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Abstract: In natural environment plants are simultaneously exposed to multivariable abiotic and 
biotic stresses. Typical abiotic stresses are changes in temperature, light intensity and quality, water 
stress (drought, flood), microelements availability, salinity, air pollutants and others. Biotic stresses 
are caused by other organisms such as pathogenic bacteria and viruses, or by parasitic insects and 
plants. This review presents the state of the art of the programmed cell death in the cross-tolerance 
phenomena and its conditional molecular and physiological regulators, which are involved in 
simultaneous regulation of plant acclimation, defense and developmental responses. It highlights 
the role of the absorbed energy in excess and its dissipation as heat in induction of the chloroplast-
retrograde electrical, phytohormonal, reactive oxygen species signaling and heat shock related 
pathways in connection to activation of the molecular regulators of plant growth, yield and cell wall 
development. It also discusses how systemic and network-acquired acclimation and acquired 
systemic resistance are mutually regulated and demonstrates the role of non-photochemical 
quenching and the dissipation of absorbed energy in excess as heat in the cross-tolerance 
phenomenon. Finaly new evidences that in plants evolved one molecular system to regulate cell 
death, acclimatization and cross-tolerance to abiotic and biotic stress are presented and discussed. 

Keywords: absorbed energy in excess and cellular light memory; electrical; reactive oxygen species 
(ROS) and phytohormones signaling; hypersensitive disease defense response and systemic 
acquired resistance; network and systemic acquired acclimation; non-photochemical quenching and 
cross-tolerance; transcription factors 

 

1. Introduction 

One of the greatest challenges of the twenty-first century is feeding a growing world population 
while dealing with an overheated planet and progressive desertification of fertile land. Climate 
extremes are becoming more common, disrupting agricultural production and posing continuous 
dangers of starvation [1,2]. It was estimated that more than 800 million people worldwide did not 
have access to enough food in 2021 [1,3]. It is anticipated that global warming would increase the 
frequency of extreme weather, endangering agricultural crop production [4]. According to 
calculations that desert area will increase from 3 to 10% of the total land area [5]. Crucial agricultural 
crops were anticipated to experience an overall yield loss of about 70% due to adverse conditions in 
the fields and from environment, which means only 30% of the yield was produced when compared 
to its yield from genetic potentials [6–10]. Growing demand for crop production and yield 
maintaining in adverse global warming conditions necessitates vastly expanded new plant stress 
resistance research initiatives.  

The frequency and severity of several environmental stresses, such absorbed energy in excess 
(AEE), ultraviolet (UV) radiation, severe droughts, heat waves, and restrictions on water accessibility 
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for plants, crops, and global ecosystems, are increasing due to global warming. When taken as a 
whole, these stressors cause significant losses in agricultural productivity. Stress response 
phytohormones and signaling molecules, including ethylene (ET), salicylic acid (SA), abscisic acid 
(ABA), jasmonic acid (JA), reactive oxygen species (ROS) have been widely described in terms of 
regulation of plant stress responses and productivity. During heat and osmotic stress response these 
factors, together with electrical signaling regulate a mechanism known as programmed cell death 
(PCD), an eventual completion of the cell cycle. Induced PCD in some cells is required for effective 
stress response, leading to acclimatization or induction of disease resistance, thus optimizing plant 
survival and production under stress condition [11–20]. Systemic and network acquired acclimation 
(SAA and NAA) chloroplast retrograde signaling within and between plants is important for 
induction of PCD [11,12,21–23]. It is important to know that stress response to episode of AEE stress 
applied to low light acclimated plants is able to induce disease resistance to the virulent bacterial 
pathogen and better tolerance to UV-C irradiation episode due to induction of the cellular light 
memory [22,24]. This memory involves molecular, physiological, biochemical and biophisical 
changes that are lasting for several days after AEE stress and is specific for quantity and quality of 
AEE. Therefore, the current knowledge and understandings of the cross-tolerance phenomena, plant 
stress responses (SAA, SAR, NAA) and PCD signaling mechanisms is much better than it was a 
decade before. The roles of conditional molecular and transcriptional regulators of PCD and stress 
responses such as: LESION SIMULATING DISEASE 1 (LSD1), ENHANCED DISEASE 
SUSCEPTIBILITY 1 (EDS1), and CYSTEINE-RICH RLK (RECEPTOR-LIKE PROTEIN KINASE) 5 
(CRK5), METACASPASES (MC4 and MC8), SIGNAL RECOGINTION PARTICLES (cpSRP43 and 
54), 22 kDa photosystem II protein (PsbS), Ca2+ and other ion channels, transcription factors (WRKY, 
DREB - CBF2 subfamily A-1 of nvironmentRF/AP2) ROS scavenging/generating enzymes and others 
involved in regulation of NAAs, SAAs, SAR, cellular light memory, cross-tolerance and PCD 
induction and/or inhibition are better, although not fully understood [11–16,20–24]. This review 
concentrate on the current understanding of plant stress responses, cross-tolerance to both biotic and 
abiotic, and on molecular and physiological mechanisms that allow plants to conditionally optimize 
their growth, development, and seed yield in multi-stress environment. 

