 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 1.00 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.90 0.00 0.03̄ 0.00 0.00 0.03̄ 0.03̄ 0.00 0.00 0.10 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.17 0.10 0.03̄ 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.03̄ 0.00 0.00
6 0.00 0.00 0.00 0.00 0.03̄ 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.80 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.07 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.17 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.03̄ 0.80 0.00 0.00 0.07 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.07 0.03̄ 0.17 0.00 0.00 0.00 0.70 0.30 0.00 0.07 0.00 0.00
12 0.00 0.00 0.00 0.00 0.20 0.03̄ 0.00 0.00 0.00 0.00 0.07 0.70 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.83 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.50 0.13̄ 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.80 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00
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16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03̄ 0.00 0.00 0.00 0.00 0.00 0.00 1.00

4. Discussion

The classification performance of the SVM-based classifier under different preprocessing methods
is summarized in Table 7, which presents the diagnostic accuracy and the effective accuracy for each
method. The results further emphasize the critical role of preprocessing in enhancing classification
accuracy.

Table 7. Average diagonal accuracy for different preprocessing methods.

Preprocessing method Diagnostic accuracy (%) Effective accuracy (%)

Raw signals 35.42 37.50
Normalized raw signals 61.25 81.25
Mean-normalized raw signals 78.96 93.75
Max-normalized raw signals 81.46 100.00
Min-normalized raw signals 79.58 93.75

The unprocessed signals gave unsatisfactory results, with a diagnostic accuracy of 35.42% and an
effective accuracy of 37.50%. This indicates that the raw data lacks sufficient structured information
for the classifier to effectively discriminate between the different classes. This highlights the need for
normalization or scaling methods to improve the quality of the signals and facilitate the classification
task. Following the normalization of the raw signals, a significant improvement in both metrics
was observed; the diagnostic accuracy increased to 61.25%, while the effective accuracy reached 81.25%.
This improvement indicates that the normalization reduces unnecessary variability in the RF signals,
stabilizing key features and improving their discriminability to the classifier. Nevertheless, further
optimization of the method may lead to the capture of additional intrinsic information from the signals.
The application of scaling using the mean peaks of the raw signals represents another significant
advance, with a diagnostic accuracy of 78.96% and an effective accuracy of 93.75%. This method seems to
more effectively capture the average information of the signals more effectively, thereby balancing the
differences between classes and significantly improving classifier performance. This suggests that the
centralization of features around a mean serves to mitigate the effects of noise and irrelevant variation.
The most optimal scaling method is the one that uses the maximum peaks of the raw signals, which
gives the highest diagnostic accuracy of 81.46% and an effective accuracy of 100.00% for the classifier.
This method serves to highlight the most representative features of the signals by focusing on the
signal peaks, allowing the classifier to effectively discriminate between all classes. Although it does
not completely eliminate confusing factors, the classifier’s capacity to identify all classes indicates
that this approach captures enough information to minimize classification errors, establishing it as the
most robust and reliable method among those evaluated. Finally, scaling using the minimum peaks of
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the raw signals performs slightly less well than the peak-based method, with a diagnostic accuracy of
79.58% and an effective accuracy of 93.75%. Although the performance of the SVM-based classifier is
still high, the confusion observed in some classes indicates that this method does not capture critical
signal features as efficiently as the peak-based approach.

5. Conclusion and Future Work

This study demonstrates the critical role of preprocessing methods in enhancing the performance
of an SVM-based classifier for Bluetooth device identification using RFFs. The findings reveal that
preprocessing effectively mitigates noise and inconsistencies in raw RF signals, significantly improving
classification accuracy. Among the evaluated methods, scaling based on maximum raw signal peaks
proved the most effective, achieving the highest diagnostic accuracy of 81.46% and effective accuracy
of 100.00%. This approach underscores its potential to capture the most discriminative signal features,
enabling robust device identification. Other methods, such as normalization and scaling by mean
and minimum peaks, also exhibited considerable improvements compared to raw signals, further
highlighting the importance of tailored preprocessing techniques. Despite these advances, challenges
persist, including misclassifications among devices with similar signal characteristics, computational
demands, and the need for better generalization across datasets. These findings affirm that while
preprocessing is a foundational component of RFF systems, additional enhancements are necessary to
address these limitations. Future research should focus on advancing feature extraction techniques,
such as time-frequency analysis or deep learning-based representations, to improve discriminative
capacity further. Incorporating ensemble methods or hybrid models may offer a way to leverage the
strengths of multiple algorithms for more accurate classifications. Evaluating these preprocessing
approaches with environmental noise and varying signal acquisition setups in real-world conditions
will be crucial for practical implementation. Additionally, testing on larger and more diverse datasets is
essential to validate the scalability and generalization of the proposed methods. These steps will pave
the way for the development of more secure and efficient IoT device identification systems, solidifying
their role in safeguarding the growing IoT ecosystem.

