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Abstract: The need for efficient adaptation of existing polypropylene (PP) formulations or the creation of new 
formulations has become increasingly important in various industries. Variations in viscosity resulting from 
changes in raw materials, fillers and additives can have a significant impact on the processing and quality of PP 
products. This study presents the development of an analytical model designed to predict the shear viscosity of 
complex PP blends. By integrating established mixing rules with novel fitting parameters, the model provides a 
systematic and efficient method for managing variability in PP formulations. Experimental data from binary and 
multi-component blends were used to validate the model, demonstrating high prediction accuracy over a range 
of shear rates. The proposed model serves as a valuable tool for compounders and manufacturers to optimise 
PP formulations and develop new recipes with consistent processing and product quality. Future work will 
include industrial scale trials and further evaluation against advanced machine learning approaches. 

Keywords: Polypropylene; shear viscosity; predictive modelling; additives; chalk; impact modifiers; peroxides; 
analytical model; polymer blends 
 

1. Introduction 
Plastics have become an elementary component of modern society, valued for their adaptability, 

cost-effectiveness and durability. In Europe, the packaging sector is the largest consumer of plastics, 
accounting for around 40% of total demand, followed by the construction sector with around 20% 
and the automotive industry, which uses around 9-10% of all plastics. Among these materials, 
polypropylene (PP) stands out as the most widely used polymer, particularly in packaging, due to its 
balance of mechanical properties and ease of processing [1, 2]. Its versatility extends beyond 
packaging to applications in construction materials and automotive components, making it a key 
material for a range of industries. Given its extensive use, ensuring consistent material properties 
across applications is critical for efficient processing. 

A key factor in determining the processability of PP and other polymers is shear viscosity, which 
measures the resistance of the material to flow under shear deformation. Shear viscosity is influenced 
by a number of factors including molecular weight, temperature, additives and the shear rate itself 
[3, 4]. Typically, shear viscosity is characterised using a capillary rheometer, which measures flow 
pressure differences at different shear rates. Typical shear rates in polymer processes such as 
extrusion range from 1 s-¹ to 1000 s-¹, while injection moulding involves much higher shear rates, 
between 100 s-¹ and 100,000 s-¹ [3]. The interplay between viscosity and shear rate is critical for efficient 
and high-quality polymer processing, including extrusion, injection moulding and blow moulding. 

Variations in shear viscosity pose challenges in numerous manufacturing processes [5-8]. In 
injection moulding, for example, if the viscosity is too low, the mould can be overfilled, while if it is 
too high, the mould can be incompletely filled - both of which require costly adjustments to moulds 
and processing conditions [5, 6]. Similarly, in film extrusion, consistent viscosity is essential to avoid 
defects and maintain smooth production [7]. These challenges are even more pronounced when 
processing recyclates, which tend to have variable properties due to inconsistencies in source 
materials, previous use and contamination levels [9-13]. 
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However, recyclates are not the sole source of variability. Even when using virgin polymers, 
factors such as batch-to-batch variations, changes in suppliers, or the need to switch to different 
polymer grades for economic or supply chain reasons can lead to changes in viscosity. Additionally, 
adjustments in the formulation, such as the inclusion of different fillers and additives from other 
suppliers to modify the polymer's mechanical properties or to achieve specific performance criteria, 
can further influence the compound's viscosity.  

There are two main approaches to solving the problems associated with different viscosities. 
One approach focuses on adjusting the processing parameters of the various manufacturing 
machines. In this area, extensive research is being carried out into the development of assistance 
systems and methods designed to systematically adjust processing conditions to compensate for 
viscosity variations. In injection moulding, for example, advanced process control strategies for the 
injection and holding pressure phases have been developed to maintain consistent processing points 
even when viscosities vary [14, 15]. In blown film extrusion, researchers are investigating ways to 
compensate for viscosity changes within the melt pre-distributor [16]. In addition, commercial 
solutions from machine manufacturers offer automated adjustments to processing parameters, 
enabling smoother production despite variations in input material viscosity [17]. 

While such assistance systems can effectively manage production processes in the presence of 
varying viscosities, they do not address other quality parameters of the material that may be critical 
to the final product. For example, processing a recyclate batch with a different composition that 
results in a lower tensile modulus or impact strength may be optimised in terms of flow 
characteristics during processing, but the mechanical properties of the product could still be 
compromised. 