2. Abiotic and Biotic Stresses 

In the classical view environmental stress factors can be classified into two major categories: 
abiotic and biotic stresses. Plants are constantly revealed to a mixture of both biotic and abiotic 
stresses, which are significantly impacting their growth, development, and overall fitness [6,12,25–
28]. Abiotic stresses include factors such as: changes in temperature extremes (low or high), light 
intensity and quality (low light, high light, red/blue/UV ratio), water and osmotic stress, heavy metal 
toxicity (i.e. Hg, Cd, Pb), and nutrient deficiency (organic/inorganic). In the natural environment 
abiotic stresses are usually clustered, for example, shift from low to high light intensity is associated 
with sudden increase of UV radiation and immediate foliar temperature increase due to absorbed 
energy in excess and its immediate dissipation as heat via non-photochemical quenching (NPQ) 
mechanism [29]. This usually can change plant physiology and biochemistry (metabolism), leading 
to altered retrograde signaling (ROS, phytohormonal and electrical) [21,22,24] and changes in gene 
expression. As a result of NPQ induction plants increase foliar heat production from photosystems 
and inhibit stomatal conductance, leading to impaired foliar cooling (transpiration), decreased CO2 
assimilation, water and nutrient uptake and induced photorespiration [17,19,30–47]. Mittler and 
colleagues (2022) discussed the influence of various abiotic stress factors on plant signaling networks, 
highlighting the role of ROS and stress-responsive genes in stress perception and adaptation [20].  

Abiotic stresses, such as high light, heat and drought, often occur in combination and are 
difficult to separate from one another. In fact AEE alone is able to induce heat shock response due to 
higher dissipation of AEE as heat [29] and Arabidopsis thaliana subjected to a combination of high light 
and heat stress exhibit a unique metabolic response, including increased accumulation of sugars and 
amino acids, as well as decreased levels of metabolites participating in the tricarboxylic acid (TCA) 
cycle [48]. The combined stress in Arabidopsis also leads to the accumulation of non-proteinogenic 
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amino acid γ-aminobutyric acid (GABA), which contributes significantly to plants' adaptation to 
intense light and heat stress, possibly via encouraging autophagy [49]. In Arabidopsis, the combination 
of heat and drought stress led to changes in plant metabolomics and root bacterial microbiota, 
indicating an orchestrated modulation of the whole holobiont [50]. Wheat crops also experience 
combined heat and drought stress, which has more detrimental effects on growth and yield compared 
to individual stresses. Wheat has developed advanced responses at various levels to tolerate these 
combined stressors [51]. In Arabidopsis roots, due to drought and heat stress cell wall suberization rise 
and this led to alterations to the biosynthesis and assembly of major cell wall components [52].  

Biotic stresses, arising from interactions with living organisms, pose significant threats to plant 
health and agricultural productivity [53,54]. These stressors include pathogens, pests, herbivores and 
others, which can cause diseases, nutrient deficiency, physical damage, and induce defense responses 
in plants [55–62]. Plants have evolved intricate mechanisms to detect and respond to pathogens - a 
two-branched innate immune system. It means firstly recognition and responsiveness to the 
molecules of microbs, including to non-pathogenic ones. Secondly to respond to the pathogen 
virulence factors, by directly or through their effects on host targets [63–67]. Plants do not have mobile 
“killer” cells (eg. T4 cells) and a somatic adaptive immune system like in animals. Instead, they rely 
on the innate immunity of each cell, mediated by gene pairs (R genes in plants and avr genes in 
pathogens) that induce programmed cell death in infected and noninfected cells, known as the 
hypersensitive disease defense response (HR) and systemic acquired resistance [63–67].  

An oxidative burst, manifested by a rapid ROS generation, is typically present in conjunction 
with R gene-mediated resistance and is necessary for HR, a sort of PCD that is believed to restrict 
pathogen's access to nutrients and water. The stimulation of SA-dependent signaling pathway 
resulting in the development of particular pathogenesis-related (PR) proteins is also linked to R gene-
mediated resistance. Some defensive mechanisms in plants are regulated by systems that rely on ET 
and/or JA. Different classes of R proteins, such as those with nucleotide-binding (NB) domains and 
leucine-rich repeats (LRRs), play crucial roles in basal defense regulation and resistance to various 
pathogens, showcasing the diversity of plant immune responses [64,68–70]. 

Plant pathogens are frequently classified as either necrotrophs or biotrophs based on their life-
cycle and how they propagate. While necrotrophs lives on death host tissues, biotrophs needs alive 
host tissue to propagate [71]. It’s interesting to see how SA signaling and R gene-mediated resistance 
may lead to resistance to avirulent biotrophs [72]. Such pathogens would have no feeding supply as 
a result of the HR response due to PCD induction. But in the case of necrotrophs, it appears that the 
pathogen would simply have an easier time existing in the host due to cell death [68]. Studies 
screening Arabidopsis mutants for deficiencies in resistance to different diseases using defective 
signaling pathways important in in defense gave some evidence to it, like, resistance to the 
necrotrophic fungus Alternaria brassicicola is unaffected by the mutation npr1 and the transgene 
NahG, which disrupt SA signaling, however, they cause resistance to the biotrophic oomycete 
Peronospora parasitica to be abolished. On the other hand, resistance to the necrotrophic fungus A. 
brassicicola is significantly compromised by the coi1 mutation, which disrupts JA signaling, whereas 
resistance to P. parasitica is unaffected. These findings raised the possibility that plant defensive 
mechanisms may be modified depending on the pathogen invading, with SA-dependent defenses 
targeting biotrophs and JA- and ET-dependent responses targeting necrotrophs [68,73–75] 