Author Contributions: Conceptualization, M.M. and R. V.-M.; Methodology, R.F. S-C., M.M., and R. V.-M.;
Software, R.F. S-C.; Validation, M.M., D. A.-T., and R. V.-M.; Formal analysis, M.M. and R.V.-M.; Investigation, R.F.
S-C., M. M., and R. V.-M.; Data curation, R.F. S-C., D. A.-T., and R. A. V.-D.; Writing–original draft, R.F. S-C. and R.
V.-M.; Writing–review & editing, M. M., R. A. V.-D., and R. V.-M.; Visualization, M. M., R. A. V.-D., and D. A.-T.;
Supervision, M. M. and R. V.-M., Project administration, R. V.-M.; Funding acquisition, R.V.-M. All authors have
read and agreed to the published version of the manuscript.

Funding: D. Aguilar-Torres thanks to the Consejo Nacional de Ciencia y Tecnología (CONAHCyT-México) for the
financial support granted under project number CVU-829790. Authors thanks to the Instituto Politécnico Nacional
(IPN-México) for the financial support granted under the project numbers SIP–20240745 and SIP–20242843.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data will be made available on request.

Acknowledgments: D. Aguilar-Torres acknowledges the support of CONAHCyT for the postdoctoral stay at
CICATA-Querétaro of the IPN.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

1. Aliyu, M.B.; Hafeez, M.; Johnson, A. LoRa-PUF: A two-step security solution for LoRaWAN. In Proceedings
of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring). IEEE, 2023, pp. 1–6. https:
//doi.org/10.1109/vtc2023-spring57618.2023.10199591.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2024 doi:10.20944/preprints202412.0027.v1

https://doi.org/10.1109/vtc2023-spring57618.2023.10199591
https://doi.org/10.1109/vtc2023-spring57618.2023.10199591
https://doi.org/10.20944/preprints202412.0027.v1


17 of 18

2. Uzundurukan, E.; Dalveren, Y.; Kara, A. A database for the radio frequency fingerprinting of Bluetooth
devices. Data 2020, 5, 55.

3. Uzundurukan, E.; Ali, A.M.; Dalveren, Y.; Kara, A. Performance analysis of modular RF front end for
RF fingerprinting of Bluetooth devices. Wireless Personal Communications 2020, 112, 2519–2531. https:
//doi.org/10.1007/s11277-020-07162-z.

4. Zeng, Y.; Gong, Y.; Liu, J.; Lin, S.; Han, Z.; Cao, R.; Huang, K.; Letaief, K.B. Multi-channel attentive feature
fusion for radio frequency fingerprinting. IEEE Transactions on Wireless Communications 2023, pp. 1–1.
https://doi.org/10.1109/TWC.2023.3316286.

5. Rehman, S.U.; Sowerby, K.W.; Coghill, C. Analysis of impersonation attacks on systems using RF fin-
gerprinting and low-end receivers. Journal of Computer and System Sciences 2014, 80, 591–601. https:
//doi.org/10.1016/j.jcss.2013.06.013.

6. Karunaratne, S.; Krijestorac, E.; Cabric, D. Penetrating RF fingerprinting-based authentication with a
generative adversarial attack 2021. https://doi.org/10.1109/ICC42927.2021.9500893.

7. Rehman, S.U.; Sowerby, K.W.; Alam, S.; Ardekani, I. Radio frequency fingerprinting and its challenges. In
Proceedings of the 2014 IEEE Conference on Communications and Network Security. IEEE, 2014. https:
//doi.org/10.1109/cns.2014.6997522.

8. Li, X.; Dong, F.; Zhang, S.; Guo, W. A survey on deep learning techniques in wireless signal recognition.
Wireless Communications and Mobile Computing 2019, 2019, 1–12. https://doi.org/10.1155/2019/5629572.

9. Tu, Y.; Zhang, Z.; Li, Y.; Wang, C.; Xiao, Y. Research on the Internet of Things device recognition based on
RF-fingerprinting. IEEE Access 2019, 7, 37426–37431. https://doi.org/10.1109/access.2019.2904657.

10. Nouichi, D.; Abdelsalam, M.; Nasir, Q.; Abbas, S. IoT devices security using RF fingerprinting. In
Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences (ASET).
IEEE, 2019. https://doi.org/10.1109/ICASET.2019.8714205.

11. Aghnaiya, A.; Ali, A.M.; Kara, A. Variational mode decomposition-based radio frequency fingerprinting of
Bluetooth devices. IEEE Access, 7, 144054–144058. https://doi.org/10.1109/ACCESS.2019.2945121.

12. Lin, Y.; Jia, J.; Wang, S.; Ge, B.; Mao, S. Wireless device identification based on radio frequency fingerprint
features 2020. https://doi.org/10.1109/ICC40277.2020.9149226.

13. Morge-Rollet, L.; Le Roy, F.; Le Jeune, D.; Canaff, C.; Gautier, R. RF eigenfingerprints, an efficient RF
fingerprinting method in IoT context. Sensors 2022, 22, 4291. https://doi.org/10.3390/s22114291.