To guarantee the processability of compounds and ensure the requisite mechanical properties 
for the final product, it is necessary to modify the recipe or compound formulation in such a way that 
all essential properties of the compound are maintained, irrespective of variations in the quality of 
the input stream. This approach requires the development of reliable models capable of predicting 
these properties in relation to the base materials, fillers and additives used [10-13, 18, 19]. By using 
such models, it becomes possible to proactively adjust formulations to ensure consistency in both 
processing and product quality, even in the face of fluctuating input materials. 

2. Development and Modification of Compound Recipes 
Traditionally, the development and tuning of PP formulations has relied on empirical methods 

and the expertise of experienced compounders. While valuable, this procedure is inherently iterative 
and time-consuming, and often lack the precision required to handle the complex interactions within 
PP blends, especially those containing recycled materials or a multitude of additives [10, 11, 20-22].  

Without a systematic approach, compounders face challenges in achieving consistent quality in 
their formulations, as varying input streams can lead to unpredictable changes in viscosity. 
Formulation adjustments typically require extensive trial and error, which is not only resource 
intensive, but also limits the ability to quickly adapt to new or fluctuating material streams [21, 22]. 

In recent years, data-driven approaches, including machine learning (ML) and artificial 
intelligence (AI), have shown promise in predicting and optimising the properties of polymer blends. 
Methods such as artificial neural networks (ANNs) have been used to predict a multitude of 
compound properties [23, 24]. For example, Lopez-Garcia et al. demonstrated the use of ANNs to 
predict the mechanical properties of fibre-reinforced compounds containing recycled fibres, 
achieving R² values of up to 0.96 [23]. Other studies have used ANNs to optimise compound 
formulations for specific properties, such as colour and impact strength in polyamides [24]. 

Despite their success, these AI and ML approaches have their limitations. They require large, 
comprehensive datasets that include detailed information on formulation components, processing 
conditions and thorougly characterised material properties [25, 26]. Building such datasets often 
requires extensive and costly experimentation, making it difficult for many companies to implement 
these methods [22, 25, 26]. Furthermore, while AI models can offer high predictive accuracy, they 
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often lack interpretability, making it difficult to understand the underlying relationships between 
input parameters and predicted properties. 

2.1. Proposed Aim of This Paper  
Given the limitations of traditional empirical methods and AI models, there is a need for a more 

adaptable and interpretable approach to model the interactions of the individual components in PP 
blends. This paper proposes an analytical model specifically designed to predict the shear viscosity 
of industry orientated PP formulations. By combining established blending rules with novel fitting 
parameters, this approach aims to provide a systematic and efficient method for predicting the shear 
viscosity of blends in dependance of their compositions. 

Building on previous success in predicting the tensile modulus of PP blends with high accuracy 
utilising the same approach, the model developed withing this paper requires only a few modifiable 
fitting parameters and is easily adaptable [10]. This allows rapid adaptation to new formulation 
components, making it highly practical for industrial use where consistent product quality is critical. 

3. Experimental 
To obtain experimental data to develop the model to predict the shear viscosity as a function of 

the composition of blends, additives, and fillers, a variety of compound formulations were identified 
and produced.  

3.1. Materials and Characterisation 
The experiments utilised two virgin homopolymer PP grades, supplied by Lyondell Basell 

(Rotterdam, The Netherlands) and the Saudi Basic Industries Corporation (SABIC, Riyadh, Saudi 
Arabia). Both polymers differ significantly with 505P having an overall lower viscosity than HP548R. 
The melt flow rate (MFR) values, an indicator of the polymer's flow characteristics, were measured 
according to ISO 1133 at a temperature of 230°C and a weight of 2.16 kg, typical for PP [29]. The base 
polymer properties are summarised in Table 1. 

The selected additives and fillers represent a range of components commonly employed in 
different PP formulations. To specifically adjust the viscosity of PP, the peroxide masterbatch CR5P 
from Polyvel Europe GmbH (Jork, Germany) was used [18]. Peroxide additives are commonly used 
to modify the molecular structure of polymers, thereby affecting their rheological properties [27]. 
Additionally, the impact modifier masterbatch Engage 8200 supplied by DOW Inc. (Midland, 
Michigan, USA) was included to enhance the impact strength of the PP compounds, an aspect not 
directly linked to viscosity but potentially influencing it [28]. 