3. Cross-Tolerance 

When plants are exposed to one kind of stress, it can trigger shared signals and pathways, which 
increases their ability to withstand other kinds of stress. The process called as cross-tolerance and is 
associated with increased adaptive fitness [17,21,26,76–78]. It can be accomplished through a co-
activation of the plant's innate immune system, which involves a network of non-specific stress-
responsive pathways that bridge biotic-abiotic stress borders. Heat, chilling, drought and salt stress 
are frequent abiotic stressors with cross tolerance effects [79,80]. Additionally, different stress 
signaling networks interact with one another, which might cause plants to develop cross-tolerance. 
For instance, Epichloë endophyte-infected grasses exhibit greater resistance to abiotic stressors like to 
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drought through increased root biomass, high stomatal conductance with rich accumulation of 
solutes for osmotic regulation, to cold by Upregulation of unsaturated fatty acids, to salinity by 
keeping anatomical changes (like increase xylem, phloem and vascular bundles size) and to pathogen 
infections by increasing antioxidants and phenolic compounds that are known to be important for 
plant defenses [81,82]. According to Capiati and colleagues (2006) showed that wounding boosts 
tomato plants' resistance to salt, through a mechanism that involves the systemins and JA. They 
showed that calmodulin-like activities are necessary for the downstream signaling events that lead 
to cross-tolerance between wounding and salt stress [83]. Lima and colleagues (2018) evaluated cross-
tolerance induced by heat stress and water stress in common beans and observed improved 
germination under osmotic stress following heat stress [84]. These findings suggest that agricultural 
plants may be engineered or bred to be resistant to many stresses either abiotic or biotic [15,26,42]. 

Cross tolerance involves chloroplast retrograde and nuclear anterograde signaling, which are 
involved in intra- and inter-cellular communication between chloroplasts and the nucleus in response 
to stress. This signaling pathways are mediated by redox signal, dependent on ROS, electrical and 
phytohormonal signaling which regulates in concerted maner expression of the chloroplast- and 
nuclear-encoded genes required for appropriate stress responses [11,19–24,26,42,64,77,78,85,86]. The 
WHIRLY family of proteins and the REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) 
have been identified as potential mediators of chloroplast-to-nucleus retrograde signaling, leading to 
cross tolerance [11,19–24,26,42,64,77,78,85,86]. Hydrogen peroxide (H2O2), a byproduct of various 
aerobic pathways, has also been implicated in retrograde signaling and the induction of cross 
tolerance [86]. The chloroplast acts as an environmental sensor and communicates with other cell 
compartments through retrograde signaling to regulate nuclear gene expression in response to 
developmental cues and stresses by Ca2+ and ROS [11,19–24,26,85,88]. 

The mechanism by which plant chloroplasts, and more especially the LHC and oxygen-evolving 
reaction centers of PSII in chloroplast membranes, sense stress stimuli is the quickest process that 
happens faster than pico- or nano-seconds (e.g., AEE dissipation as heat and fluorescence, singlet 
oxygen production, absorbed energy transfer, electron transfer in photosystem II) (Figure 1). Redox 
reactions in photosystems, such as electrical charge separation, pH gradients imbalances across 
thylakoid membranes, stimulation of the xanthophyll cycle through NPQ, redox responses involving 
the photosynthetic electron carriers eg. Plastoquinone pool (PQ) (linear electron transport), and 
formation of ROS which can be in pico-, nano- to milli-seconds, can be triggered by AEE that rely on 
the state and size of the antenna in PSII [77,88]. On an interval of microseconds to seconds, ROS 
deposits can impacts hormones, sugars, ion signaling pathways, and the redox state of the PQ and 
glutathione/ascorbate pools (Figure 1). Certain signals, such as CRK5 and  
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Figure 1. Model of the chloroplast retrograde signaling pathways that regulate cell death (CD) and 
integrate immune defenses and acclimation responses in plants – cross-tolerance to biotic and abiotic 
stresses. Red lighting-like symbol on the top demonstrate absorption of energy in excess (AEE) of that 
actually required for electrical charge separation in P680. AEE induce overproduction of electrons and 
protons thus induce non-photochemical quenching (NPQ), heat and electrical signaling waves. Excess 
of electrons lead to increase reactive oxygen species (ROS) production and to higher reduction of the 
plastoquinone (PQ) pool. This trigger redox changes in stroma in ascorbate, glutathione and others 
redox pairs components pools which regulate carbonic anhydrases (CA) activities thus CO2/O2 ratio 
nearby RuBisCO and sugar production. This in turn trigger phytohormones precursor synthesis and 
photorespiration as a photosynthetic electron sink which further increase ROS production in 
peroxisomes and mitochondria and regulate stomatal conductance and programmed cell death 
(PCD). Chloroplast stroma can be directly connected via stormless with nucleus and ES-, ROS-, and 
heat- and other-signaling molecules or dual transcription factors can be directly transduced to the 
nucleus and specifically induce/inhibit nuclear-encoded gene expression and cross-tolerance to 
abiotic and biotic stresses. This happening in the majority of foliar cells but some cells induce PCD 
when chloroplast outer membrane is disintegrated due to AEE, heat, SA and ET signaling. Red wavy-
like and black lightning-like arrows shows heat and electrical signaling waves respectively. Solid lines 
shows the confirmed regulatory signaling pathways while dashed lines shows hypothetical signaling 
pathways. Modified version from Karpiński and colleagues (2014) [11] on the basis of new data [15–
24,41,42,78,89–96,138]. 