14. Chen, V.; Xu, J.; Shen, Y.; Chen, E. RF Fingerprint Classification With Combinatorial-Randomness-Based
Power Amplifiers and Convolutional Neural Networks: Secure analog/RF electronics and electromagnetics.
IEEE Solid-State Circuits Magazine 2022, 14, 28–36. https://doi.org/10.1109/MSSC.2022.3200302.

15. Peng, L.; Wu, Z.; Zhang, J.; Liu, M.; Fu, H.; Hu, A. Hybrid RFF identification for LTE using wavelet
coefficient graph and differential spectrum. IEEE Transactions on Vehicular Technology 2024, 73, 11621–11636.
https://doi.org/10.1109/TVT.2024.3380671.

16. Xie, L.; Peng, L.; Zhang, J.; Hu, A. Radio frequency fingerprint identification for Internet of Things: A survey.
Security and Safety 2023, 3, 2023022. https://doi.org/10.1051/sands/2023022.

17. Jafari, H.; Omotere, O.; Adesina, D.; Wu, H.H.; Qian, L. IoT devices fingerprinting using deep learning. In
Proceedings of the MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). IEEE, 2018.
https://doi.org/10.1109/milcom.2018.8599826.

18. Yu, J.; Hu, A.; Li, G.; Peng, L. A robust RF fingerprinting approach using multisampling convolutional neural
network. IEEE Internet of Things Journal 2019, 6, 6786–6799. https://doi.org/10.1109/JIOT.2019.2911347.

19. Ali, A.M.; Uzundurukan, E.; Kara, A. Assessment of features and classifiers for Bluetooth RF fingerprinting.
IEEE Access 2019, 7, 50524–50535. https://doi.org/10.1109/ACCESS.2019.2911452.

20. Huang, Y.; Liu, P.; Yang, J. Radio frequency fingerprint identification method based on ensemble learning.
In Proceedings of the IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2022, Vol. 11, pp. 1–6. https://doi.org/10.1109/infocomwkshps54753.2022.97
98252.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2024 doi:10.20944/preprints202412.0027.v1

https://doi.org/10.1007/s11277-020-07162-z
https://doi.org/10.1007/s11277-020-07162-z
https://doi.org/10.1109/TWC.2023.3316286
https://doi.org/10.1016/j.jcss.2013.06.013
https://doi.org/10.1016/j.jcss.2013.06.013
https://doi.org/10.1109/ICC42927.2021.9500893
https://doi.org/10.1109/cns.2014.6997522
https://doi.org/10.1109/cns.2014.6997522
https://doi.org/10.1155/2019/5629572
https://doi.org/10.1109/access.2019.2904657
https://doi.org/10.1109/ICASET.2019.8714205
https://doi.org/10.1109/ACCESS.2019.2945121
https://doi.org/10.1109/ICC40277.2020.9149226
https://doi.org/10.3390/s22114291
https://doi.org/10.1109/MSSC.2022.3200302
https://doi.org/10.1109/TVT.2024.3380671
https://doi.org/10.1051/sands/2023022
https://doi.org/10.1109/milcom.2018.8599826
https://doi.org/10.1109/JIOT.2019.2911347
https://doi.org/10.1109/ACCESS.2019.2911452
https://doi.org/10.1109/infocomwkshps54753.2022.9798252
https://doi.org/10.1109/infocomwkshps54753.2022.9798252
https://doi.org/10.20944/preprints202412.0027.v1


18 of 18

21. Yang, T.; Hu, S.; Wu, W.; Niu, L.; Lin, D.; Song, J. Conventional neural network-based radio frequency
fingerprint identification using raw I/Q data. Wireless Communications and Mobile Computing 2022, 2022, 1–8.
https://doi.org/10.1155/2022/8681599.

22. Jagannath, A.; Jagannath, J.; Kumar, P.S.P.V. A comprehensive survey on radio frequency (RF) fingerprinting:
Traditional approaches, deep learning, and open challenges. Computer Networks 2022, 219, 109455. https:
//doi.org/10.1016/j.comnet.2022.109455.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2024 doi:10.20944/preprints202412.0027.v1

https://doi.org/10.1155/2022/8681599
https://doi.org/10.1016/j.comnet.2022.109455
https://doi.org/10.1016/j.comnet.2022.109455
https://doi.org/10.20944/preprints202412.0027.v1

	Introduction
	Materials and Methods
	Dataset Description
	Definition and Characteristics of Raw Bluetooth Signals
	Preprocessing Methods
	Classifier Description and Experimental Setup

	Results
	SVM-Based Classifier with Raw Signals
	SVM-Based Classifier with Normalized Raw Signals
	SVM-Based Classifier with Mean-Normalized Raw Signals
	SVM-Based Classifier with Max-Normalized Raw Signals
	SVM-Based Classifier with Min-Normalized Raw Signals

	Discussion
	Conclusion and Future Work
	References