Fillers such as chalk are frequently added to PP compounds to improve their tensile modulus or 
reduce cost. For this study, two types of chalk differing in their grain size provided by OMYA GmbH 
(Oftringen, Switzerland) were used: Omyalite 95 T (fine) and Omyalite 50 H (coarse).  

Table 1. Base polymers used in the investigation [30, 31]. 

Designation Material Name MFR [g/10min] 

vH2 505P 2.0 

vH23 HP548R 23.0 

3.2. Laboratory Equipment for Compounding 
Compounding was carried out on a co-rotating twin screw extruder (Coperion GmbH, Stuttgart, 

Germany) with a screw diameter of 26 mm. Four different base compound compositions were used 
in all trials, as detailed in Table 2. The machine temperature was maintained at 210 °C. The screw 
elements consisted of conveying elements with a combination of kneading and mixing elements at 
the beginning of the process to plasticise the polymers. The compounding process was carried out at 
a constant screw speed of 300 min-1 and a targeted throughput of 15 kg/h. 
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Table 2. Blend composition for the main trials with vH2 (X1)-vH23 (X2). 

X1 0% 33% 67% 100% 

X2 100% 67% 33% 0% 

The different percentages of fillers and additives are shown in Table 3. Each additive or filler was 
used individually in compounding with the four base compound compositions, with no compound 
containing more than one filler or additive. The boundaries for the used percentages were chosen 
based on recommendations of the material suppliers. 

Table 3. Blend, filler and additive compositions for the blend of vH2-vH23. 

Designation Material Percentages 

Chalk fine Omyalite 95 T 10% 30% 

Chalk coarse Omyalite 50 H 10% 20% 

Impact Modifier Engage 8200 2% 4% 

Peroxide Additive Polyvel CR5P 0.25% 0.75% 1.00% 

The shear viscosity of the compounds was measured at a temperature of 230 °C using three 
round capillaries (diameter 1 mm) with lengths of 20 mm, 10 mm and 5 mm on a high-pressure 
capillary rheometer (RHEOGRAPH 50, GÖTTFERT Werkstoff-Prüfmaschinen GmbH, Buchen, 
Germany). The use of three capillaries allowed the Bagley correction to be applied to compensate for 
inlet and outlet pressure losses, ensuring accurate viscosity measurements for each compound even 
though each compound was measured only once [32]. 

4. Development of Partial Models for the Prediction of the Shear Viscosity Curve 
This section outlines the development of several partial models aimed at predicting the viscosity 

curves of different compounds as a function of their formulation. The modelling begins with the 
development of a model for binary polymer blends and extends to models that consider the effects 
of additives such as chalk, impact modifier and peroxide. 

4.1. Development of a Model to Predict the Shear Viscosity of Binary Homo Polymer Blends 
The shear viscosity of the various blends was measured at fixed shear rates of 51 s-1, 102 s-1, 204 s-

1, 408 s-1, 816 s-1 and 1630 s-1. However, to investigate viscosity at specific processing shear rates, 
interpolation between measurements may be required. A variety of models can be used to describe 
the shear viscosity curve. In a previous investigation, several models for predicting the shear viscosity 
of binary and ternary blends of PP were investigated in detail [11]. The Carreau model with 𝜂𝜂 being 
the shear viscosity in dependence of the shear rate 𝛾̇𝛾, given by equation 1, was found to be best suited 
for describing the viscosity curve for the fixed shear rates used in the measurements. 

𝜂𝜂(𝛾̇𝛾) =
𝐴𝐴

(1 + B𝛾̇𝛾)𝐶𝐶
 (1) 

For each blend, the three parameters of the Carreau model 𝐴𝐴,𝐵𝐵  and 𝐶𝐶  were fitted to the 
measured data to minimise the squared error between prediction and measurement. Figure 1 shows 
the measured data alongside the curve calculated using the Carreau model for the four binary blends 
without additives and fillers.  
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Figure 1. Measurements and shear viscosity curves derived by the Carreau model for 
the four binary blends without any additives or fillers. 

Various mixing rules can describe the shear viscosity of a binary blend at a defined shear rate 
[11]. The linear blending rule, in previous studies identified as effective for PP, is given by equation 
2 [11]. 