MITOGEN-ACTIVATED PROTEIN KINASE 4 (MPK4), regulate stomatal closing within 
seconds, leading to enhanced photorespiration, triggering ROS generation, and ET synthesis [41,89] 
(Figure 1). In the following minutes to hours or days, LSD1 regulates genetically depending stress 
memory, acclimation and defense reactions and PCD by limiting ROS and ET production in 
conjunction with ROS scavenging enzymes (SODs, CA’s PXs) through 
controlled EDS1/PAD4/ETHYLENE INSENSITIVE2 (EIN2) - dependent signal transduction which 
can happen in seconds to minutes [11,17,23,89]. Consequently, these triggers physiologically 
controlled redox reactions in stromal metabolism and stress memory to occur in time-related 
(minutes, hours, days) manner in the environment of various cells, tissues, organs, and even various 
plants thriving in the vicinity (through SAA, SAR, NAA). According to recent studies, plants 
subjected to AEE may experience shifts in their local and systemic net photosynthesis quantity, as 
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well as photo-electrochemical-redox retrograde signaling for acclimation priming and AEE light 
stress memory. These responses are essential for conditionally optimal plants' photosynthesis, 
transpiration, light acclimation, defense actions, and ultimately plant health (Figures 1 and 2) [15–
17,22–24,89,90]. SAA, NAA, and stress memory serve as a training process of "naive" not acclimated 
plant cells, chloroplasts, and PSII. Peak and colleagues (2004) [91] suggested that foliar stomata 
conductance and chlorophyll fluorescence are regulated by the cellular automaton algorithm that 
relies on collective dynamics and emergent, distributed biological computation in the leaves of plants 
that on the contrary regulates chlorophyll a fluorescence and stomata conductance. Later on we 
suggested that ES-, ROS- and NPQ-wave-like-changes propagated in SAA and NAA could be a 
process regulated in the identical manner like Peak and colleagues (2004) suggested [22–24,89] 
(Figures 1 and 2). Plant cells have the capacity to selectively memorize AEE episodes and the spectral 
quality of light (either physiologically or molecularly) [22–24]. Overall, the interplay between 
chloroplast retrograde NPQ- and PQ-dependent signaling and other cellular signaling pathways is 
crucial for the plant's ability to acclimate and defense thus for cross-tolerance. 

Peak and colleagues (2004) [91] presented confirmation for complex, joint dynamics and 
emergent, distributed computation in plans regulating foliar fluorescence and stomatal conductance. 
In short, stomatal conductance, under some condition, become synchronized and foliar regions with 
lower chlorophyll a fluorescence have higher while regions with higher fluorescence have lower 
conductance. This regulation can be describe by mathematical cellular automata algorithm [91]. 
Consequently, conditional optimization of transpiration and CO2 assimilation is possible. 
Transmission of electrical, Ca2+, phytohormonal, and ROS signals between local and systemic tissues 
of the same plant is necessary for wound signaling and induction of SAA [85]. Recently our group 
discovered that the PsbS protein (22 kDa protein of photosystem II) and NPQ are the hardware of the 
cellular automata algorithms known as cellular light (quanta) memory. Light harvesting antennas 
(LHC) versus photosystem reaction centers (P680 or P700) undergo supramolecular modifications 
that affect the fate of AEE between fluorescence, photochemistry (electrical charge separation), and 
heat channels. This memory is dependent on the communication network of all active photosystems 
II within a plant and between plants [23,24,88,92]. This communication network is controlled and 
regulated by wavy-like, discrete and spatially in time electrical- and ROS-signaling and NPQ 
changes, that depends on PsbS protein level, [22–24,88,92] proton motive force and chlorophyll a 
fluorescence decay time changes [88]. This hardware controls the fate of absorbed energy in 
photosystems thus control chloroplast retrograde signaling across the whole plant and between 
plants. As a result, it discreetly and spatially controls stomatal conductance values over time, causing 
further NPQ wave-like adjustments thus regulate AEE dissipation as heat [24,88,92,93]. 

In Górecka and colleagues (2020) we showed that prior induction of the cellular light memory 
in response to AEE episode developed cross-tolerance to subsequent UV-C episode in PsbS-
dependent manner [24]. PsbS is an essential protein in plants that regulate NPQ thus regulate balance 
between absorbed energy dissipated as heat and that actually required for photochemistry [24,93–
95]. In this study npq4-1 mutant lacking functional PsbS protein and overexpressing PsbS gene in 
transgenic Arabidopsis line (oePsbS), responded differently to episode of AEE and in induction of the 
cellular light memory and subsequent induction of cross-tolerance to UV-C. Untreated oePsbS plants 
were more resilient than wild type and npq4-1 plants. Resilience was measured by cellular ion leakage 
due to foliar PCD induction after UV-C episode. After AEE episode wild type and oePsbS but not 
npq4-1 mutant plants were able to induce light memory and subsequent cross-tolerance to UV-C. The 
study's findings revealed a new, significant function for PsbS and NPQ as a regulators of chloroplast 
retrograde signaling for PCD, light acclimation, light (quanta) memory, disease defense and UV 
cross-tolerance [24].  

SAA is an essential light acclimatory molecular and physiological process that is depending on 
chloroplast retrograde signaling and on whole plant regulation of NPQ [22–24,88,92,96]. Ciszak and 
colleagues (2015) [88] studied the time-resolved fluorescence of chlorophyll a in Arabidopsis thaliana 
npq4-1 mutant (without functional PsbS protein thus deregulated in NPQ) in leaves exposed to excess 
light and in leaves undergoing SAA in ambient light condition. This experiment was done since the 
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chlorophyll a fluorescence decay (FD) time regulations in leaves directly exposed to excess light 
episode and in leaves undergoing SAA were unknown. These experiments demonstrated that leaves 
undergoing SAA in ambient low light and leaves directly exposed to AEE showed regulation of the 
FD. Wild type Arabidopsis leaves exposed to AEE had significantly shorter FD time than control leaves 
and leaves undergoing SAA in ambient low light. However, SAA leaves show smaller but significant 
decrease in FD time in comparison to control low light leaves. On the other hand, leaves treated with 
electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) that significantly 
reduced NPQ and cause photoinhibition of electrical charge separation, and leaves of the npq4–1 
mutant from ambient low light had circa 2-times longer FD time. Leaves of npq4-1 mutant plants 
exposed to AEE and undergoing SAA in low light had significantly longer FD times. Subsequently 
npq4-1 leaves showed deregulated (abnormal) FD times up to 2 h after AEE episode, These findings 
suggest that SAA signaling regulates the quantum-molecular properties of supramolecular complex 
of photosystem II, and that PsbS-dependent light memory processing is necessary for the regulation 
of SAA [88]. It is important to point out that synthetic (transgenic) improvement of NPQ and its 
relaxation in tobacco and soybean lead to improvement of biomass and seed yield productivity in 
field conditions [94,95]. 

Electrical signaling shows a crucial part in development of cross-tolerance. It was reported that 
when a single dandelion leaf is subjected to punctual wounding or punctual high light stress, the 
plant generates surface foliar electrical signal that then spread to the nearby in-contact plants in the 
vicinity [23]. This can cause systemic NPQ and physiological alterations in both plants [23,92]. This 
electrical signaling can be transmitted from plant to plant in a network of plants connected 
successively by physical touch. Also it is happening regardless of nearby plant belongs to a different 
species, these signals can still cause reactions in the recipient plant. This new physiological 
phenomenon was named as network-acquired acclimation (NAA) [23]. These findings strongly imply 
that the transmission of direct surface electrical signals between the receiver plant (leaves) and the 
stressed host plant (or one leaf) results in discrete and spatial changes in the absorbed energy fate 
(NPQ) as well as the induction of common retrograde signaling for defense responses and 
acclimatization in the host plant and the entire plant community (Figure 2) [23]. 

 

Figure 2. Systemic and network communication of non-photochemical quenching (NPQ) changes 
between each photosystem II and mesophyll cells within and between plants, respectively. Electrical 
signaling (ES) and reactive oxygen species (ROS) waves can induce wavey-like changes in NPQ value 
within a chloroplast, between all chloroplasts in the cell, in a whole leaf, in all leaves of a plant and 
within the community-dwelling plants, such as dandelion or Arabidopsis, when leaves of neighboring 
plants are in physical contact [18–24]. ES and ROS waves transmitted from stressed cells across the 
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whole plant and between plants regulate NPQ- and plastoqionone pool-dependent chloroplast 
retrograde signaling to induce systemic acquired acclimation (SAA) in a plant and NAA between 
plants. Physical contact and electrical conductivity (e.g., a drop of water or high relative humidity) 
are necessary for NAA. In both transmitter and receiver plants, ES causes spatiotemporal variations 
in energy quenching (NPQ) (Solid red line), the following induction of the ROS wave (solid green 
line), and retrograde signaling (RS) (solid blue line). Its variable amplitude is caused by 
interdependent ion fluxes in the plants. (Model modified from Szechyńska-Hebda et al., 2022 [23]). 

4. Signaling Networks During Biotic and Abiotic Stresses 

Abiotic factors have been proven to be more detrimental to crop yield when they occur 
simultaneously [26,97,98]. It is well established that factors, such as drought, heat waves and higher 
salinity have an impact on the development and spread of diseases and insects [97,99–104]. Through 
modifications to plant physiology and defense mechanisms, these stress conditions also have a direct 
impact on plant-pest interactions [100]. Many weeds use water more effectively than crops and in 
that case abiotic stress like drought, can favor these interactions [97,102,105]. The cumulative impact 
of stressors on crops is not necessarily positive since the final result is often determined by the way 
these stress variables interplay [106–110].  

Cross-talk between abiotic and biotic stresses is occurring on physiological and molecular levels. 
Reduced photosynthesis, decreased water use efficiency (WUE), and changes in stomatal opening are 
affected by biotic stresses, but are essential for a plant's ability to withstand an abiotic stress [111–
113]. Therefore It was revealed that Na+ and Cl- levels in Phaseolus vulgaris shoots increased in salinity 
after being exposed to a root pathogen Macrophomina phaseolina [111,114]. ABA signaling, which 
coordinates plant adaptation to abiotic stress, can be diminished by SA signaling, which is generated 
following invasion with Pseudomonas syringae pv. tomato [115]. ABA synthesis and signaling is 
depending on zeaxantin a direct precursor of ABA synthesis triggered by NPQ changes in the 
chloroplast. HopAM1, a type III effector of Pseudomonas syringae that targets HSP70 is involved in 
stress-induced closure of stomata in ABA-dependent manner [116,117]. In Arabidopsis the HopAM1 
overexpressed lines enhance the sensitivity towards ABA for stomatal closure and germination arrest 
[118]. Tolerance to abiotic stress such as drought and freezing can potentially result from plant-
microbe interactions, like exposing plants to a viral strain which includes Tobacco rattle virusI (TRV), 
Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Brome mosaic virus (BMV). Infection of 
these strains is udeful against drought stress. On the other hand, CMV strain works in freezing stress 
in Beet  due elevated levels of antioxidant and osmoprotectant [111,119,120]. By interacting with 
hormonal processes, maintaining water and source-sink relationships, and increasing plant vigor 
under stress, fungi such as fungal endophytes and non-pathogenic rhizobacteria and mycorrhizal 
fungi can benefit plants [111,121–123]. 

Research of the impacts of external use of compounds that activate plant defense mechanism 
known as priming, provide more evidence for the overlap between abiotic and biotic stress signaling 
pathways [124]. In Arabidopsis increased resilience to heat, drought, and salt stresses, as well as 
increased resistance to both biotrophic and necrotrophic fungi were found when β-aminobutyric acid 
(β-ABA), SA, and jasmonates were applied [111,125]. H2O2 and NO priming for salt tolerance 
moderately increased the abundance of oxidized and S-nitrosylated proteins, which then remained 
relatively similar after the application of stress. Non-treated plants were more sensitive and exhibited 
increased protein carbonylation and oxidation, and higher antioxidant enzymes activities [126,127]. 
In cauliflower seedlings the enrichment of H2O2 and superoxide anion is due to pre-treatment of 
H2O2, this in turns enhance the MDA content. This pre-treatment of  H2O2 produce changes in 
antioxidant systems, which includes enzymatic (SOD, CAT, GPX and APX) and non-enzymatic 
systems (AsA, GSH and proline) [128]. In durum wheat seeds primed with H2O2, induced the 
resistance against salinity stress by increasing enzymatic and non-enzymatic antioxidant defense 
systems [129]. Recently, epigenetic modifications and specifically chromatin-regulated gene 
activation have been proposed to govern priming responses [130]. 
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4.1. Transcription Factors Role During Abiotic and Biotic Stress 