Figure 2 shows the measured shear viscosities for different shear rates alongside the linear model 
(equation 2). To minimise prediction error, the linear model was fitted to the data, resulting in some 
deviation from the measured data. The model shows high accuracy for shear rates from 204 s-1 to 1630 
s-1, effectively fitting all measurement points. However, at lower shear rates of 51 s-1 and 102 s-1, the 
shear viscosity measurements e. g. for the 66% vH2 blend decrease slightly. 

  
Figure 2. Measured shear viscosity for fixed shear rates plotted with a linear mixture 
model (dotted lines). 

The R2 value and the Mean Percentage Error (MPE) are used to assess the predictive accuracy of 
the models for the binary mixtures as well as for the models developed in the following subchapters.  

The R² statistic measures the proportion of variance in the dependent variable that is explained 
by one or more independent variables in a regression model. An R² value of 1 indicates a perfect fit, 
i.e. the predictions of the model exactly match the observed data. Conversely, an R² of 0 indicates that 
the model does not explain any of the variability in the dependent variable. As the shear viscosity 

𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛾̇𝛾) = 𝑥𝑥1𝜂𝜂1(𝛾̇𝛾) + 𝑥𝑥2𝜂𝜂2(𝛾̇𝛾) (2) 
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values cover a range of magnitudes, calculating an overall R² series may lead to biased conclusions, 
as the prediction accuracy at lower shear rates, such as 51 s-1 or 102 s-1, is more heavily weighted by 
the higher viscosities. Therefore, R² values are calculated individually for each measured shear rate. 
However, the MPE can be used to compare the prediction accuracies for the different shear rates. 

Table 4 summarises these metrics for the linear mixing model over all blends. The R² values are 
close to 1.0, with a minimum of 0.9978 for the shear rate of 102 s-1, while the MPE remains below 1%, 
indicating high prediction accuracy. These results are congruent with other literature confirming the 
linear mixing rule to be suitable for predicting the shear viscosities of PP blends [11, 33, 34]. 

Table 4. R² and MPE for the linear model of the four binary blends without additives or fillers. 

Shear Rate 1630 s−1 816 s−1 408 s−1 204 s−1 102 s−1 51 s−1 
R² 1.0000 1.0000 0.9994 0.9996 0.9978 0.9989 

MPE 0.003% 0.002% 0.373% 0.355% 0.978% 0.807% 

4.2. Development of A Model to Predict the Shear Viscosity of Binary Homo Polymer Blends with Peroxide 
Masterbatch 

This section examines the effect of the addition of a peroxide containing masterbatch on the 
tensile modulus of the blends. Figure 3 shows the fitted Carreau curves for 100% vH2 with varying 
concentrations of peroxide additive (0.25%, 0.75% and 1.00%). The data show that the shear viscosity 
decreases with increasing peroxide content at all shear rates, as expected due to the shortening of the 
PP chain length [27]. 

  
Figure 3. Shear Viscosity curves for the blend of 100% vH2 with the addition of various 
concentrations of Peroxide Additive. 

To determine a model capable of describing the influence of the peroxide additive, the viscosity 
in dependence of the peroxide additive content is investigated for each of the measured shear rates. 
This can be seen for the exemplary shear rates of 102 s-1 and 815 s-1 in Figure 4. 
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Figure 4. Shear viscosity curves for all blends in dependence of the share of peroxide additive in the 
blend for the two exemplary shear rates of 102 s-1 and 815 s-1. 

After examining the measured data for each of the shear rates, it was found that an exponential 
function fits the measured data very well. This exponential function depends on the shear viscosity 
of the blend without peroxide and the amount of peroxide multiplied by a constant in the exponent 
of the exponential function. By examining the exponential functions for all blends, it was found that 
the exponent of the individual fits was very similar for all four blends for each shear rate. In order to 
develop an expression for the exponential function that is universally applicable to all shear rates, a 
function must be found to describe this exponent of the exponential functions as a function of shear 
rate. The correlation for this exponent of the exponential function for all shear rates is shown in Figure 
5. 

 

Figure 5. Correlation of the average exponents of the exponential fit performed for the various shear 
rates as shown in Figure 4 in dependence of the shear rate. 

It can be seen that all values for the exponents fit quite well with a logarithmic trend. Using this 
correlation, a universal formula can be derived to predict the shear viscosity for all blends as a 
function of shear rate and the viscosity for a given shear rate for the blend without peroxide, 
according to equation 3. 

𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝛾𝛾,̇ 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛾̇𝛾) ∗ 𝑒𝑒𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑝𝑝1∗ln(𝛾̇𝛾)+𝑝𝑝2) (3) 

The coefficients 𝑝𝑝1  and 𝑝𝑝2  are the only parameters required to fit the model for all data 
containing peroxide as an additive. They were fitted to minimise the overall MPE and were 
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determined to be 𝑝𝑝1 = 19.485 and 𝑝𝑝2 = −187.147. The individual R² and MPE for all measured shear 
rates are shown in Table 5. 

Table 5. R² and MPE for the model predicting the shear viscosity for the different shear rates for the 
blends containing peroxide. 

Shear Rate 1630 s−1 816 s−1 408 s−1 204 s−1 102 s−1 51 s−1 
R² 0.9096 0.9711 0.9798 0.9793 0.9706 0.9355 

MPE 4.564% 3.244% 3.752% 4.450% 6.040% 9.538% 
In general, the model accuracy is worse than for the binary blend without additives or fillers. 

The best R² value was obtained for 408 s-1 with a value of 0.9798, while the worst value was obtained 
for 1630 s-1 with a value of 0.9096. Similar results can be seen for the MPE, with a minimum of 3.244% 
and a maximum of 9.538%. One reason for this may be inaccuracies in the dosing equipment during 
the trials. With a mass throughput of 15 kg/h during the tests, a throughput of 37 g/h had to be set 
for the test points with 0.25% peroxide additive content. Small deviations in the throughput result in 
a difference between the assumed and the actual peroxide concentration, which may explain the 
rather high inaccuracies for the prediction model. 

4.3. Development of a Model to Predict the Shear Viscosity of Binary Polymer Blends with Chalk 
Following the development of the model for binary homopolymer blends with peroxide, this 

section examines the effect of adding chalk as a filler on the shear viscosity. For the 100% vH2 blend 
with 10% and 30% fine chalk as filler, the effect of chalk on shear viscosity is shown in Figure 6. 

 

Figure 6. Shear viscosity curves for the blend of 100% vH2 with the addition of fine chalk. 

Compared to the addition of a peroxide additive, the addition of up to 30% chalk as filler only 
results in a minor increase in shear viscosity of up to 22%. This can be observed for all blends and for 
both types of chalk used in the investigation. Nevertheless, the addition of chalk has an influence and 
will be modelled. Figure 7 illustrates the effect of the fine chalk for the exemplary shear rate of 102 
s⁻¹. 
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Figure 7. Shear viscosity for shear rate of 102 s-1 for the blends containing fine chalk. 

It can be seen that the effect is linear for all four blends. Similar to the development of the model 
for the peroxide additive, the correlation between the slope for the four blends with chalk and the 
viscosity at 0% chalk (intercept of the four linear fits in Figure 7) is shown in Figure 8. The relationship 
is again linear. While the slope of 100% vH2 and 33% vH2 are almost identical, the linear fits for 0% 
vH2 and 67% vH2 are slightly different. However, compared to the peroxide additive, the chalk has 
less influence despite its higher filler content. Therefore, a pragmatic modelling approach is taken 
and the linear correlation fits in Figure 8 are averaged and reduced to one linear function. This results 
in inaccuracies in the prediction for the 0% vH2 and 67% vH2 blends, but the trends are still captured. 

 
Figure 8. Correlation of slope and intercept of the linear fit for all blends and shear rates containing 
fine chalk. 

Using the above approach, the effect of chalk on the shear viscosity curve as a function of 
compound, shear rate and chalk content can be described by equation 4. 

𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝛾𝛾,̇ 𝑥𝑥𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎) = 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛾̇𝛾) + 𝑥𝑥𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∗ (𝑐𝑐1 ∗ 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛾̇𝛾) −  𝑐𝑐2) (4) 

For the mixtures containing the fine chalk, the parameters 𝑐𝑐1  and 𝑐𝑐2 were fitted in the same 
way as the parameters of the previous model for the peroxide in order to minimise the MPE. The 
same procedure was used for the coarse chalk to determine the parameters 𝑐𝑐3  and 𝑐𝑐4 . The fitted 
parameters are shown in Table 6. 