Because of their functions as key regulators of various stress-related genes, transcription factors 
(TFs), such as WRKY, NAC, ERF, LSD1, DREB, CBF2, EDS1 and PAD4 are intriguing prospects for 
genetic modification [11,130]. The molecular function of LESION SIMULATING DISEASE 1 (LSD1) 
is currently unknown, but the mutant lsd1 phenotype is described as runaway cell death (RCD). RCD 
in LSD1 mutants is usually elicited due to AEE, root hypoxia, disturbed stomatal conductance 
[11,17,132], cold [133], drought [11,17], UV radiation [39,134] and pathogen infections [64]. Due to its 
involvement in different signaling pathways and in regulation of plant CD due to different kind of 
stresses (both abiotic and biotic), LSD1 is an important TF in cross-tolerance [11]. Importantly, the 
RCD of lsd1 is closely involved ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and 
PHYTOALEXIN DEFICIENT 4 (PAD4). These two TFs have a specific domain called triacylglycerol 
lipase and this domains are important mediation of different genes and disease resistance [135,136]. 
Both are important in RCD, as in eds1/lsd1 and pad4/lsd1 mutants RCD was not found even by 
applying different stresses to the plants [21,39,64,77,132]. Ablation of LSD1 and EDS1/PAD4 behave 
differently toward different stresses and in result the enrichments on ROS and SA is also different 
[11,17,39,133]. Therefore, LSD1 is the gative regulator of EDS1- and PAD4-dependent cellular 
pathways that lead to CD. Alongside EDS1 and PAD4, LSD1 plays a significant role in both biotic 
and abiotic stress responses and contributes to the conditional control of different processes that will 
have an affect plant, this includes: photosynthesis, maximal photochemical efficiency of PSII, cellular 
ROS/hormonal homeostasis, seed yield, water use efficiency, cell wall lignin content and cellulose 
fibers polymerization degree (in hybrid Aspen transgenic trees with silenced LSD1 and EDS1 
cultivated 4 years in the field conditions) [11,15,17,19,39,137–139]. It is proved that LSD1 is a redox-
sensing and transcription regulator which is involve in diverse cellular signaling pathways like xylem 
tissue differentiation (wood formation) [138]. LSD1 also have a big impact on cell proliferation and 
modification processes, especially in non-oxidative stress conditions which at the helps the plants in 
growth and development, but if the conditions are oxidative then LSD1responce to it by regulating 
different stress mechanisms like, proteolysis, methylation and energy processes, which will 
ultimately reduce the efficiency of the pathways important for plants development which can at the 
end leads to CD which means LSD1 is important to keep balancing the cell division and CD depends 
on conditions and redox status [11,15,17,64,137]. Silenced PAD4 or EDS1 genes in transgenic hybrid 
Aspen trees displayed increased growth (wood production) 6-8% and altered xylem cells 
development in comparison to control trees in the field conditions [140,141]. In addition, silenced 
EDS1 trees displayed higher photosynthesis and transpiration, and higher branching in comparison 
to control plants [141]. 

WRKY, NAC, ERF, have been related to improved tolerance in agricultural crops and model 
plants, since they initiate defense-responsive gene expression [142]. Around 1922 TFs are been shown 
to be involved in various activities which belongs to 30 TF families in Arabidopsis thaliana [143]. 
Sorghum has reported 2448 TFs in total, together with 1611 in rice and 3337 in maize [144]. In fact 
most of these the genes are consider to be stress-responsive and control a large sum of downstream 
genes, that’s why enhancing the plant towards stress tolerance by altering the TF genes expression is 
a popular approach in current biotechnology [145]. Here we mentioned some previous studies related 
to TFs, previous results have shown that MPK3/6 phosphorylated the transcription factors WRKY33 
and ERF6 to promote the synthesis of camalexin and activate genes linked to defense to mediate 
resistance to Botrytis cinerea [146,147]. Another example was reported in Lin and colleagues (2022) 
study which showed that a negative regulator of lignin biosynthesis called MYB4 was found to be 
regulated by MAPK-mediated phosphorylation in its modulation of vascular-lignification-caused 
immunity [148]. GhMAP3K15-GhMKK4-GhMPK6 a drought stress-activated MAPK cascade 
phosphorylated in cotton, can then activate GhWRKY59 to control the plant's response to the drought 
stress [149]. In Zhao et al., study it’s found that the ZmWRKY104 phosphorylation by ZmMPK6is 
important for its role in ABA-induced antioxidant defense and drought tolerance in maize. When 
H2O2 levels rise, the TF ANAC017, which is located in the ER, releases its N-terminus into the nucleus, 
which in turn controls primary responses [56]. It has recently been shown that ANAC017 also 
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contributes to aluminum tolerance by controlling genes that changes the cell wall synthesis [150]. 
Along with EDS1 and WRKY33, which react to H2O2 quickly and transiently, a TF belonging to the 
ERF family, RRTF1 functions as a key redox signaling network [151,152]. RRTF1 also studied in its 
role in JA and auxin biosynthesis crosstalk, PCD, salt-tolerance and pathogen resistance [153–156].  

Generally speaking, hypoxia lowers stomatal conductance and CO2 assimilation, which causes 
photorespiration, which is a major factor in the induction of CD. Recent studies revealed that PsbS 
and plant β carbonic anhydrases (βCAs), except their obvious functions, are also involved in 
regulation of plant stress responses [157]. One of our recent studies by Białas and colleagues (2024) 
suggested that simultaneous overexpression of βCA1 and/or βCA2 with PsbS genes leads to 
improved photoprotection, acclimation to variable light conditions, and WUE. Due to their extremely 
high amounts of βCA1 and/or βCA2 transcripts, double and triple overexpression lines react better 
to hypoxic stress than the other genotypes. Similarly, elevated mRNA levels of βCA1 and/or βCA2, 
in conjunction with bicarbonate treatment, activated the DREB-CBF2 subfamily A-1 of ERF/AP2, 
which was suppressed in oePsbS plants, suggesting that the cellular concentrations of βCAs and 
oePsbS are essential for the precise modulation of stress responses. This suggests that many plant 
species rely on cellular CBF subfamily genes to respond to abiotic stressors. The analysis of 
Arabidopsis mutants showed that in response to low-temperature stress, CBF genes control 134 genes 
[158]. Six genes implicated in freezing tolerance were identified by transcriptome analysis as being 
controlled by DREB and ERF/AP2 this includes (CBF1, ERF105, ZAT6, ZAT12, WRKY33 and 
WRKY40). These findings point to the presence of a novel signaling route and chloroplast retrograde 
regulatory hotspot that are reliant on bicarbonate absorption, βCAs, and PsbS protein relative levels 
[157]. Taking together these diverse studies show the importance of TFs when it comes to the cross-
tolerance and shows a high potential for the future research in the field. 

4.2. Reactive Oxygen Species Role During Abiotic and Biotic Stress Condition 

Higher plants have developed specialized mechanisms to defend themselves from ROS toxicity 
and to use ROS as signaling molecules. The chloroplast, mitochondria, peroxisomes, and apoplast 
are the principal ROS-initiating sites under abiotic stress [19,92,159–163]. If left uncontrolled, ROS 
contents would rise in cells and result in oxidative damage [20]. Antioxidant enzymes, such as 
superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase 
(GPX), and peroxiredoxin (PRX) represent a major ROS-scavenging force and are crucial for stress 
tolerance in plants [164].  

Environmental factors, such as high light, UV irradiation, drought, cold, high temperatures, root 
hypoxia can cause a disruption in cellular redox homeostasis, which can result in cell death and limit 
the amount of produced biomass [15,19]. It is also widely known that ROS play a role in the plant's 
response to a pathogen invasion. HR, which is triggered by ROS burst generated by NADPH oxidases 
or apoplastic enzymes, can cause PCD in different cells at the infection sites and because of their 
biotrophic nature of infections (feed on live cells), this HR mechanism can limit their invasion, while 
the surrounding cells develop the capacity to avoid cell death via the propagation of ROS [66]. Callose 
deposition and cell wall cross-linking, mediated by apoplastic ROS, strengthen the cell wall and 
prevent pathogens from penetrating it. [165]. Plant NADPH oxidases produce ROS in the apoplast, 
but their accumulation has also been shown in mitochondria, chloroplasts, and even nuclei [166]. 
Additionally, many abiotic stressors can directly or indirectly activate additional signaling pathways 
to cause ROS generation in the plasma membrane by Rboh-signaling pathway, in chloroplasts by 
Calvin-Benson pathway, in mitochondria through ubiquinone pathway and in peroxisomes by β-
oxidation pathway [167]. The cross-tolerance is achieved through the cross-talk between ROS 
signaling mechanisms and other pathways in activating defense responses [168]. Plants respond to 
abiotic stress by increasing the accumulation of antioxidant defense systems, including secondary 
metabolites, such as flavonoids, which scavenge excess ROS and help balance cellular redox state 
[169]. The interplay between ROS, redox signals, and antioxidative pathways is important for plant 
acclimation to stress and acquisition of cross-tolerance [170]. Additionally, ROS are involved in 
organelle-to-organelle and cell-to-cell signaling [171]. Crosstalk between ROS and other signaling 
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molecules, such as reactive nitrogen species (RNS), protein kinases, phytohormones, and secondary 
messengers like calcium, is important for plant responses to environmental stresses [172] (Figure 2). 

4.3. Hormonal Response During Abiotic and Biotic Stress 

In the control of plant immunological responses, ET, JA, and SA are thought to be the key 
molecules. According to several studies [173–176], the JA signaling pathway always functions as a 
significant stress hormone route that frequently communicates with various plant hormones to create 
an extensive signaling network. Recently, a growing number of common elements among JA and 
several other plant hormone signaling pathways been discovered. JA and SA act antagonistically 
towards each other but they often combine to make plants more resilient to stressors [177]. Recently, 
processes underlying JA-SA crosstalk have been widely studied and demonstrated that a variety of 
genes function in SA-JA antagonism, including MYC2, PDF 1.2 (plant defensin 1.2), TGAs (TF family) 
[178,179], MAPK (mitogen-activated protein kinase), NPR1, ERF1, WRKY62, WRKY70, GRX480 
(glutaredoxin 480), ORA59 (octadecanoid-responsive Arabidopsis AP2/ERF 59), and JAZs [180]. The 
discovery of the ortholog NPR1 in the progenitor of all terrestrial plants raises the possibility that JA-
SA crosstalk occurs in nearly every plant [181]. 