Table 6. Fitted parameters for both the blends with fine and coarse chalk. 
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Parameter 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 
Value 0.5191 16.3861 0.7197 23.2449 

Calculation of the R² values and MPE for each shear rate for both types of chalk gives the values 
shown in Table 7. Apart from the R² value of 0.9147 for the fine chalk at the shear rate of 1630 s-1, a 
minimum R² value of 0.9553 is obtained. It can also be seen that the R² values for the coarse chalk are 
slightly better at all other shear rates. Although the R² values for the shear rate of 1630 s-1 appear to 
be the worst, the MPE of 2.464% for fine chalk and 1.889% are among the lowest errors, indicating 
good model prediction accuracy, especially at higher shear rates. 

Table 7. R² and MPE for the model predicting the shear viscosity for the different shear rates for the 
blends containing both types of chalk. 

Chalk Type Shear Rate 1630 s−1 816 s−1 408 s−1 204 s−1 102 s−1 51 s−1 

Fine 
R² 0.9147 0.9638 0.9699 0.9656 0.9612 0.9553 

MPE 2.464% 2.091% 2.574% 3.124% 4.059% 5.620% 

Coarse 
R² 0.9578 0.9707 0.9694 0.9679 0.9658 0.9597 

MPE 1.889% 1.559% 2.005% 2.620% 3.383% 5.162% 

4.4. Development of a Model to Predict the Shear Viscosity of Binary Homo Polymer Blends with Impact 
Modifier 

Finally, the effect of the impact modifier on the shear viscosity of the blends is investigated. 
Figure 9 shows the effect of 2% and 4% impact modifier on the shear viscosity curve for 100% vH2. 
There is almost no effect on the shape of the curve. No significant effect was observed for the other 
three blends. Therefore, the addition of an impact modifier is neglected, and no separate model is 
developed. 

 
Figure 9. Shear viscosity curves for the blend of 100% vH2 with the addition of impact modifier 
additive. 

5. Aggregation of Partial Models to an Extensive Model 
In the previous sections, individual models have been developed to predict the shear viscosity 

of binary PP blends and the effects of various fillers and additives such as chalk, impact modifiers 
and peroxide additives. The next logical step is to integrate these partial models into a single 
comprehensive model capable of predicting the shear viscosity of more complex blends. 

The aggregated model is constructed by combining each partial model through additive 
contributions to the base model describing the binary blends. This aggregation is represented 
mathematically by equation 5: 
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𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚(𝛾̇𝛾) = 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + ∆𝜂𝜂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + ∆𝜂𝜂𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + ∆𝜂𝜂𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (5) 

Equations 3 and 4 from the earlier sections are modified to form Equations 6 to 8, describing 
each additive's effect in the final model. 

∆𝜂𝜂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛾̇𝛾) ∗ 𝑒𝑒𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗(𝑝𝑝1∗ln(𝛾̇𝛾)+𝑝𝑝2) − 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛾̇𝛾) (6) 

∆𝜂𝜂𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑥𝑥𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ (𝑐𝑐1 ∗ 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛾̇𝛾) −  𝑐𝑐2) (7) 

∆𝜂𝜂𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ (𝑐𝑐3 ∗ 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛾̇𝛾) −  𝑐𝑐4) (8) 

1.  These equations include the parameters fitted in the previous sections, where 𝑥𝑥𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 
𝑥𝑥𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, and 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 represent the proportions of the respective additives in the 
mixture. The coefficients 𝑐𝑐1 to 𝑐𝑐2 correspond to the intercept and slope parameters identified 
for each chalk type, while 𝑝𝑝1 and 𝑝𝑝2 are the fitting parameters for the peroxide model.   

2. After developing the full model by combining these partial models, all parameters were 
optimised using the full data set to minimise the overall MPE. The shear viscosity curves used 
to calculate the viscosity of the blend, 𝜂𝜂1(𝛾̇𝛾) and 𝜂𝜂2(𝛾̇𝛾) were measured. However, in order to 
ensure the best possible accuracy for the aggregated model, the Carreau parameters according 
to Equation 1 were also refined during the optimisation process. The final optimised parameters 
for the full model are shown in Table 8. 

Table 8. Fitted parameters for the aggregated model. 