According to studies by Khan et al., and Peng et al., SA acts to reduce the amount of ET produced 
as a result of various abiotic factors. For instance, exogenous SA reduces heat sensitivity in heat-
stressed plants by decreasing the ACS activity in wheat and promoting proline metabolism while 
limiting ET production [1,182]. On the contrary, during ozone (O3) stress, ET and SA work together 
to control cell death in Arabidopsis and tobacco leaves [183–185]. By increasing the transcription of 
the genes encoding CHORISMATE MUTASE and PAL, O3-induced ethylene enhances SA 
biosynthesis [185]. While ET oversupply worsens cell death, inhibition of either SA or ethylene 
biosynthesis in Arabidopsis reverses the O3-induced hypersensitive response phenotype [184]. It is 
widely known that endogenous SA levels and plant defense mechanisms against biotrophic and 
hemibiotrophic diseases are positively correlated in plants, as discussed by Glazebrook and 
colleagues (2005). Additionally, the external SA application causes multiple plant species, such as 
Fusarium oxysporum, Alternaria alternata, Magnaporthe grisea, Colletotrichum gloeosporides, Xanthomonas 
spp, to develop local and systemic acquired resistance against a variety of pathogens [68,186–196].  

JA and ET play an important, synergistic role in plant resistance towards necrotrophic diseases 
[197,198]. The synergies among ET-stabilized EIN3/EIL1 and JA-activated MYC2 control plant 
growth and insect resistance. Because MYC2 inhibits EIN3/EIL1, the transcription of ERF1 
(downstream gene of EIN3/EIL1) is suppressed, reducing plant tolerance to necrotrophic fungi [199]. 
VSP2 and CYP79B3 (a wound and herbivore responsive genes respectively) is suppressed via JA 
signaling pathway when EIN3/EIL1 and MYC2 interact, however, on the other side, weakening 
MYC2's repression of MYC2 protects towards broad range of herbivores [200,201]. ET and JA can 
operate oppositely to control a number of abiotic stress genes, besides their combined effects on the 
functions of EIN3/EIL1 which also includes their targets in rice and Arabidopsis [202]. The 
transcription level of EIN3/EIL1-inducible target genes is decreased in etiolated Arabidopsis which is 
because of the already JA-activated MYC TFs includes (MYC2, MYC3, and MYC4) may have been 
actively interacted with EIN3/EIL1 and thus have blocked their ability to bind a DNA target 
[183,199,202]. The transcription factor gene ERF1 is a well-known target of MYC2 and also EIN3 
which modulates responses to various abiotic stressors [203–205]. According to Cheng et al., and 
Lorenzo et al., Arabidopsis ERF1 regulates the synthesis of many sets of genes that are triggered by 
JA, drought, salinity, and high temperature. Actually, it has been demonstrated that plants 
overexpressing ERF1 are more resilient to salt, heat, and drought stress [203,204]. Also Chen and 
colleagues in (2021) discussed that JA-triggered reduction in EIN3 activity has shown to occur at the 
level of post-transcriptional stage at the creation of the Arabidopsis apical hook in addition to this 
phase of transcriptional regulation [183]. These findings imply that JA and ET can control plant 
immunity in the opposite manner and their role in defense responses (Figure 2). 
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5. Conclusions 

In general, biotic and abiotic environmental stresses induce foliar stomata closure and inhibition 
of photosynthesis thus induce AEE and its dissipation as heat in NPQ mechanism. AEE alone is able 
to simultaneously induce five different types of abiotic stresses: heat shock stress, photooxidative 
stress, photoinhibitory stress, photorespiratory stress and osmotic stress. This in turn activate 
chloroplast retrograde signaling pathways that are depending on NPQ-, ROS-, heat-, osmotic-, 
electrical potential- and redox-changes of the photosynthetic electron carriers, like PQ-pool, and on 
ROS production and scavenging activity. Chloroplast and cellular redox potential is regulated by 
glutathione and ascorbate cycles and by other chloroplast redox-potential regulators, for example, 
ferredoxin-NADP+ reductase, thioredoxin and glutaredoxin. These redox changes induce synthesis 
of direct and indirect precursors of phytohormones like: ABA, SA, ET, JA, IAA and other signaling 
molecules in the chloroplasts of local and directly stressed cells, and in not directly stressed cells and 
chloroplasts of systemic cells, tissues and organs by self-propagating waves of electrical- and ROS- 
heat- and phytohormonal-signaling of SAA and SAR. These signaling waves activate or deactivate 
various phosphatases, kinases cascades and transcription factors like, for example, LSD1, EDS1, 
PAD4, WYRKY, NAC, ERF and others. As a result of these some foliar cells induce PCD due to 
stomata closure and induction of photorespiratory burst of ROS and in other cells induce acclimation 
and defense responses. Algorithmic changes in ES-, NPQ- ROS- heat- and phytohormones-waves 
amplitude and frequency regulate stomatal conductance in the cellular automaton manner. All these 
changes within one plant can be communicated to the other neighboring plants by NAA mechanisms 
that propagate SAA and presumably SAR within plant community. Therefore, cross-tolerance 
between abiotic and biotic stress responses is possible not only within one stressed plant but also 
within plant community, and it is a scientific fact. 

Given a few leaves per plant and hundreds of plants in contact in a meadow, thousands of cells 
per leaf, several dozen chloroplasts per cell, and thousands of PSII per chloroplasts, which are 
potentially involved in the network of connections, this reveals the complexity of the SAA and NAA 
signaling and communication network mechanisms that involves trillions of possible 
communications routes in several m2 of a meadow. Plants are environmentally smart and intelligent, 
they communicate in sophisticated ways, globally (within community of plants) regulate absorbed 
energy fate, regulate foliar temperature, are able to count absorbed photons, have quantum-
molecular (NPQ-value) memory of AEE episodes and physiological (redox) cellular memory, they 
process this memory differentially at the same time in various foliar cells and tissues in order to 
acclimatize and immunize. In other words, it can be said that plants have developed the 
characteristics of smart, intelligent and communicating organisms. Is this a result of blind and 
random evolution or intelligent design? 
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