Figure 10 shows the individual predictions of each data point plotted against the measurements. 
The dotted line in the graph indicates an exact match between prediction and measurement. It can be 
seen that over the full range of shear viscosities measured, the predictions and measurements of all 
data points, regardless of their fillers or additives, are in fairly close alignment. The highest 
percentage deviations occur in the peroxide containing blends, as expected and explained in section 
4.2. 

 

Parameter Value Parameter Value 
𝐴𝐴1 430.699 𝑝𝑝1 19.478 
𝐵𝐵1 0.00183 𝑝𝑝2 -185.824 
𝐶𝐶1 0.64460 𝑐𝑐1 0.606 
𝐴𝐴2 251.964 𝑐𝑐2 16.791 
𝐵𝐵2 0.01303 𝑐𝑐3 0.618 
𝐶𝐶2 0.69068 𝑐𝑐4 15.648 
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Figure 10. Plot of model prediction and measurements for each data point. The dotted line marks a 
perfect match between prediction and measurement. The individual additives and fillers are assigned 
to different colors. 

The R² and MPE of all measurements for each shear rate were calculated to assess the aggregated 
model's performance, as shown in Table 9. As expected, the R² for the shear rate of 1630 s⁻¹ is the 
lowest, with a value of 0.9553. Nevertheless, for all other shear rates, a minimum R² of 0.9723 up to a 
maximum R² of 0.9849 was achieved, indicating very good model quality. The prediction error for 
the highest shear rate of 1630 s⁻¹ is the worst, with an MPE of 6.503%, while the best prediction 
accuracy is for 102 s⁻¹ with an accuracy of 2.424%. 

Table 9. R² and MPE for the aggregated model predicting the shear viscosity for the different shear 
rates for all blends. 

Shear Rate 1630 s−1 816 s−1 408 s−1 204 s−1 102 s−1 51 s−1 
R² 0.9553 0.9820 0.9849 0.9838 0.9809 0.9723 

MPE 6.503% 4.273% 3.327% 2.811% 2.424% 3.037% 

6. Discussion 
In this study, an analytical model was developed to predict the shear viscosity of PP blends 

consisting of multiple polymers, fillers and additives. The model combined established blending 
rules with additional fitting parameters to provide accurate viscosity predictions for complex PP 
blends.  

The performance of the model was evaluated over a range of shear rates and showed good 
agreement with the measured data. For the binary blends without additives, the model achieved an 
R² value of up to 0.9994 at a shear rate of 408 s-¹ and maintained an R² value above 0.9978 across all 
measured shear rates. This high level of accuracy indicates that the model effectively captures the 
shear viscosity behaviour of the base polymers. 

When extended to include additives such as peroxide, the model accounted for the observed 
decrease in viscosity with increasing peroxide concentration. The model achieved an R² value of 
0.9798 at 408 s-1, and although the R² value dropped to 0.9096 at the highest shear rate of 1630 s-1, the 
MPE remained within acceptable limits, indicating reasonable predictive accuracy for blends 
containing peroxide. For blends containing chalk, both fine and coarse, the model maintained an R² 
value above 0.9147, demonstrating its ability to predict the viscosity changes induced by fillers with 
high contents. The overall predictive accuracy of the model for all blends and shear rates was 
confirmed by an R² value ranging from 0.9553 to 0.9849, with the MPE reaching a maximum of 6.503% 
at the highest shear rate of 1630 s-1. 

The aggregation of partial models into a comprehensive framework allowed the prediction of 
the combined effects of multiple additives on the shear viscosity of PP blends.   

Future work will focus on validating the model in an industrial setting, specifically through 
extended trials on a twin-screw extruder using the formulations investigated in this study, as well as 
additional formulations containing all additives and fillers simultaneously. These trials will further 
test the robustness of the model and its ability to handle the complexities of real processing 
conditions. In addition, a comparative analysis with advanced machine learning approaches is 
planned to benchmark the performance of the analytical model. This comparison will help to identify 
any potential advantages or limitations over data-driven models, and provide insights into how these 
different approaches could be combined or used in a complementary manner to optimise polymer 
processing. 

In conclusion, this analytical model represents a significant step towards a more adaptable and 
systematic approach to the management of shear viscosity in PP blends. Its strong predictive 
capability, as demonstrated by the high R² values and low MPEs across different formulations and 
shear rates, underlines its potential utility in developing and adjusting PP formulations with greater 
efficiency and accuracy. 
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